On Type-Directed Partial Evaluation

Walid Taha

October 13, 1997

Type Directed Partial Evaluation (TDPE) is a new development in partial evaluation that has
two properties that make it attractive for formal investigation: First, it is concise; it is defined in
about six lines [Dan96b]. Second, it is easy to implement; the definition can be coded directly in
a functional language like Scheme, yielding a demonstrably efficient and effective partial evaluator
[DV96, Ves97]. In this note, we present a taste of TDPE, review the theoretical foundations and
developments relating to TDPE, and highlight some major open research questions.

Type-Directed Partial Evaluation: We begin with an example of using TDPE in an interactive
loop based on a compiler, similar to that of SML/NJ. Let residualize represent the main function
of TDPE, which takes a (representation of) a type, a compiled object, and returns a normalized
term based on that object:

fn £ => fn x:int => fn y:int => fn z:int => £ (£ (x,y),2);
fn : (int * int -> int) -> int -> int -> int -> int
compiled_O (fn (x,y) => x);

fn : int -> int -> int -> int

- val compiled_O
val compiled_O
- val compiled_1
val compiled_1

- val term_1 = residualize (int -> int -> int -> int) compiled_1
val term_1 = "fn x’ => fn y’ => fn 2z’ => x’" : term

Note that the syntax of the new term (or program) term_1 has been derived from the compiled_1
object code, and that the expression £ (f (x,y),z) has been replaced (working under the A-
abstractions) by a renaming of x. The object passed to residualize must be the compiled form
of a closed term. Free variables, primitives, and recursion can all handled by A-abstracting them
from the original term (using an explicit Y-combinator for recursion).

The significance of being able to take compiled code as input is two fold: First, it alleviates the
need for the symbolic execution of the source program, and hence, can be done more efficiently.
Second, in standard partial evaluation we sometimes find that we need to insert a “static” func-
tion value into a “dynamic” context [J(GS93]. Traditionally, this meant replacing the static value
by the text of the computation that produced it. In the above example, it would mean symbol-
ically replacing both occurances of £ in the expression £ (£ (x,y),z) with the syntax syntax
(fn (x,y) => x). With residualize, we arrive at the simpler expression x directly.

Theoretical Foundations: There appear to be some strong ties between TDPE and some new
developments in proof theory [Dan96b]. Berger and Schwichtenberg developed a mathematical
theory that could take advantage of modern functional language compilers to perform efficient
proof normalization [BS91]. They presented an inversion algorithm for deriving a unique A-term



given a semantic value, and proved that this new term is always in long normal form'. They

also show that this algorithm has the (rather strong property) that the inverse image of any two
semantically equal values yields the same term up to a-renaming. Their theory is valid in a large
class of models, and for semantic values originating from closed terms. The inversion construction is
also valid in other settings such as combinatory logic [CD97] and has applications in proof extraction
and interactive computer-aided proof systems [Ber93, Coq93]. An insightful feature of Coquand’s
more recent presentation [CD97] is the use of an interpretation function that computes both the
value and its representation in long normal form simultaneously.

Applying TDPE: TDPE has been used to partially evaluate an interpreter for a Pascal-like
language, deriving an efficient automatically generated compiler [DV96]. It has also been applied
to Paulson’s Tiny interpreter written in both direct and CPS style. The code generated by starting
with both styles is strikingly similar [Dan96a]. These two examples suggest that TDPE may
alleviate the need for writing interpreters in CPS style in order to attain good generated code,
which often seemed to be the case with standard partial evaluation techniques [JGS93]. Sheard
integrated TDPE into a typed language with type inference in the context of an interpreter-based
implementation, and used TDPE to specialize a small term-rewriting engine (in direct style) yielding
compact code [She97]. Attaining the same compact code by a staged version of the same term-
rewriting system (in direct style) did not seem possible [TS97].

Open Problems: While TDPE is concise, it is not conceptually simple: The TDPE translations
use powerful language constructs such as type-dependence and multi-level n-expansions, [Car86,
Coq96, DMP95, NN92, GJ95, T'S97] the combination of which is not yet a well-explored area. Open
theoretical problems include:

e Polymorphism, inductive types, and polyvariant specialization [Dan96b]. One particular poly-
variance [JGS93] problem is that A-abstracting primitives forces them to be monovariant.
While progress has been made at the implementation level [She97], many important theoret-
ical properties such as completeness and strong-normalization are still to be established.

e Effects. Duplication of computation can be controlled by means of let-insertion. This has
been done in the context of TDP using Danvy and Filiniski’s shift and reset [Dan96a, DF90].
Is it still possible to formally verify the correctness of TDPE after extending it using shift
and reset?

e a-equivalence and gensym [Sta94]. Berger and Schwichtenberg’s formal treatment of the
inversion construction used an explicit representation of a-equivalent families of terms [BS91].
Implementations of TDPE use gensym. Can both treatments be formally reconciled?

e Type systems. A wealth of type-theoretic questions arise naturally when we consider TDPE
[Ves97]. For example, a first cut at assigning a type to residualize yields T'ype — Value —

'Remark on Terminology: Berger and Schwichtenberg use the term “long B-normal form”, and Coquand
uses the the term “long p-normal form”. Hindley [Hin97, Pg. 110] remarks that both are used in the literature
interchangeably, but also that such terms are g-normal and not necessarily n-normal. Berger uses the neutral term
“long normal form”.
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Term [Dan96b]. But this type does not explicitly reflect the relationships between the param-
eters. A second attempt at assigning a type to residualize can be [laType. F'(z) — <F(x)>,
where <y> is the type of code with type y in a statically-typed two-level A-calculus, and F is
some function from Type (the representation of types in the object language) to the meta-
language type. On close inspection of the implementation of residualize [Dan96b, Ves97],
we see that F' cannot be the identity coercion. What then is F7

There are also many interesting challenges relating to implementation, including:

e Long normal forms can be quite large in practice [She97]. Generating short normal form
directly is theoretically possible [Ber93]. Can this be done efficiently in practice?

e Coquand remarks that the evaluation strategy for normalization follows exactly the evaluation
strategy for the meta-language [CD97], which suggests that in a compiled implementation
maintaining both the semantic and syntactic representation, the overhead of maintaining
the syntactic one can be reduced if a lazy meta-language is employed. Can we completely
eliminate the cost of representation if it is never “demanded”?

Concluding Remarks: TDPE holds great promise as a powerful method for partial evaluation;
it leverages on the mature compilation technology for functional languages to achieve remarkably
efficient symbolic manipulation. At the same time, it raises many interesting research questions
and challenges.
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