
1

Facets of Multi-Stage Computation in Software Architecture

Walid Taha Tim Sheard

Oregon Graduate Institute
20,000 NW Walker Rd,

Portland, Oregon
92779, USA

+1 503 690 1121 x.{7047,1439}
{walidt, sheard}@cse.ogi.edu

ABSTRACT
The goal of this paper is to demonstrate that an important,
naturally-occurring, and disciplined form of reflection in
software systems is readily expressible at the architectural
level by using a new architectural operator (connector)
called Engage. We begin by extending a simple data-flow
architectural description language with this operator. We
illustrate the expressive power of Engage by using it to
describe both familiar and experimental software
architectures. In doing so, we also demonstrate the
prevalence of a reflective organizational pattern called
multi-stage computation.

We are not aware of any other architectural description
language that captures the essential functionality of the
Engage operator.

The paper’s treatment is rigorous, but not formal.

Keywords
Architectural design languages, program generation,
multi-stage computation, reflection.

1 INTRODUCTION
The success of any large system is greatly affected by its
architectural design [6]. Software architecture is the
medium for communication between the technical and
managerial parties involved in the development of a
software system [13, 18]. Occasionally, the performance
of a software system can become an issue that demands a
high-level decision, for example: “The user interface is
too slow”. In such cases, it is important that the
architectural description of the system provide some

indication of where high performance penalties are being
paid, and that there be clear tradeoffs that can be made at
the architectural level.

The key idea of this paper is that reflection, a particular
kind of dynamic behavior, can be expressed at the
architectural level in a simple and effective manner.
Reflection can have a profound effect on the performance
of a system.

1.1 The Need for Reflection
Almost every scripting language provides a form of
reflection, and almost every general-purpose computing
system provides a scripting language. Typically, such
languages are used to initiate compilation, especially as
part of a configuration process. After compilation the
generated file is usually "run". At this level, the action of
running a generated program is often not recognized as
computational reflection. The main argument is that such
a system is not an "introspective, self-modifying" one.
However, program execution as we have just described it
constitutes a rather limited form of computational
reflection, in that the meta-system changes its state: a new
program has now become part of the existing architecture.
In any architecture, dynamically executing a program that
has just been generated is inherently unsafe, as there are
typically no guarantees to the form of this program. At the
same time, this architectural pattern is desirable for
performance reasons. In practice, a certain level of safety
is ensured by using only simple scripts when running
dynamically generated programs. However, the real key to
the safety issue with respect to this kind of reflection is the
restriction that the over-all architecture of the system being
considered must be specified before hand, even if not all of
the architecture’s components are available at the very
beginning of this architecture’s operation.

1.2 Organization of this Paper
We begin by presenting GDL, a skeletal graphical notation
for describing the architecture of generation systems. We

This paper has been published as an OGI
Technical Report. It is also available
from http://www.cse.ogi.edu/~walidt

illustrate the basic architectural problem that arises from
reflection, discuss possible solutions to this problem, and
advocate one of these solutions.

By systematically going through a number of important
examples, starting with compilation and going on to high-
level program generation, and other architectures where
this kind of dynamic behavior arises, we illustrate both the
importance of this behavior, and the ease with which it can
be expressed at the architectural level.

The paper is concluded after discussing ongoing and future
works.

2 A GENERATOR DESCRIPTION LANGUAGE
GDL is a graphical notation for describing the architecture
of program generation systems. A GDL description is a
graph with the following three kinds of nodes:

P F

U

denoting a (running) program P, a data entity F, and a user
U. Any two useful nodes are connected via an edge. The
semantics of more sophisticated data flow languages have
been formalized elsewhere (See for example [16]). For
the purpose of this paper, an informal description is
sufficient. While users play an important role in the
description of any real system, they are not of immediate
relevance to the essential subject matter of this paper, and
hence their treatment will also be minimal.

There are two basic kinds of edges, distinguished by the
kinds of nodes they connect:

Edge Means

PF

Program P reads entity F.

P F

Program P writes entity F.

The bearing of the edges (left, right, up, down) is not
relevant. With these elements, a familiar multi-pass
compiler can be described by the following diagram:

Source Parse
Parse
Tree

Parse
Tree

Type-
Check

Emit
Code Target

More detailed descriptions at the architectural level are
also possible using GDL, but more so with hybrid
description languages (See [13], [16] and [8] for example
variants of the compiler example). For economies of
space, and to avoid possibly distracting detail, we will
generally work at an even higher level of abstraction; it is
at this level that the multi-stage pattern should manifest
itself.

We can follow some straight-forward abstraction steps to
hide some of the details of the GDL description above.
Such abstractions steps will be discussed in more detail in
Section 5.

Now we can illustrate one of the problems that arises due
to the presence of reflection by means of a minimal
example: consider a program hello.c that prints “Hello
World” to standard output (stdout). When this program is
compiled, the result is an executable file (a.out):

hello.c compile a.out

Eventually, the user may wish to execute this program.
This can be represented at the architectural level as:

a.out stdout

A question this paper attempts to address is: What is the
relationship between these two diagrams? We know how
to describe these two different aspects of the lifetime of
this simple program, but how do they fit together and can
they be represented in the same framework?

To combine the two diagrams, we are faced with the
problem that a.out plays two different roles in each of these
two lifetimes: as a data entity, and as a program. The
presence of the two distinct manifestations leads to a form
of type-mismatch if we attempt to unify the two. The
problem arises in any generative architecture.

Our claim in this paper is that a solution to this problem is
indeed feasible. In the rest of this section, we will discuss
a number of reasonable options, and advocate on of these
options as the solution.

2.1 The Relativity of Reflection
There is more than one solution dealing with the type-
mismatch arising between viewing programs both as data
and as active processes. In particular, we can employ a
conceptually simple emulator for machine code. This
construction can be represented as follows:

P Emulate

Inputs

Output

While such programs do in fact exist, they are significantly
more expensive in terms of space and time utilization. If
we represent running all programs in this fashion, simply
to allow our architectural diagrams to “type-check”, then

we have failed to capture the essential behavior of the
underlying implementation at the level of the architecture:
Both the use an emulator and a “realistic” implementation
would have identical representations at the architectural
level.

What we really need to do here is to hide reflection by
using a “Real Virtual Machine (RVM)”. This machine
represents the hardware on which the machine code will
be “interpreted”. In other words, we are trying to make
the underlying computational machinery of the
architectural framework explicit:

P RVM

Inputs

Output

The main disadvantage of this notation appears when we
try to describe the execution of more than one program
within the same architecture: We either have to make
many duplicate copies of RVM, which would be
misleading, or we can make all executions explicitly share
the same RVM in the GDL description. The second option
would result in very cluttered diagrams. In addition, the
details of which input (or output) belongs to which
program will be lost.

In essence, an optimal solution should be some well-
behaved coercion between the data and the program
“types”. We therefore propose a (hopefully) more
intuitively appealing convention, namely that of
“engaging” the data-entity D into the underlying
computational machinery, which makes this engaged
image of the data entity be known to the rest of the
architecture as program P.

Edge Means

PF

Engage entity F into
architecture as a program P.

In the standard sequential setting, Engage can be
interpreted as “running D under name P”. Having the two
names, P and F, is not necessary, but turns out to be useful
in GDL diagrams, especially as it gives more insight into
the dual role that this same object is playing.

Using Engage, the complete architecture whereby the
program hello.c is both compiled and executed can be
described as follows:

stdouta.outhello.c compile a.out

Note that the kind of reflection that this language can
describe is still tightly restricted: The full architecture that
will host the dynamically engaged entity is known a priori,
despite the fact that not all programs making up this
architecture exist initially. In this paper, instead of
arguing for the pragmatic benefits of such a restriction, we
demonstrate how numerous interesting multi-stage
software systems that are used in practice do indeed have
an architecture that is fully known a priori.

Naturally, not all software systems have an architecture
known a priori: when a user buys a PC, neither she nor
anyone else can know what programs and with what
architectures will be run on this system. Certain
applications such as operating systems must be extremely
dynamic. GDL cannot express the dynamic aspect of such
systems. At the same time, and as we will see in the
following two sections, there is a wide variety of
interesting and useful applications where this restrictive
condition holds.

2.2 Reflection without Tears
Engage is a special kind of reflection, in that it does not
involve altering the state of the meta-system, which we
believe is a generally unsafe practice for developing
programs in the large. An example of such undesirable
reflection is changing the semantics of the programming
language, by dynamically changing the interpreter or the
compiler at runtime. Another such example, is self-
modifying programs. The fact that Engage cannot express
either of these kinds of behavior provides a certain level of
safety and conceptual simplicity.

What Engage allows us to express is the fundamental
difference between compiling systems and interpretive
systems, which will be illustrated in this paper. The
significance and relevance of this distinction is no longer
confined to theoreticians and programming linguists:
Today, high-level program generation research and
applications are picking up speed, as is reflected by the
interest in Domain-Specific Languages (DSLs). We [20]
and others [19] have identified high-level generation as a
powerful technique for effectively compiling DSLs, and
thereby avoiding most (if not all) performance overhead
that may be associated with using them in performance-
critical systems. This use of multi-stage computation to
compile DSLs is further discussed in Section 4.5.1.

3 MULTI-STAGE ARCHITECTURES
At this point, we have introduced all the machinery needed
to be able to define multi-stage computation. Multi-stage
architectures are best described as a pattern arising from

the involvement of the Engage operator, either implicitly
or explicitly, in an architecture.

Any architecture can be partitioned into stages. Stages
create equivalence classes of sets of components. A stage
T is said to come after a stage S if there is an Engage
connection going from a data entity in S to a program in
T.

The following diagram portrays an N-stage system:

Stage NStage 2Stage 1

Here the stages are represented by the larger ovals. For
this partitioning to be interesting, there must be some
dependency between the out-going data entity and the in-
coming program of each stage. This is typically reflected
by the presence of a path in the GDL graph from the in-
coming point to the out-going point. In addition, this
internal path must contain at least one program. However,
this condition is vacuously true for all stages but the first.

A multi-stage architecture is one consisting of more than
one stage.

Even in a highly-concurrent implementation, each stage
probably needs to remain completely blocked until the
previous stage is completed: Part of the architecture for
this stage simply does not exist until the previous stage is
completed.

4 APPLICATIONS
To illustrate both the expressiveness of GDL and the
prevalence of multi-stage architectures, we demonstrate
how a variety of both common-place and research
architectures can be described using GDL.

4.1 Program Execution
The simplest way to execute a program is through the use
of an interpreter. An interpreter inspects the input
program, and performs the actions that this program
represents.

It is possible to imagine using an off-line interpreter to
execute a C program:

hello.c interpret stdout

This architecture is simpler than that of compilation-based
execution. In particular, the Engage operator at the
architectural level disappears. But at the same time,
interpreters are typically orders of magnitude slower than
compilers. This observation is fundamental: We have
noticed that in many existing architectures, Engage-like
reflection is frequently used for the sole purpose of

improving the performance of the overall system. At the
same time, compilers are also typically orders of
magnitude more expensive to develop than are
interpreters.

4.1.1 The Engage Notation Revisited
It is often convenient to use the Engage notation where
programs are really being compiled and then executed.
That is, the following architectural fragment:

P’ P’

Inputs

Output

P Compile

Can also be represented as:

P P

Inputs

Output

Without being considered inaccurate, because this
“reduction” is an abstraction step. Abstraction steps will
be discussed in Section 5. The Engage operator still
stands for effective reflection.

The Engage operator could also be used even when it is
(temporarily) being implemented by an interpreter. This is
possible for a different reason, namely, to express a
semantically-motivated intuition. However, strictly
speaking, an interpretive implementation is not really
conforming to the architectural specification as presented
so far.

To allow for this latter kind of use of the Engage operator,
we will say that reflection is primitive only when it
involves the execution of machine code directly (or
invokes the interpreter of the meta-system, whatever that
system may be). The use an interpreter as described above
is referred to as non-primitive reflection.

4.2 The Java Virtual Machine
Implementations of the Java programming language
employ another interesting architecture for program
execution:

stdoutJVMhello.java
Java

compiler
Byte-

code

In this architecture, the Engage operator is, once again,
absent. Instead, it is replaced by a byte-code interpreter.
While this design choice can mean some performance
overhead, it has the advantage of making the output of the
compiler portable: The byte-code program can be execute
on any architecture where a Java Virtual Machine (JVM)
is available.

However, the interplay between reflection and portability is
limited. In particular, the need for the Java Virtual
Machine does not arise because of reflection, but rather
because the original output of compilers used to be in
machine-code. In fact, we can imagine a refinement of the
above architecture, where the Java Virtual Machine is
implemented by first generating machine-code, then
engaging it. Such systems are commonly known as Just-
In-Time (JIT) compilers.

4.3 Application Configuration
Software configuration and installation provides another
good example of multi-stage computation: Often,
multiple versions of the same software exist in a software
development house, each for a different architecture or
operating system. Ideally, these different versions are
automatically generated from the same source. Usually,
this generation step is relatively straight forward. At the
installation site, the installation utility queries the
particular system for its various parameters. This can be a
relatively sophisticated process, involving either the
selection of pieces of code to install, or the generation of
some parts of system being installed.

The GNU Autoconf facility provides a good example of
such a system [15]. Autoconf is designed as a generic
software configuration and installation framework, and is
employed in the configuration and installation of most
GNU applications.

In preparing a software system for distribution, Autoconf
takes specifications from a file "configure.in" and
generates an appropriate configuration file "configure"
which is system-specific. At the installation site,
"configure" is executed to generate a make file (Makefile).
The make utility is then used to execute this make file to
guide and control the compilation of the sources into an
executable. This can be represented by the following
diagram:

Makefile makeconfig.in configAutoconf config

HOST
SYSTEM

SOURCE
CODE

EX’ABLE

Note that we could have used the Engage operator to
connect Makefile and make. This is not entirely accurate:

Make interprets the make file, rather than effectively
reflecting it. However, using the Engage operator here
would capture the intended semantics of the make file
more accurately if we wish to avoid an interpretive view.

As the World Wide Web and its applications mature, we
imagine that the difference in time between the generation
of the distribution configuration file and its execution at
the installation site will become shorter and shorter. As
such global architectures develop, both customers and
systems developers will need to become more and more
aware of their structure, and how they fit together.

4.4 Off-line Partial Evaluation
Now we come to a special kind of software system that
was devised to automatically stage programs: an off-line
partial evaluator [10]. Off-line partial evaluation systems
also provide us with the first example of three-stage
computation.

Let us consider the execution of a basic program, with one
input and output:

P P

Inputs

Output

Here, all inputs have been lumped together as one data
entity.

The basic idea of off-line-partial evaluation is to take
advantage of the fact that some inputs may be available
before others. This is accomplished by first performing a
Binding-Time Analysis (BTA) based on both the input
program, and information about its inputs. At this point,
the only information provided to BTA (Input info) is
whether each of the program’s inputs is static or dynamic.
An input is static if it is available during partial
evaluation, and dynamic if it is not.

The result of BTA is an annotated program. In essence,
the annotated program is a program generator G. When
executed, this program generator first reads P’s static
inputs. Then, it performs all P’s computations that depend
only on the static inputs. Finally, it generates a new
program P’ (called the residual program). Now, P’ only
needs to read the dynamic inputs (whenever they become
available) and perform the rest of P’s computations to
produce the desired output. In GDL, this architecture can
be accurately described as follows:

Specialize P’

Input

info

GBTAP P’

Static
Inputs

Dynamic

Inputs

Output

The dotted box encloses what is usually considered to be
the partial evaluator proper.

The essential feature of this architecture is that it factors
out the execution step of program P, into two distinct
stages, and performs the first one of them. It is the role of
BTA to perform this (non-trivial) factorization of the
input program P. The complexity of this step depends
both on the input information (specifying which inputs
will be Static, and which will be Dynamic) and the
complexity of the program P itself.

We are not aware of any other architectural description
language that can express this essential functionality of an
off-line partial evaluation system.

Originally, off-line partial evaluation systems were
designed to convert the input program from single-stage to
two-stage. Recently, significant progress has been made in
the development of partial evaluation systems that can
convert a single-stage program into an N-stage program,
where N is any arbitrary integer [7].

4.5 Bootstrapping
Bootstrapping is an important technique for the
development of realistic compiler systems [1]. In this
paper, bootstrapping provides us with a rich domain of
examples where we can have architectures of an arbitrarily
large number of stages.

4.5.1 A Problem
The key idea of bootstrapping can is roughly described by
the following architectural description:

compilercompiler.c a.out

After a new compiler is generated from the source, it can
be used to compile itself. Such an architecture raises the
need for computing a fixed-point. This is a very
demanding requirement that complicates the logic for
reasoning about compiler development unnecessarily.

4.5.2 A Solution
Compiler developers have avoided this problem by using
the following well-known construction for a
“bootstrapping step”:

Compiler

TargetSource

With these “T diagrams”, the need for the loop in the
architecture is removed, essentially by making each
“version” of the compiler unique. For example, let us
consider a two-step bootstrapping development process
where a compiler for a language called D++ is developed
by first developing a compiler for subset called D--, and
then developing a compiler for D++ in D--. This process
is represented by three elements, T1, T2, and T3 connected
as follows:

M

MD--D--

MD++

M

MD++

T1

T2

T3

Note that T2 is acting as an architecture-transformer: It
takes the architecture represented by T1, and generates a
new program with the architecture reflected by T3.

4.5.3 An Alternative Solution
We contrast the T diagram with the GDL description of
the same architecture, starting from the same basic
ingredients:

C1(M)

C1P(D++) P(M)

C0(M)

C0C1(D--)

P

In this diagram, C0(M), C1(D--) and C1(M) are the
compilers represented by T2, T1, and T3, respectively.

While the GDL description is somewhat simpler than the
T diagram, it hides the architectural-transformation aspect
that the T diagram clearly reflects: Just by looking at the
C1(D++) box, we cannot tell that this data entity will
eventually become a program. While this can be deduced
in this case by following the edges of the graph, if C0 had
more than one input then it would not be able to say which

data entity did in fact embody the structure that C1
reflects.

On the other hand, the T-notation is somewhat ambiguous,
in that two touching Ts do not necessarily mean that they
are interacting (See examples in [1]).

4.6 Program Generation
Empirically, several studies, including Keiburtz and
McKinney et al [11], have demonstrated that using
generation systems can improve both productivity of
programmers and the reliability of the product they
develop.

In addition, program generation can be used to
significantly improve the performance of software systems.
It is in this particular aspect of generation systems that
multi-stage computation plays an active role.

The distinguishing characteristic of generative systems is
not that they output programs as data entities (usually
text), rather, it is the “animation” of these data entities into
real, live programs in a later stage that makes these
systems interesting. In other words, the combined
architecture of both the generation and the “consumer”
system is more interesting than each of them separately.

4.5.1 Generators and Domain Specific Language
As we have mentioned earlier, generation technology gives
us a powerful mechanism compiling Domain-Specific
Languages (DSLs).

In a system employing more than one DSL, relatively
simple generators can be used to achieve almost the same
effect as a moderately good compiler developed specifically
for that DSL. The basic idea can be outlined as follows:
For each DSL, implement a translation from this DSL to
one, common language L. There should be a good
compiler available for this language. For a pair of DSLs,
this architecture can be sketched out as follows:

Trx1P1(DSL1) compile

Trx2P2(DSL2) compile

P1(L)

P2(L)

P1.exe

P2.exe

P1

P2

The key idea to this technique is to piggy-back on the
power of the compiler for the original host language, and
to use a fairly light-weight translation as the front-end Trx.

The advantage of this approach is combining both efficient
execution of these languages with ease of implementation:
Programming language technology can now make writing
program generators much easier than was previously
possible [20,5]. Not only that, having simple translations
into one host languages can dramatically reduce the cost
maintaining a large number of DSL in the same system,

thus making the DSL approach an even more attractive
option.

4.7 Other Examples
Runtime-specialization and machine code-generation is
another interesting example of multi-stage computation
[12]. It has recently been used to improve performance in
operating systems software [4]. The key idea in run-time
specialization is the dynamic generation of machine-code
at runtime. This allows systems to dynamically adapt to
changing conditions, and still operate efficiently. This
kind of code generation has different requirements than
high-level code generation. The major challenge in
developing such systems is reducing the overhead involved
in code generation, so that it does not out-weigh its
benefits.

In this setting, an arbitrary number of stages is again
possible, as the generated code can itself, in principle,
generate new code too. Reflection is primitive, and is
performed in the most natural way: by calling (or jumping
to) the generated code.

5 TOWARDS A CALCULUS FOR GDL
It is well known that the architecture of a software system
can be described at more than one level. In this section,
we present the basic machinery needed to relate GDL
descriptions at different levels of abstraction.

In general, architectural descriptions can exist at two
distinct levels, namely, the abstract and the concrete level
[16]. The abstract level is generally used to describe
architectural patterns, whereas the concrete level is used to
describe particular systems. With GDL, various levels of
abstraction are possible. In particular, GDL can be used
(with moderate accuracy) to describe architectures both at
the abstract level, and at the concrete level. The
distinction between the two levels is primarily in the
mapping between the elements of the GDL description and
the system that it models. A GDL description (or a
fragment there of) is concrete when there is a one-to-one
mapping between each element of this description, and the
atomic elements of the software system. This definition is
relative, as it depends on what we consider atomic in our
system. It appears to us that this decision, in general, must
be made solely on pragmatic considerations.

A variety of abstraction steps (or “contractions”) arise
naturally in the context of GDL descriptions. We should
point out that a branch of mathematics, called category
theory, serves as a good guide in identifying these
abstraction steps.

We will not make an exhaustive list, but here are some
illustrative reduction steps that take us from one GDL to
another more abstract one:

Original Abstract

P2 D2P1 D1D0 P2 o P1 D3D0

P2P1

D2

D1

P2P1 D1 x D2

The first rule says that we can hide intermediate forms,
and that is essentially due to the fact that we can compose
programs. The second rule says that we can combine two
(parallel) data items, thus hiding the distinction between
them. Loosely speaking, these two rules correspond to the
composition axiom and the presence of products in an
underlying category.

The main observation we wish to contribute in this section
is regarding the following definition: A GDL description
H is called a decomposition of G if G is an abstraction of
H. So, when we talk of an abstraction step from A to B,
then we are also implicitly talking of a decomposition step
from B to A. In the light of examples such as the above, it
seems easier to think of these steps as abstraction steps
when we are defining them formally.

6 A DUAL OPERATOR
The dual of reflection is reification, and as the Engage
operator goes from an artifact to a program, a natural
question to ask is whether doing the opposite, that is,
going from a program to an artifact, is also a meaningful
operation at the architectural level. On reasonable
interpretation is the following:

Node Means

P F

Dis-Engage P from system.
The result is a data entity F.

Intuitively, Dis-Engage is a way for viewing and
manipulating a program as an artifact. This can be a
valuable operation for a variety of reasons, including
alleviating the user’s need to deal with I/O explicitly: The
state of any program can simply be “saved” into a file,
together with all its associated runtime datastructures.

If an appropriately high-level representation is used for
programs, rather then this Dis-Engage would also provide
the programmer with a mechanism for optimization code
on based on information that may not be available to the
compiler.

Dis-Engage can provide a restricted form of persistence.
Orthogonal persistence, often seen in Object-Oriented
Database systems such as GemStone for example (and
more recently also in Java), is a more general mechanism.
From a user’s point of view, orthogonal persistence is

probably the preferable mechanism. On the other hand,
Dis-Engage provide finer grain control over the behavior
of the architecture, and can, just like Engage, allow the
system architect to make significant decisions at a higher
level than is commonly done.

6.1 A Correctness Criteria
An important intuition to draw from the
reflection/reification analogy is a (partial) correctness
criteria for the behavior of implementations of the Engage
and Dis-Engage operators: Starting with a program P,
Dis-Engaging it as D, and then later Engaging D, should
yield a program equivalent to P.

7 RELATED WORK
Architectural descriptions that are much richer than GDL
have been studied [18]. However, GDL was intended to be
skeletal, and at the same time, still representative of a full
fledged, data flow based, architectural description
language.

Roughly speaking, the three main elements of GDL,
circles, boxes, and arrows, correspond closely to the
processing, data, and collecting elements of Perry and
Wolf [13]. In Allen and Garlan's terminology, circles and
boxes correspond to the components of the architecture,
and the arrows are connectors [3].

The discussion in this paper has also been relatively
independent of the underlying execution model, that is, we
have not restricted our self to a sequential or a concurrent
or parallel model. This will probably also change when we
try to further formalize this framework (see next two
Subsections).

7.1 Dynamic Aspects of Architecture
Reflection is a form of dynamic behavior. Recently, there
has been significant efforts towards finding a formal
foundation for dynamic behavior in software architectures.
While this paper does not address the issue of
formalization directly, our goal has been to expose
reflection as an important form of dynamic behavior.

Magee and Kramer have studied and formalized the
problem of describing dynamic reconfiguration at the
architectural level [14]. Their work treats system
evolution of distributed systems. In this paper, our
concern is also with a kind of dynamic behavior, but on a
distinctly different aspect. In particular, we do not address
the issue of distribution at all, but rather, the issue of the
time dimension in a sequential, non-distributed
framework. The difference in the two approaches is also
reflected in the underlying programming language theory:
while Magee and Kramer use the pi-calculus as the
motivating formalism, our research has been primarily
motivated by the lambda-calculus. There is no reason why
our technique would not extend to a concurrent, distributed

setting. At the same time, this would be a non-trivial
extension. However, this is an important step in order to
investigate the ideas presented in this paper in the context
of the WWW.

In the context of the Rapide system, another form of
dynamic has been studied: Rapid can specify systems
where the connectivity of the components changes over
time [9]. In this study, none of the connectors are dynamic
in that sense. Even the presence of the Engage operator is
time-invariant. This becomes even more clear when we
consider the underlying Real Virtual Machine discussed in
the Introduction. We have not addressed this issue in the
context of our framework.

Inverardi and Wolf have also studied dynamic behavior in
software architecture using the Chemical Abstract
Machine [8]. Allen and Garlan used a language based on
CSP to formalize communication protocols between
components. [2].

7.2 Multi-Stage Programming Languages
As we saw in this paper, reflection is needed in the meta-
language to support multi-stage architectures. It’s useful
to note that this is a very common situation, even though
not much attention is paid to it. As we pointed out in the
introduction, most scripting languages are reflective even
if they don’t claim to be, because they implement the
Engage operator.

Its useful also to note that requiring a language to be
reflective can sometimes be trivial: On a machine where
there is no distinction between data and program space,
the jump command provides reflection. In fact, it provides
most of the functionality of the Engage operator. In such a
setting, ensuring that the over-all architecture is known a
priori, and guaranteeing that the architecture is not
mutated inadvertently become the more challenging
requirements.

Recently, there has been significant interest in the
programming languages research community in reflection
and multi-stage computation [5,17,16,12]. A good
introduction to the recent literature can be found in [20].
We are actively pursuing language support for effectively
implementing such architectures. Our most recent efforts
have been focused on formalizing the semantics and
finding appropriate type-systems to allow safe (yet still
powerful) multi-stage capabilities. This form of type-
safety closely corresponds to knowing the over-all
architecture of a multi-stage system a priori. However, one
should be noted that a stronger connection is still
desirable, as the type system is non-trivial.

Finally, and as an aside, we would like to point out that
scripting languages don’t need to be interpreted. An

example of such a system is Oberon, where JIT
compilation is used instead.

7.3 Future Work
Despite its simplicity, GDL can clearly express the
essential distinction between interpretation and
compilation at the architectural level. We have also found
this to also be the case in the context of high-level program
generation systems in general. One of our main goals is to
be able to use it as a tool for identifying and categorizing
distinct patterns of multi-stage computation at a high level
of abstraction.

Engage and Dis-Engage specify putting applications on-
line and taking them off-line. They do not, however,
specify exactly how this behavior is implemented. It
would be useful to be able to objectively say whether the
vendor of a given architectural framework can support
these operators or not. We intend to make the criteria for
this requirement more objective as we develop more
experience applying GDL. Employing a formalism, such
as that employed by Moriconi and Qian [16], will be a
good first step in this direction.

Finally, we have assumed that the issue of reflection is
orthogonal to the presence of other forms of connectors at
the architectural level. Based only on intuition, this
assumption still remains to be validated. To this end, we
are trying to better understand how the Engage operator
interacts with other architectural connectors [3].

8 CONCLUSIONS
We have demonstrated that an important dynamic aspect
of software systems is easily expressible at the architectural
level. In doing so, we have also illustrated the variety and
diversity of multi-stage architectures, starting from
compilers and going to partial evaluation and program
generation systems.

ACKNOWLEDGMENTS
Special thanks are due to Paul Hosom, Dino Oliva,
Riccardo Pucella and Karen Ward for valuable comments
on a draft of this paper.

REFERENCES
1. Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman,

Compilers: Principles, Techniques, and Tools,
Addison Wesley, 1986.

2. Robert Allen and David Garlan, A Formal Approach
to Software Architecture, ACM Trans. on Software
Engineering and Methodology, vol. 4, no. 4, pp. 319-
364, 1995.

3. Robert Allen and David Garlan, A Formal Basis for
Architectural Connection, Transactions on Software
Engineering and Methodology , July 1997.

4. Crispin Cowan, Tito Autrey, Charles Krasic, Calton
Pu and Jonathan Walpole. Fast Concurrent Linking
for an Adaptive Operating System, Proc. International
Conference on Configurable Distributed Systems
(ICCDS’96), May 6-8, 1996, Annapolis MD.

5. Rowan Davies and Frank Pfenning, A Modal Analysis
of Staged Computation, In 23rd Annual ACM
Symposium on Principles of Programming languages
(POPL’96), St. Petersburg Beach, Florida, January,
1996.

6. David Garlan and Dewayne Perry, Introduction to the
Special Issue on Software Architecture, IEEE
Transactions on Software Engineering, April 1995.

7. Robert Glueck and Jesper Jorgensen, Fast Binding-
Time Analysis for Multi-Level Specialization, PSI-96:
Andrei Ershov Second International Memorial
Conference, Perspectives of System Informatics,
Lecture Notes in Computer Science, 1996.

8. Paola Inverardi and Alex Wolf, Formal Specification
and Analysis of Software Architectures Using the
Chemical Abstract Machine Model, IEEE
Transactions on Software Engineering, Special Issue
on Software Architecture, 21 (4):373-386, April 1995.

9. David C. Luckham, James Vera, An Event-Based
Architecture Definition Language , IEEE
Transactions on Software Engineering, Vol 21, No 9,
pp.717-734. Sep. 1995 , 21 pages.

10. Neil D. Jones and Carsten K Gomard and Peter
Sestoft, Partial Evaluation and Automatic Program
Generation, Prentice-Hall, 1993.

11. Richard B. Kieburtz, Laura McKinney et al, A
Software Engineering Experiment in Software
Component Generation, Proc. International
Conference on Software Engineering, 1996.

12. Mark Leone and Peter Lee, Deferred Compilation:
The Automation of Run-time Code Generation,
Technical Report CMU-CS-93-225, Carnegie Melon
University, December, 1993.

13. Dewayne E. Perry and Alexander L. Wolf.
Foundations for the Study of Software Architecture,
ACM SIGSOFT Software Engineering Notes, 17:4
(October 1992).

14. Jeff Magee, Naranker Dulay, Susan Eisenbach, and
Jeff Kramer, Specifying Distributed Software
Architectures, In Proceedings of the Fifth European
Software Engineering Conference, ESEC’95,
September 1995.

15. David MacKenzi, Autoconf: Creating Automatic
Configuration Scripts, Edition 2.8, January 1996.
Available from <ftp://prep.ai.mit.edu/pub/gnu/>

16. Mark Moriconi and Xiaolei Qian, Correctness and
Composition of Software Architectures, Proceedings
of ACM SIGSOFT’94: Symposium on Foundations of
Software Engineering, New Orleans, Louisiana,
December,1994, pp. 164-174.

17. Flemming Nielson and Hanne Riis Nielson, A
Prescriptive Framework for Designing Multi-Level
Lambda-Calculi, In Proc. Partial Evaluation and
Semantics-Based Program Manipulation ’97,
Amsterdam, June 1997. ACM Press.

18. Mary Shaw and David Garlan, Software Architecture:
Perspectives on an Emerging Discipline, Prentice
Hall, 1996.

19. Yannis Smaragdakis and Don Batory, DiSTiL: A
Transformation Library for Data Structures, USENIX
Conference on Domain-Specific Languages, October
1997.

20. Walid Taha and Tim Sheard, Multi-Stage
Programming with Explicit Annotations, In Proc.
Partial Evaluation and Semantics-Based Program
Manipulation ’97, Amsterdam, June 1997. ACM
Press. Also available from
<http://www.cse.ogi.edu/~walidt>

