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Abstract

Optimistically replicated systems provide
highly available data even when communication
between data replicas is unreliable or unavailable.
The high availability comes at the cost of allowing
inconsistent accesses, since users can read and
write old copies of data. Session guarantees [15]
have been used to reduce such inconsistencies.
They preserve most of the availability benefits of
optimistic systems. We generalize session guaran-
tees to apply to persistent as well as distributed
entities. We implement these guarantees, called
view consistency, on Ficus an optimistically
replicated file system. Our implementation
enforces consistency on a per-file basis and does
not require changes to individual applications.
View consistency is enforced by clients accessing
the data and thus requires minimal changes to
the replicated data servers. We show that view
consistency allows access to available and high
performing data replicas and can be implemented
efficiently. Experimental results show that the
consistency overhead for clients ranges from 1%
to 8% of application runtime for the benchmarks
studied in the prototype system. The benefits of

the system are an improvement in access times

due to better replica selection and improved
consistency guarantees over a purely optimistic

system.

1 Introduction

Many distributed applications require highly
available data, or data that can be accessed at
any time. Data is often replicated to increase
availability. However this introduces the data con-
sistency problem. Data accesses are inconsistent
when they reflect the intermediate states of data
between accesses. For example, if replica A has
been updated and the update has not reached rep-
lica B, then accesses to replica B may be incon-
sistent. Replicated systems aim to provide highly
available data while preserving data consistency.
These goals are conflicting because consistency
may only allow access to certain replicas, while
availability improves when any replica can be ac-

cessed.

Optimistically replicated systems provide high
availability even in weakly connected environ-
ments by allowing accesses to any file replica. This
continuous access, even during network partitions,
is critical for many applications such as reserva-

tion systems, appointment calendars, design doc-



uments, meeting notes, and in general, mobile file
accesses [7, 4, 16]. Inconsistencies due to updates
being made to old copies (conflicting updates) are
eventually' detected and resolved. Unfortunately,
the lack of consistency guarantees during accesses
can be very confusing to users.

Session guarantees [15] have been used to re-
duce inconsistencies observed in optimistic sys-
tems. They maintain most of the availability ben-
efits of such systems. Session guarantees preserve
read and write dependencies for processes. An
application session is presented with a view of the
database that is consistent with its own actions,
even if it reads and writes from various, poten-
tially inconsistent servers.

In this paper, we propose the view-consistency
model that enhances session guarantees to apply
to persistent as well as distributed sets of clients.
This model provides “session guarantees” for a
larger set of applications. View consistency pro-
vides conservative guarantees to each single client
or each group of closely-related® clients, while
eventual consistency is maintained across “dis-

” clients.

tan

The view-consistency model attempts to cap-
ture a real-world working environment in which a
single client or closely cooperating clients would
like to access mutually consistent data all the
time, but distant clients wish to synchronize with
each other occasionally. Consider two groups of
researchers working in two different countries on
the same system. Each group is building new func-
tionality for the system. Suppose the system code

is optimistically replicated in the two countries.

!Detection and resolution of conflicts occurs as a sepa-
rate process, and is often unrelated to the time at which
files are accessed.

*We define the notion of “closely-related” in the next
section.

Within each group, view consistency maintains
consistent accesses. However, the two groups are
not synchronized with each other. The optimistic
system will eventually make the two groups con-
sistent. The advantages of the view-consistency
model are two-fold: closely cooperating clients ob-
serve mutually consistent data, and distant clients
do not pay the instantaneous cost of maintaining
consistency (during accesses). Therefore view con-
sistency enables useful collaboration in many large

scale environments.

Distributed applications not only require avail-
ability of data but also fast access to data. Provid-
ing fast accessibility and consistency can be con-
flicting goals. For example, a highly performing
data replica may not have consistent data. In this
paper, we show that replica selection (providing
data from available and high performing replicas)
can be performed while maintaining view consis-
tency, and the overhead of providing view consis-

tency during replica selection is small.

The contributions of the paper are the follow-
ing: first, we introduce the concept of a general-
ized client, called an entity, and provide session
guarantees for an entity. Entities can be persis-
tent as well as distributed. Defining a consistency
model for entities rather than for sessions allows
us to provide guarantees to a larger set of applica-
tions. Second, we describe the interaction of view
consistency with replica selection and show that
system performance can be improved by accessing
high performing replicas while maintaining consis-
tency. Our implementation approach has two ad-
vantages: first, we implement view consistency as
a file system, and thus do not require any changes
to user-level applications. Second, as with session
guarantees, consistency is enforced by clients and

thus minimal changes have to be made to data



servers.

Section 2 describes our consistency model. Sec-
tion 3 explains the motivations for using view con-
sistency. The view-consistency algorithm and the
challenges in implementing it are discussed in Sec-
tion 4. Section 5 presents a prototype implemen-
tation of view consistency on the Ficus optimisti-
cally replicated file system. The overhead of pro-
viding consistency and the performance benefits
of replica selection are studied in our benchmarks
in Section 6. Section 7 discusses related work and
Section 8 draws conclusions and suggests future

work.

2 View-Consistency Model

In this section, we define session guarantees and
then view consistency. View-consistency guaran-
tees are defined with respect to clients accessing
the data. We explain the notion of “closely” coop-
erating clients by generalizing the definition of a

client. Such a generalized client is called an entity.

Definition 1 Session guarantees allow o client
to access versions of data that are the same as
or newer than (for brevity, we will call this later

than) what the client had previously accessed.

This definition of session guarantees is a combi-
nation of the read your writes, monotonic reads,
writes follow reads and monotonic writes guaran-
tees as described by Terry, et al. [15]. View con-
sistency can be defined for each individual session
guarantee, but we will ignore these distinctions in
this paper for simplicity.

Session guarantees are provided for single
clients. View consistency can be provided to
groups of clients. A closely cooperating groups of
clients is called an entity. Each individual within

the entity is called a component. Examples of en-

tities are a single process, a group of processes, a
user working on a laptop, all the users on a ma-

chine, a group of machines, etc.

Definition 2 View consistency allows an entity
to only access later versions of data than what the
entity had previously accessed. A data version is
later if it is the same as or newer than the latest
version accessed by any of the components of the

entity.

An entity is therefore a generalized client that
may be persistent or distributed. Its components
are cooperating closely since view consistency en-

sures that they access mutually consistent data.

Entity Classification

Entities can be of different types. Here, we de-
scribe these types and then present a representa-
tive set of entities. Long-lived entities that sur-
vive machine crashes are persistent entities, while
short-lived entities are transient entities. The con-
sistency information for a persistent entity must
be kept on secondary storage. A compler en-
tity can access replicas of data via multiple in-
dependent processes, whereas simple entities have
a single execution thread. Complex entities must
coordinate their accesses to see later versions of
data. A complex entity can exist on a single ma-
chine (centralized) or on multiple machines (dis-
tributed). A distributed entity can be denied ac-
cess to data either because later versions of data
are not available, or because its sub-entities can-
not be coordinated at a particular time. Mecha-
nisms such as primary coordinator, token passing,
or voting are needed to synchronize the accesses of
a distributed entity. Note that these mechanisms
are applied at the entity and not at the replicated

data servers.



Common entities include a single process, a
group of processes, a login session, a single ma-
chine, a closely related group of machines, a user
on a single machine, or a group of machines, etc.
Note that a wuser by itself is not a useful entity
since a user’s processes may originate from a large
number of machines and be hard to locate or co-

ordinate.

3 Why View Consistency?

The benefits of view consistency are illustrated
with examples below. The underlying replicated
service is assumed to allow accesses to any avail-

able data replica.

1. A wuser is accessing a web page that is repli-
cated at several sites. If the current site be-
comes heavily loaded and disallows accesses,
view consistency will ensure that the user
does not access older versions of the web

pages from another site.

2. A user edits a file and then checks in the new
version of the file into a replicated version-
control system. The replica that has the lat-
est changes becomes inaccessible before these
changes propagate to other replicas. If the
user can access and edit the file from another
replica, this action will necessarily create a
conflicting update. View consistency will dis-
allow accesses to any other file replica, since
these replicas are older than the replica on

which the user was working.

3. A user accesses a replicated web page and
caches (or stashes [8]) the page. Later, this
page is evicted to make space for other more
important pages. View consistency ensures
that remote accesses of the original web page

yield later versions of data. Moreover, later

stashes of the web page (when it is accessed
and cached again) will also be data versions
that are later than what the user has seen

previously.

4. Suppose users A and B at one office are shar-
ing files with users C and D at another ge-
ographically distant office. Each user has a
replica of the files. A and B (and similarly
C and D) are actively cooperating with each
other. We define A and B to be an entity,
and C and D to be another entity. View con-
sistency will ensure that both A and B (and
likewise C and D) access data that is later

than each has accessed.

Discussion

View consistency is enforced by each client (or en-
tity) accessing the data and not by the servers.
This client consistency model has several implica-
tions. First, servers do not have to be changed
to implement view consistency. Second, the con-
sistency model implemented by the servers does
not affect view consistency. The only requirement
(as we will see later) is that the client should
be able to compare file versions. Third, differ-
ent clients can observe different guarantees. For
example, one client may be view consistent while
another may ignore view consistency while oper-
ating on the same data. Later, the two can be
combined and observe view consistency as a single
entity. Fourth, view consistency does not attempt
to coordinate the accesses of different clients, and
thus different clients can make conflicting updates.
This lack of inter-client coordination, however, al-
lows high data availability at each client.

The choice of entities is very important for view
consistency. For a given set of files, this choice

strongly depends on the file usage pattern. For



some files, each user of the file may choose to re-
main a separate entity. For shared files, a group
of users or a group of machines may be chosen as
the appropriate entity. Effectively chosen entities
reduce concurrent accesses, without significantly
affecting availability or the performance of the sys-
tem, as compared to a completely optimistic sys-
tem. Currently this choice is made explicitly by
the user in our system. More experience is needed
with our system regarding the appropriate choice
of entities, and an automated method for choosing

such entities.

4 Algorithm

The view-consistency criterion allows an entity
to access data that is later than what the entity
has seen previously. Entities can store the ver-
sion of data that they last read or updated. This
version can then be used to ensure that the next
access yields a later data version.

Figure 1 shows the view-consistency algorithm
for a generic entity. The viewMediator func-
tion is called by file operations that read or write
some data (discussed in the next paragraph). The
version and the replica (collectively called wview-
entry) that was last accessed for a particular
file is obtained by readViewEntry. This infor-
mation in the view-entry is used to switch to a
later file replica in switchToLaterReplica. If the
view-entry for a file does not exist, the file has
never been accessed,® and switchToFastReplica
is used to switch to any highly available rep-
lica. The “switchTo” functions are further de-

scribed in Section 5.3 when we discuss replica se-

3Even if the file has been accessed, the view-entry may
not exist because it has been garbage collected, as discussed
in Section 5.4. Such a file can be treated as if it has never
been accessed.

viewMediator (file, entity, fileOperation)

{

(fileId, replica) = file; // file consists of fileld, replica
viewEntry = (viewVersion, viewReplica) =
readViewEntry(fileld, entity);
if (viewEntry != NULL) {
newReplica
= switchToLaterReplica(file, viewEntry);
}else {

newReplica = switchToFastReplica(file);

(data, fileVersion) = fileOperation(fileld, newReplica);
if (fileVersion > viewVersion) {
writeViewEntry (fileld, entity,
fileVersion, newReplica);

}

return data;

Figure 1: The general view-consistency algorithm

lection issues for higher availability. The file op-

eration is enhanced to return the data and the

version of the data that was accessed. This ver-

sion and the replica that were accessed are stored

by writeViewEntry as the new view-entry for the

file and are used for the next access.

Besides file reads and writes, directory opera-

tions and file attribute must also invoke the view

mediator.

Without directory consistency, a re-

named file may appear with its older name in the

future. File attribute consistency is needed to en-

sure correctness of applications such as make that

depend on data and attribute consistency.

The main challenges in the implementation of

the algorithm are:

e The file replica version information must be

available from the server (in fileOperation)
and must be comparable with other replicas
of the file.

e Efficient reading and writing of the stored



view-entries (file version and replica id) of an
entity. This operation requires coordinating
the accesses of a complex entity. In a dis-
tributed entity, the view-entry may exist sep-
arately from the components of the entity.
As an example, volatile witnesses [11] can
be used for storing and accessing the view-
entries. These witnesses would be placed so
that they are more available than the individ-

ual components of the entity.

e Replica selection is done while maintaining
view consistency, and it must be efficient
since it lies in the critical path of every file

operation.

e The view-entry for a file at an entity must be

deleted when it is not required anymore.

We discuss these issues in the next section.

5 Implementation

We have implemented view consistency and rep-
lica selection as a separate stackable layer [5] on

Ficus [10], an optimistically replicated file system.

5.1 Comparable File Versions

Ficus allows accesses to any available file replica
and detects writes to older replicas, when repli-
cas communicate, by using vector timestamps [12].
Each file replica has a vector timestamp of length
n, where n is the number of replicas of the
file. A vector timestamp is later than another if
each component of the timestamp is greater than
or equal to the corresponding component of the
other. Our implementation of view consistency
uses this property to test the consistency crite-

rion.

5.2 Accessing View-Entries

View-entries are stored, for each file that an en-
tity has accessed. The view-entry storage service

must take into account the following:

e View-entry reads and writes are in the critical

path of file operations.

e Accesses to view-entries must be coordinated

for distributed entities.

e View-entries must be stored persistently for

persistent entities.

e View-entries are stored for every file that is

accessed. Thus their number can grow large.

We chose Margo Seltzer’s db database pack-
age [14] for view-entry storage. It is relatively
small, and caches large chunks of the database
in memory for efficient access. View consistency
is implemented in the kernel while the database
runs at the user level. Therefore, there is commu-
nication and context switch overhead every time
the database is accessed. We therefore cache view-

entries in the kernel.

View-Entry Caching We cache the view-entry
for a file with the vnode (file handle obtained on
a file open) of the file. Effectively, the view-entry
is obtained from the database on each file open
rather than on each file operation. Moreover,
UNIx kernels cache vnodes in the name lookup
cache even when the file is not being used. The
view-entry therefore stays in the kernel as long as
the vnode stays in the cache. The effectiveness of
this cache and thus the overhead of view consis-

tency depends on the locality of file accesses.

Optimistically Fetching View-Entries

View-entry caching reduces the number of times



Another method of

reducing the consistency overhead is to remove

the database is accessed.

readViewEntry from the critical path of the file
operation. ReadViewEntry can be performed in
parallel with the file operation optimistically.
This operation is successful if the file operation
yields a data version that is later than the version
in the view-entry. Otherwise, the operation must
be tried again with a consistent replica. We see
in Section 5.3 that this optimism will generally
pay off. Although it is possible to implement
parallel kernel operations, we have not done so in

the current implementation.

Coordinating Accesses to View-Entries
Currently, users specify the entity type in their
user-profile. Entities can be defined per Ficus vol-
ume [13]. The entity type is encoded in the entity
parameter in Figure 1. This parameter is only
used by the readViewEntry and writeViewEntry
routines. Therefore, the cost and the complex-
ity of providing a consistent view to a specific en-
tity depends on the cost of reading and writing
view-entries. For distributed entities, the storage
service at each of the different components of the
entity must coordinate the accesses to the view-
entries. This can be done by using a token pass-
ing mechanism where the token is the view-entry.
We have not completed the implementation of this
functionality. In the future, we intend to study the
issues related to the choice of distributed entities
(described in Section 8).

Obtaining View-Entries The file operation in
Figure 1 returns both the file data and the file
version. We use NF'S as our transport layer. NFS
does not return the file version information for file
operations. Although obtaining the file version in-

formation separately after the file operation does

not violate view consistency (the file version will
have a later version), it can be expensive since
each file operation may require an extra (possibly
remote) operation.

We have modified some of the file operations
(such as lookup) in Ficus to return file data and
version together. For other operations, the version
information is obtained separately. There is signif-
icant performance difference between getting ver-
sion information along with the data versus sepa-
rately, as shown in Section 6. We therefore plan to
change all the relevant Ficus operations to return

both the file data and version together.

Writing View-Entries For persistent entities,
modified view-entries must be stored on disk be-
fore the data is returned to the user. The cost
of writing to disk after each view-entry update
is high. Optimizations such as log record buffer-
ing are not possible since each file operation re-
turns data and is similar to a commit. Instead, we
write back updated view-entries to the database
when 1) vnodes are destroyed, 2) on a file close,
or 3) periodically every 30 seconds. The view-
entry database flushes its own updated memory
entries to disk every 30 seconds. These mecha-
nisms together ensure that view-entries updated
more than 60 seconds ago are stored on disk. Af-
ter a machine crash, entities may see older ver-
sions of those files that they had been accessing a

minute before the crash.

Local Replica Optimization An optimization
is possible for centralized entities when a file rep-
lica is stored on the local machine. In this case,
view-entries do not have to be stored, since the
entity does not need to access remote replicas and

local accesses yield later data versions. Suppose a



user (or an application) decides to add a local rep-
lica of a file that he has been accessing remotely.
The local replica will be view consistent if the data
is copied from the remote replica that is being ac-
cessed (and is view consistent). The view-entry in
the local database can then be removed. A local
file replica deletion must record the version of the
deleted data. The next access to a remote replica

uses this version to ensure view consistency.

5.3 Replica Selection

This section describes the Ficus replica selection
policy and then presents modifications to support
view consistency. Replica selection is done solely
at the clients. This is possible because view con-
sistency is enforced by an entity and not by the

replicas.

The basic replica selection policy (ignoring view
consistency and performance) ensures that the
same replica is accessed for all the files in a Ficus
volume. For availability and performance (again
ignoring view consistency), Ficus aims to achieve
the following: provide data as long as any rep-
lica is available (awailability criterion), provide
data from the fastest available replica (optimal-
ity criterion), and minimize the overheads of rep-
lica selection and switching. The system main-
tains a delay wvalue for each replica that deter-
mines the bandwidth and latency to the replica
from the client site. Optimality uses these de-
lay values. Unlike availability, which rectifies a
short-term failure condition, optimality improves
the long-term throughput and efficiency of the sys-
tem. SwitchToFastReplica shown in Figure 1
implements both the availability and the optimal-

ity criterion.

View Consistency and Availability

The switchToLaterReplica function in Figure 1
ensures that consistent replicas are accessed and,
like switchToFastReplica, it tries to provide
available as well as optimal replicas (within the
constraints of consistency). As long as the same
replica is accessed the data is view consistent.
However, this data replica may not be the highest
performing replica.

The switchToLaterReplica function uses the

following order to select replicas:

e The view-entry replica is chosen since this

replica is known to be consistent.

e If the view-entry replica is unavailable or
much slower than the highest performing rep-

lica, the current replica is chosen.

e If the current replica is inconsistent, a search
of all replicas is done (in ascending delay-
value order) to find another consistent rep-

lica.

e If the current replica is consistent but slow,

it tries to switch to a fast, consistent replica.

The normal path is that the current replica is
the view-entry replica and it is not much slower
than the fastest available replica; nothing needs
to be done in this case. Note that at every step
both consistency and availability are taken into

account, but only a consistent replica is returned.

5.4 Garbage Collection of View-Entries

Each entity has a logically separate database
that contains the view-entries for files that the
entity has accessed. The number of view-entries
grows as more files are accessed. These view-

entries can be deleted when they are no longer



required. The database for transient entities can
be entirely removed when the entity terminates.
For persistent entities, view-entries can be
deleted when all the file replica versions are known
to be later than (equal to or newer than) the ver-
sion in the view-entry. The view-entry is not re-
quired anymore since any replica that is next ac-
cessed will yield a later version. Note that view-
entry deletion can be done independently of file

operations.

Deletion Algorithms A simple deletion algo-
rithm can obtain the current version of each of
the file replicas and delete the view-entry when
all the versions are later than the view-entry ver-
sion. This deletion mechanism is expensive since
all replicas must be contacted and requires that
all replicas be available at the same time.

A second solution to the deletion problem in-
volves using the reconciliation process in Ficus.
Reconciliation in Ficus occurs periodically, when
replicas communicate pairwise and exchange up-
dates until they are mutually consistent. For dele-
tion, each replica can obtain file version informa-
tion during reconciliation. A client site can con-
tact any one replica and delete a view-entry when
all the versions stored at this replica are later than
the view-entry version. This solution has a high
storage overhead because n version vectors (total
size O(n?)) have to be stored at each replica for
each file. Moreover, there is a strong requirement
that replicas communicate with every other rep-

lica directly.

Acknowledgment Algorithm Another dele-
tion solution uses the information already made
available to replicas after reconciliation. Recall

that a view-entry can be deleted when all replicas

have higher file versions. Alternately, the view-
entry can be deleted when the view-entry rep-
lica (replica in the view-entry) has propagated
the view-entry version to all other replicas. This
slightly modified criterion requires that a rep-
lica know about what other replicas have learned
about itself, i.e., have the other replicas seen a file
version that this replica had stored in the past?

We call such information an acknowledgment.

Suppose each replica stores an acknowledgment-
timestamp vector, where replica r; has heard
about all updates from this replica until the time
in the i*" component of this replica’s vector. Now
the client’s view-entry can be deleted if the time at
which the file replica was last accessed (the view-
entry’s timestamp) is less than all the components
of the acknowledgment-timestamp vector at that
file replica (this version has been seen by all other
replicas). Note that the client has to communi-
cate only with the replica in the view-entry for

view-entry deletion.

Acknowledgments are obtained in Ficus during
reconciliation in a two step process. In the first
step, a replica learns about the state of the other
replicas. In the second step, the replicas gossips
this information to the other replicas, who now
learn what other replicas know about themselves.
See Guy [3] for further details. Acknowledgments
have also been used by Wuu [17] and Ladin [9)].
The difference between their work and ours is that
they use acknowledgments for garbage collection
at the replica servers while we use them at the

clients also.

6 Experiments and Evaluation

We have implemented view consistency as a
stackable file-system layer over the Ficus file sys-

tem [5]. A user-level view-entry database provides



view-entries to the kernel. These view-entries are
garbage collected by a deletion server that obtains
the acknowledgment information from the recon-
ciliation process. A delay server determines the
latency and bandwidth to different replicas and
provides these values to the kernel for replica se-
lection. The experiments presented here evaluate
two of the aspects of the system: 1) measuring the
overhead of providing view consistency and 2) the
costs of switching to the high performing replicas

while providing view consistency.

6.1 View-Consistency Overhead

The overhead of view consistency is measured
by comparing the cost of view consistent versus
non-view consistent (or base Ficus) accesses. We
use four Sun IPCs, each with 12 MB of main mem-
ory, connected by a 10Mb/s Ethernet connection.
Accesses were done from one machine, while data
replicas were stored remotely on the other three
machines. No tests were done with locally stored
replicas because view consistency can then be pro-
vided with no overhead (Section 5.2).

We performed seven benchmarks with one, two
and three data replicas. The first test is the modi-
fied Andrew Benchmark (mab) [6] that is intended
to model a mix of filing operations and hence be
representative of performance in actual use. The
second and third tests are local and remote recur-
sive cp and the fourth test is grep. Each of these
tests exercise the read and write file operations.
The fifth and sixth tests are find and rm programs
that primarily execute recursive directory opera-
tions. The last test is the 1s program, which reads
directory contents. The mab test is performed on
1.3 MB of data. The grep and 1s tests operate
on 104 files containing 336KB of data. All other
tests operate on 1311 files with 4.2 MB of data.
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Figure 2: Remote access times of base Ficus and
view-consistent Ficus. The lower graph shows the
consistency overhead (in gray) when the view con-
sistency attributes are obtained along with data.

The results of the three replica benchmarks are
shown in Figure 2. Since view consistency is en-
forced by clients, the overhead does not change
significantly with different numbers of replicas and
the results for the single and two replica experi-
ments are very similar. The upper graph in Fig-
ure 2 shows the elapsed and system times of base
Ficus and view-consistent Ficus for remote ac-
cesses. The 95% confidence intervals are shown

for the elapsed times. The costs of providing



view consistency for file operations and for di-
rectory operations are shown separately for view-
consistent Ficus. Note from the upper graph that
find, rm and 1ls have no view-consistency over-
head for file operations, since these operations
predominantly operate on directories. The over-
head of view consistency for remote accesses is also
shown in the lower graph of Figure 2. This over-
head includes both file and directory operations.
The overhead for all tests except grep is between
5 to 12 percent. The grep overhead is 185 percent.

To understand this large overhead, we com-
pared grep and cp since they perform similar
We found that most of the

overhead in the grep benchmark occurs because

vnode operations.

we obtain view-consistency attributes separately
from data, and thus go over the wire twice for
each file operation (for which view consistency is
provided). We also found that the cost of getting
remote attributes is 8.5 ms per operation, cost of
running grep on a single remote file is 17.4 ms,
and the cost of performing a cp on a single file is
173.5 ms in Ficus. Therefore, the large grep over-
head is because grep is a much faster operation
and because getting attributes is a fixed cost op-
eration. Moreover, while cp gets attributes once,
grep gets attributes twice per file. This by itself
doubles the time for executing grep.

The gray area in the lower graph shows the over-
head of view consistency when attributes are ob-
tained with data. The overhead for grep and for
most other benchmarks decreases to between 1 to
8 percent. We measured this overhead by using at-
tributes that are obtained during opens and by not
updating these attributes from the server on each

operation.? Finally, as explained in Section 5.2,

“This can violate view consistency for operations other
than open, but is nonetheless useful for understanding the
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the 1 to 8 percent overhead of view consistency
can be reduced even further by getting the view-

entries in parallel with the file operations.

6.2 Availability Measurements

We measured the cost and performance bene-
fits of switching to the highest performing replica
while providing view consistency. Accesses are
switched to a new replica when it is view con-
The

overall performance of each replica is measured in

sistent and improves overall access times.

terms of replica delay values that are determined
by a user-level delay server. The replica delay val-
ues were simulated in our experiment as shown in
the upper-most graph of Figure 3. This was done
because delay values did not change significantly
(or frequently) in our experimental LAN environ-
ment. The delay® values were changed every 300
seconds. They were fixed at 15 for replica 1, var-
ied periodically between 7 and 23 for replica 2,
and varied randomly between 0 and 31 for replica
3.

The seven benchmarks used earlier (Section 6.1)
The

replica that is accessed is shown in the middle

were run with the simulated delay values.

graph of Figure 3. The number of replica switches
during the experiment® is shown in the lowest
graph in Figure 3. The lowest and the middle
graph in Figure 3 show that multiple replicas are
accessed during replica switching.

Replica switching takes place when the cur-
rently accessed replica is at least switching-factor

(set at 2 for this experiment) slower than the best

overhead.

SA faster replica has a lower delay value.

5The total time to perform these benchmarks is approx-
imately 50 minutes (as can be seen by taking the sum of
the elapsed times of each of the benchmarks in the upper
graph of Figure 2) but this experiment took 100 minutes
because each access is logged to disk.
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Figure 3: The replica delay values for three replicas, the replicas accessed, and the number of switches
performed in a period of one hour and forty minutes

replica. This was true for all the replica switches
except the last one (around time 5800 seconds)
when accesses switched from replica 3 to replica 2
although replica 3 is the fastest replica. The de-
lay value difference between replica 2 and 3 is not
much at this time. Many files were accessing rep-
lica 2 in the past (around time 5000 seconds). This
last accessed replica is known to be view consistent
and is not much slower than the fastest replica. It
is therefore given priority and these files still ac-

cess replica 2. This condition does not occur in
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any other part of the experiment.

The total number of accesses in the experiment
was 192215. With no replica switching, the aver-
age access time would be 15 (in terms of delay val-
ues), since replica 1 would be accessed each time.
The ideal average access time (the replica with
the lowest access time is accessed every time) is
9.68, a 36% improvement. The average time for
each access with replica switching is 13.36, a 11%
improvement. The choice of the switching-factor

affects this improvement. A lower value improves



performances but can cause more replica switch-
ing overhead. The value also depends on the type
of environment. Generally, a larger value should
be chosen when the bandwidth and latency change
rapidly, as in large-scale environments. A smaller
value can be chosen when replica switching costs

are low.

An interesting result of the experiment as seen
in the lowest graph is that just a few replica
switches induce every file to switch replicas. This
happens because of the default replica switching
rule. When a directory gets switched to a new rep-
lica, later accesses to files in the directory start by
accessing this new replica. Although the last ac-
cessed replica has higher priority, this replica is
very slow at each replica switching period (except
the last one as explained above). Thus the new
replica is given higher preference and accessed,
and switching happens naturally for most files.
Therefore, the explicit cost of switching in Ficus

is very low.

7 Related Work

Our work is closely related to Bayou [15], an
eventually consistent system, that provides session
guarantees to reduce client inconsistency. These
session guarantees are provided to process and
process groups. We extend session guarantees to
handle other transient, persistent and distributed
entities. Instead of viewing the problem as provid-
ing guarantees for a session, we view it as provid-
ing guarantees to entities. We discuss view con-
sistency for distributed entities and believe that
many more applications will benefit from such
guarantees. We also show how replica selection

interacts with view consistency.

Causal ordering of reads and updates by Ladin,

et al., [9] provides guarantees similar to view con-
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sistency. Unlike view consistency, causal order-
ing requires application-specific changes since ap-
plications must specify the causal relation be-
tween their operations. Causal ordering is en-
forced by replicas while view consistency is en-
forced by clients or entities. View consistency is
therefore more scalable (in terms of server load)
and requires minimal changes at the servers. An
advantage of causal ordering is that it can provide
more generic inter-client guarantees. View consis-
tency deals with this issue partially by combin-
ing the clients into a single entity and providing
consistency guarantees to this entity group. The
combining of the clients into a single entity can be

done dynamically.

Client-based consistency has been used by
Alonso, et el., [1] to provide quasi-copy consis-
tency. Quasi-copies are cached (or stashed) copies
of data that may be somewhat out-of-date, but are
guaranteed to meet certain consistency predicates.
Client consistency for quasi-copies can generally
be maintained for age-dependent predicates only.
For example, the “not more than two versions old”

predicate can only be enforced by the server.

Zadok and Duchamp [18] address the problem of
providing data from the fastest available replica.
They improve the auto-mounting daemon in UNIX
systems and allow transparent switching of open
files to replacement file systems that are dynami-
cally discovered. The latency of the NFS lookup
operation is monitored and used to assign delay
values to different replicas. Their solution works
for read-only file systems because they do not deal
with replica consistency. Thus issues related to
tradeoffs between consistency and availability do

not have to be addressed.



8 Conclusions and Future Work

View consistency aims to provide consistent
data in widely distributed and mobile systems. It
covers the space between conservative and opti-
mistic schemes by providing consistency to each
entity while allowing high availability across en-
tities. Effectively chosen entities can reduce con-
current accesses for various user working styles.
The model is scalable in the number of repli-
cas since clients enforce consistency. This pa-
per focuses on whether view consistency can be
achieved in practice. The prototype implemen-
tation on Ficus maintains the consistency infor-
mation at each client efficiently. It provides view
consistent data while taking data availability and
performance into account. Our experiments show
that view consistency for centralized entities can

be provided at a low cost.

Future Work More experience is needed with
view-consistent systems. Does view consistency
satisfy the consistency demands of many applica-
tions? We are currently developing a user-level
version of Ficus called Rumor that can be de-
ployed more extensively. The benefits and costs of
view consistency for large-scale disconnected and
mobile use can then be measured more precisely.
It will also give us an idea of the applications that
benefit most from view consistency and the appli-
cations that need higher consistency.

We are currently implementing coordinating
the view-entry databases for distributed entities.
We are also examining suitable definitions of dis-
tributed entities. For non-overlapping accesses in
time (such as using different machines at differ-
ent times of the day) the view-entry database can
be transfered from one machine, say on a PCM-

CIA card (or on a Java ring![2]), and integrated
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with the database of the new machine. We assume
that view-entries are much smaller than files, and
it is more useful to carry the consistency infor-
mation rather than recently accessed files in the
card. Files can then be loaded on demand from

the previous machine if they are newer there.
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