
Mx
A Package for Rapid Mathematical

Prototyping and Algorithm Development

with Application to Speech

and Speaker Recognition

Sarel van Vuuren

March �� ����

Technical Report

Anthropic Speech Processing Group
Department of Electrical and Computer Engineering

�
Center for Spoken Language Understanging

Department of Computer Science and Engineering

Oregon Graduate Institute of Science and Technology
P�O� Box ��			� Portland� Oregon �
�����			

ii

Contents

Abstract ix

Preface xi

I Overview �

� Introduction �

��� Introduction �

��� Background �

��
 Software architecture �

��� Versions �

��� Prerequisites �

��� Notation �

� Using Mx �

��� Matrices �

��� Getting Started �	

��
 Commands and arguments ��

��� Using variables ��

��� Specifying matrix input ��

��� Accessing a submatrix ��

��
 Subcommands ��

��� Controlling and exploiting memory usage � � � � � � � � � � � � � ��

��� Destroying objects �

���	 Writing and reading objects ��

iii

II Language Reference ��

� Syntax ��

�� Formal speci�cation ��

�� Objects ��

�
 Numbers ��

�� Ranges �

�� Modi�ers ��

� Results ��

��� Inputs and outputs �

��� Passing the result ��

��
 The result as a text string ��

��� The result as an output argument � � � � � � � � � � � � � � � � � ��

��� Scalars �
	

� Messages ��

��� Errors �
�

��� Exceptions �
�

III Command Reference ��

	 Matrix manipulation ��

��� Synopsis �
�

��� Commands �
�

� Input and output ��

�� Synopsis ��

�� Commands ��

 Basic mathematics ��

��� Synopsis �

��� Commands ��

� Decompositions and transformations ��

��� Synopsis �

iv

��� Commands �

�� Elementary statistics ��

�	�� Synopsis �

�	�� Commands �

IV Appendix ��

A Availability 	�

B Examples 	�

B�� One line examples ��

B�� Associativity ��

B�
 Data manipulation ��

B�� Arithmetic Harmonic Sphericity Measure � � � � � � � � � � � � � �

C Algorithms 	�

Bibliography
�

v

vi

List of Figures

��� Example of controllable memory usage� � � � � � � � � � � � � � � �

��� The software architecture of Mx� � � � � � � � � � � � � � � � � � � �

List of Tables

��� Mx�s features� �

��� Bene�ts gained using Mx� �

��
 The Mx package�

��� Mx commands grouped by functionality� � � � � � � � � � � � � � � ��

��� Rtcl commands grouped by functionality� � � � � � � � � � � � � � � �

�� Formal syntax� ��

�� Real matrices� �

�
 Complex matrices� �

��� Mx�s parsing algorithm for input arguments� � � � � � � � � � � � � �

��� Mx�s parsing algorithm for output arguments� � � � � � � � � � � � ��

vii

viii

Abstract

We describe a software package called Mx that supports rapid mathematical
prototyping and algorithmic development� Bene�ts of the package include a
small memory footprint and high execution speed�

A typical modular approach to research systems� such as for speech and speaker
recognition� is a set of precompiled routines� combined in a script and operating
on �les� Using the extendible script language Tcl� Mx allows a somewhat di�er�
ent approach� Basic functionality is contained in C�code libraries written to be
highly portable and fully accessible in the Tcl scripting environment� With Mx�
data can stay in memory� precompiled routines are dynamically loaded only once
and control �ow can be scripted in great detail� In particular� Mx provides ex�
tensive scripting capability for the manipulation of matrices and vectors� These
data objects are treated as conventional C data structures that are represented
at the script level as simple string identi�ers�

A unique feature of Mx is that the user can control memory usage using the
syntax of the script language� The result is that not only can an algorithm be
scripted conveniently� but memory usage can also be tailored for algorithmic
e�ciency� We provide an overview of Mx� explain the unique syntax� provide
examples of usage� and include a detailed summary of the di�erent commands�

ix

x

Preface

Mx was borne out of the need for a fast and easy to use mathematical package�
This package was to have a scripting interface and allow the manipulation of
huge amounts of data as is often found in speech and speaker recognition tasks�
I wrote this package in the summer of ���� and has since used it extensively in
my research� For example it formed the backbone of the software used in Ore�
gon Graduate Institute�s participation in the ���
 NIST Speaker Recognition
Evaluation� We have also used it in such forays as investigating novel temporal
features for speech recognition�

Over this periodMx has matured and grown until now it more or less satis�es the
initial design requirements� Along the way many people have commented on its
features� implementation and use� In particular I would like to thank Jacques de
Villiers for his supporting advice during the initial design and invaluable support
to allow Mx to become part of a much bigger package called CSLUsh� Johan
Schalkwyk for using Mx from early on and helping establish it as a mathematics
environment for CSLUsh� and Pieter Vermeulen for his encouraging use of Mx�
I would also like to thank Ron Cole for gratuitously allowing the bundling
of Mx with CSLUsh and Mark Fanty for helping with a Windows NT port of
the package� Lastly� my thanks to my advisor Hynek Hermansky who was
instrumental in establishing a productive environment for the Mx e�ort�

This paper consists of four parts� Part I presents Mx and explains how to use
it� Part II provides a concise reference to the Mx language� Part III describes
the commands in Mx in detail� Finally the Appendix explains how to obtain
Mx� provides examples of Mx use and describes the algorithms that were used
for the commands�

August ���
� Portland� Oregon Sarel van Vuuren

xi

xii

Part I

Overview

�

Chapter �

Introduction

��� Introduction

This document is about a software package called Mx� This package allows
rapid mathematical prototyping and algorithm development from within the Tcl
shell ���� It provides a programming system with extensive scripting capability
for matrix and vector mathematics� All matrices are abstracted memory objects
that are referenced through a unique text�string handle�

The Mx package is particularly useful for situations where large matrices need
to be manipulated relatively quickly and where rapid prototyping or algorithm
development is needed� Examples of such situations include feature processing
and modeling of speech ���
� �� at both the research and application development
stages� Mx allows fast and easy assimilation� partitioning� transformation and
inspection of these matrices� In addition to the usual mathematics operations
�real� complex� element�wise and ranging� Mx allows operations on lists such as

set x �mx join row �list �a �b �c���

One of the powerful features of Mx is that it allows the user to explicitly con�
trol memory usage� Advantages of this include considerable execution time
speed�ups and a generally small memory footprint� As an example of such
functionality� consider the equation

r � cov�y�cov�x����

where x and y are data matrices� and �cov� is the covariance� Furthermore�
suppose that this equation will be called many times in a loop so that consid�
erable speed�up may be gained by exploiting the memory usage of temporary
variables� The following code fragment details how this may be done using Mx�

� CHAPTER �� INTRODUCTION

mx cov �x sx

mx cov �y sy

mx cholinv �sx si

set r�i� �mx prod �sy �si�

As depicted in Figure ��� the su�x position for the temporary variables sx�

r(i) = cov(y) cov(x)
-1

loop:

create

set r(i) [mx prod $sy $si]
mx cholinv $sx si
mx cov $y sy
mx cov $x sx

"r(i)"

reuse temporary

variable

it already exists

else create it

"sx" if

Prefix position:

Suffix position:

Figure ���� Example of controllable memory usage�

sy� and si indicates to Mx to allocate memory for them only at the �rst pass
of the loop and on subsequent passes to simply overwrite their contents� A
pre�x position on the other hand indicates to Mx not to reuse memory � as
for the variable r�i� in the previous example� This implementation allows
execution speed to approach that of dedicated C�code� To change the previous
code fragment to ignore the �rst � rows of sy in the product it su�ces to specify
a subrange

set r�i� �mx prod �sy���	
�� �si�

Table ��� highlights some of the main features of Mx�

� Support for variables� lists and elements in a scripting environment�
� Ability to manipulate large amounts of numeric data�
� Functions to assimilate� partition� transform and inspect numeric data�
� Support for real and complex mathematical operations�
� Support for matrix� vector and scalar arguments�
� Controllable memory usage�
� Error messages and command stack trace�
� Elementary exception handling�
� Remote command execution�

Table ���� Mx�s features�

���� BACKGROUND �

��� Background

Mx was developed to address the need for a system that would allow rapid
mathematical prototyping and algorithm development for speech and speaker
recognition systems� To this end it was designed to aid both research and
application development�

Existing tools for speech recognition often enforce a methodology where itera�
tively data is read from disk� some transformation applied in memory and the
result written back to disk� This methodology is the result of the basic algo�
rithmic building blocks in such tools requiring input and output to be from
disk� However� a signi�cant overhead results from this shu�ing of data back
and forth from memory to disk� A better strategy might be to design basic
algorithmic building blocks that pass data to one another directly via memory
using handles with access to these building blocks and handles made available
within a scripting environment� As far as we are aware this strategy has been
available only in generally non�speech related programming environments� Mx

is an attempt at making this strategy available to the speech community� To
realize this strategy two design considerations were paramount�

One design consideration was that data should be kept in memory as long as
possible and passed through an algorithm by means of a reference to the data
object �using a handle to the object�� The other design consideration was that
Mx should allow memory usage to be controlled by the user� This is motivated
in that algorithms often spend a lot of time managing memory �eg allocating�
reallocating or freeing memory� and that a means to shorten time spent thus
would allow for enhanced performance� Table ��� highlights some of the main
bene�ts gained from using Mx�

Short development cycle
using Mx�s scripting environment for rapid mathematical prototyping and
algorithm development�

High performance
by keeping objects in memory and reusing memory on demand�

Modularity and consistency
by allowing low�level code sharing in a scripting environment�

Portability
by extending Tcl with a highly portable C�code library�

Extendibility
by providing a simple developer�s API to extend Mx�

Table ���� Bene�ts gained using Mx�

� CHAPTER �� INTRODUCTION

��� Software architecture

Mx acts as a package extension of the Tcl script language ���� The extendible
scripting language Tcl is used to access Mx functionality within an e�cient
scripting environment� Currently Mx is bundled with the Center for Spoken
Language Understanding programming shell ��� called CSLUsh ��� which is a
group of similar package extensions designed speci�cally as speech recognition
tools� This bundling allows CSLUsh to make seamlessly use of Mx and vice
versa� Individually� each package extends the usability of the other packages
by providing speci�c capabilities such as� for example� distributed computing
and object management �using the Rtcl package�� In particular� the Rtcl package
allowsMx commands to be executed remotely ���� As with Tcl� Mx also provides
error messages� command stack tracing and exception handling� All packages
can be dynamically loaded as needed�

The software architecture of Mx consists of two layers� similar to the software
architecture of CSLUsh� The bottom layer is a set of e�cient C libraries called
CSLU�C �
� containing functions which support basic algorithmic operations and
associated utilities� The top layer CSLUsh provides a wrapper for the bottom
layer CSLU�C libraries� making them accessible within Tcl�

Figure ��� shows the relation of Mx to Tcl� CSLU�C and CSLUsh� This document
discusses the functional aspects relating to the shaded region in the Figure�

Mu

Mx

CSLU-C

Tcl

CSLUsh

Rtcl

Rtcl . . .

. . .

Figure ���� The software architecture of Mx�

At the bottom level Mx consists of a stand�alone C�code numerical library of
functions� This library will be referred to as Mu �short for �mu�pack��� These
functions implement algorithms such as an FFT or matrix addition� This library
does not contain any dependencies on Tcl� As such the Mu library is in principle
exchangeable and extendible with other numerical libraries�

���� VERSIONS

At the top level Mx consists of a C�code library that provides an interface
between the numerical library and the Tcl scripting environment� This top level
e�ectively wraps the numerical routines so that they are accessible within the
Tcl scripting environment� This C�code library links with the Tcl library� the
latter which contains C functions which a Tcl extended C program may use�
It also links with some of the CSLU�C and CSLUsh libraries to allow Mx to be
used within the Center for Spoken Language Understanding programming shell
CSLUsh�

��� Versions

Table ��
 lists information about the Mx distribution� Mx has been ported
to a number of UNIX platforms as well as to Windows NT� This document
corresponds to Mx version ��	 or less�

Programming language� Tcl script
Implementation language� C
Syntax� Pre��x� command driven
Applicability� Rapid mathematical prototyping
Author� Sarel van Vuuren
License� c� Copyright ��������
����� Sarel van Vuuren

General CSLU software license where applicable�
Availability� http� www�cse�ogi�edu CSLU toolkit
Platforms� SPARC Solaris� i��pc Solaris�

Alpha Digital UNIX� Windows NT� Windows ���

Table ��
� The Mx package�

The Mx package can of course not be guaranteed bug free� However� all the
commands have been tested and checked extensively� Please email comments�
suggestions and bugs reports to the author�

��� Prerequisites

Because Mx extends Tcl� a good working knowledge of Tcl is recommended ����
This document will assume a basic Tcl programming knowledge� In particular
it is important to understand how quoting works in Tcl�

� CHAPTER �� INTRODUCTION

��� Notation

For the examples to follow� note that in Tcl syntax� a backslash n denotes a
line�break and a pound symbol ! a comment string� A percentage symbol " at
the start of a line will sometimes be used to denote the command prompt� This
will di�erentiate command input from results� the latter which will not have
the leading prompt� We will generally write computer input and output using
a typewriter font� However� to aid clarity we will sometimes write arguments
slanted and keywords in bold�

If an argument or group of arguments are enclosed in question marks is means
they are optional� We�ll often name the input�s� using the �rst letters of the
alphabet and the output�s� using the last�

Chapter �

Using Mx

This Chapter gives an overview on using Mx� It explains how to start and end
an Mx session� provides a brief description of the di�erent commands available
in Mx and gives simple examples of how to use some of these commands� This
Chapter goes on to provide suggestions and examples showing how to exploit
Mx�s functionality by explicit memory management� In that the user should
control �enforce� when and where to create new objects� reuse them or destroy
them� in similar way as with a language such as C� it is important that the user
understands this aspect of Mx�s functionality�

��� Matrices

Matrices in Mx are two�dimensional� A vector is viewed as a two�dimensional
matrix with one dimension hard�wired to unity� In the examples

�� � �� is � x �

��

�

�� is � x �

�� � �

� � �

� � �� is � x �

all the matrices should be thought of as two�dimensional objects�

Matrices are represented contiguously in memory one row after another� There�
fore� bookkeeping considerations dictate less computational overhead for row
vectors than column vectors and use of row vectors is recommended where ap�
propriate�

�

�	 CHAPTER �� USING MX

Computations inMx are done in �oating point�� The globalTcl variable tcl precision
determines the number of signi�cant digits that are retained when �oating values
are converted to strings �except that trailing zeroes are omitted�� If tcl precision
is unset then � digits of precision are used� Internal computations however� are
always done in single precision� To set the precision to
 signi�cant digits type

set tcl
precision �

��� Getting Started

To use Mx it is necessary to �rst load the Mx package within a Tcl session by
typing the command

package require Mx

This loads the Mx dynamic library� Mx has a command syntax similar to Tcl�
All Mx commands take the following form

mx command args

A typical Mx argument is a handle �a text�string� that refers to a matrix object�

Helpful output can be obtained by typing a nonsense input at the prompt� Here
is an example

� mx

wrong � args� should be �mx option arg �arg �����

� mx �

bad option ���� should be fwrite
 zeromean
 sign
 dim
 sin ���

In addition to the speci�c Mx commands� some generic commands for manipu�
lating matrix objects are available by loading an auxiliary package called Rtcl

�an acronymn for Remote Tcl ����� The Rtcl package can be loaded with the Mx

package� The version number of the package is returned as a result�

� package require Mx

���

� package require Rtcl

���

Typing the Tcl command

exit

ends a session�

�For historical reasons� mainly storage e�ciency� only �oating point operations have been
supported� This may change in the future�

���� COMMANDS AND ARGUMENTS ��

��� Commands and arguments

Commands in Mx are always preceded by the mx keyword� This tells the inter�
preter in the CSLUsh shell that the Mx library applies and an Mx command is
to follow� Next the actual command� arguments and any options are speci�ed�
Therefore a command takes the form

mx command #subcommand# input #input# ��� #output# #options#

where� if an argument or group of arguments are enclosed in question marks it
means they are optional�

The commands in Mx can be grouped into several categories� There are com�
mands for manipulating matrices such as selecting a range �cut� and joining
matrices �join�� There are commands for writing and reading matrices to and
from a variety of channels� There are commands for such basic mathematics
as adding �add� and taking the product of two matrices �prod�� There are
commands for decompositions such as the Cholesky decomposition chol and
transformations such as the Fast Fourier Transform �fft� and elementary sta�
tistical operations such as computing a covariance matrix �cov�� Table ��� lists
the Mx commands in terms of their functionality� For a detailed description of
each command please refer to Part III�

Some commands can be applied to either rows or columns� These commands
take a subcommand �row or col� specifying row or column�wise operation� De�
pending on the command the input and output arguments may be real or com�
plex� Generally� real inputs result in a real output value� complex inputs result
in a complex output value�

��� Using variables

In Mx matrix objects are named using a unique text�string handle of the form
arrayF�n� where n is a unique number� This naming is handled entirely by Mx�

For example� to create two matrices� both with two rows and two columns with
ones for the elements

� mx ones 	 	

arrayF��

� mx ones 	 	

arrayF��

Now consider the element�wise addition of the two matrices arrayF�� and
arrayF��� with the result being a new matrix arrayF�	� �Actually we are
adding the contents of the matrix named arrayF�� to the contents of the ma�
trix named arrayF�� with the result being the contents of the matrix named
arrayF�	��

�� CHAPTER �� USING MX

Manipulation
�� ��� copy� cut� join� size� dim� ones� zeros� eye� random� diag�
zero� one� zerodiag� onediag� scale� tr� unwrap� flipud� fliplr� load�
unload

Writing and reading
set� puts� value� fprintf� fscanf� fwrite� fread

Basic mathematics
trace� prod� mul� div� rem� add� subtr� sqr� abs� angle� real� imag�
conj� c	p� p	c
�Polar coordinates�
pmul� pdiv� padd� psubtr� psqr pabs� pangle� preal� pimag
�Numeric�
ceil� floor� sign
�Trigonometric�
cos� sin� tan� acos� asin� atan� cosh� sinh� tanh
�Exponential�
sqr� sqrt� exp� log� log��

Decompositions and transformations
chol� cholinv� cholsolve� fft� ifft� norm� normalize� qsort

Elementary statistics
find� cov� corr� mean� min� max� sum� std� zeromean

Table ���� Mx commands grouped by functionality�

���� USING VARIABLES �

� mx add arrayF�� arrayF��

arrayF�	

And to add this result to itself

� mx add arrayF�	 arrayF�	

arrayF��

The add command always takes as input the names of two matrices and returns
the name of the matrix containing the result� Of course using the rather bulky
text�string handles to specify each matrix object would be tedious� An elegant
solution is to put each handle into a Tcl variable�

� set a arrayF��

arrayF��

� set b arrayF��

arrayF��

Consider again the element�wise addition of the two matrices� Now suppose the
handles for these matrices are the contents of two Tcl variables a and b and that
the handle to the result should be stored in the Tcl variable� z

� set z �mx add �a �b�

arrayF�	

The dollar sign above �eg� �a� is part of the Tcl syntax and tells the interpreter to
substitute �a with the contents of the variable named �a� The square brackets
are also part of the Tcl syntax and tells the interpreter to �rst evaluate the
command inside the brackets and then to set the contents of the variable z

equal to the result � in this case arrayF�	� Note that any previous contents of
z will be overwritten� In this example Mx still expects exactly the same inputs
and returns the same output as before as can be seen by looking at the contents
of the variables using Tcl�s puts command

� puts �a

arrayF��

� puts �b

arrayF��

� puts �z

arrayF�	

Because of the convenience of Tcl variables we will almost always use them in
this way to hold the handles to Mx matrix objects� Note that this leads to a
powerful syntax� For example instead of using simple variable names as in the
previous example in some instances we may desire to use associative variables�
their contents still being handles to the matrix objects� For example

�This is a convenient notation that we�ll often use� We name the input�s� using the 	rst
letters of the alphabet and the output�s� using the last�

�� CHAPTER �� USING MX

set a�red� �mx add �a�green� �a�blue��

��� Specifying matrix input

Mx accepts numeric input and can return numeric output� A matrix in Mx is a
double list� with the inner lists corresponding to rows of the matrix� Note that
the double list speci�cation is only necessary to prevent ambiguity� For example
to create a matrix of one element with contents ���

mx set ��� x

su�ces� But to create a matrix

� 	 � ��� ���

�� ��� � 	

��� ���	 � � �

with
 rows and � columns

mx set ���	 � ��� ���� ��� ��� � 	� ���� ���	 � ���� x

is needed� It is generally recommended to use apostrophes so as to prevent Tcl
from stripping o� the outermost set of curly braces� Below is an example where
the contents of a Tcl variable is set to a list ff�
 �g f� �
gg and where this
list is passed on to the mx set command as an input argument�

� set a ���	 � �� �� � ����

��	 � �� �� � ���

� mx set �a x

arrayF��

Below is an example where the Tcl �variable x �whose contents was set above�
is used as input argument to the mx puts command which pretty prints the
contents of the matrix to standard output�

� mx puts �x

��	�� ��� ���� ���� ��� �����

� mx puts �x �raw

	�� ��� ���

��� ��� ���

The following example combines the previous two examples to illustrate that
formats can be mixed�

� set y �mx subtr �x ���	 � �� �� � �����

arrayF��

� mx puts �y

����� ��� ���� ���� ��� �����

���� ACCESSING A SUBMATRIX ��

��� Accessing a submatrix

Mx allows easy access to a submatrix� Suppose that x is the matrix

� mx puts �x �raw

	�� ��� ���

��� ��� ���

Then a submatrix of x may be speci�ed as a modi�cation of x by following x by
a range speci�cation� For example to select elements ��� and ���

� mx puts �x���
��	�

��� ���

As in the above example� when a period follows the variable� it indicates that
modi�cations are to follow� Ranges can be speci�ed in many ways as detailed
in the Language Reference� Other modi�cations such as taking a transpose are
also possible�

��	 Subcommands

Some commands can be applied to either rows or columns� They take a sub�
command �row or col� specifying row or column�wise operation� Examples of
such commands include

mx sum row �a

mx mean col �b

��
 Controlling and exploiting memory usage

Memory usage forms an integral part of most mathematical packages� One of
the powerful features of Mx is that it allows the user to explicitly control memory
usage� The user can control whether new memory should be allocated for the
result or whether existing memory� if possible� should be reused� Appropriate
use can generally lead to considerable algorithmic speed�up�� Consider the
previous example of adding two matrices

� set z �mx add �a �b�

arrayF�	

�If the idea is to update the contents of an already existing object then it is faster to
reuse the memory of this object for the new result� This results in considerable savings
of computational time since less low
level memory checking needs to be performed and is
generally recommended where possible� If the appropriate object does not yet exist then one
has to be created for the result� This involves low
level memory checking and will be slower
than reusing memory�

�� CHAPTER �� USING MX

Adding a and b leads to the result being associated with a new handle arrayF�	
which was di�erent from the handles for a and b namely arrayF�� and arrayF���
The new handle means that Mx allocated new memory for the result� Suppose
that prior to performing the addition the variable z did not contain a handle
to a matrix object� Then Mx allows the following equivalent syntax for the
previous example�

� mx add �a �b z

arrayF�	

� puts �z

arrayF�	

Here the name z for the variable that is to hold the result has been speci�ed
in post��x position� To Mx a post��x position for an argument means that it
should be treated as an output argument� �Note that since the contents of z is
set the name z and not the contents �z is speci�ed� This is consistent with the
Tcl syntax for setting the contents of a variable��

If however the variable z did contain a handle to a matrix object� then the two
examples need not be equivalent� If z contains a handle to a valid matrix object
and this object has the right size for the result then Mx will put the result into
the memory location used by this matrix object and overwrite the old contents
of the matrix� This means Mx does not allocate any new memory for the result�
but reuses existing allocated memory� This behavior will be called memory
reusage� As an example� when �b exists�

� puts �b

arrayF��

� mx add �a �b b

arrayF��

� puts �b

arrayF��

results in the memory associated with b being reused and b retaining the same
handle� On the other hand� if the object did not have the right size Mx destroys
it and allocates new memory for it� with behavior similar to the �rst example�

� puts �b

arrayF��

� mx add �a �b b

arrayF�	

� puts �b

arrayF�	

To summarize� a pre�x position for the result variable tells Mx to allocate new
memory for the result� whereas a su�x position for the result variable �out�
put variable� indicates to Mx to try to reuse the existing memory associated

���� DESTROYING OBJECTS �

with that variable if at all possible� If it cannot reuse the memory it destroys
the matrix object with the handle given by the output variable� allocates new
memory for the result� assigns a handle to this matrix object� and returns it as
the contents of the output variable� The next section explains how to destroy
objects using the Rtcl package�

��� Destroying objects

Mx does not automatically destroy the objects which the user creates as the
result of an operation� To preserve memory the user should destroy these objects
when they are no longer used� The Rtcl package provides control over memory
usage� Table ��� lists important Rtcl commands and their use�

Writing and reading objects
obfile open� obfile close� obfile read� obfile write� obfile

fields

Manipulating objects
object list� object nuke

Table ���� Rtcl commands grouped by functionality�

The object list command� lists all exiting objects� The object nuke �or
conveniently� simply nuke� command destroys objects� In the following example
suppose that matrix objects with names arrayF��� arrayF�� and arrayF�	

exist

� puts ��a �b �c�

arrayF�� arrayF�� arrayF�	

� object list

arrayF�� arrayF�� arrayF�	

� object nuke �a �c

� object list

arrayF��

� nuke �b

� mx add �b �b

object �arrayF��� does not exist

The command

nuke �object list�

�Commands in Rtcl does not have to be preceded by the rtcl package name�

�� CHAPTER �� USING MX

destroys all existing objects� As another example of typical use of the nuke

command

set x �mx add �a �b�� nuke �a �b

In this example a and b were no longer needed after the addition operation and
were destroyed�

���� Writing and reading objects

Another useful command in the Rtcl package is the obfile command� This
command provides a generic interface for writing and reading objects to disk�
Typical use entails

� opening a �le� with a handle to the �le being returned�

� writing the object to the �le with the object associated with a unique key
� the �eld name�

� closing the �le�

The fields command can be used to obtain a list of the keys of objects already
stored in the �le� Below follows an example�

� mx ones 	 � x

arrayF��

� obfile open

wrong � args� should be �obfile open filename �mode��

� set filehandle �obfile open filename w�

objfile��

� obfile write

wrong � args� should be �obfile write filehandle field object�

� obfile write �filehandle myname �x

� obfile fields �filehandle

myname

� set y �obfile read �filehandle myname�

arrayF�	

� obfile close �filehandle

Part II

Language Reference

��

Chapter �

Syntax

This Chapter gives Mx�s syntax and describes objects� di�erent types of row�
column� real and imaginary matrices and how to specify them� It also explains
how to select ranges of certain elements of these matrices�

��� Formal speci
cation

Mx uses a pre�x syntax similar to that of Unix and Tcl� Commands composed
within the grammar are strings in Tcl and all or any of the tokens� names or
symbols may be substituted for with appropriate Tcl variables or arrays� Let
#X# denote that X is optional and let j denote the or operation� Table
�� lists
the formal syntax for Mx�

��� Objects

In Mx matrix objects are named using a unique text�string handle of the form
arrayF�n� where n is a unique number� This naming is handled entirely by
Mx� The arrayF�n token is a handle to the n�th matrix object of type arrayF�
arrayF is the name for class array objects of type �oat� The handle when
returned is guaranteed to be unique for a given object�

��� Numbers

Mx accepts numeric input and can return numeric output� A matrix in Mx is a
double list� with the inner lists corresponding to rows of the matrix� Note that
the double list speci�cation is only necessary to prevent ambiguity� The Tcl�
�matrix� token is a valid Tcl list of numbers to specify a matrix� For arbitrary

��

�� CHAPTER �� SYNTAX

library command #subcommand# input #input# ��� #output# #options#

library � mx

command � set j add j puts j ���
subcommand � row j col j min j max

input � in#�mods#
output � out#�mods#
in � fmatricesg j �matrices� j matrix
out � fmatricesg j �matrices� j matrix

options � options j �option #args#

matrices � matrices j matrix
matrix � name j handle j Tcl��matrix�
name � string
handle � arrayF�n
n � positive integer

mods � � j �range� j ��range� j �range��
range � row
col j row j col
row j col � beg�step�end
beg j step j end � integer

args � args j integer j real j string

arrayF�n � refer Section
�� Objects
Tcl��matrix� � refer Section
�
 Numbers
range � refer Section
�� Ranges
�mods � refer Section
�� Modi�ers

Table
��� Formal syntax�

���� RANGES �

numbers i and r� Table
�� gives examples of valid real matrix speci�cations�

� x � real matrix
r � frg � �r� � �frg� � �ffrgg�

� x n real matrix
�ffr � r 	 ��� r ngg�

m x � real matrix
�ffr �g fr 	g ��� fr mgg� � �fr � r 	 ��� r mg�

m x n real matrix
�ffr �� ��� r �ng fr 	� ��� r 	ng ���fr m� ��� r mngg�

Table
��� Real matrices�

For arbitrary numbers i and r� Table
�
 gives examples of valid complex matrix
speci�cations�

� x � complex matrix
�r i� � �frg fig� � �ffrgg ffigg�

� x n complex matrix
�ffr � r 	 ��� r ngg ffi � i 	 ��� i ngg�

m x � complex matrix
�ffr �g fr 	g ��� fr mgg ffi �g fi 	g ��� fi mgg�
� �fr � r 	 ��� r mg fi � i 	 ��� i mg�

m x n complex matrix
�ffr �� ��� r �ng fr 	� ��� r 	ng ���fr m� ��� r mngg ffi ��

��� i �ng fi 	� ��� i 	ng ���fi m� ��� i mngg�

Table
�
� Complex matrices�

Trying to input complex matrices as frg fig or r i will not work since here
frg fig or r i does not describe a complex input matrix but a real input matrix
r and an output matrix i� In this case using �frg fig� or �r i� will work�

��� Ranges

In the range speci�cation the tokens beg� step and end are optional �with beg
defaulting to 	� step defaulting to � and end defaulting to the last row or column
depending on its speci�cation with respect to the row column separator
� If
step is omitted then only one separator colon � needs to be speci�ed� If the

�� CHAPTER �� SYNTAX

matrix is a single row or column and both step and beg or end are omitted then
no separator colon needs to be speci�ed� 	
	 denotes the left�most� top entry
in a matrix�

Here are some examples of valid range modi�cations

�a��	
��

�a��	��
��

�a��	��
���

�a��	��
���

�a��	��
����

and

set b 	� set e �

mx puts �a���b��e
����

mx add �a���b��e
���� �a���b��e
	��� a���b��e
����

Writing

�a���
��

is legal� but not very e�cient� In this case it is better to omit the range speci��
cation� Note that for reasons of e�ciency the range modi�er only allows a step
size of �� For negative step size or step size other than one use for example

mx cut �a 	�����
	�	� x

��� Modi
ers

Input and output arguments may be followed by an optional list specifying a
modi�cation of the argument� Specifying a range is one example of a modi��
cation� The modi�cation list starts with a � symbol �no whitespace� and lists
operations that should be performed sequentially on the matrix argument�s�
before applying the command �input�� or before storing the result �output��

The modi�cation list is either a �row
column� range speci�cation
�left�step�right
left�step�right� or a � symbol denoting transposition�

If the input is a list� only the last modi�cation list in the input list is used and
this is applied sequentially to all the input arguments in the input list� Complex
number arguments are examples of this situation�

Examples where modi�ers are used are�

set a �mx set ���� 	 �� �� � �� �� � �����

mx sqr �a����	
���� x

mx log �a�� x

mx cut �a 	�����
����� x

��	� MODIFIERS ��

And with complex arguments�

mx set ��� 	 ��� br

mx set ��� � ��� bi

mx add �list �br �mx set �a�����
��	���� �

�list �bi �mx set �a�����
��	���� �xr xi�

set a �mx set ���� 	 �� �� � �� �� � �����

mx copy �a b

mx set �a����	
���� b�����
��	��

mx set �a����	
���� �b�����
��	��

set a �mx set ���� 	� �� ��� ��� �� �� �����

set b �mx copy �a �br bi��

mx set �a���
�� �b���
��

mx set �a���
�� �br bi���
���

mx set �a���
�� ��br �bi���
���

mx sum row �a

mx mean col �br

� done��� now destroy the objects

nuke �a �b �br �bi �x �xr �xi

�� CHAPTER �� SYNTAX

Chapter �

Results

This Chapter explains the di�erent results that Mx returns and discusses the
di�erent methods that Mx provides for returning these results� The di�erent
types of input and output arguments are explained �rst because they tend to
dictate the type of results� The Chapter also explains how Mx handles scalars�

��� Inputs and outputs

The input argument input and the optional output argument output consist of
one or more matrix arguments� Valid matrix arguments include the handle to an
existing matrix object� For input valid matrix arguments also include a one� or
two�dimensional Tcl list of numbers or a scalar while for output valid arguments
include the name of a Tcl �variable whose contents is a handle to an existing
matrix object or can be set to the handle of a newly created matrix object�
Table ��� provides an algorithmic view of how Mx parses input arguments�

�� List
Check whether arg is a list� If so� for each element in the list continue
with step ��

�� Tcl
�matrix�
Check whether arg is a valid Tcl list of numbers� If so� then parse them�
else

� Handle
Check whether arg is an object handle� If so� then use the object� else
return an error message�

Table ���� Mx�s parsing algorithm for input arguments�

�

�� CHAPTER �� RESULTS

��� Passing the result

Mx provides two methods for passing the result�

�� It always returns the result as a text string� This is analogous to passing
the result by value� �Note that most often the result will be a handle so
that passing by value does not constitute a large overhead��

�� If an output argument is speci�ed it will also return the result �a handle to
the matrix object� linked to a Tcl variable of that name where appropriate�
This is analogous to passing the result by reference�

The next sections explain these two methods in more detail�

��� The result as a text string

Mx returns a list of matrix object�s� or a Tcl list of scalar�s�� Depending on
the command� Mx will do this by returning to the shell �as a text�string� either
the handle to the matrix object whose contents is the result� or the numeric
result directly in text format� For some commands� instead of just returning
the handle of a single matrix object Mx will return a list of handles� one for
each of a number of matrix objects� The result of a real scalar operation is the
scalar result and not an object�

If the returned result is a Tcl list of numbers �as returned by eg� the mx puts

command� then it is displayed one row after another� For example
ff	 � �g f� � �gg is a � x
 matrix with � rows and
 columns�
Row one is f	 � �g and row two is f� � �g� Refer also to the mx set command�

It is possible to format the result in a number of ways� For example� to get
for the result a single matrix element� without ff gg around it one can use the
puts with �raw option or value commands�

� mx random 	 � a

arrayF��

� foreach x �mx puts �a �raw� �puts �
��x�
��

��������

��������

� mx puts �a���� �raw

��������

� mx value �a �

��������

Note that the puts �raw command always inserts an empty line between real
and imaginary parts of a matrix even if the imaginary part is absent�

���� THE RESULT AS AN OUTPUT ARGUMENT ��

��� The result as an output argument

A handle to the result may be passed to Tcl �level variables through the optional
output argument� The parsing algorithm for the output argument is described
below and listed in Table ����

If no output argument is speci�ed then Mx will always use new memory and
create an appropriately sized matrix object for the output� If instead an output
argument is speci�ed then Mx will try to reuse memory as follows�

� If the output argument is a handle to an existing matrix object or it
is the name of a Tcl variable whose contents is a handle to an existing
matrix object and� this object is appropriately sized for the result� then
Mx overwrites those of its existing elements that pertain to the result�
�For example if the result pertains to a subrange of the output matrix
then only elements of that subrange will be overwritten� This is useful to
update a single or subset of elements in the matrix while not a�ecting the
other elements��

� If the output argument is a name or string that does not refer to an ex�
isting matrix object or this object is not appropriately sized for the result
then Mx allocates new memory for an appropriately sized object� sets its
contents and updates the Tcl �variable with the same name as the output
argument and sets its contents to the handle of the matrix object�

Table ��� provides an algorithmic view of how Mx parses output arguments�

�� List
Check whether arg is a list� If so� for each element in the list continue
with step ��

�� Handle
Check whether arg is an object handle� If so� then try to reuse the object�
else

� Variable
Check whether arg is a Tcl variable� If so� then get its contents� name it
arg and continue with step �� else

�� Name
Create a Tcl variable with the name arg and make its contents the handle
to the new object�

Table ���� Mx�s parsing algorithm for output arguments�

	 CHAPTER �� RESULTS

��� Scalars

For scalar operations Mx is similar to Tcl �s expr command as long as a stack is
not needed for parsing� The example below explains how to multiply or divide
by a scalar�

mx set ���	 � � ������ a

set b �mx mul �a 	�

set d 	��

set c �mx div �a �d�

set c �mx mul 	�� ����

Note that Mx is designed to not return an object if you input only non�object
scalars� This is due to parsing e�ciency considerations since it avoids an addi�
tional unnecessary object look�up and memory allocation� In the example

mx mul �a��	��� ��� a��	���

Mx will multiply elements � and
 �counting from 	� by � and leave the rest of
a intact� with the result again available in a�

All of the above vector operations generalize to matrix operations as well so it
is valid to do

mx ones �� 	� b

set c �mx mul �	 �b�

which will multiply the whole matrix element�wise with �	� A further example
is

set d �mx mul �b�����
��� �����

Chapter �

Messages

This Chapter describes Mx�s error and exception handling capabilities� Al�
though the exception handling is fairly rudimentary� it does allow for fast exe�
cution with reasonable verbosity� Future versions of Mx are likely to have more
advanced error and exception handling�

��� Errors

If Mx detects a syntax error it tries to return an informative message� If a script
was executed Tcl will return a Tcl command trace at the point of error�

� mx add �x

wrong � of args� should be �mx add inobjA inobjB �outobj��

� mx add x x

expected floating�point number but got �x�

��� Exceptions

Mx provides only rudimentary exception checking� Generally a �oating point
exception will return an error during an interactive session or execution of a
script� With some mathematical libraries a command such as

mx div �x � y

may simply return the IEEE arithmetic result

� mx puts �y

��Inf Inf� �Inf Inf��

and not generate an exception�

�

� CHAPTER 	� MESSAGES

Part III

Command Reference

Chapter �

Matrix manipulation

This Chapter provides a complete reference for all the commands available in
Mx for manipulating matrices such as selecting elements in a certain range of
a matrix or transposing a matrix� It explains each command� describes its
arguments and options and gives examples of use�

��� Synopsis

mx copy a #z#
mx cut a range #z#
mx join col �fa b ���g� #z#
mx join row �fa b ���g� #z#
mx join col �list a b ���� #z#
mx join row �list a b ���� #z#
mx size a #z#
mx dim a #z# #
row# #
col# #
last#
mx ones dim� dim� #z#
mx zeros dim� dim�
mx eye dim� dim�
mx random dim� dim� #z #
seed seed# #
int# #
range from to#
mx diag a #z#
mx zero a #z#
mx one a #z#
mx zerodiag a #z#
mx onediag a #z#
mx scale row a b #z#
mx scale col a b #z#
mx weigh a #z# #
exp num#
mx tr a #z#
mx unwrap a #z#

�

� CHAPTER �� MATRIX MANIPULATION

mx �ipud a #z#
mx �iplr a #z#
mx load constants
mx unload constants

��� Commands

mx copy a #z#
Copy a�

mx cut a range #z#
Cut block from a� �	�	 is the index of the �rst element�� The range
argument can take any of the following forms�

range

i�j�k�l�m�n
select every j�th row from row i to k� and every m�th column
from column l to n

i�j
select elements i to j

i�j
is empty if i � j

i�s�j
select elements i to j skipping in steps of s

i�s�j
is empty if s � 	 and i � j or if s � 	 and i � j

Example

set a �mx set ���� 	 � � � �� �� 	 � � � �� �� 	 � � � �����

mx cut �a ���
��	�� z

set z �mx cut �a�
�������

mx join col �fa b ���g� #z#

mx join row �fa b ���g� #z#

mx join col �list a b ���� #z#

mx join row �list a b ���� #z#
Join one or more matrices or vectors a column� or row�wise� The input
argument can be a Tcl list of matrices or vectors to be joined�

Example

���� COMMANDS

set a �list �a� �a	 �a��

mx join col �a z

set z �mx join row ���a� �a	���

set z �mx join row �list �a �z��

mx size a #z#
Size of matrix or vector a� The result is a row vector ffrows columnsgg�

mx dim a #z# #
row# #
col# #
last#
Size of matrix or vector a�

row
return only the row dimension

col
return only the column dimension

last
return the index of last row and or column instead of the dimension

Example

puts �mx dim �row �a z�

mx puts �z

set z �mx dim �a�

set rows �lindex �z ��� set cols �lindex �z ��

puts �mx dim �last �a z�

Returns

Tcl list
If no option is speci�ed the result is a row vector ffrowspec
colspecgg else with
row the result is frowspecg or with
col
fcolspecg�

Vector object
A vector object with the size in z if this is speci�ed�

mx ones dim� dim� #z#
Create a dim� by dim� matrix with all elements ��	�

Example

mx ones � 	 z

mx zeros dim� dim�
Create a dim� by dim� matrix with all elements 	�	�

Restrictions
Do not use this command with memory reusage � results will be
indeterminate�

Example

set z �mx zeros �	 	��

� CHAPTER �� MATRIX MANIPULATION

mx eye dim� dim�
Create the identity matrix� elements on the diagonal ��	� other elements
	�	�

Restrictions
Do not use this command with memory reusage � results will be
indeterminate�

Example

set z �mx eye 	 	�

mx random dim� dim� #z #
seed seed# #
int# #
range from to#
Create a dim� by dim� matrix whose elements are pseudorandom numbers
generated using either the drand��� random or rand library functions�
�Courtesy of Jacques de Villiers��

seed
integer seed value� for example Tcl �s �clock seconds� �default 	�

int
generate random integers ��oats by default�

from to
�from�to� for �oats and �from�to� for integers� Default values are �	���
for �oats and �	����
��
���� for integers�

Example

mx load constants

� returns a � by �� matrix of random

� real numbers between zero and pi

mx random � �� z �seed �	 �range � �mxpi

mx random � �� z �seed �clock seconds� �range � �mxpi

mx diag a #z#
Convert diagonal of matrix a to row vector or vector to diagonal of matrix�

mx zero a #z#
Make all elements in a zero�

mx one a #z#
Make all elements in a one�

mx zerodiag a #z#
Make all elements on diagonal of matrix a zero�

mx onediag a #z#
Make all elements on diagonal of matrix a one�

mx scale row a b #z#

���� COMMANDS
�

mx scale col a b #z#
Multiply each row or column in matrix a by the corresponding element in
vector b� A typical application is fast matrix�matrix multiplication if one
matrix is diagonal�

a
input vector to be scaled �m x n�

b
input scaling vector �must be ��dimensional and length n for col�
length m for row�

Example

mx scale row �a �b

set z �mx scale row �a �b�

mx scale col �a �b z

mx weigh a #z# #
exp num#
Multiplies each column i of a by the weight w�i� � inum�

exp num
Weighing exponent� �default� 	�

Example

mx weigh �A �exp �

set X �mx weigh �A �exp 	�

mx tr a #z#
Matrix or vector transpose of a�

mx unwrap a #z#
Concatenate rows of matrix a into one row vector�

mx �ipud a #z#
Flip columns of a in up�down direction�

mx �iplr a #z#
Flip rows of a in left�right direction�

�Modi�er� �
Matrix or vector transpose�

�Modi�er� �range�

range

i�j�k�l�m�n
select every j�th row from row i to k� and every m�th column
from column l to n

i�j
select elements i to j

�	 CHAPTER �� MATRIX MANIPULATION

i�j
is empty if i � j

i�s�j
select elements i to j skipping in steps of s

i�s�j
is empty if s � 	 and i � j or if s � 	 and i � j

mx load constants

mx unload constants
Loads �or unloads and frees� prede�ned constants such as PI in memory�

mxpi

���������
���
�
�
�� � pi � �mx mul � �mx atan ���

mxpi�
��
����

�
�
���
�
	� � �pi

mxpi �
���
	
��
��
��������� � pi �

mxsqrt�
�������
���

	��	��� � sqrt �

Returns
Zero or more vector objects�

Example

mx load constants

mx unload constants

mx puts �mxpi

Chapter �

Input and output

This Chapter provides a complete reference for all the commands available inMx

for input and output of matrices� including the di�erent formats and explaining
each command� describing its arguments and options and giving examples of
use�

	�� Synopsis

mx set a #z#
mx puts a #
raw# #
text# #
nonewline# #
int# #
precision int#
mx value a i j #
int# #
precision int#
mx fprintf �lename a #
format string# #
append# #
header#
mx fprintf �lename a #
pre string# #
post string# #
preline string#

#
postline string#
mx fscanf �lename #z# #
c int# #
r int#
mx fwrite �lename a #
header# #
append#
mx fread �lename #z# #
c int# #
r int#

	�� Commands

mx set a #z#
Set elements in a matrix�

a
The handle to an existing matrix object �the name of an arrayF�type
object� or a Tcl�matrix� or a scalar�

z
The handle to an existing matrix object �the name of an arrayF�type

��

�� CHAPTER
� INPUT AND OUTPUT

object� or the name of a Tcl variable whose contents is a handle to an
existing matrix object or can be set to the handle of a newly created
matrix object�

Tcl�matrix

� x � real matrix
r � frg � �r� � �frg� � �ffrgg�

� x n real matrix
�ffr � r � ��� r ngg�

m x � real matrix
�ffr �g fr �g ��� fr mgg� � �fr � r � ��� r mg�

m x n real matrix
�ffr �� ��� r �ng fr �� ��� r �ng ���fr m� ��� r mngg�

� x � complex matrix
�r i� � �frg fig� � �ffrgg ffigg�

� x n complex matrix
�ffr � r � ��� r ngg ffi � i � ��� i ngg�

m x � complex matrix
�ffr �g fr �g ��� fr mgg ffi �g fi �g ��� fi mgg� � �fr � r � ���
r mg fi � i � ��� i mg�

m x n complex matrix
�ffr �� ��� r �ng fr �� ��� r �ng ���fr m� ��� r mngg ffi �� ���
i �ng fi �� ��� i �ng ���fi m� ��� i mngg�

Trying to input complex matrices as frg fig or r i will not work since
here frg fig or r i does not describe a complex input matrix but a
real input matrix �r� and an output matrix �i�� In this case using �frg
fig� or �r i� will work�

Examples

mx set ���� 	��� ���� ���� z

set z �mx set �����	 ����

mx set ���� 	��� ���� ��� ���	 �� ��� ���� �zr zi�

set z �mx set ��	�� �	����

� This makes a copy of a

set z �mx set �a�

� This tries to reuse z

mx set �a z

� This makes an alias z of a

set z �a

mx puts a #
raw# #
text# #
nonewline# #
int# #
precision int#
Take the input and returns a Tcl list or formatted text�

raw
Output elements as raw numbers� column aligned� �Tcl list�

��� COMMANDS �

text
Output elements as a text block� �o��

nonewline
Do not print newline after every row �requires
text�� �o��

int
Convert numbers to type integer by truncating decimal part�

precision int
Use this precision for output� �$tcl precision� The
raw option must
be given as well�

Examples

mx puts �ar

set z �mx puts �ar�

puts �mx puts �list �ar �ar��

Returns
Tcl list or text�

mx value a i j #
int# #
precision int#
Returns the contents �numeric value� of element i�j in a as a text string�

int
Convert numbers to type integer by truncating decimal part�

precision int
Use this precision for output� �$tcl precision�

Examples

mx value �a 	 �

set z �mx value �a �int � ��

Returns
A text string�

mx fprintf �lename a #
format string# #
append# #
header#

mx fprintf �lename a #
pre string# #
post string# #
preline string#
#
postline string#

Write matrix in ASCII format to �lename� A header of the form
�rows�int�� �columns�int��
is written if the
header �ag is set� If �lename is stdout then output is
written to stdout� If �lename is stderr then output is written to stderr�

format string
Use this c�type format string� ��"f ��

append
Append to �le� �do not append�

�� CHAPTER
� INPUT AND OUTPUT

header
Write header� �don�t write header�

pre string
Prepend output with string�

post string
Append output with string�

preline string
Prepend each line with string�

postline string
Append each line with string�

Returns
Success � number of lines and columns written�

Restrictions
This is a fairly ine�cient writing routine and should be used mainly
for small tasks and debugging purposes�

Example

mx fprintf file� �a

set z �mx fprintf �file	� �a �format ��	��f � �header �append�

mx fscanf �lename #z# #
c int# #
r int#
Read matrix in ASCII format from �lename� If a header of the form
�rows�int�� �columns�int��
is found it is read and used unless overridden by the
c or
r �ags� If no
header is found and no �ag speci�ed then a row vector is read� If �lename
is stdout then input is read from stdout� If �lename is stderr then input
is read from stderr�

c int
Read these many columns� �number of columns from header�

r int
Read these many rows� �number of rows from header�

Restrictions
This is a fairly ine�cient read routine and should be used mainly for
small tasks and debugging purposes�

Example

mx fscanf file� z

set z �mx fscanf �file	� �r �� �c ��

mx fwrite �lename a #
header# #
append#
Write matrix in binary format to �le� A header of the form
�rows�int�� �columns�int��
is written if the
header �ag is set�

��� COMMANDS ��

header
Write header� �don�t write header�

append
Append to �le� �do not append�

Restrictions
Data is written in host byte order�

Example

mx fwrite file� �a

set z �mx fwrite file	 �a�

mx fread �lename #z# #
c int# #
r int#
Read matrix in binary format from �le� If a header of the form
�rows�int�� �columns�int��
is found it is read and used unless overridden by the
c or
r �ags� If no
header is found and no �ag speci�ed then a row vector is read�

c int
Read these many columns� �number of columns from header�

r int
Read these many rows� �number of rows from header�

Restrictions
Data is read in host byte order�

Example

mx fread file� z

set z �mx fread file	 �r �� �c ��

�� CHAPTER
� INPUT AND OUTPUT

Chapter 	

Basic mathematics

This Chapter provides a complete reference for all the commands available in
Mx for performing basic mathematics explaining each command and describing
its arguments�

�� Synopsis

mx trace a #z#
mx prod a b #z#
mx mul a b #z#
mx div a b #z#
mx rem a b #z#
mx add a b #z#
mx subtr a b #z#
mx sqr a #z#
mx abs a #z#
mx angle a #z#
mx real a #z#
mx imag a #z#
mx conj a #z#
mx c�p a #z#
mx p�c a #z#
mx pmul a b #z#
mx pdiv a b #z#
mx padd a b #z#
mx psubtr a b #z#
mx psqr a #z#
mx pabs a #z#
mx pangle a #z#
mx preal a #z#

�

�� CHAPTER �� BASIC MATHEMATICS

mx pimag a #z#
mx ceil a #z#
mx �oor a #z#
mx sign a #z#
mx cos a #z#
mx sin a #z#
mx tan a #z#
mx acos a #z#
mx asin a #z#
mx atan a #z#
mx cosh a #z#
mx sinh a #z#
mx tanh a #z#
mx sqr a #z#
mx sqrt a #z#
mx exp a #z#
mx log a #z#
mx log�� a #z#

�� Commands

mx trace a #z#
Sum of matrix elements along diagonal�

mx prod a b #z#
Inner�product matrix multiplication a%b�

Restrictions
The row dimension of a and column dimension of b must be the same�

mx mul a b #z#
Multiply each element in a with the corresponding element in b�

mx div a b #z#
Divide each element in a by the corresponding element in b�

mx rem a b #z#
The remainder after dividing each element in a by the corresponding ele�
ment in b�

mx add a b #z#
Add each element in a to the corresponding element in b�

mx subtr a b #z#
Subtract each element in b from the corresponding element in a�

���� COMMANDS ��

mx sqr a #z#
Multiply each element in a with itself�

mx abs a #z#
Absolute value of the elements of a�

mx angle a #z#
Phase angle in radians of the elements of a�

mx real a #z#
Complex real part of the elements of a�

mx imag a #z#
Complex imaginary part of the elements of a�

mx conj a #z#
Complex conjugation of the elements of a�

mx c�p a #z#
Cartesian to polar transformation of the elements of a�

mx p�c a #z#
Polar to cartesian transformation of the elements of a�

�Polar coordinates�

mx pmul a b #z#
Multiply each element in a with the corresponding element in b� given
input and output in polar coordinates�

mx pdiv a b #z#
Divide each element in a by the corresponding element in b� given input
and output in polar coordinates�

mx padd a b #z#
Add each element in a to the corresponding element in b� given input and
output in polar coordinates�

mx psubtr a b #z#
Subtract each element in b from the corresponding element in a� given
input and output in polar coordinates�

mx psqr a #z#
Multiply each element in a with itself� given input and output in polar
coordinates�

mx pabs a #z#
Return absolute value of its elements� given input and output in polar
coordinates�

�	 CHAPTER �� BASIC MATHEMATICS

mx pangle a #z#
Return phase angle in radians� given input and output in polar coordi�
nates�

mx preal a #z#
Return complex real part� given input and output in polar coordinates�

mx pimag a #z#
Return complex imaginary part� given input and output in polar coordi�
nates�

�Numeric�

mx ceil a #z#
Round elements of a towards plus in�nity�

mx �oor a #z#
Round elements of a towards minus in�nity�

mx sign a #z#
Signum function of elements of a�

�Trigonometric�

mx cos a #z#
Cosine of elements of a�

mx sin a #z#
Sine of elements of a�

mx tan a #z#
Tangent of elements of a�

mx acos a #z#
Arc cosine of elements of a�

mx asin a #z#
Arc sine of elements of a�

mx atan a #z#
Arc tangent of elements of a�

mx cosh a #z#
Hyperbolic cosine of elements of a�

mx sinh a #z#
Hyperbolic sine of elements of a�

mx tanh a #z#
Hyperbolic tangent of elements of a�

���� COMMANDS ��

�Exponential�

mx sqr a #z#
Multiply each element of a with itself�

mx sqrt a #z#
Square root of each element of a�

mx exp a #z#
The exponential of each element of a�

mx log a #z#
The natural logarithm of each element of a�

mx log�� a #z#
The base �	 logarithm of each element of a�

�� CHAPTER �� BASIC MATHEMATICS

Chapter

Decompositions and

transformations

This Chapter provides a complete reference for all the commands available inMx

for performing decompositions and transformations of the data such as Cholesky
decompositions or Fast Fourier Transforms� It explains each command� de�
scribes its arguments and options and gives examples of use�

��� Synopsis

mx chol a #z#
mx cholinv a #z#
mx cholsolve a b #z#
mx �t a #z#
mx i�t a #z#
mx norm a b #
l num#
mx normalize a #
l num#
mx qsort #
increasing# a #z#
mx qsort #
decreasing# a #z#

��� Commands

mx chol a #z#
Cholesky decomposition of a into z%z�� z is lower triangular� A typical
application is to get a matrix square root�

�

�� CHAPTER �� DECOMPOSITIONS AND TRANSFORMATIONS

a
Positive de�nite m by m input vector�

z
Optional m by m output vector�

Example

mx chol �a z

set z �mx chol �a�

mx cholinv a #z#
Inverse of a by Cholesky decomposition� A typical application is to get
the inverse of a covariance matrix�

a
Positive de�nite m by m input vector�

z
Optional m by m output vector�

Example

mx cholinv �a z

set a �mx cholinv �z�

mx cholsolve a b #z#
Solution z by Cholesky decomposition of a % z � b� Symmetry of a is not
required � only the upper triangle of a is used�

a
Positive de�nite m by m input vector�

b
m by n vector�

z
Optional m by n output vector for the solution�

Example

mx cholinv �a �b z

set z �mx cholinv �a �b�

mx �t a #z#

mx i�t a #z#
Real or complex Fast Fourier Transform �row�wise� or inverse Fast Fourier
Transform �row�wise�� The input vector a is padded with zeros up to
the nearest num�power�of�two length� The inverse FFT is calculated by
doing conj��t�conj�a��� N� Both real and complex FFTs are supported�
the complex case being about �	 percent slower than the real case�

���� COMMANDS ��

Returns
A two element list of vector objects �real and imaginary components��

Example

mx fft ���ar �ai�� �zr zi�

set a �list �ar �ai�

set z �mx fft �a�

set zr �lindex �z ��� set zi �lindex �z ��

mx ifft ���zr �zi�� �ar ai�

set a �mx ifft �z�� nuke �z

set ar �lindex �a ��� set ai �lindex �a ��

mx norm a b #
l num#
l�norm of one or di�erence of two row vector sequences� Calculates the
l�num norm for each column vector of a �if only a is speci�ed this is jjajj�
or if both a and b are speci�ed this is jja�bjj�� Averages all the resulting
norms over the sequence and returns the resulting number� By default the
l�� �Euclidean� norm is calculated� Valid l�norms are l��� l��� l�inf and
l�mininf� and l equal to any positive non�zero real� If b is not speci�ed
and the sequence length is � the command returns the conventional l�norm
of the input vector�

l num
use l�num norm �default �� the Euclidean norm�

Returns
The norm as a single �oat number�

Example

mx norm �l inf �a �b

set z �mx norm �l 	 �a �b�

set z �mx norm �l 	 �a�

mx normalize a #
l num#
Normalize each row vector of the input vector a by given l�num norm�
By default the l�� �Euclidean� norm is calculated� Valid l�norms are l���
l��� l�inf and l�mininf� and l equal to any positive non�zero real�

l num
use l�num norm �default �� the Euclidean norm�

Example

mx normalize �a z

set z �mx normalize �a z �l inf�

mx qsort #
increasing# a #z#

mx qsort #
decreasing# a #z#
Sort elements in each row of a using the quick sort algorithm�

�� CHAPTER �� DECOMPOSITIONS AND TRANSFORMATIONS

increasing
sort in increasing order �on�

decreasing
sort in decreasing order �o��

Returns
A vector object of the sorted input�

Example

mx qsort �a z

set z �mx qsort �increasing �a�

Chapter ��

Elementary statistics

This Chapter provides a complete reference for all the commands available in
Mx for performing elementary statistical operations such as getting the mean or
variance of a sample� It explains each command� describes its arguments and
options and gives examples of use�

���� Synopsis

mx �nd max a #z#
mx �nd min a #z#
mx cov a #z#
mx corr a #z#
mx mean row a #z#
mx mean col a #z#
mx min row a #z#
mx min col a #z#
mx max row a #z#
mx max col a #z#
mx sum row a #z#
mx sum col a #z#
mx std row a #z#
mx std col a #z#
mx zeromean a #z#

���� Commands

mx �nd max a #z#

�

�� CHAPTER ��� ELEMENTARY STATISTICS

mx �nd min a #z#
Find index and value of largest or smallest element�

Returns

Tcl list
Three number Tcl string of ffrowindex colindex valuegg�
A string of elements describing the index and particular value�

Vector object
A vector object with index and value in z if this is speci�ed�

Example

mx min �a z

mx puts �z

set z �mx find min a�

set index �lindex �z ��

set value�index� �lindex �z ��

mx cov a #z#
Covariance matrix of a �row major order�� The result is
a�%a n � mean�a��%mean�a�� where n is the number of rows in a�

Example

mx cov �a z

set z �mx cov �a�

mx corr a #z#
Correlation matrix �energy� of a �row major order�� The result is a�%a n�
where n is the number of rows in a�

Example

mx corr �a z

set z �mx corr �a�

mx mean row a #z#

mx mean col a #z#
Mean of elements in each row or column of a�

mx min row a #z#

mx min col a #z#
Index of smallest element in each row or column of a�

mx max row a #z#

mx max col a #z#
Index of largest element in each row or column of a�

����� COMMANDS ��

mx sum row a #z#

mx sum col a #z#
Sum of the elements in each row or column of a�

mx std row a #z#

mx std col a #z#
Sample standard deviation of elements in each row or column of a�

mx zeromean a #z#
Subtract the mean from each column of a�

�	 CHAPTER ��� ELEMENTARY STATISTICS

Part IV

Appendix

��

Appendix A

Availability

Mx acts as a package extension of the Tcl script language ���� Currently Mx is
bundled with the Center for Spoken Language Understanding shell ���� Mx is
available as part of the CSLU toolkit free of charge for academic and research
purposes at http���www�cse�ogi�edu�CSLU�toolkit�� Before running Mx it
is necessary to have the toolkit installed on your system�

�

�� APPENDIX A� AVAILABILITY

Appendix B

Examples

A hands�on approach is often the best way of learning how to use a new tool�
This Chapter provides a number of simple examples detailing how some of Mx�s
features and capabilities may be put to use�

Mx is used extensively at the Center for Spoken Language Understanding and
in the Anthropic Speech Processing Group at the Oregon Graduate Institute of
Science and Technology� It has been used for projects such as speech recogni�
tion ��� and speaker veri�cation �
� ��� Mx provides a rich variety of uses� The
following examples demonstrates just a few of these uses�

B�� One line examples

Some simple real matrix examples of using Mx are

� mx set ������� 	����� a

arrayF��

� set x �mx sqrt �a���
���

arrayF��

� mx puts �x

�������	���

� mx puts �mx add �a�� �a�� x�

���	��� ������

� nuke �a �x

Complex matrices are supported as a doublet of matrices� Below are examples�

set a �mx set ������ 	 	�� ��� �� �����

set b �mx set ��	 � �� �� � ��� �br bi��

set x �mx prod �a �b �xr xi��

set x �mx prod �a �list �br �bi� �xr xi��

��

�� APPENDIX B� EXAMPLES

puts �mx puts �x�

puts �mx puts �list �xi �xr��

B�� Associativity

The marriage of Mx and Tcl allows for associative matrices� For example for
speaker identi�cation on the TIMIT corpus� one may built up a confusion matrix
using

mx set �value conf��region
�caller����i
�j�

mx puts �conf�dr	
cjf�����
	�

mx puts �conf�dr�
dma�����
��

B�� Data manipulation

This example demonstrates Mx�s join command where the application is a
speech recognition system using a neural�net to estimate aposteriori probabili�
ties� The idea is to �collapse� the output nn from a neural�net� that is combine
as their average certain columns in the �probability� matrix� First it is necessary
to generate a makeshift neural�net output for this example

mx prod �mx ones � � t� ���� � 	 � � � � ���� nn� nuke �t

mx puts �nn �raw

This gives the index of the last column in nn

set n �mx dim �col �last �nn�

Here is the collapse speci�cation

set collapse �nc � 	 c � � nc � � c � �n�

This does the actual collapse of columns

set lst ��

foreach �type b e� �collapse �

switch �type �

c �lappend lst �mx mean row �nn���
�b��e���

nc �lappend lst �mx copy �nn���
�b��e���

�

�

set nn
new �mx join col �lst�� nuke �lst

Finally this outputs the result

mx puts �nn
new �raw

B��� ARITHMETIC HARMONIC SPHERICITY MEASURE �

B�� Arithmetic Harmonic Sphericity Measure

Consider implementing the arithmetic harmonic sphericity measure �AHS� ���

log�tr�cov�Y � � cov�X���� � tr�cov�X� � cov�Y ������ � � log�d��

Here is a procedure to calculate the AHS measure

proc ahs �X Y� �

mx cov �X Sx

mx cov �Y Sy

mx cholinv �Sx Si

set tx �mx value �mx trace �mx prod �Sy �Si p� t� ��

mx cholinv �Sy Si

set ty �mx value �mx trace �mx prod �Sx �Si p� t� ��

nuke �Sx �Sy �Si �p �t

expr log��tx �ty��	 log��mx dim �col �X��

�

An example call is

� mx random � 	 x

� mx random � 	 y

� ahs �x �y

	������

Procedure ahs has a fair number of temporary variables� Now suppose that it
is known that the procedure will be called many times� Then it may be advan�
tageous to allocate memory space for the variables only once� that is enforce
an inde�nite existence with only their contents left temporary� This enforces
persistency of the temporary variables� Note of that it is the existence and not
necessarily the contents of the temporary variables that is persistent� Here is
an implementation exploiting this idea�

proc ahs	 �X Y� �

global Sx Sy Si p t

mx cov �X Sx

mx cov �Y Sy

mx cholinv �Sx Si

set tx �mx value �mx trace �mx prod �Sy �Si p� t� ��

mx cholinv �Sy Si

set ty �mx value �mx trace �mx prod �Sx �Si p� t� ��

expr log��tx �ty��	 log��mx dim �col �X��

�

When called many times� procedure ahs	 will be considerably faster than pro�
cedure ahs due to its smaller memory management overhead�

�� APPENDIX B� EXAMPLES

Appendix C

Algorithms

This Appendix contains a concise listing of all the commands available in Mx�
For each command it speci�es input and output types for the arguments� It
also gives an example of Mx code for the command as well as pseudo�code�

abs

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�abs�a��

acos

Args	
in�out�� real

Code	
pseudo�� u�abs�a����� z�acos�a�%u&ones�size�a���%���u���

add

Args	
in�out�� real mixed complex

Code	
pseudo�� z�a&b�

angle

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�angle�a��

asin

Args	
in�out�� real

Code	
pseudo�� u�abs�a����� z�asin�a�%u��

��

	 APPENDIX C� ALGORITHMS

atan

Args	
in�out�� real

Code	
pseudo�� z�atan�a��

c�p

Args	
in�out�� real mixed

Code	
pseudo�� z�abs�a�&im%angle�a��

ceil

Args	
in�out�� real mixed

Code	
pseudo�� z�ceil�a��

chol

Args	
in�out�� real

Code	
mx� � mx chol $d z

Code	
pseudo�� z�chol�d���

cholinv

Args	
in�out�� real

Code	
mx� � mx cholinv $d z

Code	
pseudo�� u�chol�d�� z�inv�u�%inv�u���

cholsolve

Args	
in�out�� real

Code	
mx� � mx cholsolve $d $c z

Code	
pseudo�� z�inv�d�%c�

conj

Args	
in�out�� real mixed

Code	
pseudo�� z�conj�a��

copy

Args	
in�out�� real mixed

Code	
pseudo�� z�a�

corr

Args	
in�out�� real

Code	
mx� � mx corr $a z

Code	
pseudo�� �sz sz���size�a�� z�a�%a sz�

�

cos

Args	
in�out�� real

Code	
pseudo�� z�cos�a��

cosh

Args	
in�out�� real

Code	
pseudo�� z�cosh�a��

cov

Args	
in�out�� real

Code	
mx� � mx cov $a z

Code	
pseudo�� z�cov�a��

cut

Args	
in�out�� real

Code	
mx� � mx cut $a ������	�� z

Code	
pseudo�� z�a���������
��

cut

Args	
in�out�� real

Code	
mx� � mx cut $a 	�� z

Code	
pseudo�� z�a������

cut

Args	
in�out�� real

Code	
mx� � mx cut $a �������	 z

Code	
pseudo�� z�a���
�������

cut

Args	
in�out�� real

Code	
mx� � mx cut $a 	�� z

Code	
pseudo�� z�a������

diag

Args	
in�out�� real mixed

Code	
pseudo�� z�conj�diag�a����

dim

Args	
in�out�� real

� APPENDIX C� ALGORITHMS

Code	
mx� � mx dim $a z

Code	
pseudo�� z�size�a��

dim

Args	
in�out�� real

Code	
mx� � mx dim �row $a z

Code	
pseudo�� �z u��size�a��

dim

Args	
in�out�� real

Code	
mx� � mx dim �col $a z

Code	
pseudo�� �u z��size�a��

dim

Args	
in�out�� real

Code	
mx� � mx dim �row �last $a z

Code	
pseudo�� u�size�a���� ���z�u������

dim

Args	
in�out�� real

Code	
mx� � mx dim �col �last $a z

Code	
pseudo�� u�size�a���� ���z�u������

div

Args	
in�out�� real mixed complex

Code	
pseudo�� z�a� b�

exp

Args	
in�out�� real

Code	
pseudo�� z�exp�a��

eye

Args	
in�out�� real

Code	
mx� � mx eye �
 z

Code	
pseudo�� z�eye���
��

eye

Args	
in�out�� real

Code	
mx� � mx eye � � z

Code	
pseudo�� z�eye������

eye

Args	
in�out�� real

Code	
mx� � mx eye
 � z

Code	
pseudo�� z�eye�
����

�t

Args	
in�out�� real complex

Code	
mx� � set z �mx �t �$a $a��

Code	
pseudo�� �sz sz���size�a�� if sz%sz�'�sz� u�conj��a&im%a����
z�conj��t�u���� else z�a&im%a� end

�t

Args	
in�out�� real complex

Code	
mx� � set z �mx �t $a�

Code	
pseudo�� �sz sz���size�a�� if sz%sz�'�sz� u�a��
z�conj��t�u���� else z�a� end

�nd

Args	
in�out�� real

Code	
mx� � mx �nd min $a u� mx set $u���� z� nuke $u

Code	
pseudo�� z�min�min�a���

�nd

Args	
in�out�� real

Code	
mx� � mx �nd max $a u� mx set $u���� z� nuke $u

Code	
pseudo�� z�max�max�a���

�iplr

Args	
in�out�� real mixed

Code	
pseudo�� z��iplr�a��

�ipud

Args	
in�out�� real mixed

Code	
pseudo�� z��ipud�a��

�oor

Args	
in�out�� real mixed

� APPENDIX C� ALGORITHMS

Code	
pseudo�� z��oor�a��

fprintf

Args	
in�out�� real

Code	
mx� � mx fprintf $�lename $a

Code	
pseudo�� matrix row vector �� line of ASCII numbers in �le�

fread

Args	
in�out�� real

Code	
mx� � mx fread $�lename z

Code	
pseudo�� row vector �� binary �oat numbers in �le�

fscanf

Args	
in�out�� real

Code	
mx� � mx fscanf $�lename z

Code	
pseudo�� row vector �� ASCII numbers in �le�

fwrite

Args	
in�out�� real

Code	
mx� � mx fwrite $�lename $a

Code	
pseudo�� matrix �� binary �oat numbers in �le�

i�t

Args	
in�out�� real complex

Code	
mx� � set z �mx i�t �$a $a��

Code	
pseudo�� �sz sz���size�a�� if sz%sz�'�sz� u�conj��a&im%a����
z�conj�i�t�u���� else z�a&im%a� end

i�t

Args	
in�out�� real complex

Code	
mx� � set z �mx i�t $a�

Code	
pseudo�� �sz sz���size�a�� if sz%sz�'�sz� u�a��
z�conj�i�t�u���� else z�a� end

imag

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�imag�a��

join

�

Args	
in�out�� real

Code	
mx� � mx join row �list $a $a $a� z

Code	
pseudo�� z��a�a�a��

join

Args	
in�out�� real

Code	
mx� � mx join col �list $a $a $a� z

Code	
pseudo�� z��a a a��

load

Args	
in�out�� real

Code	
mx� � mx load constants

Code	
pseudo�� see documentation

log

Args	
in�out�� real

Code	
pseudo�� z�log�a��

log��

Args	
in�out�� real

Code	
pseudo�� z�log�	�a��

max col

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz�� �u�z��max�a��z�z��� else z�a%	� end

max row

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� �u�z��max�conj�a����z�z���� else z�a%	� end

mean col

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz�� z�mean�a�� else z�a� end

mean row

Args	
in�out�� real

� APPENDIX C� ALGORITHMS

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�mean�conj�a����� else z�a� end

min col

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz�� �u�z��min�a��z�z��� else z�a%	� end

min row

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� �u�z��min�conj�a����z�z���� else z�a%	� end

mul

Args	
in�out�� real mixed complex

Code	
pseudo�� z�a�%b�

norm

Args	
in�out�� real

Code	
mx� � set z �mx norm $a �l ��

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�mean�sum�abs�a�����
else z�mean�abs�a��� end�

norm

Args	
in�out�� real

Code	
mx� � set z �mx norm $a �l ��

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�mean�sum�abs�a���(���(����
else z�mean�abs�a��� end�

norm

Args	
in�out�� real

Code	
mx� � set z �mx norm $a �l ��

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�mean�sum�abs�a���(���(�����
else z�mean�abs�a��� end�

norm

Args	
in�out�� real

Code	
mx� � set z �mx norm $a �l inf�

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�mean�max�abs�a�����
else z�mean�abs�a��� end�

norm

Args	
in�out�� real

Code	
mx� � set z �mx norm $a �l mininf�

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�mean�min�abs�a�����
else z�mean�abs�a��� end�

normalize

Args	
in�out�� real

Code	
mx� � mx normalize $a z �l �

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�diag�sum�abs�a����(�����%a�
else z�sign�a��%a� a� end�

normalize

Args	
in�out�� real

Code	
mx� � mx normalize $a z �l �

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�diag��sum�abs�a���(���(����(�����%a�
else z�sign�a��%a� a� end�

normalize

Args	
in�out�� real

Code	
mx� � mx normalize $a z �l �

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�diag��sum�abs�a���(���(�����(�����%a�
else z�sign�a��%a� a� end�

normalize

Args	
in�out�� real

Code	
mx� � mx normalize $a z �l inf

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�diag�max�abs�a����(�����%a�
else z�sign�a��%a� a� end�

normalize

Args	
in�out�� real

� APPENDIX C� ALGORITHMS

Code	
mx� � mx normalize $a z �l mininf

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�diag�min�abs�a����(�����%a�
else z�sign�a��%a� a� end�

one

Args	
in�out�� real mixed

Code	
pseudo�� z�ones�size�a���
if max�max�abs�imag�a����'�	� z�z&im%z� end

onediag

Args	
in�out�� real

Code	
pseudo�� z�a�sz�min�size�z���for i���sz�z�i�i����end�

ones

Args	
in�out�� real

Code	
mx� � mx ones �
 z

Code	
pseudo�� z�ones���
��

ones

Args	
in�out�� real

Code	
mx� � mx ones � � z

Code	
pseudo�� z�ones������

ones

Args	
in�out�� real

Code	
mx� � mx ones
 � z

Code	
pseudo�� z�ones�
����

p�c

Args	
in�out�� real mixed

Code	
pseudo�� z�$ar�%exp�im%$ai��

pabs

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�real�a��

padd

Args	
in�out�� mixed complex

�

Code	
pseudo�� u�$ar�%exp�im%$ai��
v�$br�%exp�im%$bi�� z�abs�u&v�&im%angle�u&v��

pangle

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�imag�a��

pdiv

Args	
in�out�� mixed complex

Code	
pseudo�� z�$ar� $br&im%�$ai�$bi��

pimag

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�imag�$ar�%exp�im%$ai���

pmul

Args	
in�out�� mixed complex

Code	
pseudo�� z�$ar�%$br&im%�$ai&$bi��

preal

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�real�$ar�%exp�im%$ai���

prod

Args	
in�out�� real mixed complex

Code	
pseudo�� z�a%b�

Restrictions	� prod size

psqr

Args	
in�out�� real mixed

Code	
pseudo�� z�$ar�%$ar&im%�$ai&$ai��

psubtr

Args	
in�out�� mixed complex

Code	
pseudo�� u�$ar�%exp�im%$ai��
v�$br�%exp�im%$bi�� z�abs�u�v�&im%angle�u�v��

�	 APPENDIX C� ALGORITHMS

puts

Args	
in�out�� real complex

Code	
mx� � mx puts $a

Code	
pseudo�� a

qsort

Args	
in�out�� real

Code	
mx� � mx qsort $a �increasing z

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�sort�a���� else z�a� end�

qsort

Args	
in�out�� real

Code	
mx� � mx qsort $a �decreasing z

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z��sort��a���� else z�a� end�

random

Args	
in�out�� real

Code	
mx� � see documentation

Code	
pseudo�� see documentation

real

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�real�a��

rem

Args	
in�out�� real mixed complex

Code	
pseudo�� z�a��x�a� b��%b�

scale

Args	
in�out�� real

Code	
mx� � mx scale row $a $c z

Code	
pseudo�� z�diag�c�%a�

scale

Args	
in�out�� real

Code	
mx� � mx scale col $a $b z

��

Code	
pseudo�� z�a%diag�b��

set

Args	
in�out�� real

Code	
mx� � mx set $a z

Code	
pseudo�� z�a�

set

Args	
in�out�� real

Code	
mx� � mx set �ff�
g f� �gg� z

Code	
pseudo�� z���
�� ���

set

Args	
in�out�� real

Code	
mx� � mx set �f�
g� z

Code	
pseudo�� z����
��

set

Args	
in�out�� real complex

Code	
mx� � set z �mx set ��
��

Code	
pseudo�� z��&im%
�

set

Args	
in�out�� real complex

Code	
mx� � set z �mx set �ff�
g f� �gg ff�� �
g f�
gg���
puts �$z �mx puts $z �raw��

Code	
pseudo�� z���
�� ��&im%��� �
��
��

sign

Args	
in�out�� real mixed

Code	
pseudo�� z�sign�a��

sin

Args	
in�out�� real

Code	
pseudo�� z�sin�a��

sinh

Args	
in�out�� real

Code	
pseudo�� z�sinh�a��

�� APPENDIX C� ALGORITHMS

size

Args	
in� � real complex

Args	
out� � real

Code	
pseudo�� z�size�a��

sqr

Args	
in�out�� real mixed

Code	
pseudo�� z�a�%a�

sqrt

Args	
in�out�� real

Code	
pseudo�� z�sqrt�a��

std col

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz�� z�std�a�� else z�	%a�end

std row

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�conj�std�conj�a������ else z�	%a�end

subtr

Args	
in�out�� real mixed complex

Code	
pseudo�� z�a�b�

sum col

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz�� z�sum�a�� else z�a� end

sum row

Args	
in�out�� real

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz� z�sum�conj�a����� else z�a� end

tan

Args	
in�out�� real

Code	
pseudo�� z�tan�a��

�

tanh

Args	
in�out�� real

Code	
pseudo�� z�tanh�a��

tr

Args	
in�out�� real mixed

Code	
pseudo�� z�a��

trace

Args	
in�out�� real mixed

Code	
pseudo�� �sz sz���size�a��
if sz'�� � sz�'��� z�trace�a�� else z�a���� end

unload

Args	
in�out�� real

Code	
mx� � mx unload

Code	
pseudo�� see documentation

unwrap

Args	
in�out�� real mixed

Code	
pseudo�� u�a�� z�u�����

value

Args	
in�out�� real

Code	
mx� � mx value $a i j

Code	
pseudo�� a�i�j�

weigh

Args	
in�out�� real

Code	
mx� � mx weigh $a �exp � z

Code	
pseudo�� �sz� sz��size�a�� z�a%diag����sz��(�����

zero

Args	
in�out�� real mixed

Code	
pseudo�� z�zeros�size�a���

zerodiag

Args	
in�out�� real

Code	
pseudo�� z�a�sz�min�size�z���for i���sz�z�i�i��	�end�

�� APPENDIX C� ALGORITHMS

zeromean

Args	
in�out�� real mixed

Code	
pseudo�� �sz sz���size�a��
if sz%sz�'�sz�� z�a�ones�sz���%mean�a�� else z�a%	� end�

zeros

Args	
in�out�� real

Code	
mx� � mx zeros �
 z

Code	
pseudo�� z�zeros���
��

zeros

Args	
in�out�� real

Code	
mx� � mx zeros � � z

Code	
pseudo�� z�zeros������

zeros

Args	
in�out�� real

Code	
mx� � mx zeros
 � z

Code	
pseudo�� z�zeros�
����

Bibliography

��� J� K� Ousterhout� Tcl and the Tk Toolkit� Addison�Wesley� �����

��� S� van Vuuren and H� Hermansky� �Data�driven design of RASTA�like �l�
ters�� in Proc� EUROSPEECH�
�� �Rodos� Greece�� pp� �	������ ���
�

�
� S� van Vuuren and H� Hermansky� �Oregon Graduate Institute NIST speaker
recognition evaluation�� in Proceedings of the NIST Speaker Recognition
Workshop� �Baltimore�� ���
�

��� S� van Vuuren and H� Hermansky� �)MESS� A modular� e�cient speaker
veri�cation system�� in Proc� of Workshop on Speaker Recognition and its
Commercial and Forensic Applications
RLA�C�� �Avignon� France�� April�
����� To appear�

��� J� Schalkwyk� J� de Villiers� S� van Vuuren� and P� Vermeulen� �CSLUsh�
an extendible research environment�� in Proc� EUROSPEECH�
�� �Rodos�
Greece�� pp� ����
	�� ���
�

��� J� Schalkwyk and M� Fanty� �The CSLUsh toolkit for automatic speech
recognition�� Tech� Rep� CSLU�	���	�� Center for Spoken Language Under�
standing� Oregon Graduate Institute� Portland� OR� �����

�
� J� Schalkwyk and M� Fanty� �The CSLU�c toolkit for automatic speech recog�
nition�� Tech� Rep� CSLU�	���	�� Center for Spoken Language Understand�
ing� Oregon Graduate Institute� Portland� OR� �����

��� F� Bimbot and L� Mathan� �Text�free speaker recognition using an
arithmetic�harmonic sphericity measure�� in Eurospeech� �Berlin�� pp� ����
�
�� ���
�

��

