Multi-Stage Programming: Axiomatization and Type Safety

extended abstract

Walid Taha & Zine-Fl-Abidine Benaissa & Tim Sheard

January 14, 1998

Abstract

Multi-staged programming provides a new paradigm for constructing efficient solutions to
complex problems. Techniques such as program generation, multi-level partial evaluation, and
run-time code generation respond to the need for general purpose solutions which do not pay
run-time interpretive overheads. This paper provides a foundation for the formal analysis of one
such system.

We introduce a multi-stage language and present its axiomatic, reduction, and natural se-
mantics. Our axiomatic semantics is an extension of the call-by-value A-calculus with staging
constructs. We demonstrate the soundness of the axiomatic semantics with respect to the nat-
ural semantics. We show that staged-languages can “go Wrong” in new ways, and devise a type
system that screens out such programs. Finally, we present a proof of the soundness of this
type system with respect to the reduction semantics, and show how to extend this result to the
natural semantics.

1 Introduction

Recently, there has been significant interest in various forms of multi-stage computation, including
program generation [3, 26], multi-level partial evaluation [11, 12], and run-time code generation
[1, 5,4, 8,9, 13, 15, 16, 22]. Such techniques combine both the software engineering advantages of
general purpose systems and the efficiency of specialized ones.

Because such systems execute generated code never inspected by human eyes it is important to
use formal analysis to guarantee properties of this generated code. We would like to guarantee stati-
cally that a program generator synthesizes only programs with properties such as: type-correctness,
global references only to names in scope, and local names which do not inadvertently hide global
references.

In previous work [25], we introduced a multi-stage programming language called MetaML. In
that work we introduced four staging annotations to control the order of evaluation of terms.
We argued that staged programs are an important mechanism for constructing general purpose
systems with the efficiency of specialized ones, and addressed engineering issues necessary to make
such systems usable by programmers. We introduced an operational semantics and a type system
to screen out bad programs, but we were unable to prove the soundness of the type system.

Further investigation revealed important subtleties that were not previously apparent to us. In
this paper, we report on work rectifying some of the practical limitations of our previous work.
In contrast to our earlier work that focused on implementations and problem solving using multi-
staged programs, this paper reports on a more abstract treatment of MetaML’s foundations. The
key results reported in this paper are as follows:

1. An axiomatic semantics and a reduction semantics for a core sub-language of MetaML.

2. A characterization of the additional ways in which a staged program can “go Wrong”.

3. A type system to screen out such programs.

4. A soundness proof for the type system with respect to the reduction semantics using the
syntactic approach to type-soundness of Wright and Felliesen [27].

5. A natural semantics that chooses the order in which rules are applied.

6. The soundness of the axiomatic semantics with respect to the natural semantics.

These results form a strong, tightly-woven foundation which gives us both a better understand-
ing of MetaML, and more confidence in the well-foundedness of the multi-stage paradigm. The
axiomatic semantics provides us with an equational theory for formally reasoning about the equiv-
alence of MetaML programs, and the reduction semantics is an abstract characterization of the
notion of staged computation. The natural semantics provides us with a deterministic strategy for
implementing multi-stage computation. The soundness of the axiomatic semantics with respect to
the natural semantics formally demonstrates that results based on the reductions semantics are
also applicable to our implementation. Finally, formally proving the soundness of the type system
with respect to the reduction semantics ensures to us that well-typed programs are well-behaved.

1.1 What are Staged Programs All About?

In staging a program, the user has control over the order of evaluation of terms. This is done
by using staging annotations. In MetaML the staging annotations are Brackets <>, Escape ™ and
run. An expression <e> defers the computation of e; “e splices the deferred expression obtained by
evaluating e into the body of a surrounding Bracketed expression; and run e evaluates e to obtain
a deferred expression, and then evaluates this deferred expression. It is important to note that “e is
only legal within lexically enclosing Brackets. To illustrate, consider the script of a small MetaML
session below:

-| val pair = (3+4,<3+4>);
val pair = (7,<3+4>) : (int * <int>)

-] fun £ (x,y) = <8 - "y >;
val £ = fn : (Pa * <int>) -> <int>

-| val code = f pair;
val code = <8 - (3+4)> : <int>

-| run code;
val it = 1 : int

The first declaration defines a variable pair. The first component of the pair is evaluated, but the
evaluation of the second component is deferred by the Brackets. Brackets in types such as <int>
are read “Code of int”, and distinguish values such as <3+4> from values such as 7. The second
declaration illustrates that code can be abstracted over, and that it can be spliced into a larger
piece of code. The third declaration applies the function £ to pair performing the actual splicing.
And the last declaration evaluates this deferred piece of code.

To give a brief feel for how MetaML is used to construct larger pieces of code at run-time
consider:

-| fun mult x n = if n=0 then <1> else < “x * “(mult x (n-1)) >;
val mult = fn : <int> -> int -> <int>

-| val cube = <fn y => “(mult <y> 3)>;
val cube = <fn a => a * (a *x (a * 1))> : <int -> int>

-| fun exponent n = <fn y => "(mult <y> n)>;
val exponent = fn : int -> <int -> int>

The function mult, given an integer piece of code x and an integer n, produces a piece of code that
is an n-way product of x. This can be used to construct the code of a function that performs the
cube operation, or generalized to a generator for producing an exponentiation function from a given
exponent n. Note how the looping overhead has been removed from the generated code. This is the
purpose of program staging and it can be highly effective as discussed elsewhere [4, 10, 13, 17, 22, 25].
In this paper we move away from how staged languages are used and address their foundations.

2 The A-R Language

The A-R language represents the core of MetaML. It has the following syntax:
e:= i|x|ee| Av.e| <e>| "e| run e

which includes the normal constructs of the A-calculus, integer constants, and the three additional
staging constructs.

To define the semantics of Escape, which is dependent on the surrounding context, we choose to
explicitly annotate all terms with their level. The level of a term is the number of Brackets minus
the number of Escapes surrounding that term. We define level-annotated terms as follows:

0 = %] 2% | (a®a®)? | (M2.a®)? | <a!>® | (run «®)°
an—l—l = ,L'n—l—l | xn—l—l | (an—l—l an—l—l)n—l—l | (Aw.an—l—l)n—l—l | <an—|—2>n—|—1 | (~an)n—|—1| (run an—l—l)n—l—l

2
|

Note that Escape never appears at level 0 in a level-annotated term. We define a A-R, program
as a closed term a®. Hence, example programs are (Az.z°%)° and <<((Az.(2? 22)?)? 52)2>150.

2.1 Values

It is instructive to think of values as the set of terms we consider to be acceptable results from a
computation. Values are defined as follows:

v = %] 2% | A2.a®)0 | <wl>°
vt = it |2l] (vroY)! | o)t | <o®t | (run o!)!
Un—l—? - ,L'n—|—2 | xn—l—? | (Un—I—Z Un—l—2)n—|—2 | (Ax‘vn—I—Q)n—I—Q | <Un—|—3>n—|—2 | (~Un—|—1)n—|—2 | (run Un—l—2)n—|—2

The set of values for A-R has three notable points. First, values can be bracketed expressions. This
means that computations can return pieces of code representing other programs. Second, values
can contain applications such as (Ay.y")! (Az.2!). Third, there are no level 1 Escapes in values.
We take advantage of this important property of values in many proofs and propositions in our
present work.

Because each rule in the inductive definition above is an instance of one of the rules given in
the inductive definition for level-annotated terms it is easy to show that values are a subset of
level-annotated terms.

2.2 Contexts

We generalize the notion of contexts [2] to a notion of annotated contexts:

® = (191 (® a0 (a®)0 | (A2.c®)? | <!> | (run)0
Cn—l—l = []n—l—l | (Cn—l—l an—l—l)n—l—l | (an—l—l Cn—l—l)n—l—l | (A$.Cn+1)n+1 |
<Cn—|—2>n—|—1 | (~Cn)n—|—1| (run Cn—l—l)n—l—l

where [] is a hole. When instantiating an annotated context ¢"[] to a term €™ we write ¢"[¢™].

2.3 Promotion and Demotion

The axioms of MetaML remove Brackets from level-annotated terms. To maintain the consistency
of the level-annotations we need an inductive definition for incrementing and decrementing all
annotations on a term. We call these operations promotion and demotion.

Promotion Demotion
2"t = antt 2"t = an
(a1 a2)"t = (a1t ay 1)t (a1 a)"™] = (] e)"
Az.a)"t = (Az.a)"t Az.a)"tt | = (Az.al)®
<a>"t = <at>"H <>t | = <al>"
= (e (apt] = (alp
(run @)"t = (run a)"+ (run a)"tt] = (run al)”
o= i = g

Promotion is a total function over level-annotated terms and is defined by a simple inductive
definition. Demotion is a partial function over level-annotated terms. Demotion is undefined on
terms Escaped at level 1, and on level 0 terms in general.

An important property of demotion is that while it is partial over level-annotated terms it is
total over values. Proof of this is a simple induction on the structure of values.

2.4 Substitution

The definition of substitution is standard for the most part. In this paper we are concerned only
with the substitution of values for variables. When the level of a value is different from the level
of the term in which it is being substituted, promotion (or demotion, whichever is appropriate) is
used to correct the level of the subterm.

(~a1)n—|—1 [xn—l—l ——

(run aq)"[z" :=v

(afi i o)y
run (ai[z :=v"]))"

i"fa"i=0" = i
ez =0 = o
Yyl i=0" = y" rFy
(a1 az)"[z" :=0"] = ((ar]a” := 0"]) (az[a"™ :=v"]))"
(Az.ap)"[z" :=0"] = (Az.ay)”
Ay.a))"[z" :=0"] = A (a[y” :=y"][z" :=0"])" ¢ € FV ("), vy € FV(a1) a#y
<ap>*[a" =" = <ag[a"ti= 0" A"
]
]

This function is total because both promotion and demotion are total over values. A richer no-
tion of demotion is need to perform substitution of a variable by any expression. This generalization
is beyond the scope of this paper.

2.5 Axiomatization and Reduction Semantics of \-R

The axiomatic semantics describes an equivalence between two level-annotated terms. Axioms can
be thought of as pattern-based equivalence rules, and are applicable in a context-independent way

to any subterm that they match. The three axioms we will introduce can each be given a natural
orientation or direction, reducing “bigger” terms to “smaller” terms. This provides a reduction
semantics.

‘ Axiomatic ‘ Reduction ‘
((Awen)nvn)n _ €n[$ — Un] ((Awen)nvn)n i} €O[$ — Un]
(run <v"ti>m)n = et (run <pmtl>myn A gndl |
("<entl>myntl — entl ("centlynyntl 2 ontl

We write A-R = M = N when M = N is provable by the above axioms and the classical inference
rules of an equational theory, and we write — for the reflexive, transitive, context closure of —s.

Theorem 1 (Confluence). The reduction semantics is confluent.

Proof. Using a notion of parallel reduction and a Strip Lemma, following closely the development
in [2, pages 277-283]. O

Corollary 2 (Church-Rosser). The aziomatic semantics is Church-Rosser.

3 Faulty Terms

Under the reduction semantics, when a term has been sufficiently reduced, we would like such a
term to be a value, but this is not always the case. If no rules apply, and the term is not a value,
we say that such a term is stuck [27]. There are four contexts in which such terms can arise:

1. A non-A value in a function position in an application (at level 0). This is the familiar form
of undesirable behavior arising whenever the pure A-calculus is extended with constants. For
example, (<51>0 39)0 is stuck because <5!>0 is a piece of code, not a A-abstraction. This term
is not a value and contains no redex.

2. A variable appears at a level lower than the level at which it was bound. This is the key,
distinguishing form of undesirable behavior in multi-stage computation [25]. For example:
<(Az."(29)1)1>0 is stuck since z is used at level 0 but bound at level 1.

3. A non-Bracket value is the argument to Run. For example: (run 7°)° is stuck since 7% is an
integer and not a piece of code.

4. A non-Bracket value is the argument to Escape. For example: <(4! 4 ~(79)1)1>0

We wish to consider as faulty, terms in the form above. We will show that if a term is typable,
then it is not faulty, and neither can it reduce to a faulty term. We formalize this notion in the
next sections.

We can now present the following formal specification for the set of faulty terms F":

L. c[((<emti>)m)] € ' Non-X terms in an application like: (5% 3°) and (<5%>! 31)!

(i)] €

2. c[(Az.d[z"])™] € F where m > n. Variables at too low a level like: <(Az.~(2%)!)!>°

o[(run *)"] € I

4. e[("(Az.€)™)"*1] € I Non-Bracket in Escape like: <(4!4+~((Az.z)%)1)1>% and <(43+"(52)3)?>2

(
(
(
3. ¢[(run (/\x e)")"] € I Non-Bracket in Run like: (run (Az.z)%)° and (run 4°%)°
(
("
(@)t e F

The success of our specification of faulty expressions depends on whether they help us char-
acterize the behavior of our reduction semantics. The following lemma is an example of such a
characterization, and is needed for our proof of type soundness.

Lemma 3 (Uniform Evaluation). Let e” be a closed term. If €” is not faulty then either it is a
value or it contains a redez.

Proof: By induction on the structure of e”.

4 Type System

The main obstacle to defining a sound type system for our language is the interaction between
Run and Escape. While this is problematic, it adds significantly to the expressiveness of a staged
language [23], so it is worthwhile overcoming the difficulty. The problem is that Escape allows
Run to appear inside a Bracketed A-abstraction, and it is possible for Run to “drop” that A-bound
variable to a level lower than the level at which it is bound. The following example illustrates the

phenomenon:
<(Az.("(run <z>HNH0 = (e (2O)H!

To avoid this problem, for each A-abstraction we need to count the number of surrounding Runs
for each occurrence of its bound variable (here z') in its body. We use this count to check that
there are enough Brackets around each formal parameter to execute all surrounding Runs without
leading to a faulty term.

The type system for A-R is defined by a judgment A F €™ :7,m, where " is our well-typed
expression, 7 is the type of the expression, m is the number of the surrounding Run annotations
of €™ and A is the environment assigning types to term variables.

Syntax
types T = T—7|<>|int
type assignments A = =z~ (1,5)A]{}
Jjudgments J = Abkt:mm
Type System
Alz) =(r,j)F i+m<n+j
ar ———Int
AFz?:1m,m AF ¢ int,m
AFe?:<m> m+1 R
AF (run e®)? :7,m e
AFertlirm B AFe? :<m™>m .
A <entls>n <r> m ra AF ("er)Hlirm >
AFel:m'm Abrer > m (= (', m)"; A)Fe” i mym
App Lam
AF (ef ef) i 7mm AF (Azem)? 1 > 7,m

The type system employs a number of mechanisms to reject terms that either are, or can
reduce to faulty terms. The App rule has the standard role, and rejects non-functions applied to
arguments.

The Escape and Run rules require that their operand must have type Code. This means
terms such as run 5 and <Az.”5> are rejected. But while this restriction in the Escape and Run
rules rejects faulty terms, it is not enough to reject all terms that can be reduced to faulty terms.
The first example of such a term is <Az.”(run <z>)> which would be typable if we use only the
restrictions discussed above, but reduces to the term <Az."z> which would not be typable. The

second examples involves an application (Af.<Az.”(f<z>)>)(Az.run) which would also be typable,
but reduces to <Az."z>. To reject such terms we need the Var rule.

The Var rule is instrumented with the condition ¢ + m < n + j. Here 7 is the number of
Bracket’s surrounding the A-abstraction where the variable was bound, m is the number of Runs
surrounding this occurence of the variable, n is the number of Brackets surrounding this occurence
of the variable, and j is the number of Runs surrounding the A-abstraction where it was bound.
This ensures that every variable has more Brackets than Runs surrounding it.

In previous work, we have attempted to avoid these two kinds of problems using two distinct
mechanisms: First, the argument of Run cannot contain free variables, and second, we prohibit the
A-abstraction of Run. We used unbound polymorphic type variable names in a scheme similar to
that devised by Launchbury and Peyton Jones for ensuring the safety of state in Haskel [14]. It
turns out that not allowing any free variables is too strong, and that using polymorphism was too
weak. It is better to simply take account of the number of surrounding occurrences of Run in the
Var rule. This way we ensure that if Run is ever in a A-abstraction, it can only strip away Brackets
that are explicitly apparent in that A-abstraction.

5 Type Soundness of the Reduction Semantics

The type soundness proof closely follows the subject reduction proofs of Wright and Felliesen [27].
Once the reduction semantics and type system have been defined, the syntactic type soundness
proof proceeds as follows:

1. Show that reduction in the standard reduction semantics preserves typing. This is called
subject reduction.

2. Show that faulty terms are not typable.

If programs are well-typed, then the two results above can be used as follows: By (1), evaluation
of a well-typed program will only produce well-typed terms. By Lemma 3, every such term is either
faulty, or a value, or contains a redex. The first case is impossible by (2). Thus the program either
reduces to a well-typed value or it diverges.

5.1 Subject Reduction

The Subject Reduction Lemma states that a well-typed term remains well-typed under reduction.
The proof relies on the Demotion, Promotion and Substitution Type Preservation Lemmas. First
we need to introduce two operations on the environment assigning types to term variables:

Aty (2) = (r, + @) iff A(x) = (7,5)
A L(g,p) () = (r,0)" iff Ax) = (1,7 +¢)""P
These two operations map environments to environments. They are needed in the Promotion and

Demotion Lemmas. They provide an environment necessary to derive a valid judgement for a
promoted or demoted well-typed value. Notice that we have the following two properties:

(A tap) Ten= A tgripss) and (A Tgripry) Li.)= A Taw)

We writev 17 and v [P, respectively, for an abbreviation of p applications of 1 and | to v. Note
that this operation is different from 1, ;) and |, ;) which is a function on environments assigning
types to term variables.

Lemma 4 (Demotion). If ¢ < p and A, Vap) s defined and Ay U Ay = v T m 4+ g then
AU (Az L) P PP T om,

Proof. By induction on the structure of v"*t?. We develop only the variable case v"T? = z"t?,
There are only two possible sub-cases, which are:

Ai(e) = (r4) itmtqg<n+tj+p
(AqUA) FartP i, m+g¢

(Var)

By hypothesis ¢ < p implies m + ¢ < n + j. Hence (A1U (A2 (g,)) TP P T om.

Ag(2) = (1, j+)P itm+2g<ntj+2p
(AqUA) FartP i, m+g¢

(Var)

Similar to the above sub-case. O
Lemma 5 (Promotion). Let ¢ <p. If A o™ :7,m then Ay U (Az t,) Fo" 1Pim,m+q.
Proof. By induction on v". O

Lemma 6 (Substitution). If j < m and Ay U (z+ (7/,5)589) F€” :mym and Ay o' i1 j
then one of the following three judgments holds.

1. ALk e[z =0 1 i omoif n > .
2. AR ez =0 " i, moifn < i
3. Ay Fe™[a™ = v"] 1 7, m, otherwise
Proof. By induction on the structure e™. If ¢” = 2™ then we have:

A@) =(r,j)) mti<ntj
AU (= (1,))50g) Famm,m

e If n < i and by the hypothesis j < m then m +i > n 4+ j. Hence AU (2 (1,7)%A)

xn

: 7, m cannot be typable.
e if n > ¢ then m — j < n — 1 and the Promotion Lemma 5 applies.

e | = n and by hypothesis j < m and m+i < n+j then j = m. Then, Ay F e"[2" :=v"] : 7,m.

U
Corollary 7 (3 Rule). If A ((Az.e™)"v™)" : 7,m then AF e™[z™ :=v"]: 7, m.
Lemma 8 (Escape Rule). If A (“<e"T1>")" .7 m then Ak e :1,m.
Proof. Straightforward from the type system. O

Lemma 9 (Run Rule). If AF (run <"t 7 m then AF ol i 7, m.

Proof. Tf A+ (run <v"t1>™)": 7 m then A+ v"t!:7 m+ 1 is valid. By Demotion Lemma 4,
AF vt 7 om s valid. O

Proposition 10. If Ak e} :7,m and e} — €5 then At ef :m,m.

Proof. By induction on the structure of ef. If the rewrite is at the root then use Lemmas 8 and 9,
and Corollary 7. If e} contains a redex then apply induction hypothesis. O

Proposition 11 (Subject Reduction). If Ak el :7,m and e} — e} then S Ak el : 7, m.

Proof. By induction on the length of the derivation. O

5.2 Faulty Terms

Lemma 12 (Faulty Terms are Not Typable). If e € F' then there is no A,t,a such that
AFe:t,a.

Proof. By case analysis over the structure of e. Let e = ¢;[(Az.c[2"])'] such that n < i, that is,
i =n+ky 4 1. Assume that A& e:7,m. This implies that @ — (7, j)'A’ 2" : 7/, p. This means
that i+ p < n+ 5. Because p = 7+ ko then j < p. This implies that n+k+1+14+74+ky <n-+4j
which is impossible. The other cases are straight-forward. O

6 Natural Semantics

In previous work, we defined core MetaML by a natural semantics [25]. While this style of presen-
tation is closer to the implementation of MetaML than the reduction semantics presented in this
paper, it is more complex. We have found that it was easier to prove type soundness first with
respect to the reduction semantics, and then to extend this result to the natural semantics.

In this paper, we present a more concise natural semantics for MetaML than the one we have
presented in previous work [25]:

e1? — (/\J:.eo)o e2? =5 v’ (er = 0f]) = v 0 <>’
(/\J:.eo)o — (/\J:.eo)o (e9 68)0 < vs0 "(60)1 — p!
eV — <v%>0 (vi i)o — vy et s e3Pl gyt oy e ntl
(run €9)” < vy? (ent! eg+1)”+1 N (e@f“eff“)"“ Zntl s pntl
ey H1 oy gyntl ey H1 oy gyntl ey gyntl
Q. o genth)y™! “(entYH oy ~(ent 1yt <t ey cently”
"+ <y et
(run e?"’l)n-l—1 — (run eg+1)n+1 e an

A key property of this presentation is that it avoids the explicit use of a gensym or newname
function for renaming abstractions at levels greater than zero. This improvement avoids the prob-
lems that Moggi points out regarding the use of such stateful functions in defining the semantics
of two-level languages [18].

Now we move on to present some fundamental results about the untyped A-R language, and
use these results, in addition to the soundness of the type system with respect to the reduction
semantics, to prove the soundness of the type system with respect to the natural semantics.

We say that two terms e; and ey are observationally equivalent, written e; ~ eq, if for any
context ¢[] such that both ¢[e;] and ¢[ey] are closed, then c[e;]” < v;9 if and only if ¢[es]® < v5°,
and v = % if and only if v§ = i® when both relations are defined.

Lemma 13. If " < v" then " —— v".
Proof. By induction on the proof tree for e* — v™. U
Lemma 14. If e — v then e < v'.

Proof. This proof requires a Standardization Theorem along the lines of Plotkin [20], but one
extended to deal with Brackets, Escape and Run. We omit the details for the sake of brevity.
Please see the technical report for the full details [24]. O

Corollary 15. There exists a value v such that \-Rt e = v if and only if e — v'.
Proof. Consequence of Lemmas 14 and 13. U
Theorem 16 (Soundness of Axiomatic Semantics). If \-RF e; = ey then e ~ e5.

Proof. If e — vy then by Corollary 15 A-R = e; = v;. Hence, A-R F e3 = v;. By Corollary 15,
there exists a value vy such that e; < vy. By Lemma 13, »-R F vy = vy. Since the axiomatic
semantics is Church-Rosser, we have vy — v and vy — v. Thus, e; ~ e O

We define undesirable behavior in the natural semantics in the classical manner: we introduce a
new “value” Wrong, written T, and a set of rules complementing the rules of the natural semantics,
and returning T in all these new cases. We call the combination of these two sets of rules the

. . T
augmented natural semantics, and denote it by < .
Lemma 17. Ife<l>"|— then e = f and f € F and [# v.

Proof. By induction on the proof tree of the augmented natural semantics < U
Theorem 18 (Type Soundness). If At e:7,m ande < ¢ then e +=T

Proof. We prove the contrapositive. If ¢/ = T and e <% T then by Lemma 17, ¢ — f. Hence by
type soundness of the reduction semantics, e is not typable. O

7 Related Work

Multi-stage programming techniques have been used in a wide variety of settings, including run-time
program generation in ML [17], run-time specialization of C programs [5, 4, 21, 9], and advanced
dynamic compilation for C programs [1].

Nielson and Nielson present a seminal detailed study into a two-level functional programming
language [19]. This language was developed for studying code generation. Davies and Pfenning
show that a generalization of this language to a multi-level language called AF gives rise to a type
system very related to a modal logic, and that this type system is equivalent to the binding-time
analysis of Nielson and Nielson [7]. Intuitively, A provides a natural framework where LISP’s
quote and eval can be present in a language. The semantics of our Bracket and Run correspond
closely to those of quote and eval, respectively.

Gliick and Jgrgensen study partial evaluation in the generalized context where inputs can arrive
at an arbitrary number of times rather than just specialization-time and run-time [12]. They
also demonstrate that binding-time analysis in a multi-level setting can be done with efficiency
comparable to that of two-level binding time analysis. Our notion of level is very similar to that
used by Gliick and Jgrgensen[10, 11].

Davies extended the Curry-Howard isomorphism to a relation between modal logic and the type
system for a multi-level language [6]. Intuitively, AO provide a good framework for formalizing
the presence of quote and quasi-quote in a language. The semantics of our Bracket and Escape
correspond closely to those of quote and quasi-quote, respectively. Previous attempts to combine
the A and A© systems have not been successful [7, 6, 25]. To our knowledge, our work is the first
successful attempt to define a sound type system combining Brackets, Escape and Run in the same
language.

Moggi advocates a categorical approach to two-level languages, and and uses indexed categories
to develop models for two languages similar to AP and A© [18]. He points out that two-level
languages generally have not been presented along with an equational calculus. Our paper has
eliminated this problem for MetaML, and to our knowledge, is the first presentation of a multi-
level language using axiomatic and reductions semantics.

10

8 Conclusion

In this paper, we have presented an axiomatic and reduction semantics for a language with three
staging constructs: Brackets, Eiscape, and Run. Arriving at the axiomatic and reduction semantics
was of great value to enhancing our understanding of the language. In particular, it helped us to
formalize an accurate syntactic characterization of faulty terms for this language. This character-
ization played a crucial role in leading us to the type system presented here. Finally, it is useful
to note that our reduction semantics allows for g-reductions inside Brackets, thus giving us a basis
for verifying the soundness of the safe-3 optimization that we discussed in previous work [25].

MetaML currently exists as a prototype implementation that we intend to distribute freely on
the web. The implementation supports the three programming constructs, higher-order datatypes
(with support for Monads), Hindley-Milner polymorphism, recursion, and mutable state. The
system has been used for developing a number of small applications, including simply term-rewriting
system, monadic staged compilers, and numerous small bench-mark functions.

We are currently investigating the incorporation of an explicit recursion operator and Hindley-
Milner polymorphism into the type system presented in this paper.

Acknowledgements: We would like to thank John Matthews and Matt Saffell for comments on
a draft of this paper.

References

[1] Joel Auslander, Matthai Philipose, Craig Chambers; Susan J. Eggers, and Brian N. Bershad. Fast,
effective dynamic compilation. In Proceedings of the ACM SIGPLAN 96 Conference on Programming
Language Design and Implementation, pages 149-159, Philadelphia, Pennsylvania, May 1996.

[2] Henk . P. Barendregt. The Lambda-Calculus, its syntar and semantics. Studies in Logic and the
Foundation of Mathematics. North-Holland, Amsterdam, 1984. Second edition.

[3] Don Batory and Bart J. Geraci. Composition validation and subjectivity in genvoca generators. IEEE
Transactions on Software Engineering, 1997.

[4] Charles Consel and Frangois Noél. A general approach for run-time specialization and its application to
C. In Conference Record of POPL "96: The 23" ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 145-156, St. Petersburg Beach, Florida, 21-24 January 1996.

[6] Charles Consel, Calton Pu, and Jonathan Walpole. Incremental specialization: The key to high perfor-
mance, modularity, and portability in operating systems. In Proceedings of the Symposium on Partial
FEuvaluation and Semantics-Based Program Manipulation, pages 44-46, New York, NY, USA, June 1993.
ACM Press.

[6] Rowan Davies. A temporal-logic approach to binding-time analysis. In Proceedings, 11" Annual IEEE
Symposium on Logic in Computer Science, pages 184-195, New Brunswick, New Jersey, July 1996.
IEEE Computer Society Press.

[7] Rowan Davies and Frank Pfenning. A modal analysis of staged computation. In 23rd Annual ACM Sym-
posium on Principles of Programming Languages (POPL’96), St.Petersburg Beach, Florida, January
1996.

[8] Dawson R. Engler. VCODE : A retargetable, extensible, very fast dynamic code generation system. In
Proceedingsof the ACM SIGPLAN Conference on Programming Language Design and Implemantation,
pages 160-170, New York, May 1996. ACM Press.

[9] Dawson R. Engler, Wilson C. Hsieh, and M. Frans Kaashoek. ‘C: A language for high-level, efficient,
and machine-independent dynaic code generation. In Conference Record of POPL °96: The 23" ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 131-144, St. Peters-
burg Beach, Florida, January 1996.

11

[10]

Robert Gliick and Jesper Jorgensen. Efficient multi-level generating extensions for program special-
ization. In S. D. Swierstra and M. Hermenegildo, editors, Programming Languages: Implementations,
Logics and Programs (PLILP’95), volume 982 of Lecture Notes in Computer Science, pages 259-278.
Springer-Verlag, 1995.

Robert Glick and Jesper Jorgensen. Fast binding-time analysis for multi-level specialization. In Dines
Bjgrner, Manfred Broy, and Igor V. Pottosin, editors, Perspectives of System Informatics. Proceedings,
volume 1181 of Lecture Notes in Computer Science, pages 261-272. Springer-Verlag, 1996.

Robert Glick and Jesper Jgrgensen. An automatic program generator for multi-level specialization.

Lisp and Symbolic Computation, 10(2):113-158, 1997.

Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Susan J. Eggers. Annotation-
directed run-time specialization in C. In Proceedings of the ACM SIGPLAN Symposium on Partial
FEvaluation and Semantics-Based Program Manipulation, pages 163178, Amsterdam, The Netherlands,
June 1997.

John Launchbury and Simon L. Peyton-Jones. State in haskell. Lisp and Symbolic Computation,
8(4):293-342, December 1995. pldi94.

Peter Lee. Realistic Compiler Generation. Foundations of Computing Series. MIT Press, 1989.

Peter Lee and Mark Leone. Optimizing ML with run-time code uen&ation. In Proceedingsof the ACM
SIGPLAN Conference on Programming Language Design and Implemantation, pages 137-148, New
York, May21-24 1996. ACM Press.

Mark Leone and Peter Lee. A declarative approach to run-time code generation. In Workshop on

Compiler Support for System Software (WCSSS), February 1996.
Eugenio Moggi. A categorical account of two-level languages. In MFPS 1997, 1997.

Flemming Nielson and Hanne Rijs Nielson. Two-Level Functional Languages. Number 34 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1992.

Gordon Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science,
1(1):125-159, 1975.

Calton Pu, Andrew Black, Crispin Cowan, and Jonathan Walpole. Microlanguages for operating system
specialization. In Proceedings of the SIGPLAN Workshop on Domain-Specific Languages, Paris, January
1997.

Calton Pu and Jonathan Walpole. A study of dynamic optimization techniques: Lessons and direc-
tions in kernel design. Technical Report OGI-CSE-93-007, Oregon Graduate Institute of Science and
Technology, 1993.

Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing as staged type inference. In
Proceedings of the 25th ACM Symposium on Principles of Programming Languages, San Diego, Ca.
ACM Press, jan 1998.

Walid Taha, Zine-el-abidine Benaissa, and Tim Sheard. The essence of staged programming. Technical

report, OGI, Portland, OR, December 1997.

Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In Proceedings
of the ACM-SIGPLAN Symposium on Partial Evaluation and semantic based program manipulations
PEPM’97, Amsterdam, pages 203-217. ACM, 1997.

Richard Waldinger and Michael Lowry. AMPHION: Towards kinder, gentler formal methods. In Proceed-
wngs of the 1994 Monterey Workshop on Formal Methods. U.S. Naval Postgraduate School, September
1994.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information and
Computation, 115(1):38-94, 15 November 1994.

12

