
On Type�Directed Partial Evaluation

Walid Taha

October ��� ����

Type Directed Partial Evaluation �TDPE� is a new development in partial evaluation that has
two properties that make it attractive for formal investigation� First� it is concise� it is de�ned in
about six lines �Dan	
b�� Second� it is easy to implement� the de�nition can be coded directly in
a functional language like Scheme� yielding a demonstrably e
cient and e�ective partial evaluator
�DV	
� Ves	��� In this note� we present a taste of TDPE� review the theoretical foundations and
developments relating to TDPE� and highlight some major open research questions�

Type�Directed Partial Evaluation� We begin with an example of using TDPE in an interactive
loop based on a compiler� similar to that of SML�NJ� Let residualize represent the main function
of TDPE� which takes a �representation of� a type� a compiled object� and returns a normalized
term based on that object�

� val compiled�� � fn f �� fn x�int �� fn y�int �� fn z�int �� f �f �x	y
	z
�

val compiled�� � fn � �int � int �� int
 �� int �� int �� int �� int

� val compiled�
 � compiled�� �fn �x	y
 �� x
�

val compiled�
 � fn � int �� int �� int �� int

� val term�
 � residualize �int �� int �� int �� int
 compiled�


val term�
 � �fn x� �� fn y� �� fn z� �� x�� � term

Note that the syntax of the new term �or program� term�
 has been derived from the compiled�

object code� and that the expression f �f �x	y
	z
 has been replaced �working under the ��
abstractions� by a renaming of x� The object passed to residualize must be the compiled form
of a closed term� Free variables� primitives� and recursion can all handled by ��abstracting them
from the original term �using an explicit Y�combinator for recursion��

The signi�cance of being able to take compiled code as input is two fold� First� it alleviates the
need for the symbolic execution of the source program� and hence� can be done more e
ciently�
Second� in standard partial evaluation we sometimes �nd that we need to insert a �static� func�
tion value into a �dynamic� context �JGS	��� Traditionally� this meant replacing the static value
by the text of the computation that produced it� In the above example� it would mean symbol�
ically replacing both occurances of f in the expression f �f �x	y
	z
 with the syntax syntax
�fn �x	y
 �� x
� With residualize� we arrive at the simpler expression x directly�

Theoretical Foundations� There appear to be some strong ties between TDPE and some new
developments in proof theory �Dan	
b�� Berger and Schwichtenberg developed a mathematical
theory that could take advantage of modern functional language compilers to perform e
cient
proof normalization �BS	��� They presented an inversion algorithm for deriving a unique ��term

i



given a semantic value� and proved that this new term is always in long normal form�� They
also show that this algorithm has the �rather strong property� that the inverse image of any two
semantically equal values yields the same term up to ��renaming� Their theory is valid in a large
class of models� and for semantic values originating from closed terms� The inversion construction is
also valid in other settings such as combinatory logic �CD	�� and has applications in proof extraction
and interactive computer�aided proof systems �Ber	�� Coq	��� An insightful feature of Coquand�s
more recent presentation �CD	�� is the use of an interpretation function that computes both the
value and its representation in long normal form simultaneously�

Applying TDPE� TDPE has been used to partially evaluate an interpreter for a Pascal�like
language� deriving an e
cient automatically generated compiler �DV	
�� It has also been applied
to Paulson�s Tiny interpreter written in both direct and CPS style� The code generated by starting
with both styles is strikingly similar �Dan	
a�� These two examples suggest that TDPE may
alleviate the need for writing interpreters in CPS style in order to attain good generated code�
which often seemed to be the case with standard partial evaluation techniques �JGS	��� Sheard
integrated TDPE into a typed language with type inference in the context of an interpreter�based
implementation� and used TDPE to specialize a small term�rewriting engine �in direct style� yielding
compact code �She	��� Attaining the same compact code by a staged version of the same term�
rewriting system �in direct style� did not seem possible �TS	���

Open Problems� While TDPE is concise� it is not conceptually simple� The TDPE translations
use powerful language constructs such as type�dependence and multi�level ��expansions� �Car�
�
Coq	
� DMP	�� NN	�� GJ	�� TS	�� the combination of which is not yet a well�explored area� Open
theoretical problems include�

� Polymorphism� inductive types� and polyvariant specialization �Dan	
b�� One particular poly�
variance �JGS	�� problem is that ��abstracting primitives forces them to be monovariant�
While progress has been made at the implementation level �She	��� many important theoret�
ical properties such as completeness and strong�normalization are still to be established�

� E�ects� Duplication of computation can be controlled by means of let�insertion� This has
been done in the context of TDP using Danvy and Filiniski�s shift and reset �Dan	
a� DF	���
Is it still possible to formally verify the correctness of TDPE after extending it using shift
and reset�

� ��equivalence and gensym �Sta	��� Berger and Schwichtenberg�s formal treatment of the
inversion construction used an explicit representation of ��equivalent families of terms �BS	���
Implementations of TDPE use gensym� Can both treatments be formally reconciled�

� Type systems� A wealth of type�theoretic questions arise naturally when we consider TDPE
�Ves	��� For example� a �rst cut at assigning a type to residualize yields Type� V alue�

�Remark on Terminology� Berger and Schwichtenberg use the term �long ��normal form�� and Coquand
uses the the term �long ��normal form�� Hindley �Hin�	� Pg� 

�� remarks that both are used in the literature
interchangeably� but also that such terms are ��normal and not necessarily ��normal� Berger uses the neutral term
�long normal form��

ii



Term �Dan	
b�� But this type does not explicitly re�ect the relationships between the param�
eters� A second attempt at assigning a type to residualize can be �x�Type� F �x�� �F �x���
where �y� is the type of code with type y in a statically�typed two�level ��calculus� and F is
some function from Type �the representation of types in the object language� to the meta�
language type� On close inspection of the implementation of residualize �Dan	
b� Ves	���
we see that F cannot be the identity coercion� What then is F�

There are also many interesting challenges relating to implementation� including�

� Long normal forms can be quite large in practice �She	��� Generating short normal form
directly is theoretically possible �Ber	��� Can this be done e
ciently in practice�

� Coquand remarks that the evaluation strategy for normalization follows exactly the evaluation
strategy for the meta�language �CD	��� which suggests that in a compiled implementation
maintaining both the semantic and syntactic representation� the overhead of maintaining
the syntactic one can be reduced if a lazy meta�language is employed� Can we completely
eliminate the cost of representation if it is never �demanded��

Concluding Remarks� TDPE holds great promise as a powerful method for partial evaluation�
it leverages on the mature compilation technology for functional languages to achieve remarkably
e
cient symbolic manipulation� At the same time� it raises many interesting research questions
and challenges�

Acknowledgements� This note has bene�ted greatly from discussions� suggestions� and pointers
from Thierry Coquand� Olivier Danvy and my advisor Tim Sheard� I am grateful to Tim� Lisa
Walton� John Launchbury� Jim Hook� Byron Cook� Sherri Shulman� Thomas Nordin and Riccardo
Pucella for valuable comments on earlier drafts�

References

�Ber	�� U� Berger� Program extraction from normalization proofs� In Proceedings of the Inter�

national Conference on Typed Lambda Calculi and Applications� �		��

�BS	�� U� Berger and H� Schwichtenberg� An inverse of the evaluation functional for typed ��
calculus� In Rao Vemuri� editor� Proceedings of the Sixth Annual IEEE Symposium on

Logic in Computer Science� IEEE Computer Society Press� Loss Alamitos� �		��

�Car�
� L� Cardelli� A polymorphic ��calculus with Type�Type� �	�
�

�CD	�� T� Coquand and P� Dybjer� Intiuitionistic model constructions and normalization proofs�
Math� Struct� in Comp� Science� �		��

�Coq	�� C� Coquand� From semantics to rules� a machine assisted analysis� LNCS� ���� �		��

�Coq	
� T� Coquand� An algorithm for type�checking dependent types� �		
�

�Dan	
a� O� Danvy� Pragmatics of type�directed partial evaluation� LNCS� ����� �		
�

iii



�Dan	
b� O� Danvy� Type�directed partial evaluation� In POPL���� The �	rd ACM SIGPLAN�

SIGACT Symposium on Principles of Programming Languages
 St� Petersburg
 Florida


January ����� ACM� �		
�

�DF	�� O� Danvy and A� Filinski� Abstracting control� In ���� ACM Conference on Lisp and

Functional Programming��� ACM� �		��

�DMP	�� O� Danvy� K� Malmkjaer� and J� Palsberg� The essence of eta�expansion in partial eval�
uation� LISP and Symbolic Computation� �		��

�DV	
� O� Danvy and R� Vestergaard� Semantics�based compiling� A case study in type�directed
partial evaluation� LNCS� ����� �		
�

�GJ	�� A� Gl uck and J� J!rgensen� E
cient multi�level generating extensions for program spe�
cialization� LNCS� 	��� �		��

�JGS	�� N� D� Jones� C�K� Gomard� and P� Sestoft� Partial Evaluation and Automatic Program

Generation� Prentic Hall� �		��

�NN	�� F� Nielson and H� R� Nielson� Two�Level Functional Programming Languages� Cambridge
University Press� �		��

�She	�� T� Sheard� A type�directed� on�line� partial evaluator for a polymorphic language� In
ACM SIGPLAN Symposium on Partial Evaluation and Semantics�Based Program Ma�

nipulation� ACM� �		��

�Sta	�� I� Stark� Names and Higher�Order Functions� PhD thesis� University of Cambridge� De�
cember �		�� Also published as Technical Report �
�� University of Cambridge Computer
Laboratory�

�TS	�� W� Taha and T� Sheard� Multi�stage programming with explicit annotations� In ACM

SIGPLAN Symposium on Partial Evaluation and Semantics�Based Program Manipula�

tion� ACM� �		��

�Ves	�� R� Vestergaard� From proof normalization to compiler generation and type�directed
change�of�representation� Masters Thesis� �		��

iv


