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Abstract

This report is about estimation of the pitch of a speaker� It is based on an
earlier report by the author �� and is intended mainly to make the material
presented there more accessible� It is intended as a review of a number of pitch
estimation techniques with the objective being to highlight issues involved in
obtaining a reasonable estimate of the pitch� These issues form the basis for a
companion report where a technique using cepstral smoothing will be described�
The �rst part of the report is a discussion of various pitch estimation algo�

rithms and their relative strengths and weaknesses� The second part elaborates
on a well�known technique that is based on the cepstrum� The cepstrum itself is
typically derived from spectral information obtained using a short�time analysis
window� Unfortunately� an apparent weakness of the cepstrum technique is that
the length of this analysis window can a�ect the quality of the pitch estimate
deleteriously depending on the pitch of the particular speaker� With the aver�
age pitch of a speaker ranging from less than �	 Hz for a male� to more that
�		 Hz for a female and as much as �		 Hz for a child� this can be a substantial
problem� To alleviate this problem we propose a technique to adapt the length
of the analysis window iteratively based on the estimated pitch of the speaker�
We provide estimation results for speech from the TIMIT corpus�
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� Introduction

Robust pitch estimation is important in many areas of speech processing� Pitch
estimation is necessary for coding and recognition of speech� For example it
is used in modern speech coders ��� technology for the hearing impaired and
speaker recognition systems ��� In this report� depending on the context� pitch
is used refer to either the pitch period� or pitch frequency� The pitch frequency
is also sometimes referred to as the fundamental frequency�

��� Model of pitch

The general idea of pitch estimation or detection is to obtain the period of the
glottal excitation waveform� This waveform is the result of the periodic opening
and closure of the vocal cords in the glottis while air is forced through from
the lungs� This results in a train of alternating high and low�pressure pulses in
the vocal tract� The periodic opening and closure happens for voiced sounds
only� for unvoiced sounds the air passes through the glottis unrestricted� Fig� �
depicts a simple discrete�time model for the production of a speech signal� The
glottal excitation waveform is generated as a �rst step in generating a voiced
sound� The sequence of high pressure pulses are further manipulated by the
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Fig� �� A simple discrete�time model for the production of a speech signal� The
glottal excitation waveform is generated as a �rst step in generating a voiced
sound�

vocal tract and other speech organs� The resultant measured speech signal is
modeled as the convolution of the excitation signal with the impulse response
of a �lter describing the vocal tract and other speech organs�
In the time domain the pitch information in voiced speech is present as

quasi�periodic signal excursions� see Fig� �� The long periods are caused by the
excitation �vocal cords� whereas the short periods are caused by the resonant
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cavity �vocal tract shape�� These periods can generally be labeled by the eye �
a method sometimes employed to obtain a reference pitch signal�
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Fig� 	� Time�domain representation of voiced speech�

��� Statistics of pitch

Statistical analysis of the pitch frequency on the Switchboard Phase�I corpus �

indicates a mean of ��� Hz and standard deviation of �� Hz for adult male voices�
The mean for adult female voices of �	� Hz is about twice that of the males�
while the standard deviation for females is �� Hz� Fig� � shows normalized
histograms of pitch frequency for male and female speakers� What is important
to notice from the �gure is the wide range of pitch�

��� Estimation of pitch

Referring to the model of pitch� a pitch estimator must make a

�� speech or non�speech decision

�� voiced or unvoiced decision �V�U�

�� and estimate of the pitch period in the voiced region�

Several pitch estimation techniques have been proposed to achieve this� Broadly
they can be classi�ed into three categories�

�� Time domain techniques� Peak and valley measurements� zero�crossings
and autocorrelation estimates� often with additional post processing logic�
Generally these techniques are noise sensitive�

�The Switchboard Phase�I corpus has speech from more than ��� speakers recorded over

the telephone�

�
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Fig� �� Histograms of pitch frequency for male and female speakers�

�� Frequency domain techniques� Periodicity in the time domain results
in useful impulses in the frequency domain at the fundamental and its
harmonics� Using short�time analysis to extract the frequency informa�
tion� these techniques are sensitive to the length of the analysis window
so that their useful dynamic pitch range tends to be limited�

�� Hybrid techniques� The former two techniques combined� for instance
spectral �attening together with autocorrelation� However� this combina�
tion does not readily solve the above mentioned weaknesses�

��� Estimation issues

As alluded to above� to estimate pitch there are several issues that have to be
addressed� Above �mentioned techniques are a�ected di�erently by the following
issues�

� The glottal excitation waveform is not a perfect periodic train of impulses
implying non�stationarity even of the excitation� Pitch vary within a
speaker and can sometimes drop or rise signi�cantly� This may happen
for example during glottalization or at the end of a phrase�

� The vocal tract transform and glottal excitation are not independent pro�
cesses� nasals being such a case�

� The vocal tract transform can be assumed stationary only for time periods
of less than about �	 ms�

�



� In the time domain� peak measurements �such as of the instants of excita�
tion� are sensitive to formant structure� while zero�crossing measurements�
for instance� are sensitive to noise and signal levels�

� In the frequency domain� telephone systems attenuate the fundamental
and its harmonics and introduce both additive and convolutative noise to
the speech�

� Low level speech makes discrimination of unvoiced speech more di�cult�

��� Quality of the estimate

Once the pitch is estimated it is necessary to evaluate the goodness of the
estimate� How this is done depends on the application� Fig� � depicts two basic
ways in which pitch may be estimated�
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Fig� �� Two basic ways in which pitch may be estimated�

Depending on the application� pitch estimation may be embedded in one
or more steps� In coding it is common to iterate between an analysis step
and synthesis step� with some criterion as to the goodness of �t applied after
the synthesis step� In this case it is typically to estimate both the position
in time and excursion of each glottal pulse� For recognition the synthesis step
is usually omitted and only the period or frequency of excitation estimated�
Since it is usually easier to obtain a reference of the speech than of the pitch �

it is generally easier to measure the goodness of �t after the synthesis step�

�A laryngraph is sometimes used to estimate the instants of glottal opening and closure�
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Accordingly� recognition is often based on rather ad hoc pitch estimates and the
goodness of �t evaluated in a rather ad hoc fashion�
While there exist a large number of di�erent pitch estimation techniques�

none are clearly superior ��� Moreover� these techniques have not been thor�
oughly compared with each other because of their widely di�ering nature and
the di�culty associated with obtaining a reference pitch estimate�
This report draws strongly from an earlier one �� and is intended mainly to

make the material presented there more accessible� While some of the techniques
mentioned in this report has since been surpassed by more powerful statistical
modeling techniques� they still provide useful information on the issues involved
in estimating pitch� As such this report forms the basis for a later one� that
details pitch estimation using a cepstral smoothing technique�
Section � discusses issues in pitch estimation in more detail and continues to

brie�y mention and compare a number of algorithms� some classical and others
more recent� Among the techniques the trend is towards more statistical ap�
proaches utilizing the information contained in large data bases� Notable are
classi�cation techniques that try to minimize a global error� A method to mea�
sure the quality of the pitch estimates is also introduced in this section� Section �
discusses an implementation of a statistical approach to detect the segments of
voiced speech� A cepstrum�based pitch estimation technique that adapts the
length of the analysis window based on the pitch estimate is introduced in sec�
tion �� Section � presents various results relating to the cepstrum�based pitch
estimator� These results are discussed in more detail in Section �� Section 

concludes�
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� Background

Rabiner et al� �� performed in ��
� a comparative study of pitch estimation al�
gorithms for telephone� microphone and wide band recording conditions against
a reference pitch signal� The techniques of pitch estimation were regarded as
widely representative at the time� These together with more recent techniques
are brie�y surveyed here� The weaknesses and strengths of individual techniques
are highlighted� The survey is intended to give a broad overview of the issues
involved in pitch estimation�

��� Autocorrelation technique

This is a time domain technique� The speech signal is lowpass �ltered to �		 Hz�
Fig� � shows a block diagram of the technique� Frames of �	 ms length are
extracted �		 times per second to account for the �	 ms stationarity of the
speech� Each frame is center clipped� according to a heuristic level and for
computational e�ciency then clipped to values of f���	��g� The autocorrelation
function is computed from � to �	 ms and then normalized� If the peak in
autocorrelation exceeds 	�� the section is classi�ed as voiced� else as unvoiced�
If it is classi�ed as voiced� the position of the peak gives the pitch period�
Additional silence or speech classi�cation is done according to the amplitude
energy�

section into
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speech
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Fig� �� Block diagram of the autocorrelation pitch estimator�

A con�dence estimate in noisy conditions for the voicing estimate is intro�
duced by Krubsack in ��� Three features are used�

�



� The RMS energy of a speech segment�

� The normalized value of the maximum correlation over the pitch range�

� The normalized energy of the correlation over the pitch range�

Using the last two features Krubsack shows that voiced and unvoiced speech
are partly separated in the plane of these features and that the distance of a
speech sample from a decision boundary in this plane can be used as a con�dence
estimate when noise is present� This statistical approach will later be used in a
modi�ed form in the cepstrum implementation described in section ��

��� Average magnitude di�erence function technique 	AMDF


The number of short�time zero crossings and the short�time energy are used
for voiced�unvoiced classi�cation� See Fig� �� An average magnitude di�erence

decimate
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max/min
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speech

unvoiced

V - period

decision

V/U

logic

Pitch period
AMDF

Energy

LPF

zero crossing

Fig� 
� Block diagram of the average magnitude di�erence function technique�

function is used in a way similar to the autocorrelation technique� The pitch pe�
riod is obtained from the location of the minima of this function� This technique
is faster than the autocorrelation technique� but �coarser��

��� Simpli�ed inverse �ltering technique 	SIFT


This is also known as the spectral equalization and transform technique� Consec�
utive �	 ms long speech segments are lowpass �ltered to �		 Hz and decimated
according to the Nyquist criterion� See Fig� 
� An inverse �th order LPC �lter
is used to spectrally �atten the input signal� This partly removes the e�ect of
the vocal tract and leaves the glottal excitation spectrum� This �error� signal is
autocorrelated and interpolated at the peak to determine the pitch� A voiced
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Fig� � Block diagram of the SIFT pitch estimator�

or unvoiced decision is based on the amplitude of the peak� A silence detector
is also used� Markel and Gray �� pointed out a weakness of spectral �attening
which is that �attening with the spectral estimate for nasals tends to corrupt
the pitch information� This is due to the fact that the LPC spectral estimate
for nasals is poor because of the presence of zeros 
�� This algorithm requires
special bandpass �ltering to limit the sensitivity to zeros of the spectral esti�
mate� This can be considered a hybrid technique because of spectral �attening
done in the frequency domain and autocorrelation done in the time domain�

��� Cepstrum technique

The speech signal is chopped into �� ms long segments and each segment is
weighted with a Hamming window� See Fig� �� The cepstrum� de�ned in a
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Fig� �� Block diagram of the cepstrum pitch estimator�

later section� is then computed� As in the autocorrelation technique� if the peak
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value in the pitch domain exceeds a certain threshold� the section is labeled
voiced� with the peak location determining the pitch� If the peak is below the
threshold and the zero�crossing rate is low� the section is classi�ed as unvoiced�
Additional silence or speech classi�cation is done according to the amplitude
energy� This technique can be regarded as a frequency technique because of the
deconvolution that occurs in the frequency domain�

��� Parallel processing technique

This time�domain technique �� has found widespread application in real�time
systems� The signal is lowpass �ltered to �		 Hz� See Fig� �� Six impulse
function signals denoting peaks and valleys are measured� Pitch periods are
obtained from each function� These are then combined to determine the pitch
period� while a voiced or unvoiced decision is based on their agreement� Silence
detection is also used� The idea is described in more detail below� The outputs

Filter

silencedetector
silence

six individual pitch estimators

pitch period

m6

m5
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Speech

computation

pitch period
Final 

PPE6

PPE5

PPE4

PPE3

PPE2

PPE1PPE1

signal peaks
processor of

Fig� �� Block diagram of the parallel processing technique�

of multiple elementary pitch period estimators are combined in parallel� The
speech signal is band �ltered to between �		 and �		 Hz and peak and valley
measurements made� Six di�erent peak�valley functions are generated and for
each a preliminary pitch is estimated� The six estimates are combined and a
�nal pitch produced�
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The following measurements are made �see Fig� �	�� Ifm� orm� are negative�
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Fig� ��� The peak and valley measurements�

they are set to zero� Each peak is blanked and then decayed�

� � 	��Pav � �
Pav

	����

where � is the blanking interval� � the decay rate and Pav the average pitch
period�
A �x� matrix with entries from each function is formed�

� The �rst three rows are the three most recent estimates�

� The fourth row is the sum of the �rst and second�

� The �fth row is the sum of the second and third�

� The last row is the sum of the �rst three rows�

The last three rows are in case of �halving� type errors� Each entry is compared
to the �� others� four times� Each of the four corresponds to a di�erent window
length by which the entries can di�er while still being taken as similar� A
similarity count is made for each entry in the �rst row and bias is corrected�
The preliminary pitch with the highest similarity count is taken as the true
pitch� If there is wide disagreement among the preliminary pitch estimates the
speech is classi�ed as unvoiced� The algorithm is reported to work well if the
pitch frequency is below ��	 Hz�
This technique was recently reimplemented by Hassanein ��� He adapts the

window lengths according to the pitch estimate and uses additional zero crossing
and energy information to decide whether the speech is voiced or unvoiced� He
implemented his parallel processing technique on a TMS��	 for a ��		bits�s
LPC vocoder�
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��� Pitch estimation with banks of bandpass �lterpairs

This technique �	� is a frequency domain approach and is based on modern
vector quantization techniques� One thousand bandpass �lter�pairs are used
to extract spectral information relating to the harmonics below a frequency of
�			 Hz� The �lter outputs are grouped as a vector and pattern matched to
a precalculated code book of reference vectors� Fig� �� shows one of the �lter�
pairs� The Hc� and Hc� are bandpass �lters with center frequencies fc � f
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Fig� ��� A bandpass �lter�pair�

and fc� f respectively� The time average of ec�n� approaches � or �� according
to fs � fc or fs � fc for input fs� The time average of gc�n� becomes low when
fs deviates from fc� This means that if fs � fc the output ec�n� is positive
while gc�n� is high near each harmonic frequency� The ei and gi are smoothed
to obtain a slope and power level vector respectively� The pitch are resolved
after pattern matching a reference vector �obtained from synthetic data� to the
obtained vectors e and g� Multple candidate frequencies are checked� A poor
voiced or unvoiced decision� based on this multiplicity of candidates at higher
harmonics� are reported to be the draw back of this technique� Also� pitch
resolution is low due to the pattern quantization�

��� Pitch estimation with a neuralnet classi�er

This technique is a time domain technique ��� using a neural network� It
is essentially and extension of an earlier �data reduction� technique described
by Rabiner ��� In the original technique� the speech signal is lowpass �ltered
and excursion cycles between the zero crossings extracted� Additional energy
measurements are made for speech or non�speech and voiced or unvoiced clas�
si�cation� Ad hoc logic is used to place pitch markers on the signal peaks
corresponding to pitch� In the neural network system� the �logic� necessary to
place pitch markers is optimized statistically in the form of a neural network
using a large speech corpus� Two systems are implemented� one using the wave�
form samples directly and one using the waveform peaks�
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Using the waveform samples

The �ltered speech signal is downsampled according to the Nyquist criterion
and a number of samples� spaced 	��
� ms apart� are extracted� Invariance is
limited when switching from male to female speech� A total of �� samples are
used with the neural network containing �	 hidden units� The lowest attainable
error against visually estimated pitch is reported to be ���!�

Using the waveform peaks

For neural�net classi�cation on peaks it is critical that invariant features are
used� It is known that�

� Pitch peaks are generally larger than neighboring peaks�

� Amplitudes decrease intermediate to pitch peaks�

� Successive peaks are equally spaced�

Information from seven adjacent peaks are used and again a neural�net with
�	 hidden units are used� The peak features used are�

� Normalized amplitude�

� Time di�erence between peaks�

� Correlation of signal between peaks�

� Normalized zero to zero crossing width�

� Negative amplitude between every pair of positive peaks�

The signal is lowpass �ltered to 
		 Hz� The classi�cation is then a two class
problem� label peaks as pitch peaks or not� This technique is therefore similar
to the data reduction technique with the basic di�erence that a neural network
is used instead of elaborate decision logic� Non�vocalized parts of the waveform
are classi�ed as non�pitch� The peak excursion peaks usually contain most
information and the positive peaks are used because they correspond to positive
presure at the lips�
Using the waveform peaks� the lowest obtained error rate using peak informa�

tion against visually estimated pitch is reported to be � !� The authors noted
that this technique fails on band�limited telephone speech ���� They report
errors due to ambiguous peaks� weak signals and transitions� The neural�net
technique shows the trend to intensive use of data� where �				 training samples
were used from �	 di�erent speakers�

��� Postprocessing

Since estimates of the pitch tend to be noisy� the pitch is smoothed using a
median �lter� A ��th order median �lter is typically used�
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��� Estimation error

Rabiner �� de�ned four types of errors when comparing a pitch estimate and
reference signal of the pitch periods� In the voiced region�

e � j "P � P j

where e is the error� "P the estimated pitch period and P the reference pitch
period� The four errors are de�ned as follows�

�� If the error is more than � ms it is classi�ed as a gross pitch error� This
error is usually due to pitch doubling or formant suppression such as found
during nasalization�

�� If the error is less than � ms it is classi�ed as a �ne pitch error� These
errors are normally attributed to measurement�

�� Misclassi�cation of the transition from the voiced to unvoiced region is
classi�ed as a voiced to unvoiced error �V�U error��

�� Misclassi�cation of the transition from the unvoiced to voiced region is
classi�ed as an unvoiced to voiced error �U�V error��

Based on these errors� gross error count� mean of �ne pitch error and standard
deviation of �ne pitch error are useful statistics�
We repeat the conclusions of Rabiner�s comparison of the pitch estimation

techniques brie�y� For more details the reader are referred to ���

Gross pitch errors The cepstrum technique performed best at low pitch fre�
quencies and overall� The parallel processing technique performed well at
higher frequencies�

Fine pitch errors No technique exhibited signi�cant bias so that �ne pitch
errors were di�cult to estimate� The cepstrum technique had the lowest
standard deviation at high frequencies� while the parallel processing tech�
nique performed less well due to its relatively low time domain resolution�

V�U errors The cepstrum technique had the poorest performance�

U�V errors The cepstrum technique had the best performance�

Generally the cepstrum and parallel processing techniques outperformed the
others� No estimator outperformed any other over all types of errors� The
time domain techniques did best at high pitch frequencies because more pitch
periods were contained in the time window� The frequency domain techniques
did best at low pitch frequencies because fewer harmonics of the fundamental
were included in the relatively short analysis window�
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� Detection of voiced speech

Before pitch can be estimated it is necessary to decide if the speech signal is
speech and then if speech� if it is voiced ���� This decision is based on a
statistical approach� Features on which these decisions can be based include�
short�time energy� zero�crossing rate and the residual from eg� LPC��ltered
speech� In the following we use short�time energy and zero�crossing rate�
The short time magnitude is computed every �	 ms for a �	 ms frame length�

�At a sampling rate of ��			 kHz this means that a frame consists of ��	 sam�
ples�� The short time average magnitude is de�ned as

M�n� �
nX

m�n�N��

js�m�jw�n�m�

where N is the window length and w�m� a hamming window� Similarly the zero�
crossing rate is computed for each frame ���� The number of zero crossings in
a window is de�ned as

Z�n� �

nX

m�n�N��

j�sgn�s�m��� sgn�s�m� ����jw�n �m��

These features are estimated from a large number of speakers in the TIMIT
corpus ��� excluding those on which the pitch are to be derived �refer Section ���
Analysis then allows the choice of thresholds and decision boundaries according
to probability density� Fig� �� shows a scatter plot of non�speech� voiced and
unvoiced samples as a function of magnitude and zero crossings� It can be seen
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that a choice for non�speech is to choose non�speech if Z � �����M � � and
Z � 	���� The speech or non�speech and voiced or unvoiced decision is made
according to the posteriori probability density functions �pdfs� with the choice
of classi�cation boundaries as described below�

Speech vs� non�speech Fig� �� �a� shows the pdfs as a function of magnitude�
Here the choice for non�speech is M � 	���� Fig� �� �b� shows the pdfs as
a function of zero crossings� Here the choice for non�speech is 	�� � Z �

	����

Voiced and unvoiced speech Fig� �� �a� shows the pdfs as a function of
magnitude� Here the choice for voiced speech is ��� � M by ignoring the
e�ect of the zero crossings� Fig� �� �b� shows the pdfs as a function of
zero crossings� Here the choice for voiced speech is Z � 	���
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� Cepstrum technique with variable analysis win�

dow length

We implement the cepstrum technique of pitch estimation ��� �� �
� ���� This
technique is generally regarded as being more robust to noise and channel e�ects
as present in telephone speech�

��� Cepstrum

In the technique� the cepstrum ��� is used as a means of deconvolving the
glottal excitation and vocal tract �lter responses according to the model of
speech production �refer Fig� ��� Fig� �� depicts this process�

^^
x(n)

F 
X(z)X(z)x(n) -1

F log [ ] [ ][ ]

Fig� ��� A block diagram for obtaining the cepstrum�

The speech signal s�n� � p�n� � h�n� is modeled as the convolution of an
impulse train p�n� and impulse responses h�n� of the glottal distortion� vocal
tract and radiation models� By applying a short�time analysis window w�n� to
the speech signal and transforming to the frequency domain

X�z� � S�z� � P �z�H�z��

where X�z� should be interpreted as having been estimated subject to the anal�
ysis window� Then in the logarithmic domain

"X�z� � logX�z��

� logP �z�H�z��

� logP �z�� � logH�z���

By transforming back to the time�domain a linear separable representation
c�n� � #x�n� � #p�n� � #h�n� is obtained� This representation is known as the
cepstrum� Impulses in the cepstrum correspond to periodicity of the input sig�
nal� The location of such an impulse is proportional to the period of the original
impulse train and the energy of such an impulse is related to the energy of the
original impulse train� The low time information in the cepstrum �periodic
components with a high fundamental frequency� corresponds to the vocal tract
transfer function while the high time information �periodic components with a
low fundamental frequency� corresponds to the pitch� Fig� �� shows the cep�
strum for a speech signal�

��� Adapting the analysis window length

It is known that to obtain a reasonable estimate of the pitch period it is necessary
for the analysis window to include more than one pitch period ��� �	�� For
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shorter window lengths� the estimate may be overly sensitive to harmonics of
the pitch and pitch halving may occur in the estimate� However� if the length of
the analysis window is much longer than two pitch periods then the analysis no
longer agrees with the short�time stationarity assumption made of the speech
signal and the estimates may become noisy and smeared� In ��� �	� the length
of the analysis window was adapted based on previous estimates of the pitch
period� Accordingly� here we use a short�time analysis window length of �� to
�� ms corresponding to a window of ��� to �	�� samples at a �� kHz sampling
rate� This allows the useful dynamic range of the estimator to be increased� The
complete pitch estimator is shown in Fig� �
� The pitch frequency is computed
between �	 and �		 Hz corresponding to a pitch period of � to ���� ms or
�� to �		 samples� The cepstrum is computed for every frame and scanned for
a peak between � and ���� ms from the zero time lag point� If the signal is
voiced the peak distance is taken as the pitch period� The length of the analysis
window is adapted according to the previous �� estimates of the pitch ��� frames
or ��	 ms of speech� as follows�

� An initial ��	 Hz pitch frequency is assumed and the window length chosen
as ��� samples�

� If the average pitch estimate falls below � ms then the window length is
adjusted to ��� samples�

� If the average pitch estimate rises above � ms then the window length is
adjusted to �	�� samples�
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It is assumed that the unadapted pitch estimator will give good enough estimates
in the ��	 ms of speech so that a threshold shift in the average pitch estimate
indicates a valid shift in the pitch� In the few cases that the estimate becomes too
noisy the adaptation is restarted� In this case the parameters for the window
lengths are initialized to the values necessary for the estimation of a ��	 Hz
pitch frequency� For computational reasons� we use the Fast Fourier Transform
�FFT�� This limits the lengths of the analysis window to the three possible
values chosen� When the DCT or DFT are used the number of window lengths
can in principle be increased�

��� Post �ltering

The pitch period that is obtained from the cepstrum contains sporadic outliers
corresponding to among other� pitch doubling and halving errors� With the
variable analysis window length these errors are greatly reduced� To smooth
the pitch estimates a median �lter of length � is used once� This proved to be
su�cient� with little smearing� Further smoothing may be necessary if the pitch
is to be used in a coder or decoder�

��



� Pitch estimation results

Pitch estimation results for processed utterances from three speakers � in the
TIMIT data base are presented here� Among the speakers the minimum average
pitch frequency is �	 Hz and the maximum �		 Hz� Information on each speaker
Si as well as the phonetically rich utterance Ui spoken by that speaker is listed
below�

S� A female from the Southern part of North America� She is ��	�$ high with
a low pitched voice of about ��	 Hz�

U� �ralph controlled the stopwatch from the bleachers�

S� A male of height ��		$ with a pitch of about �	 Hz�
U� �salesmanship is still necessary but it�s a different brand

of salesmanship�

S� A female of height ���$ with a pitch of about �		 Hz�
U� �weatherproof galoshes are very useful in seattle�

The estimates of the pitch periods of these speakers will be studied in more
detail in the following sections�
Fig� �� shows a segment from the labeled utterance U� together with the

short�time zero�crossing rate and average magnitude� Phoneme labels taken
from the TIMIT corpus were used to determine how well the pitch estimation
algorithm detected speech or non�speech and voiced or unvoiced segments� The
estimated but unsmoothed pitch period for utterance U� is shown in Fig� ��� The
length of the analysis window was not adapted� The pitch period is plotted in
milliseconds� A scaled value of the detected peak in the cepstrum is also plotted�
The pitch period is plotted as zero where the speech signal was classi�ed as
unvoiced and �� where the speech signal was classi�ed as non�speech� The plot
of the cepstrum values shows that the proposed technique is fairly accurate at
discriminating between the voiced and unvoiced sounds� It is seen that although
the pitch period is a fairly smooth signal there are some points that lie at half
or double the speaker pitch period� This may be due to a too strong harmonic
or a weak signal� A too short or too long window length increases these errors�
To reduce some of these errors we smooth the pitch estimates using a length

� median �lter� We also investigate the e�ectiveness of adapting the length
of the analysis window� For comparison purposes� results in the next section
pertain to where the length of the analysis window is not adapted� In the section
thereafter� the length of the analysis window is adapted�

�The three speakers were chosen on the basis of the range of pitch frequencies spanned by

them� Without loss of generality� the results for only these three speakers are presented here�

The estimated pitch of other speakers conformed to the same observations and conclusions

reached in this report�
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��� Smoothed pitch periods of various speakers

The results are shown in Figures �	 to ��� Pitch period halving� where the
estimated pitch period is ��� ms instead of the average 
 ms� is observed in
Figures �	 and ��� As will be shown in the next section� this is an a�ect of
the analysis window being too short� In these regions the estimated pitch was
actually a harmonic of the pitch�
In U�� where the �rst word is repeated again at the end of the utterance� it is

informative to observe that the pitch of the same speaker can di�er substantially
within a single utterance � even for the same word� Also of interest is the
misclassi�ed �en� phoneme at the end of the utterance� Here the zeros in
the spectrum suppressed the spectrum and reduced the zero�crossing rate and
spectral energy�
Pitch doubling� as visible in U�� can be attributed to a too long analysis win�

dow length� The too long window allows the inclusion of amplitude modulation
due to lower formants� The pitch estimate is then wrongly based on the period
of this amplitude modulated signal�
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��� Smoothed pitch periods of various speakers with adap
tation of the analysis window length

Utterances U� to U� are again used� but with adaptation of the analysis win�
dow length� Pitch estimation errors are seen to decrease� with the previously
observed errors absent as shown in Figures �� to ��� The slight increase in
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Fig� 	�� Analysis window length adapted� Pitch period �ms� for U��

misclassi�cation is ascribed to the fact that the cepstrum peak value used in
the voiced�unvoiced classi�cation was not adapted in step with adaptation of
the analysis window length�
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� Discussion

The pitch period doubling observed in U� as shown in Fig� �� with no adaptation
of the analysis window length can be attributed to amplitude modulation of the
speech signal� See Fig� �� where the halving of the period can be seen in the
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Fig� 	
� Pitch period in the phoneme �ae� where amplitude modulation is
present�

middle part of the signal for the �ae� phoneme� In the �gure� it appears that
alternating pitch frames are better correlated� The too long analysis window
includes the longer period and causes the error� This phenomenon is a problem
in most of the frequency domain and autocorrelation type techniques� A peak
picking scheme or the proposed analysis window length adaptation helps to
alleviate such errors�
Marks ��� pointed out that pitch is di�cult to estimate for nasals� We

remarked previously that time�domain techniques are in particularly a�ected
by the presence of zeros in the signal due to the nasals� A nasal phoneme with
cepstral�estimated pitch is shown in Fig� �
� It can be seen that the peaks in
the time signal are indeed very noisy� Doing the estimation in the frequency
domain instead� leads to a pitch period of ��� ms� which is in agreement with
the instants of maximum excitation in the time signal�
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	 Conclusion

Various pitch estimation algorithms and their relative strengths and weaknesses
were discussed� Among these the cepstrum technique of pitch estimation was
selected� Provided that the length of the analysis window was adapted this
technique performed well on speakers with pitch ranging from �	 to �		 Hz�
A number of issues involved in obtaining a reasonable estimate of pitch were
discussed� It was shown how pitch estimation in the time domain and frequency
domain are a�ected di�erently depending on the length of the analysis window�
It was shown that adapting the length of the analysis window can improve the
estimates of the pitch made by cepstrum�based technique�
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A Appendix

type VOICED LABEL EXAMPLE WORD TRANSCRIPTION

Stops yes b bee BCL B iy
yes d day DCL D ey
yes g gay GCL G ey
yes dx muddy� dirty m ah DX iy� dcl d er DX iy
no p pea PCL P iy
no t tea TCL T iy
no k key KCL K iy
no q bat bcl b ae Q

Africates yes jh joke DCL JH ow kcl k
yes ch choke TCL CH ow kcl k

Fricatives yes z zone Z ow n
yes zh azure ae ZH er
yes th thin TH ih n
yes v van V ae n
no sh she SH iy
no s sea S iy
no f �n F ih n
no dh then DH e n

Nasals yes m mom M aa M
yes n noon N uw N
yes ng sing s ih NG
yes em bottom b aa tcl t EM
yes en button b ah q EN
yes eng washington w aa sh ENG tcl t ax n
yes nx winner w ih NX axr

Silence NA pau pause
NA epi epenthetic silence
NA h% begin�end marker

Table �� TIMIT phonetic labeling�

��



type VOICED LABEL EXAMPLE WORD TRANSCRIPTION

Semivowels yes l lay L ey
glides yes r ray R ey

yes w way W ey
yes y yacht Y aa tcl t
yes hh hay HH ey
yes hv ahead ax HV eh dcl d
yes el bottle bcl b aa tcl t EL

Vowels yes iy beet bcl b IY tcl t
yes ih bit bcl b IH tcl t
yes eh bet bcl b EH tcl t
yes ey bait bcl b EY tcl t
yes ae bat bcl b AE tcl t
yes aa bott bcl b AA tcl t
yes aw bout bcl b AW tcl t
yes ay bite bcl b AY tcl t
yes ah but bcl b AH tcl t
yes ao bought bcl b AO tcl t
yes oy boy bcl b OY
yes ow boat bcl b OW tcl t
yes uh book bcl b UH kcl k
yes uw boot bcl b UW tcl t
yes ux toot tcl t UX tcl t
yes er bird bcl b ER dcl d
yes ax about AX bcl b aw tcl t
yes ix debit dcl d eh bcl b IX tcl t
yes axr butter bcl b ah dx AXR
yes ax�h suspect s AX�H s pcl p eh kcl k tcl t

Table �� TIMIT phonetic labeling continued�
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