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Abstract

Optimistically replicated systems provide

highly available data even when communication

between data replicas is unreliable or unavailable�

The high availability comes at the cost of allowing

inconsistent accesses� since users can read and

write old copies of data� Session guarantees ����

have been used to reduce such inconsistencies�

They preserve most of the availability bene�ts of

optimistic systems� We generalize session guaran	

tees to apply to persistent as well as distributed

entities� We implement these guarantees� called

view consistency� on Ficus an optimistically

replicated �le system� Our implementation

enforces consistency on a per	�le basis and does

not require changes to individual applications�

View consistency is enforced by clients accessing

the data and thus requires minimal changes to

the replicated data servers� We show that view

consistency allows access to available and high

performing data replicas and can be implemented

e
ciently� Experimental results show that the

consistency overhead for clients ranges from ��

to �� of application runtime for the benchmarks

studied in the prototype system� The bene�ts of

the system are an improvement in access times

due to better replica selection and improved

consistency guarantees over a purely optimistic

system�

� Introduction

Many distributed applications require highly

available data� or data that can be accessed at

any time� Data is often replicated to increase

availability� However this introduces the data con�

sistency problem� Data accesses are inconsistent

when they re
ect the intermediate states of data

between accesses� For example� if replica A has

been updated and the update has not reached rep	

lica B� then accesses to replica B may be incon	

sistent� Replicated systems aim to provide highly

available data while preserving data consistency�

These goals are con
icting because consistency

may only allow access to certain replicas� while

availability improves when any replica can be ac	

cessed�

Optimistically replicated systems provide high

availability even in weakly connected environ	

ments by allowing accesses to any �le replica� This

continuous access� even during network partitions�

is critical for many applications such as reserva	

tion systems� appointment calendars� design doc	
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uments� meeting notes� and in general� mobile �le

accesses ��� �� ���� Inconsistencies due to updates

being made to old copies �con�icting updates� are

eventually� detected and resolved� Unfortunately�

the lack of consistency guarantees during accesses

can be very confusing to users�

Session guarantees ���� have been used to re	

duce inconsistencies observed in optimistic sys	

tems� They maintain most of the availability ben	

e�ts of such systems� Session guarantees preserve

read and write dependencies for processes� An

application session is presented with a view of the

database that is consistent with its own actions�

even if it reads and writes from various� poten	

tially inconsistent servers�

In this paper� we propose the view�consistency

model that enhances session guarantees to apply

to persistent as well as distributed sets of clients�

This model provides �session guarantees� for a

larger set of applications� View consistency pro	

vides conservative guarantees to each single client

or each group of closely�related� clients� while

eventual consistency is maintained across �dis	

tant� clients�

The view	consistency model attempts to cap	

ture a real	world working environment in which a

single client or closely cooperating clients would

like to access mutually consistent data all the

time� but distant clients wish to synchronize with

each other occasionally� Consider two groups of

researchers working in two di�erent countries on

the same system� Each group is building new func	

tionality for the system� Suppose the system code

is optimistically replicated in the two countries�

�Detection and resolution of con�icts occurs as a sepa�
rate process� and is often unrelated to the time at which
�les are accessed�

�We de�ne the notion of �closely�related� in the next
section�

Within each group� view consistency maintains

consistent accesses� However� the two groups are

not synchronized with each other� The optimistic

system will eventually make the two groups con	

sistent� The advantages of the view	consistency

model are two	fold� closely cooperating clients ob	

serve mutually consistent data� and distant clients

do not pay the instantaneous cost of maintaining

consistency �during accesses�� Therefore view con	

sistency enables useful collaboration in many large

scale environments�

Distributed applications not only require avail	

ability of data but also fast access to data� Provid	

ing fast accessibility and consistency can be con	


icting goals� For example� a highly performing

data replica may not have consistent data� In this

paper� we show that replica selection �providing

data from available and high performing replicas�

can be performed while maintaining view consis	

tency� and the overhead of providing view consis	

tency during replica selection is small�

The contributions of the paper are the follow	

ing� �rst� we introduce the concept of a general	

ized client� called an entity� and provide session

guarantees for an entity� Entities can be persis	

tent as well as distributed� De�ning a consistency

model for entities rather than for sessions allows

us to provide guarantees to a larger set of applica	

tions� Second� we describe the interaction of view

consistency with replica selection and show that

system performance can be improved by accessing

high performing replicas while maintaining consis	

tency� Our implementation approach has two ad	

vantages� �rst� we implement view consistency as

a �le system� and thus do not require any changes

to user	level applications� Second� as with session

guarantees� consistency is enforced by clients and

thus minimal changes have to be made to data
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servers�

Section � describes our consistency model� Sec	

tion � explains the motivations for using view con	

sistency� The view	consistency algorithm and the

challenges in implementing it are discussed in Sec	

tion �� Section � presents a prototype implemen	

tation of view consistency on the Ficus optimisti	

cally replicated �le system� The overhead of pro	

viding consistency and the performance bene�ts

of replica selection are studied in our benchmarks

in Section �� Section � discusses related work and

Section � draws conclusions and suggests future

work�

� View�Consistency Model

In this section� we de�ne session guarantees and

then view consistency� View	consistency guaran	

tees are de�ned with respect to clients accessing

the data� We explain the notion of �closely� coop	

erating clients by generalizing the de�nition of a

client� Such a generalized client is called an entity�

De�nition � Session guarantees allow a client

to access versions of data that are the same as

or newer than �for brevity� we will call this later

than� what the client had previously accessed�

This de�nition of session guarantees is a combi	

nation of the read your writes� monotonic reads�

writes follow reads and monotonic writes guaran	

tees as described by Terry� et al� ����� View con	

sistency can be de�ned for each individual session

guarantee� but we will ignore these distinctions in

this paper for simplicity�

Session guarantees are provided for single

clients� View consistency can be provided to

groups of clients� A closely cooperating groups of

clients is called an entity� Each individual within

the entity is called a component� Examples of en	

tities are a single process� a group of processes� a

user working on a laptop� all the users on a ma	

chine� a group of machines� etc�

De�nition � View consistency allows an entity

to only access later versions of data than what the

entity had previously accessed� A data version is

later if it is the same as or newer than the latest

version accessed by any of the components of the

entity�

An entity is therefore a generalized client that

may be persistent or distributed� Its components

are cooperating closely since view consistency en	

sures that they access mutually consistent data�

Entity Classi�cation

Entities can be of di�erent types� Here� we de	

scribe these types and then present a representa	

tive set of entities� Long	lived entities that sur	

vive machine crashes are persistent entities� while

short	lived entities are transient entities� The con	

sistency information for a persistent entity must

be kept on secondary storage� A complex en	

tity can access replicas of data via multiple in	

dependent processes� whereas simple entities have

a single execution thread� Complex entities must

coordinate their accesses to see later versions of

data� A complex entity can exist on a single ma	

chine �centralized� or on multiple machines �dis�

tributed�� A distributed entity can be denied ac	

cess to data either because later versions of data

are not available� or because its sub	entities can	

not be coordinated at a particular time� Mecha	

nisms such as primary coordinator� token passing�

or voting are needed to synchronize the accesses of

a distributed entity� Note that these mechanisms

are applied at the entity and not at the replicated

data servers�
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Common entities include a single process� a

group of processes� a login session� a single ma	

chine� a closely related group of machines� a user

on a single machine� or a group of machines� etc�

Note that a user by itself is not a useful entity

since a user�s processes may originate from a large

number of machines and be hard to locate or co	

ordinate�

� Why View Consistency�

The bene�ts of view consistency are illustrated

with examples below� The underlying replicated

service is assumed to allow accesses to any avail	

able data replica�

�� A user is accessing a web page that is repli	

cated at several sites� If the current site be	

comes heavily loaded and disallows accesses�

view consistency will ensure that the user

does not access older versions of the web

pages from another site�

�� A user edits a �le and then checks in the new

version of the �le into a replicated version	

control system� The replica that has the lat	

est changes becomes inaccessible before these

changes propagate to other replicas� If the

user can access and edit the �le from another

replica� this action will necessarily create a

con
icting update� View consistency will dis	

allow accesses to any other �le replica� since

these replicas are older than the replica on

which the user was working�

�� A user accesses a replicated web page and

caches �or stashes ���� the page� Later� this

page is evicted to make space for other more

important pages� View consistency ensures

that remote accesses of the original web page

yield later versions of data� Moreover� later

stashes of the web page �when it is accessed

and cached again� will also be data versions

that are later than what the user has seen

previously�

�� Suppose users A and B at one o
ce are shar	

ing �les with users C and D at another ge	

ographically distant o
ce� Each user has a

replica of the �les� A and B �and similarly

C and D� are actively cooperating with each

other� We de�ne A and B to be an entity�

and C and D to be another entity� View con	

sistency will ensure that both A and B �and

likewise C and D� access data that is later

than each has accessed�

Discussion

View consistency is enforced by each client �or en	

tity� accessing the data and not by the servers�

This client consistency model has several implica	

tions� First� servers do not have to be changed

to implement view consistency� Second� the con	

sistency model implemented by the servers does

not a�ect view consistency� The only requirement

�as we will see later� is that the client should

be able to compare �le versions� Third� di�er	

ent clients can observe di�erent guarantees� For

example� one client may be view consistent while

another may ignore view consistency while oper	

ating on the same data� Later� the two can be

combined and observe view consistency as a single

entity� Fourth� view consistency does not attempt

to coordinate the accesses of di�erent clients� and

thus di�erent clients can make con
icting updates�

This lack of inter	client coordination� however� al	

lows high data availability at each client�

The choice of entities is very important for view

consistency� For a given set of �les� this choice

strongly depends on the �le usage pattern� For
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some �les� each user of the �le may choose to re	

main a separate entity� For shared �les� a group

of users or a group of machines may be chosen as

the appropriate entity� E�ectively chosen entities

reduce concurrent accesses� without signi�cantly

a�ecting availability or the performance of the sys	

tem� as compared to a completely optimistic sys	

tem� Currently this choice is made explicitly by

the user in our system� More experience is needed

with our system regarding the appropriate choice

of entities� and an automated method for choosing

such entities�

� Algorithm

The view	consistency criterion allows an entity

to access data that is later than what the entity

has seen previously� Entities can store the ver	

sion of data that they last read or updated� This

version can then be used to ensure that the next

access yields a later data version�

Figure � shows the view	consistency algorithm

for a generic entity� The viewMediator func	

tion is called by �le operations that read or write

some data �discussed in the next paragraph�� The

version and the replica �collectively called view�

entry� that was last accessed for a particular

�le is obtained by readViewEntry� This infor	

mation in the view	entry is used to switch to a

later �le replica in switchToLaterReplica� If the

view	entry for a �le does not exist� the �le has

never been accessed�� and switchToFastReplica

is used to switch to any highly available rep	

lica� The �switchTo� functions are further de	

scribed in Section ��� when we discuss replica se	

�Even if the �le has been accessed� the view�entry may
not exist because it has been garbage collected� as discussed
in Section 	�
� Such a �le can be treated as if it has never
been accessed�

viewMediator��le� entity� �leOperation�
f

��leId� replica� � �le� �� �le consists of �leId� replica
viewEntry � �viewVersion� viewReplica� �

readViewEntry��leId� entity��
if �viewEntry 	� NULL� f

newReplica
� switchToLaterReplica��le� viewEntry��

g else f
newReplica � switchToFastReplica��le��

g
�data� �leVersion� � �leOperation��leId� newReplica��
if ��leVersion � viewVersion� f

writeViewEntry��leId� entity�
�leVersion� newReplica��

g
return data�

g

Figure �� The general view	consistency algorithm

lection issues for higher availability� The �le op	

eration is enhanced to return the data and the

version of the data that was accessed� This ver	

sion and the replica that were accessed are stored

by writeViewEntry as the new view	entry for the

�le and are used for the next access�

Besides �le reads and writes� directory opera	

tions and �le attribute must also invoke the view

mediator� Without directory consistency� a re	

named �le may appear with its older name in the

future� File attribute consistency is needed to en	

sure correctness of applications such as make that

depend on data and attribute consistency�

The main challenges in the implementation of

the algorithm are�

� The �le replica version information must be

available from the server �in fileOperation�

and must be comparable with other replicas

of the �le�

� E
cient reading and writing of the stored
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view	entries ��le version and replica id� of an

entity� This operation requires coordinating

the accesses of a complex entity� In a dis	

tributed entity� the view	entry may exist sep	

arately from the components of the entity�

As an example� volatile witnesses ���� can

be used for storing and accessing the view	

entries� These witnesses would be placed so

that they are more available than the individ	

ual components of the entity�

� Replica selection is done while maintaining

view consistency� and it must be e
cient

since it lies in the critical path of every �le

operation�

� The view	entry for a �le at an entity must be

deleted when it is not required anymore�

We discuss these issues in the next section�

� Implementation

We have implemented view consistency and rep	

lica selection as a separate stackable layer ��� on

Ficus ����� an optimistically replicated �le system�

��� Comparable File Versions

Ficus allows accesses to any available �le replica

and detects writes to older replicas� when repli	

cas communicate� by using vector timestamps �����

Each �le replica has a vector timestamp of length

n� where n is the number of replicas of the

�le� A vector timestamp is later than another if

each component of the timestamp is greater than

or equal to the corresponding component of the

other� Our implementation of view consistency

uses this property to test the consistency crite	

rion�

��� Accessing View�Entries

View	entries are stored� for each �le that an en	

tity has accessed� The view	entry storage service

must take into account the following�

� View	entry reads and writes are in the critical

path of �le operations�

� Accesses to view	entries must be coordinated

for distributed entities�

� View	entries must be stored persistently for

persistent entities�

� View	entries are stored for every �le that is

accessed� Thus their number can grow large�

We chose Margo Seltzer�s db database pack	

age ���� for view	entry storage� It is relatively

small� and caches large chunks of the database

in memory for e
cient access� View consistency

is implemented in the kernel while the database

runs at the user level� Therefore� there is commu	

nication and context switch overhead every time

the database is accessed� We therefore cache view	

entries in the kernel�

View�Entry Caching We cache the view	entry

for a �le with the vnode ��le handle obtained on

a �le open� of the �le� E�ectively� the view	entry

is obtained from the database on each �le open

rather than on each �le operation� Moreover�

Unix kernels cache vnodes in the name lookup

cache even when the �le is not being used� The

view	entry therefore stays in the kernel as long as

the vnode stays in the cache� The e�ectiveness of

this cache and thus the overhead of view consis	

tency depends on the locality of �le accesses�

Optimistically Fetching View�Entries

View	entry caching reduces the number of times
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the database is accessed� Another method of

reducing the consistency overhead is to remove

readViewEntry from the critical path of the �le

operation� ReadViewEntry can be performed in

parallel with the �le operation optimistically�

This operation is successful if the �le operation

yields a data version that is later than the version

in the view	entry� Otherwise� the operation must

be tried again with a consistent replica� We see

in Section ��� that this optimism will generally

pay o�� Although it is possible to implement

parallel kernel operations� we have not done so in

the current implementation�

Coordinating Accesses to View�Entries

Currently� users specify the entity type in their

user	pro�le� Entities can be de�ned per Ficus vol	

ume ����� The entity type is encoded in the entity

parameter in Figure �� This parameter is only

used by the readViewEntry and writeViewEntry

routines� Therefore� the cost and the complex	

ity of providing a consistent view to a speci�c en	

tity depends on the cost of reading and writing

view	entries� For distributed entities� the storage

service at each of the di�erent components of the

entity must coordinate the accesses to the view	

entries� This can be done by using a token pass	

ing mechanism where the token is the view	entry�

We have not completed the implementation of this

functionality� In the future� we intend to study the

issues related to the choice of distributed entities

�described in Section ���

Obtaining View�Entries The �le operation in

Figure � returns both the �le data and the �le

version� We use NFS as our transport layer� NFS

does not return the �le version information for �le

operations� Although obtaining the �le version in	

formation separately after the �le operation does

not violate view consistency �the �le version will

have a later version�� it can be expensive since

each �le operation may require an extra �possibly

remote� operation�

We have modi�ed some of the �le operations

�such as lookup� in Ficus to return �le data and

version together� For other operations� the version

information is obtained separately� There is signif	

icant performance di�erence between getting ver	

sion information along with the data versus sepa	

rately� as shown in Section �� We therefore plan to

change all the relevant Ficus operations to return

both the �le data and version together�

Writing View�Entries For persistent entities�

modi�ed view	entries must be stored on disk be	

fore the data is returned to the user� The cost

of writing to disk after each view	entry update

is high� Optimizations such as log record bu�er	

ing are not possible since each �le operation re	

turns data and is similar to a commit� Instead� we

write back updated view	entries to the database

when �� vnodes are destroyed� �� on a �le close�

or �� periodically every �� seconds� The view	

entry database 
ushes its own updated memory

entries to disk every �� seconds� These mecha	

nisms together ensure that view	entries updated

more than �� seconds ago are stored on disk� Af	

ter a machine crash� entities may see older ver	

sions of those �les that they had been accessing a

minute before the crash�

Local Replica Optimization An optimization

is possible for centralized entities when a �le rep	

lica is stored on the local machine� In this case�

view	entries do not have to be stored� since the

entity does not need to access remote replicas and

local accesses yield later data versions� Suppose a
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user �or an application� decides to add a local rep	

lica of a �le that he has been accessing remotely�

The local replica will be view consistent if the data

is copied from the remote replica that is being ac	

cessed �and is view consistent�� The view	entry in

the local database can then be removed� A local

�le replica deletion must record the version of the

deleted data� The next access to a remote replica

uses this version to ensure view consistency�

��� Replica Selection

This section describes the Ficus replica selection

policy and then presents modi�cations to support

view consistency� Replica selection is done solely

at the clients� This is possible because view con	

sistency is enforced by an entity and not by the

replicas�

The basic replica selection policy �ignoring view

consistency and performance� ensures that the

same replica is accessed for all the �les in a Ficus

volume� For availability and performance �again

ignoring view consistency�� Ficus aims to achieve

the following� provide data as long as any rep	

lica is available �availability criterion�� provide

data from the fastest available replica �optimal�

ity criterion�� and minimize the overheads of rep	

lica selection and switching� The system main	

tains a delay value for each replica that deter	

mines the bandwidth and latency to the replica

from the client site� Optimality uses these de	

lay values� Unlike availability� which recti�es a

short	term failure condition� optimality improves

the long	term throughput and e
ciency of the sys	

tem� SwitchToFastReplica shown in Figure �

implements both the availability and the optimal	

ity criterion�

View Consistency and Availability

The switchToLaterReplica function in Figure �

ensures that consistent replicas are accessed and�

like switchToFastReplica� it tries to provide

available as well as optimal replicas �within the

constraints of consistency�� As long as the same

replica is accessed the data is view consistent�

However� this data replica may not be the highest

performing replica�

The switchToLaterReplica function uses the

following order to select replicas�

� The view	entry replica is chosen since this

replica is known to be consistent�

� If the view	entry replica is unavailable or

much slower than the highest performing rep	

lica� the current replica is chosen�

� If the current replica is inconsistent� a search

of all replicas is done �in ascending delay	

value order� to �nd another consistent rep	

lica�

� If the current replica is consistent but slow�

it tries to switch to a fast� consistent replica�

The normal path is that the current replica is

the view	entry replica and it is not much slower

than the fastest available replica� nothing needs

to be done in this case� Note that at every step

both consistency and availability are taken into

account� but only a consistent replica is returned�

��	 Garbage Collection of View�Entries

Each entity has a logically separate database

that contains the view	entries for �les that the

entity has accessed� The number of view	entries

grows as more �les are accessed� These view	

entries can be deleted when they are no longer
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required� The database for transient entities can

be entirely removed when the entity terminates�

For persistent entities� view	entries can be

deleted when all the �le replica versions are known

to be later than �equal to or newer than� the ver	

sion in the view	entry� The view	entry is not re	

quired anymore since any replica that is next ac	

cessed will yield a later version� Note that view	

entry deletion can be done independently of �le

operations�

Deletion Algorithms A simple deletion algo	

rithm can obtain the current version of each of

the �le replicas and delete the view	entry when

all the versions are later than the view	entry ver	

sion� This deletion mechanism is expensive since

all replicas must be contacted and requires that

all replicas be available at the same time�

A second solution to the deletion problem in	

volves using the reconciliation process in Ficus�

Reconciliation in Ficus occurs periodically� when

replicas communicate pairwise and exchange up	

dates until they are mutually consistent� For dele	

tion� each replica can obtain �le version informa	

tion during reconciliation� A client site can con	

tact any one replica and delete a view	entry when

all the versions stored at this replica are later than

the view	entry version� This solution has a high

storage overhead because n version vectors �total

size O�n��� have to be stored at each replica for

each �le� Moreover� there is a strong requirement

that replicas communicate with every other rep	

lica directly�

Acknowledgment Algorithm Another dele	

tion solution uses the information already made

available to replicas after reconciliation� Recall

that a view	entry can be deleted when all replicas

have higher �le versions� Alternately� the view	

entry can be deleted when the view	entry rep	

lica �replica in the view	entry� has propagated

the view	entry version to all other replicas� This

slightly modi�ed criterion requires that a rep	

lica know about what other replicas have learned

about itself� i�e�� have the other replicas seen a �le

version that this replica had stored in the past�

We call such information an acknowledgment�

Suppose each replica stores an acknowledgment	

timestamp vector� where replica ri has heard

about all updates from this replica until the time

in the ith component of this replica�s vector� Now

the client�s view	entry can be deleted if the time at

which the �le replica was last accessed �the view	

entry�s timestamp� is less than all the components

of the acknowledgment	timestamp vector at that

�le replica �this version has been seen by all other

replicas�� Note that the client has to communi	

cate only with the replica in the view	entry for

view	entry deletion�

Acknowledgments are obtained in Ficus during

reconciliation in a two step process� In the �rst

step� a replica learns about the state of the other

replicas� In the second step� the replicas gossips

this information to the other replicas� who now

learn what other replicas know about themselves�

See Guy ��� for further details� Acknowledgments

have also been used by Wuu ���� and Ladin ����

The di�erence between their work and ours is that

they use acknowledgments for garbage collection

at the replica servers while we use them at the

clients also�

	 Experiments and Evaluation

We have implemented view consistency as a

stackable �le	system layer over the Ficus �le sys	

tem ���� A user	level view	entry database provides
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view	entries to the kernel� These view	entries are

garbage collected by a deletion server that obtains

the acknowledgment information from the recon	

ciliation process� A delay server determines the

latency and bandwidth to di�erent replicas and

provides these values to the kernel for replica se	

lection� The experiments presented here evaluate

two of the aspects of the system� �� measuring the

overhead of providing view consistency and �� the

costs of switching to the high performing replicas

while providing view consistency�


�� View�Consistency Overhead

The overhead of view consistency is measured

by comparing the cost of view consistent versus

non	view consistent �or base Ficus� accesses� We

use four Sun IPCs� each with �� MB of main mem	

ory� connected by a ��Mb�s Ethernet connection�

Accesses were done from one machine� while data

replicas were stored remotely on the other three

machines� No tests were done with locally stored

replicas because view consistency can then be pro	

vided with no overhead �Section �����

We performed seven benchmarks with one� two

and three data replicas� The �rst test is the modi	

�ed Andrew Benchmark �mab� ��� that is intended

to model a mix of �ling operations and hence be

representative of performance in actual use� The

second and third tests are local and remote recur	

sive cp and the fourth test is grep� Each of these

tests exercise the read and write �le operations�

The �fth and sixth tests are find and rm programs

that primarily execute recursive directory opera	

tions� The last test is the ls program� which reads

directory contents� The mab test is performed on

��� MB of data� The grep and ls tests operate

on ��� �les containing ���KB of data� All other

tests operate on ���� �les with ��� MB of data�
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Figure �� Remote access times of base Ficus and
view	consistent Ficus� The lower graph shows the
consistency overhead �in gray� when the view con	
sistency attributes are obtained along with data�

The results of the three replica benchmarks are

shown in Figure �� Since view consistency is en	

forced by clients� the overhead does not change

signi�cantly with di�erent numbers of replicas and

the results for the single and two replica experi	

ments are very similar� The upper graph in Fig	

ure � shows the elapsed and system times of base

Ficus and view	consistent Ficus for remote ac	

cesses� The ��� con�dence intervals are shown

for the elapsed times� The costs of providing

��



view consistency for �le operations and for di	

rectory operations are shown separately for view	

consistent Ficus� Note from the upper graph that

find� rm and ls have no view	consistency over	

head for �le operations� since these operations

predominantly operate on directories� The over	

head of view consistency for remote accesses is also

shown in the lower graph of Figure �� This over	

head includes both �le and directory operations�

The overhead for all tests except grep is between

� to �� percent� The grep overhead is ��� percent�

To understand this large overhead� we com	

pared grep and cp since they perform similar

vnode operations� We found that most of the

overhead in the grep benchmark occurs because

we obtain view	consistency attributes separately

from data� and thus go over the wire twice for

each �le operation �for which view consistency is

provided�� We also found that the cost of getting

remote attributes is ��� ms per operation� cost of

running grep on a single remote �le is ���� ms�

and the cost of performing a cp on a single �le is

����� ms in Ficus� Therefore� the large grep over	

head is because grep is a much faster operation

and because getting attributes is a �xed cost op	

eration� Moreover� while cp gets attributes once�

grep gets attributes twice per �le� This by itself

doubles the time for executing grep�

The gray area in the lower graph shows the over	

head of view consistency when attributes are ob	

tained with data� The overhead for grep and for

most other benchmarks decreases to between � to

� percent� We measured this overhead by using at	

tributes that are obtained during opens and by not

updating these attributes from the server on each

operation�� Finally� as explained in Section ����

�This can violate view consistency for operations other
than open� but is nonetheless useful for understanding the

the � to � percent overhead of view consistency

can be reduced even further by getting the view	

entries in parallel with the �le operations�


�� Availability Measurements

We measured the cost and performance bene	

�ts of switching to the highest performing replica

while providing view consistency� Accesses are

switched to a new replica when it is view con	

sistent and improves overall access times� The

overall performance of each replica is measured in

terms of replica delay values that are determined

by a user	level delay server� The replica delay val	

ues were simulated in our experiment as shown in

the upper	most graph of Figure �� This was done

because delay values did not change signi�cantly

�or frequently� in our experimental LAN environ	

ment� The delay� values were changed every ���

seconds� They were �xed at �� for replica �� var	

ied periodically between � and �� for replica ��

and varied randomly between � and �� for replica

��

The seven benchmarks used earlier �Section ����

were run with the simulated delay values� The

replica that is accessed is shown in the middle

graph of Figure �� The number of replica switches

during the experiment� is shown in the lowest

graph in Figure �� The lowest and the middle

graph in Figure � show that multiple replicas are

accessed during replica switching�

Replica switching takes place when the cur	

rently accessed replica is at least switching�factor

�set at � for this experiment� slower than the best

overhead�
�A faster replica has a lower delay value�
�The total time to perform these benchmarks is approx�

imately 	� minutes �as can be seen by taking the sum of
the elapsed times of each of the benchmarks in the upper
graph of Figure 
� but this experiment took ��� minutes
because each access is logged to disk�

��
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Figure �� The replica delay values for three replicas� the replicas accessed� and the number of switches
performed in a period of one hour and forty minutes

replica� This was true for all the replica switches

except the last one �around time ���� seconds�

when accesses switched from replica � to replica �

although replica � is the fastest replica� The de	

lay value di�erence between replica � and � is not

much at this time� Many �les were accessing rep	

lica � in the past �around time ���� seconds�� This

last accessed replica is known to be view consistent

and is not much slower than the fastest replica� It

is therefore given priority and these �les still ac	

cess replica �� This condition does not occur in

any other part of the experiment�

The total number of accesses in the experiment

was ������� With no replica switching� the aver	

age access time would be �� �in terms of delay val	

ues�� since replica � would be accessed each time�

The ideal average access time �the replica with

the lowest access time is accessed every time� is

����� a ��� improvement� The average time for

each access with replica switching is ������ a ���

improvement� The choice of the switching	factor

a�ects this improvement� A lower value improves

��



performances but can cause more replica switch	

ing overhead� The value also depends on the type

of environment� Generally� a larger value should

be chosen when the bandwidth and latency change

rapidly� as in large	scale environments� A smaller

value can be chosen when replica switching costs

are low�

An interesting result of the experiment as seen

in the lowest graph is that just a few replica

switches induce every �le to switch replicas� This

happens because of the default replica switching

rule� When a directory gets switched to a new rep	

lica� later accesses to �les in the directory start by

accessing this new replica� Although the last ac	

cessed replica has higher priority� this replica is

very slow at each replica switching period �except

the last one as explained above�� Thus the new

replica is given higher preference and accessed�

and switching happens naturally for most �les�

Therefore� the explicit cost of switching in Ficus

is very low�


 Related Work

Our work is closely related to Bayou ����� an

eventually consistent system� that provides session

guarantees to reduce client inconsistency� These

session guarantees are provided to process and

process groups� We extend session guarantees to

handle other transient� persistent and distributed

entities� Instead of viewing the problem as provid	

ing guarantees for a session� we view it as provid	

ing guarantees to entities� We discuss view con	

sistency for distributed entities and believe that

many more applications will bene�t from such

guarantees� We also show how replica selection

interacts with view consistency�

Causal ordering of reads and updates by Ladin�

et al�� ��� provides guarantees similar to view con	

sistency� Unlike view consistency� causal order	

ing requires application�speci�c changes since ap	

plications must specify the causal relation be	

tween their operations� Causal ordering is en	

forced by replicas while view consistency is en	

forced by clients or entities� View consistency is

therefore more scalable �in terms of server load�

and requires minimal changes at the servers� An

advantage of causal ordering is that it can provide

more generic inter	client guarantees� View consis	

tency deals with this issue partially by combin	

ing the clients into a single entity and providing

consistency guarantees to this entity group� The

combining of the clients into a single entity can be

done dynamically�

Client	based consistency has been used by

Alonso� et el�� ��� to provide quasi�copy consis	

tency� Quasi	copies are cached �or stashed� copies

of data that may be somewhat out	of	date� but are

guaranteed to meet certain consistency predicates�

Client consistency for quasi	copies can generally

be maintained for age	dependent predicates only�

For example� the �not more than two versions old�

predicate can only be enforced by the server�

Zadok and Duchamp ���� address the problem of

providing data from the fastest available replica�

They improve the auto	mounting daemon inUnix

systems and allow transparent switching of open

�les to replacement �le systems that are dynami	

cally discovered� The latency of the NFS lookup

operation is monitored and used to assign delay

values to di�erent replicas� Their solution works

for read	only �le systems because they do not deal

with replica consistency� Thus issues related to

tradeo�s between consistency and availability do

not have to be addressed�

��



� Conclusions and Future Work

View consistency aims to provide consistent

data in widely distributed and mobile systems� It

covers the space between conservative and opti	

mistic schemes by providing consistency to each

entity while allowing high availability across en	

tities� E�ectively chosen entities can reduce con	

current accesses for various user working styles�

The model is scalable in the number of repli	

cas since clients enforce consistency� This pa	

per focuses on whether view consistency can be

achieved in practice� The prototype implemen	

tation on Ficus maintains the consistency infor	

mation at each client e
ciently� It provides view

consistent data while taking data availability and

performance into account� Our experiments show

that view consistency for centralized entities can

be provided at a low cost�

Future Work More experience is needed with

view	consistent systems� Does view consistency

satisfy the consistency demands of many applica	

tions� We are currently developing a user	level

version of Ficus called Rumor that can be de	

ployed more extensively� The bene�ts and costs of

view consistency for large	scale disconnected and

mobile use can then be measured more precisely�

It will also give us an idea of the applications that

bene�t most from view consistency and the appli	

cations that need higher consistency�

We are currently implementing coordinating

the view	entry databases for distributed entities�

We are also examining suitable de�nitions of dis	

tributed entities� For non	overlapping accesses in

time �such as using di�erent machines at di�er	

ent times of the day� the view	entry database can

be transfered from one machine� say on a PCM	

CIA card �or on a Java ring������ and integrated

with the database of the new machine� We assume

that view	entries are much smaller than �les� and

it is more useful to carry the consistency infor	

mation rather than recently accessed �les in the

card� Files can then be loaded on demand from

the previous machine if they are newer there�
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