
Extended Abstract

The Anatomy of a Component Generator 01/27/98 1

The Anatomy of a Component Generator1

Walid Taha & Jim Hook
{walidt, hook}@cse.ogi.edu

The Oregon Graduate Institute

In this extended abstract, we outline some essential elements of a conceptual model for a component generation
system. This model is based on an extensive study of a large number of high-level program generation systems, and
the significant body of related literature. We focus our attention on the architectural elements of this model, and
briefly discuss the technological and process elements. We show how the model is a useful basis for comparing
component generation technologies. With a rapidly growing area like component generation, it is hard to get a truly
representative sample of generators. As a workaround, we illustrate our model using seven significant component
generation systems developed by various research groups, and discuss some insights that the model provides. We
conclude with an overview of the current status of our investigation.

1. The Pragmatic Need for Models

We know that component generation can be very beneficial for evolving systems, but we don’t have a widely-accepted
conceptual model for component generation systems. Conceptual models allow us to categorize and distill our
knowledge of details into more manageable and structured information. We believe that such a model would facilitate
better communication of ideas, within our own research group (PacSoft), within the component generation research
area, within the programming languages area, and with the outside world. For example, it will necessarily play an
important role in transferring our ideas as a research community to software houses that can develop industry-strength,
general purpose component generators.

We have been working towards such a model for almost three years now, and have studied over 100 related
publications, in addition to being involved in PacSoft’s SDRR component generation project [KMB96]. Why has it
taken so much effort? The major hurdle is that interesting component generation systems emerge from many corners
of computer science, which often means incompatible vocabularies. For example, the word “Component” can have
significantly different meanings in different papers2. The diversity of programming languages, operating systems, and
tools used in developing the generators, and of the researchers’ expectations from all of these, add significantly to the
difficulty of understanding the literature in a manner that would allows us to compare and contrast two different
generation technologies.

2. The Architectural Element

Software architectures [PW92] communicate ideas about software systems, and are especially useful when parties
involved come from a variety of different backgrounds. Architectural descriptions provide an abstract basis for our
model, a basis that is independent of the technology underlying the generator, the development process, and the
application domain.

Even when composed of relatively simple subsystems, the collective architecture of a generator is often quite complex,
and involves a significant number of distinct artifacts and users. Artifacts include the generator, the input and output
of the generator, libraries, and the legacy system hosting the generated component. Users include the developers of
the generator, it’s input, and the libraries. Ideally, the input to the generator is a simple, compact specification that is
easy to maintain. However, it is often the case that an executable program cannot be generated solely from such

1 This research is supported by a contract with the USAF Materiel Command. Contract F19628-93-C-0069.
2 In this paper, it will mean CORBA/COM-like components.

Extended Abstract

The Anatomy of a Component Generator 01/27/98 2

specifications. Therefore, it is common to find an additional (specification) language, often in the form of
annotations, for controlling the generator. There may even be a developer dedicated to this task.

Hence, a model for component generators should admit all possible answers to the following questions:

• What is the input to the generator? Who writes this input?

• What is the output of the generator? Who uses it?

• What libraries does the output use? Who writes these libraries?

• How does the generator work? Who wrote it, and how? How is it controlled?

• With what systems does the generated component interact?

While it is not common to consider all of these dimensions of variability simultaneously, this is precisely what is
needed when we wish to relate and contrast more than one existing component generation system. The figure below is
a schematic1 representing the minimal architectural schema that arises if the answer to the each of the above questions
is distinct.

The figure above explicates the implicit complexity of even the simplest generative system. For instance, consider the
yacc parser-generator [Joh75]. Development work on the generator itself has stopped, and hence, we usually don’t
think of either the developer or the source yacc.c. The generator input is the grammar proper, and the control
annotations are the directives regarding precedence and association. Note that control annotations need not be in a
separate file. The component developer and the generator controller are the same person. The grammar file could
also contain further control instructions about what library files the generator output might be using. The libraries
used by the generator output include lib.y.c, which contains the abstract machine for the parse table The interface is
usually header files describing the legacy system functions that the parser uses. Finally, while we rarely see a user
directly interacting2 with the parser generated by yacc, the user of the legacy system is, indirectly, the component user.

1 Drawn in the Generator Description Language, GDL [TS97].
2 Interaction commutes, and hence, we could have drawn the component user directly connected to the generated
component, and the diagram would have had the same meaning.

Control
Annotations

Generator
Output

Library

 Generator
Input

 Generator
(source)

Generated
Component

Legacy
System

 Generator

Generator
Developer,GD

 Component
Developer, CD

Library
Developer,LD

Generator
Controler,GC

Component
User, CU

Legacy
Source

Interface

Extended Abstract

The Anatomy of a Component Generator 01/27/98 3

2.1 Basic Distinguishing Characteristics

Certain aspects of the architecture sketched in the last section are “not negotiable”: a generative architecture has to
include a generator, a generator input, and a generated component. And every artifact that is not mechanically
generated must have an author. The architecture described above gives us a very natural basis for our model that
captures these essential invariants. However, it offers too many dimensions of variability. The design space is indeed
vast. But some of these dimensions are more informative than others, in that they are better discriminators between
various component generation systems. We have identified basic distinguishing characteristics :

1. Who is the primary user, that is, the “customer” the system is intended to benefit?

2. What expertise is expected from the main user?

3. Which users are distinct, and which users are not? For example, is the role of generator development identified
with the role of generator control?

4. Does the generator have a distinct notion of control annotations?

These factors are derived or computed from the architectural variabilities. In the following section, we illustrate the
relevance of these criteria by considering some important generative systems.

2.2 Application to Seven Research Component Generation Systems

For brevity, we will not review all the systems we have studied. Instead, we present summary of our observations, and
then illustrate how these observation can be interpreted. In the following table, “=” between two different kinds of
users means that we did not find them to be treated differently. In cases where there is no explicit notion of control
annotations, the input to the generator can be viewed as being an “ Implicit” control specification:

Systems Primary
User(s)

Primary User’s
Expertise

Distinct Users Control
Annotations

ISI [Bal81,Bal92] GD, CD GD: Meta-programmer,
CU: Domain expert

CU, CD=LD, GC=GD Pragmas

MIP [MKS97] CU Domain expert CU=CD=GC, GD, LD Implicit

GenVoca [BST+94] LD Programmer CU, CD=GC=LD, GD Design rules

KIDS / SpecWare [Smi90, SJ94] CD Formal methods expert CU, CD=GC=LD, GD Refinements

SDRR [BH+94, KMB96] GD, CD Domain expert CU=CD, GC=GD=LD Implicit

Amphion [LPP+94] CU Domain expert CU=CD, GC=GD, LD Implicit

AOP [GLM+97] CD Programmer CU, CD=GC=GD=LD Aspects

Let us consider the first case: In the ISI technology, the generator developer (GD) uses the POPART meta-
programming tool-kit and a relational extension of C or Java to develop the generator [Bal92,Wil81,Wil90]. In the
literature we surveyed, the roles of the generator controller (GC) and generator developer were not distinguishable.
Pragmas are used to guide the relational compiler as to how to implement relations.

Extended Abstract

The Anatomy of a Component Generator 01/27/98 4

The following sub-sections discuss two of the main observations that can be drawn on the basis of this information.

2.2.1 What to Mix, and What to Match

Consider the kind of information that might interest a software engineer interested in building a component generator.
Some technologies address similar classes of users, such as ISI and SDRR, and MIP and Amphion. This means that
these technologies could be a good basis for synthetic systems combining the benefits of both. For example, SDRR’s
technology, which leverages on functional programming, can benefit greatly from ISI’s meta-programming
technology, and vise versa. When a basic distinguishing characteristic identifies two systems, there are usually many
other (often less-abstract) dimensions in which they are different. For example, MIP and Amphion fall on distinct
points along the dimension of real-time constraints. We consider this dimension to be somewhat less abstract than
architecture because it is more dependent on the application domain. Some of these dimensions should be in a model
for component generators, discussed in the next section.

Other technologies address users that are usually not emphasized by others. For example, GenVoca is unique in
addressing concerns of the library developer (LD). This suggests that high-level ideas from the GenVoca system
might be readily combinable with generation technologies covered in our survey.

2.2.2 How to Control Generation

Four very different kinds of annotations are being considered by three different groups, namely, ISI’s pragmas,
GenVoca’ design-rules, KIDS and SpecWare refinements, and AOP’s aspects. These annotations are an important
characteristic of modern component generation systems that was not commonplace in earlier transformational
programming systems.

Control annotations can be viewed as Domain-Specific Languages (DSLs). For example, yacc’s specifications for
precedence of operators is one such DSL. In this light, we can say that the first three kinds of annotations are single
languages, and AOP’s aspects can be thought of as families of DSLs. We believe that the study of these generator-
control DSLs will play an important role in developing general-purpose, industry-standard component generation
systems.

3. Technology and Process Elements

Our model also includes two other elements; the technology underlying the generation system, and the process by
which the generator itself is developed. Both can be viewed as refinements of the architectural model. The following
table summarizes some distinguishing characteristics of the systems surveyed:

Systems Underlying Technology Generator Development

ISI Meta-programming calculus and tools Using POPART tools and relational C or Ada

MIP Model-integrated real-time control Using the MIP paradigm

GenVoca Algorithm selection and object-
orientation

Using design rules to specify acceptable library
combinations

KIDS /
SpecWare

Formal verification Using specifications and refinements to characterize and
derive programs

SDRR Typed, functional programming Using SDRR to create the front-end of the SDRR pipeline

Extended Abstract

The Anatomy of a Component Generator 01/27/98 5

Amphion Theorem proving and program
synthesis

Using Meta-Amphion, a theory of the domain, and an
inference engine

AOP AOP Using (any technology?) to develop a weaver and aspects

4. Conclusion

We have outlined a model for component generation systems that we are currently developing. The model captures
some of the bare essentials required for an object of study to be considered a generator, without going too deeply into
the details of any particular system. We illustrated how it admits simple, clear, and objective criteria for comparing
component generation systems. Our work shows that there is significant diversity not only in the cultures and
application domains of contemporary component generation research projects, but also in technical problems that are
unique to the emerging research area of component generation, such widespread interest in generation control.

Acknowledgments: We thank Lisa Walton, Andrew Black, Sherri Shulman, Tito Autry, Therese Fisher, Shailish Godbole, and Amol Vyas for valuable

discussions.

Refferences
[Bal81] R. Balzer, Transformational Implementation: an Example, IEEE Transactions on Software Engineering, Vol. SE-7, Number 1,

January 1981.

[Bal92] R. Balzer, Design Refinement in DSSAs, Proceedings of the JSGCC Software Initiative Strategy Workshop , December 1992.

[BH+94] J. Bell, F. Bellegarde, J. Hook, et al., Software Design for Reliability and Reuse: A Proof-of-Concept Demonstration, In TRI-Ada ’94
proceedings , pages 396-404, November, 1994.

[BST+94] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin, The GenVoca Model of Software-System Generators, IEEE
Software, September 1994.

[GLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and J. Irwin, Aspect Oriented Programming, PARC
Technical Report, February 97.

[Jon75] S. Johnson, YACC --- Yet Another Compiler-Compiler, Computing Science Technical Report , Bell Laboratories, No. 32, 1997.

[KMB96] R. Kieburtz, L. Mckinney, J. Bell, J. Hook, A. Kotov, J. Lewis, D. Oliva, T. Sheard, I. Smith, L. Walton, A Software Engineering
Experiment in Software Component Generation, Proceedings of 18th International Conference on Software Engineering, Berlin,
IEEE Computer Society Press, March, 1996.

[LB95] M. Lowry, J. Van Baalen, Meta-Amphion: Synthesis of Efficient Domain-Specific Program Synthesis Systems, Proc. of 10th
Knowledge-Based Software Engineering Conference , Boston, Mass, Nov. 12-15, 1995, pp. 2-10.

[LPP+94] M. Lowry, A. Philpot, T. Pressburger, I. Underwood, Amphion: Automatic Programming for Scientific Subroutine Libraries, in Proc.
8th Intl. Symp. on Methodologies for Intelligent Systems , Charlotte, North Carolina, Oct. 16-19, 1994, pp. 326-335.

[MKS97] A. Misra, G. Karsai, J. Sztipanovits, A. Ledeczi, M. Moore, E. Long, A Model-Integrated Information System for Increasing
Throughput in Discrete Manufacturing, Proceeding of the Engineering of Computer Based Systems (ECBS) Conference, Monterey,
CA, March 1997.

[PW92] D. Perry and A. Wolf, Foundations for the Study of Software Architecture, ACM SIGSOFT Software Engineering Notes, 17:4,
October 1992.

[SB97] Y. Smaragdakis and D. Batory, DiSTiL: A Transformation Library for Data Structures, USENIX Conference on Domain-Specific
Languages , October 1997.

[SJ94] Y. Srinivas and R. Jullig, SpecWare: Formal Support for Composing Software, Proceedings of the Conference on Mathematics of
Program Construction , Kloster Irsee, Germany, July 1995. Kestrel Institute Technical Report KES.U.94.5.

[Smi90] D. Smith, KIDS: A Semi-Automatic Program Development System, IEEE Transactions on Software Engineering --- Special Issue
on Formal Methods, Vol. 16, No. 9., September 1990.

[TS97] W. Taha and T. Sheard, Facets of Multi-Stage Computation in Software Architectures, OGI Technical Report CSE-97-010,
September 1997, Oregon Graduate Institute.

[Wil81] D. Wile, POPART: Producer of Parsers and Related Tools. System Builders’ Manual, Technical Report, USC Information Sciences
Institute, 1981.

[Wil90] D. Wile, Adding Relational Abstraction to Programming Languages, ACM SIGSOFT Software Engineering Notes, 15(4), pp. 128-
139, September 1990.

Extended Abstract

The Anatomy of a Component Generator 01/27/98 6

