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Abstract

Multi�staged programming provides a new paradigm for constructing e�cient solutions to
complex problems� Techniques such as program generation� multi�level partial evaluation� and
run�time code generation respond to the need for general purpose solutions which do not pay
run�time interpretive overheads� This paper provides a foundation for the formal analysis of one
such system�

We introduce a multi�stage language and present its axiomatic� reduction� and natural se�
mantics� Our axiomatic semantics is an extension of the call�by�value ��calculus with staging
constructs� We demonstrate the soundness of the axiomatic semantics with respect to the nat�
ural semantics� We show that staged�languages can �go Wrong� in new ways� and devise a type
system that screens out such programs� Finally� we present a proof of the soundness of this
type system with respect to the reduction semantics� and show how to extend this result to the
natural semantics�

� Introduction

Recently� there has been signi�cant interest in various forms of multi�stage computation� including
program generation ��� ��	� multi�level partial evaluation �

� 
�	� and run�time code generation
�
� �� �� � �� 
�� 
�� 
�� ��	� Such techniques combine both the software engineering advantages of
general purpose systems and the e�ciency of specialized ones�

Because such systems execute generated code never inspected by human eyes it is important to
use formal analysis to guarantee properties of this generated code� We would like to guarantee stati�
cally that a program generator synthesizes only programs with properties such as� type�correctness�
global references only to names in scope� and local names which do not inadvertently hide global
references�

In previous work ���	� we introduced a multi�stage programming language called MetaML� In
that work we introduced four staging annotations to control the order of evaluation of terms�
We argued that staged programs are an important mechanism for constructing general purpose
systems with the e�ciency of specialized ones� and addressed engineering issues necessary to make
such systems usable by programmers� We introduced an operational semantics and a type system
to screen out bad programs� but we were unable to prove the soundness of the type system�

Further investigation revealed important subtleties that were not previously apparent to us� In
this paper� we report on work rectifying some of the practical limitations of our previous work�
In contrast to our earlier work that focused on implementations and problem solving using multi�
staged programs� this paper reports on a more abstract treatment of MetaML�s foundations� The
key results reported in this paper are as follows�


� An axiomatic semantics and a reduction semantics for a core sub�language of MetaML�

�� A characterization of the additional ways in which a staged program can �go Wrong��






�� A type system to screen out such programs�

�� A soundness proof for the type system with respect to the reduction semantics using the
syntactic approach to type�soundness of Wright and Felliesen ���	�

�� A natural semantics that chooses the order in which rules are applied�

�� The soundness of the axiomatic semantics with respect to the natural semantics�

These results form a strong� tightly�woven foundation which gives us both a better understand�
ing of MetaML� and more con�dence in the well�foundedness of the multi�stage paradigm� The
axiomatic semantics provides us with an equational theory for formally reasoning about the equiv�
alence of MetaML programs� and the reduction semantics is an abstract characterization of the
notion of staged computation� The natural semantics provides us with a deterministic strategy for
implementing multi�stage computation� The soundness of the axiomatic semantics with respect to
the natural semantics formally demonstrates that results based on the reductions semantics are
also applicable to our implementation� Finally� formally proving the soundness of the type system
with respect to the reduction semantics ensures to us that well�typed programs are well�behaved�

��� What are Staged Programs All About�

In staging a program� the user has control over the order of evaluation of terms� This is done
by using staging annotations� In MetaML the staging annotations are Brackets ��� Escape � and
run� An expression �e� defers the computation of e� �e splices the deferred expression obtained by
evaluating e into the body of a surrounding Bracketed expression� and run e evaluates e to obtain
a deferred expression� and then evaluates this deferred expression� It is important to note that �e is
only legal within lexically enclosing Brackets� To illustrate� consider the script of a small MetaML
session below�

�� val pair � ��	
���	
��

val pair � �����	
�� � �int � �int��

�� fun f �x�y� � � � � �y �

val f � fn � ��a � �int�� �� �int�

�� val code � f pair

val code � �� � ��	
�� � �int�

�� run code

val it � � � int

The �rst declaration de�nes a variable pair� The �rst component of the pair is evaluated� but the
evaluation of the second component is deferred by the Brackets� Brackets in types such as �int�
are read �Code of int�� and distinguish values such as ��	
� from values such as �� The second
declaration illustrates that code can be abstracted over� and that it can be spliced into a larger
piece of code� The third declaration applies the function f to pair performing the actual splicing�
And the last declaration evaluates this deferred piece of code�

To give a brief feel for how MetaML is used to construct larger pieces of code at run�time
consider�

�� fun mult x n � if n�� then ��� else � �x � ��mult x �n���� �

val mult � fn � �int� �� int �� �int�
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�� val cube � �fn y �� ��mult �y� ���

val cube � �fn a �� a � �a � �a � ���� � �int �� int�

�� fun exponent n � �fn y �� ��mult �y� n��

val exponent � fn � int �� �int �� int�

The function mult� given an integer piece of code x and an integer n� produces a piece of code that
is an n�way product of x� This can be used to construct the code of a function that performs the
cube operation� or generalized to a generator for producing an exponentiation function from a given
exponent n� Note how the looping overhead has been removed from the generated code� This is the
purpose of program staging and it can be highly e�ective as discussed elsewhere ��� 
�� 
�� 
�� ��� ��	�
In this paper we move away from how staged languages are used and address their foundations�

� The ��R Language

The ��R language represents the core of MetaML� It has the following syntax�

e �� i j x j e e j �x�e j �e� j �e j run e

which includes the normal constructs of the ��calculus� integer constants� and the three additional
staging constructs�

To de�ne the semantics of Escape� which is dependent on the surrounding context� we choose to
explicitly annotate all terms with their level� The level of a term is the number of Brackets minus
the number of Escapes surrounding that term� We de�ne level�annotated terms as follows�

a� �� i� j x� j �a� a��� j ��x�a��� j �a��� j �run a���

an�� �� in�� j xn�� j �an�� an���n�� j ��x�an���n�� j �an���n�� j ��an�n�� j �run an���n��

Note that Escape never appears at level � in a level�annotated term� We de�ne a ��R program
as a closed term a�� Hence� example programs are ��x�x��� and �����x��x� x����� ���������

��� Values

It is instructive to think of values as the set of terms we consider to be acceptable results from a
computation� Values are de�ned as follows�

v� �� i� j x� j ��x�a��� j �v���

v� �� i� j x� j �v� v��� j ��x�v��� j �v��� j �run v���

vn�� �� in�� j xn�� j �vn�� vn���n�� j ��x�vn���n�� j �vn���n�� j ��vn���n�� j �run vn���n��

The set of values for ��R has three notable points� First� values can be bracketed expressions� This
means that computations can return pieces of code representing other programs� Second� values
can contain applications such as ��y�y��� ��x�x���� Third� there are no level 
 Escapes in values�
We take advantage of this important property of values in many proofs and propositions in our
present work�

Because each rule in the inductive de�nition above is an instance of one of the rules given in
the inductive de�nition for level�annotated terms it is easy to show that values are a subset of
level�annotated terms�

��� Contexts

We generalize the notion of contexts ��	 to a notion of annotated contexts�
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c� �� � 	� j �c� a��� j �a� c��� j ��x�c��� j �c��� j �run c���

cn�� �� � 	n�� j �cn�� an���n�� j �an�� cn���n�� j ��x�cn���n�� j
�cn���n�� j ��cn�n��j �run cn���n��

where �	 is a hole� When instantiating an annotated context cn� 	m to a term em we write cn�em	�

��� Promotion and Demotion

The axioms of MetaML remove Brackets from level�annotated terms� To maintain the consistency
of the level�annotations we need an inductive de�nition for incrementing and decrementing all
annotations on a term� We call these operations promotion and demotion�

Promotion
xn � � xn��

�a� a��
n � � �a� � a� ��

n��

��x�a�n � � ��x�a ��n��

�a�n � � �a � �n��

��a�n�� � � ��a ��n��

�run a�n � � �run a ��n��

in � � in��

Demotion
xn�� � � xn

�a� a��
n�� � � �a� � a� ��

n

��x�a�n�� � � ��x�a ��n

�a�n�� � � �a � �n

��a�n�� � � ��a ��n��

�run a�n�� � � �run a ��n

in�� � � in

Promotion is a total function over level�annotated terms and is de�ned by a simple inductive
de�nition� Demotion is a partial function over level�annotated terms� Demotion is unde�ned on
terms Escaped at level 
� and on level � terms in general�

An important property of demotion is that while it is partial over level�annotated terms it is
total over values� Proof of this is a simple induction on the structure of values�

��� Substitution

The de�nition of substitution is standard for the most part� In this paper we are concerned only
with the substitution of values for variables� When the level of a value is di�erent from the level
of the term in which it is being substituted� promotion �or demotion� whichever is appropriate� is
used to correct the level of the subterm�

in�xn �� vn	 � in

xn�xn �� vn	 � vn

yn�xn �� vn	 � yn x �� y

�a� a��
n�xn �� vn	 � ��a��x

n �� vn	� �a��x
n �� vn	��n

��x�a��n�xn �� vn	 � ��x�a��n

��y�a��
n�xn �� vn	 � ��y���a��y

n �� y�
n	�xn �� vn	��n y� �� FV �vn�� y� �� FV �a�� x �� y

�a��
n�xn �� vn	 � �a��xn�� �� vn �	�n

��a��
n���xn�� �� vn��	 � ���a��x

n �� vn�� �	��n��

�run a��n�xn �� vn	 � �run �a��x �� vn	��n

This function is total because both promotion and demotion are total over values� A richer no�
tion of demotion is need to perform substitution of a variable by any expression� This generalization
is beyond the scope of this paper�

��� Axiomatization and Reduction Semantics of ��R

The axiomatic semantics describes an equivalence between two level�annotated terms� Axioms can
be thought of as pattern�based equivalence rules� and are applicable in a context�independent way
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to any subterm that they match� The three axioms we will introduce can each be given a natural
orientation or direction� reducing �bigger� terms to �smaller� terms� This provides a reduction
semantics�

Axiomatic Reduction

���x�en�nvn�n � en�x �� vn	
�run �vn���n�n � vn�� �
���en���n�n�� � en��

���x�en�nvn�n
�
�� e��x �� vn	

�run �vn���n�n
run
�� vn�� �

���en���n�n��
esc
�� en��

We write ��R �M � N when M � N is provable by the above axioms and the classical inference
rules of an equational theory� and we write

�

�� for the re�exive� transitive� context closure of ���

Theorem � �Con�uence�� The reduction semantics is con�uent�

Proof� Using a notion of parallel reduction and a Strip Lemma� following closely the development
in ��� pages ������	�

Corollary � �Church�Rosser�� The axiomatic semantics is Church�Rosser�

� Faulty Terms

Under the reduction semantics� when a term has been su�ciently reduced� we would like such a
term to be a value� but this is not always the case� If no rules apply� and the term is not a value�
we say that such a term is stuck ���	� There are four contexts in which such terms can arise�


� A non�� value in a function position in an application �at level ��� This is the familiar form
of undesirable behavior arising whenever the pure ��calculus is extended with constants� For
example� ������ ���� is stuck because ����� is a piece of code� not a ��abstraction� This term
is not a value and contains no redex�

�� A variable appears at a level lower than the level at which it was bound� This is the key�
distinguishing form of undesirable behavior in multi�stage computation ���	� For example�
���x���x������� is stuck since x is used at level � but bound at level 
�

�� A non�Bracket value is the argument to Run� For example� �run ���� is stuck since �� is an
integer and not a piece of code�

�� A non�Bracket value is the argument to Escape� For example� ���� � ����������

We wish to consider as faulty� terms in the form above� We will show that if a term is typable�
then it is not faulty� and neither can it reduce to a faulty term� We formalize this notion in the
next sections�

We can now present the following formal speci�cation for the set of faulty terms F �


� c����en����n e��n	 � F Non�� terms in an application like� ��� ���� and ������ ����

c��in e��n	 � F

�� c���x�c��xn	�m	 � F where m � n� Variables at too low a level like� ���x���x�������

�� c��run ��x�e�n�n	 � F Non�Bracket in Run like� �run ��x�x���� and �run ����

c��run in�n	 � F

�� c�����x�e�n�n��	 � F Non�Bracket in Escape like� ���������x�x�������� and ���������������

c����in��n��	 � F

�



The success of our speci�cation of faulty expressions depends on whether they help us char�
acterize the behavior of our reduction semantics� The following lemma is an example of such a
characterization� and is needed for our proof of type soundness�

Lemma 	 �Uniform Evaluation�� Let en be a closed term� If en is not faulty then either it is a

value or it contains a redex�

Proof
 By induction on the structure of en�

� Type System

The main obstacle to de�ning a sound type system for our language is the interaction between
Run and Escape� While this is problematic� it adds signi�cantly to the expressiveness of a staged
language ���	� so it is worthwhile overcoming the di�culty� The problem is that Escape allows
Run to appear inside a Bracketed ��abstraction� and it is possible for Run to �drop� that ��bound
variable to a level lower than the level at which it is bound� The following example illustrates the
phenomenon�

���x����run �x����������� � ��x���x�����

To avoid this problem� for each ��abstraction we need to count the number of surrounding Runs
for each occurrence of its bound variable �here x�� in its body� We use this count to check that
there are enough Brackets around each formal parameter to execute all surrounding Runs without
leading to a faulty term�

The type system for ��R is de�ned by a judgment � � en � ��m� where en is our well�typed
expression� � is the type of the expression� m is the number of the surrounding Run annotations
of en and � is the environment assigning types to term variables�

Syntax
types � ��	 � � � j ��� j int

type assignments 
 ��	 x �� ��� j�i
 j fg

judgments J ��	 
 � t � ��m

Type System


�x� 	 ��� j�i i �m � n� j


 � xn � ��m
Var


 � in � int�m
Int


 � en � ����m� �


 � �run en�n � ��m
Run


 � en�� � ��m


 � �en���n � ����m
Bra


 � en � ����m


 � ��en�n�� � ��m
Esc


 � en� � � ��m 
 � e���
� � � �m


 � �en� en� �
n � ��m

App
�x �� �� ��m�n
� � en � ��m


 � ��x�en�n � � � � � �m
Lam

The type system employs a number of mechanisms to reject terms that either are� or can
reduce to faulty terms� The App rule has the standard role� and rejects non�functions applied to
arguments�

The Escape and Run rules require that their operand must have type Code� This means
terms such as run � and ��x���� are rejected� But while this restriction in the Escape and Run
rules rejects faulty terms� it is not enough to reject all terms that can be reduced to faulty terms�
The �rst example of such a term is ��x���run �x��� which would be typable if we use only the
restrictions discussed above� but reduces to the term ��x��x� which would not be typable� The
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second examples involves an application ��f���x���f�x������x�run x� which would also be typable�
but reduces to ��x��x�� To reject such terms we need the Var rule�

The Var rule is instrumented with the condition i � m 	 n � j� Here i is the number of
Bracket�s surrounding the ��abstraction where the variable was bound� m is the number of Runs
surrounding this occurence of the variable� n is the number of Brackets surrounding this occurence
of the variable� and j is the number of Runs surrounding the ��abstraction where it was bound�
This ensures that every variable has more Brackets than Runs surrounding it�

In previous work� we have attempted to avoid these two kinds of problems using two distinct
mechanisms� First� the argument of Run cannot contain free variables� and second� we prohibit the
��abstraction of Run� We used unbound polymorphic type variable names in a scheme similar to
that devised by Launchbury and Peyton Jones for ensuring the safety of state in Haskel �
�	� It
turns out that not allowing any free variables is too strong� and that using polymorphism was too
weak� It is better to simply take account of the number of surrounding occurrences of Run in the
Var rule� This way we ensure that if Run is ever in a ��abstraction� it can only strip away Brackets
that are explicitly apparent in that ��abstraction�

� Type Soundness of the Reduction Semantics

The type soundness proof closely follows the subject reduction proofs of Wright and Felliesen ���	�
Once the reduction semantics and type system have been de�ned� the syntactic type soundness
proof proceeds as follows�


� Show that reduction in the standard reduction semantics preserves typing� This is called
subject reduction�

�� Show that faulty terms are not typable�

If programs are well�typed� then the two results above can be used as follows� By �
�� evaluation
of a well�typed program will only produce well�typed terms� By Lemma �� every such term is either
faulty� or a value� or contains a redex� The �rst case is impossible by ���� Thus the program either
reduces to a well�typed value or it diverges�

��� Subject Reduction

The Subject Reduction Lemma states that a well�typed term remains well�typed under reduction�
The proof relies on the Demotion� Promotion and Substitution Type Preservation Lemmas� First
we need to introduce two operations on the environment assigning types to term variables�

� ��q�p� �x� � ��� j � q�i�p i� ��x� � ��� j�i

� ��q�p� �x� � ��� j�
i i� ��x� � ��� j � q�i�p

These two operations map environments to environments� They are needed in the Promotion and
Demotion Lemmas� They provide an environment necessary to derive a valid judgement for a
promoted or demoted well�typed value� Notice that we have the following two properties�

�� ��q�p�� ��i�j�� � ��q�i�p�j� and �� ��q�i�p�j�� ��i�j�� � ��q�p�

We writev �p and v �p� respectively� for an abbreviation of p applications of � and � to v� Note
that this operation is di�erent from ��q�p� and ��q�p� which is a function on environments assigning
types to term variables�

Lemma � �Demotion�� If q 	 p and �� ��q�p� is de�ned and �� 
�� � vn�p � ��m� q then

�� 
 ��� ��q�p�� � vn�p �p� ��m�

�



Proof� By induction on the structure of vn�p� We develop only the variable case vn�p � xn�p�
There are only two possible sub�cases� which are�

���x� � ��� j�
i i�m� q 	 n � j � p

��� 
��� � xn�p � ��m� q
�Var�

By hypothesis q 	 p implies m� i 	 n� j� Hence ��� 
 ��� ��q�p��� � vn�p �p� ��m�

���x� � ��� j � q�i�p i�m� �q 	 n� j � �p

��� 
��� � xn�p � ��m� q
�Var�

Similar to the above sub�case�

Lemma � �Promotion�� Let q 	 p� If � � vn � ��m then �� 
 ��� ��q�p�� � vn �p� ��m� q�

Proof� By induction on vn�

Lemma  �Substitution�� If j 	 m and �� 
 �x �� �� �� j�i� ��� � en � ��m and �� � vi � � �� j
then one of the following three judgments holds�

�� �� � en�xn �� vi �n�i	 � ��m if n � i�

�� �� � en�xn �� vi �i�n	 � ��m if n � i

�� �� � en�xn �� vn	 � ��m	 otherwise

Proof� By induction on the structure en� If en � xn then we have�

��x� � ��� j�i m� i 	 n� j

�� 
 �x �� ��� j�i� ��� � xn � ��m

� If n � i and by the hypothesis j 	 m then m � i � n � j� Hence �� 
 �x �� ��� j�i� ��� �
xn � ��m cannot be typable�

� if n � i then m� j � n� i and the Promotion Lemma � applies�

� i � n and by hypothesis j 	 m andm�i 	 n�j then j � m� Then� �� � en�xn �� vn	 � ��m�

Corollary � �� Rule�� If � � ���x�en�n vn�n � ��m then � � en�xn �� vn	 � ��m�

Lemma � �Escape Rule�� If � � ���en���n�n � ��m then � � en � ��m�

Proof� Straightforward from the type system�

Lemma � �Run Rule�� If � � �run �vn���n�n � ��m then � � v� �� ��m�

Proof� If � � �run �vn���n�n � ��m then � � vn�� � ��m� 
 is valid� By Demotion Lemma ��
� � vn�� �� ��m is valid�

Proposition ��� If � � en� � ��m and en� � en� then � � en� � ��m�

Proof� By induction on the structure of en� � If the rewrite is at the root then use Lemmas  and ��
and Corollary �� If en� contains a redex then apply induction hypothesis�

Proposition �� �Subject Reduction�� If � � en� � ��m and en�
�

�� en� then  � � en� � ��m�

Proof� By induction on the length of the derivation�





��� Faulty Terms

Lemma �� �Faulty Terms are Not Typable�� If e � F then there is no �� t� a such that

� � e � t� a�

Proof� By case analysis over the structure of e� Let e � c����x�c��x
n	�i	 such that n � i� that is�

i � n�k��
� Assume that � � e � ��m� This implies that x �� �� �� j�i�� � xn � � �� p� This means
that i� p 	 n� j� Because p � j � k� then j 	 p� This implies that n� k�
� 
� j� k� 	 n� j

which is impossible� The other cases are straight�forward�

� Natural Semantics

In previous work� we de�ned core MetaML by a natural semantics ���	� While this style of presen�
tation is closer to the implementation of MetaML than the reduction semantics presented in this
paper� it is more complex� We have found that it was easier to prove type soundness �rst with
respect to the reduction semantics� and then to extend this result to the natural semantics�

In this paper� we present a more concise natural semantics for MetaML than the one we have
presented in previous work ���	�

��x�e��� �� ��x�e���
e�

� �� ��x�e��
�

e�
� �� v�

� �e��x �	 v���� �� v��

�e�� e���
�
�� v��

e� �� �v��
�

��e��� �� v�

e�
� �� �v���

�
�v�� ��

�
�� v�

�

�run e���
�
�� v��

e�
n�� �� e�

n�� e�
n�� �� e�

n��

�en��
� en��

� �
n��

�� �en��
� en��

� �
n�� xn�� �� xn��

e�
n�� �� e�

n��

��x�en��
� �

n��
�� ��x�en��

� �
n��

e�
n�� �� e�

n��

��en��
� �

n��
�� ��en��

� �
n��

e�
n�� �� e�

n��

�en��
� �

n

�� �en��
� �

n

e�
n�� �� e�

n��

�run en��
� �

n��
�� �run en��

� �
n�� in �� in

A key property of this presentation is that it avoids the explicit use of a gensym or newname

function for renaming abstractions at levels greater than zero� This improvement avoids the prob�
lems that Moggi points out regarding the use of such stateful functions in de�ning the semantics
of two�level languages �
	�

Now we move on to present some fundamental results about the untyped ��R language� and
use these results� in addition to the soundness of the type system with respect to the reduction
semantics� to prove the soundness of the type system with respect to the natural semantics�

We say that two terms e� and e� are observationally equivalent� written e�  e�� if for any
context c�	 such that both c�e�	 and c�e�	 are closed� then c�e�	

�
	� v�

� if and only if c�e�	
�
	� v�

��
and v�� � i� if and only if v�� � i� when both relations are de�ned�

Lemma �	� If en 	� vn then en
�

�� vn�

Proof� By induction on the proof tree for en 	� vn�

Lemma ��� If e
�

�� v then e 	� v��

Proof� This proof requires a Standardization Theorem along the lines of Plotkin ���	� but one
extended to deal with Brackets� Escape and Run� We omit the details for the sake of brevity�
Please see the technical report for the full details ���	�

�



Corollary ��� There exists a value v such that ��R � e � v if and only if e 	� v��

Proof� Consequence of Lemmas 
� and 
��

Theorem � �Soundness of Axiomatic Semantics�� If ��R � e� � e� then e�  e��

Proof� If e� 	� v� then by Corollary 
� ��R � e� � v�� Hence� ��R � e� � v�� By Corollary 
��
there exists a value v� such that e� 	� v� � By Lemma 
�� ��R � v� � v�� Since the axiomatic
semantics is Church�Rosser� we have v�

�

�� v and v�
�

�� v� Thus� e�  e�

We de�ne undesirable behavior in the natural semantics in the classical manner� we introduce a
new �value� Wrong� written �� and a set of rules complementing the rules of the natural semantics�
and returning � in all these new cases� We call the combination of these two sets of rules the

augmented natural semantics� and denote it by
�

	� �

Lemma ��� If e
�

	� � then e
�

�� f and f � F and f �� v�

Proof� By induction on the proof tree of the augmented natural semantics
�

	� �

Theorem �� �Type Soundness�� If � � e � ��m and e
�

	� e� then e� �� �

Proof� We prove the contrapositive� If e� � � and e
�

	� � then by Lemma 
�� e
�

�� f � Hence by
type soundness of the reduction semantics� e is not typable�

� Related Work

Multi�stage programming techniques have been used in a wide variety of settings� including run�time
program generation in ML �
�	� run�time specialization of C programs ��� �� �
� �	� and advanced
dynamic compilation for C programs �
	�

Nielson and Nielson present a seminal detailed study into a two�level functional programming
language �
�	� This language was developed for studying code generation� Davies and Pfenning
show that a generalization of this language to a multi�level language called �� gives rise to a type
system very related to a modal logic� and that this type system is equivalent to the binding�time
analysis of Nielson and Nielson ��	� Intuitively� �� provides a natural framework where LISP�s
quote and eval can be present in a language� The semantics of our Bracket and Run correspond
closely to those of quote and eval� respectively�

Gl!uck and J"rgensen study partial evaluation in the generalized context where inputs can arrive
at an arbitrary number of times rather than just specialization�time and run�time �
�	� They
also demonstrate that binding�time analysis in a multi�level setting can be done with e�ciency
comparable to that of two�level binding time analysis� Our notion of level is very similar to that
used by Gl!uck and J"rgensen�
�� 

	�

Davies extended the Curry�Howard isomorphism to a relation between modal logic and the type
system for a multi�level language ��	� Intuitively� �� provide a good framework for formalizing
the presence of quote and quasi�quote in a language� The semantics of our Bracket and Escape
correspond closely to those of quote and quasi�quote� respectively� Previous attempts to combine
the �� and �� systems have not been successful ��� �� ��	� To our knowledge� our work is the �rst
successful attempt to de�ne a sound type system combining Brackets� Escape and Run in the same
language�

Moggi advocates a categorical approach to two�level languages� and and uses indexed categories
to develop models for two languages similar to �� and �� �
	� He points out that two�level
languages generally have not been presented along with an equational calculus� Our paper has
eliminated this problem for MetaML� and to our knowledge� is the �rst presentation of a multi�
level language using axiomatic and reductions semantics�


�



	 Conclusion

In this paper� we have presented an axiomatic and reduction semantics for a language with three
staging constructs� Brackets� Escape� and Run� Arriving at the axiomatic and reduction semantics
was of great value to enhancing our understanding of the language� In particular� it helped us to
formalize an accurate syntactic characterization of faulty terms for this language� This character�
ization played a crucial role in leading us to the type system presented here� Finally� it is useful
to note that our reduction semantics allows for ��reductions inside Brackets� thus giving us a basis
for verifying the soundness of the safe�� optimization that we discussed in previous work ���	�

MetaML currently exists as a prototype implementation that we intend to distribute freely on
the web� The implementation supports the three programming constructs� higher�order datatypes
�with support for Monads�� Hindley�Milner polymorphism� recursion� and mutable state� The
system has been used for developing a number of small applications� including simply term�rewriting
system� monadic staged compilers� and numerous small bench�mark functions�

We are currently investigating the incorporation of an explicit recursion operator and Hindley�
Milner polymorphism into the type system presented in this paper�
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