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Abstract

We introduce SWiFT, a toolkit for building adaptive system
software using a control-theoretic approach. SWiFT allows
systematic implementation of feedback-control mecha-
nisms. It also provides a framework for composing simple
feedback mechanisms that operate within limited domains,
and for dynamically reconfiguring them. This composition
allows the application to adapt efficiently across a wide
range of operating conditions. We describe a streaming
application to demonstrate the feasibility of this technology.

1  Introduction
In this paper we advocate a systematic approach for building
adaptive system software based on feedback-control theory,
and present a toolkit that incorporates this approach. Feed-
back control helps produce predictable control and monitor-
ing components. It requires the control goal and design
specifications to be clearly stated, thus allowing analysis of
properties such as stability. Our approach allows us to lever-
age the existing body of knowledge in hardware control for
controlling software systems.

Our goal is to move the task of building adaptive system
software from wizardry to engineering. Currently, feedback
controls of software systems are brittle and written in an ad-
hoc manner. As a result, it is difficult to move an existing
control, such as TCP flow control [11], to a new domain
such as CPU scheduling. In addition, existing controls are
built with implicit assumptions about the system’s run-time
environment and can become unstable in the face of large or
discontinuous variations in the operating environment.

SWiFT addresses these problems by providing a frame-
work and methodology for building controls that are modu-
lar, dynamically reconfigurable, and predictable.
Modularity results from our use of components and contain-
ers as the underlying abstraction. SWiFT enables dynamic
reconfiguration by limiting the interaction between compo-
nents to a simple input/output model and by supporting
guarding and replugging of controllers [14]. SWiFT sup-
ports predictability by providing analysis tools based on
control theory, and a domain-specific language for specify-
ing composition with predictable results. In addition,
SWiFT provides GUI-based debugging tools such as a soft-
ware oscilloscope and a library of feedback components

such as low pass filters to ease the task of building adaptive
system software.

We have implemented SWiFT in C++ and Java and we
have applied it to user-level applications running on Win-
dows NT. Version 1.0 of SWiFT is available (along with a
tutorial) at http://www.cse.ogi.edu/DISC/projects/swift. We
are currently developing adaptive control mechanisms in a
diverse range of domains on NT, from network flow control
in multimedia streams to proportion-based CPU scheduling.
These applications of SWiFT are discussed in more detail in
Section 5. In addition, we are building a visual editor for de-
signing, implementing, and monitoring controls using
SWiFT.

The next section describes related work. Then Section 3
presents the feedback-control model in SWiFT. Section 4
provides an overview of run-time reconfiguration of control
components and Section 4.1 describes an application of re-
configuration. Finally in Section 5, we describe our future
plans for SWiFT, and the types of applications where we in-
tend to apply SWiFT.

2  Related Work
The ideas in SWiFT are indebted to previous work on feed-
back-based control systems. Massalin and Pu introduced the
idea of feedback-based resource management in operating
systems in the Synthesis kernel   [15]. Cen built an early ver-
sion of SWiFT, and used it to build an adaptive distributed
multimedia player [4]. We have extended Cen’s toolkit,
ported it to NT, provided composition and analysis tools,
and incorporated a run-time reconfiguration mechanism.
These extensions are discussed later in this paper.

Several commercially available toolkits, such as Matlab [18]
and MATRIXx [9] support building linear [1], nonlinear [7]
and fuzzy [13] controllers. They provide various predefined
control building blocks, simulation, analysis and GUI tools.
The target applications of these toolkits are traditional hard-
ware or embedded control systems that have predictable dy-
namics and gradual transitions. These toolkits are designed
to be used off-line at control design time, whereas SWiFT is
designed for on-line run-time use. For example, SWiFT sup-
ports dynamic reconfiguration through guarding and replug-
ging, and direct manipulation of a running control through
its debugging tools.

Software feedback has been used extensively for adaptive
scheduling, flow and congestion control [11, 17, 12, 2] and
intra- and inter-stream synchronization in distributed multi-
media systems [16, 5]. SWiFT allows many of these mech-
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anisms to be built systematically, simulated and visualized.

The mechanisms used for dynamic reconfiguration in
SWiFT are similar to code replacement in specialization
[19, 14] and to object invocation in multi-dispatch object-
oriented languages [6], but the goals are different. Code spe-
cialization improves performance by replugging code that is
partially evaluated given invariants in the current environ-
ment, whereas SWiFT reconfigures policies tuned for the
current environment. Multi-dispatch languages can imple-
ment reconfiguration of arbitrary code, but this generality
disallows simultaneous composition of multiple, distinct
functionality. Section 4.1 shows that SWiFT’s simple con-
trol model allows simultaneous composition of multiple
feedback mechanisms.

3  Feedback Control Using SWiFT
Figure 1 shows the abstract architecture of a feedback con-
trol system built with SWiFT. The controller helps the sys-
tem maintain a reference value of a controlled variable,
while reducing the system’s sensitivity to disturbance. The
control is integrated with the system through monitors and
actuators. A monitor measures the controlled variable, and
is the source of the feedback. The controller’s output causes
the actuator to adapt the system’s behavior in response to
disturbances, or changes in the system’s environment. For
example, a feedback-based flow controller may monitor net-
work bandwidth and latency, and drive an actuator that ad-
justs the congestion window size.

The design of a feedback control system separates the
system from the control, the monitor, and the actuator, thus
providing a modular design. Given a controller, one can de-
termine a feedback control equation that specifies the con-
troller’s characteristic behavior. A controller may consist of
a combination of feedback controls. Using standard control
theory, SWiFT can determine the behavior of the composi-
tion of these simple controls by combining the equations for
the simple controls. Hence, our approach results in predict-
able, composable, and modular control designs.

As an example of using this approach, consider the task
of designing a network flow controller. One starts with a pa-
rameterized model of the system’s environment, and then
designs a control policy that tunes the system’s behavior to
the model. In this example, one can model the client’s re-
ceived packet rate, C, as varying linearly with the server’s

send rate, S, in the network. If S is less than the network’s
available bandwidth B, no packets are dropped and C equals
S. When S exceeds B, packets are lost due to congestion and
C is less than S (and probably less than B as well). In this ex-
ample, the job of the controller is to tune S to approximate B
by monitoring the rate of packet loss. Given the equation de-
scribing the relationship between C, S, and B, we can design
an appropriate controller.

3.1  SWiFT’s Abstractions

 The basic blocks in SWiFT are feedback components. Feed-
back components read data from their input port(s), calcu-
late an output value based on their characteristic behavior,
and pass the value to their output port. A control circuit is
built by connecting a component’s output port to input ports
of one or more components. Each output port can be con-
nected to one or more input ports, but each input port can be
connected to at most one output port. Monitors and actuators
are special feedback components with no input ports and no
output ports respectively.

The characteristic behavior of a feedback component can
be adjusted by modifying the component’s parameters. Pa-
rameters are constants in a component’s characteristic equa-
tion, so changing a parameter requires recalculating the
effect of this component on the controller’s behavior. To
avoid frequent recalculation, parameters are typically con-
trolled from outside the controller, such as through a slider
in the GUI. The state of a component is internal and gener-
ally not exposed by the component. A reset port is provided
to reinitialize the component’s state.

 Figure 2 shows the feedback component model and a
first-order low-pass filter component as an example. The
output of the low-pass filter is an estimator of the average of
its recent inputs. The parameter R is an aging factor that de-
termines the contribution of old inputs to the average. The
internal state is the previous output of the filter.

Feedback containers, shown in Figure 3, provide modu-
larity and hierarchical structure. A container is a feedback
component that contains other feedback components and
containers, and defines a circuit of connections among its
children and its input and output ports. The container’s con-
trol equation is calculated from its circuit and sub-compo-
nents (or children) using standard control theory. The
container’s parameters can be directly mapped onto the pa-

Figure 1. A block diagram of feedback control
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rameters of its children.

Figure 3 shows an example of a feedback container that
calculates the mean and the standard deviation of an input
signal. The parameters of the low-pass filters are exposed by
the container.

We distinguish the outermost, or top-level, container and
allow it to manipulate and drive the lower layers. The top-
level container may have its own thread (if it is asynchro-
nous to the system it controls), and may or may not contain
the monitors and actuators used to interact with the system.
All its children must run synchronously with it, to avoid
non-deterministic controller behavior. Hence a monitor or
actuator that needs to run asynchronously from the control-
ler, e.g., to run at a different rate, should be implemented as
a separate top-level container connected to the controllers
input or output port. These top-level containers may need to
interact with code that is outside the SWiFT model. There-
fore they are designed to interact with multiple component
models such as Java Beans and COM. This generality is not
needed in the inner components and containers, and hence is
not provided.

3.2  Analysis and Debugging Tools
SWiFT currently performs simple analysis for feedback

controllers. A component’s transfer function (or characteris-
tic equation) is specified by its creator. A container’s trans-
fer function is calculated from its internal layout and the
transfer functions of its children. We use MuPad, a symbolic
manipulation software, for doing the associated algebra.

Along with feedback analysis, SWiFT also helps visual-
ize the outputs of a feedback controller in real time with an
oscilloscope shown in Figure 4. We use asynchronous com-
munication between the feedback controller and the GUI so

that the GUI does not become a bottleneck. Other GUI com-
ponents in SWiFT include a control panel for accessing the
parameters of the controller, a scope panel that allows ad-
justment of the outputs as shown on the scope and various
signal generators such as sinusoid, square and random wave
generators.

Currently, a C++ and a Java version of SWiFT exists for
NT. There are also two sets of GUI components. We initially
decided to implement both versions because we have been
applying SWiFT to both new and legacy C and Java appli-
cations. Our eventual goal is to provide a high-level lan-
guage for specifying controllers. These specifications will
then be the basis for our analysis and composition tools, and
could be used to generate code at run-time.

3.3  Feedback Control for Software Environments
While controllers built using SWiFT components can be

analyzed for their stability characteristics, a complete stabil-
ity characterization of a system requires modeling the be-
havior of the system, the monitor, and the actuator. This can
be hard for several reasons. Software systems often do not
satisfy the assumptions of simple feedback control, such as
linearity and time-invariance, over their entire operating en-
vironment. Moreover, software environments can change
significantly and control systems often degrade poorly when
such drastic changes occur. Finally, users often change the
control goal when resource availability changes significant-
ly. SWiFT complements feedback control with dynamic re-
configuration to address these issues.

4  Dynamic Reconfiguration in SWiFT
Dynamic reconfiguration consists of tuning a control cir-
cuit’s parameters, or replacing some or all of a control cir-
cuit at run-time. This reconfiguration is the controlled
system’s response to drastic changes in the underlying envi-
ronment that violate the controller’s basic design assump-
tions. For instance, TCP’s adaptive flow-control algorithm
performs poorly over wireless links. Replacing this policy
with one more suited to wireless use results in better perfor-
mance [20]. Dynamic reconfiguration is similar to hardware
hot-swapping with the addition that the swapping is done
automatically.
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Reconfiguration is useful when the designer cannot com-
pletely describe the system’s environment. This may happen
because of a wide system operating environment or due to
large resource variations. An example of the first situation is
the use of TCP over wired and wireless links. An example of
the second situation occurs when the available bandwidth
changes significantly due to external load. In either situa-
tion, reconfiguration allows composing simple feedback
mechanisms that operate well within limited domains. The
system designer builds multiple controllers for the system
for each limited domain, and then SWiFT configures the ap-
propriate control for the current environment. If no control
is appropriate, SWiFT can raise an exception notifying the
system administrator or user of the error.

SWiFT can dynamically reconfigure the feedback com-
ponents in the feedback controller, and can potentially ma-
nipulate the monitor and actuators as well. The
reconfiguration is based on user-specified predicates on sys-
tem properties, called guards. Guards are generally separate
from the controller and must be explicitly programmed by
the controller’s designer.

Three types of reconfiguration are possible. First, a com-
ponent parameter can be altered. Second, a reset that reini-
tializes the states and parameters of a component can be
issued. As an example, the state of a low pass filter that is
estimating current latency should be discarded after a net-
work interface switch. Finally, new components can be
plugged in or old components can be unplugged.

4.1  An Adaptive Streaming Application

As an example, we present the design of a feedback-based
reconfigurable controller for streaming multimedia data
over both lightly- and heavily-buffered networks [4]. The
goal of the controller is to maximize throughput while
avoiding jitter caused either by packet loss or by variation in
latency. The controller, situated at the client, monitors the
network and adjusts the server’s send rate to achieve this
goal. Our application is geared to streaming multimedia, so
lost packets are not retransmitted.

The controller has three different modes of operation:
start-up, and transmission over lightly- and heavily-buffered
connections. The controller selects the proper mode for the
current environment by dynamically reconfiguring itself.
The start-up policy is similar to that used by TCP, and is not
discussed further. In a lightly-buffered connection, e.g., over
Ethernet, congestion rapidly leads to packet loss from buffer
overflow, and the controller monitor’s packet loss to detect
congestion. In a heavily-buffered connection, such as PPP
over a modem, congestion first results in substantially in-
creased transmission latencies due to long queues with even-
tual packet loss due to buffer overflow. Hence the controller
monitor’s latency instead of packet loss.

The feedback policy for lightly-buffered connections ad-

justs the server’s send rate, S, based on feedback from the
client about its receive rate, C. The send rate at time k+1,
Sk+1, is the client’s receive rate at time k, Ck, plus a parameter
δ. Hence the feedback control equation is Sk+1=Ck+δ. We
call this a loss-feedback policy since it is applicable when
packets are being lost due to congestion. The latency-feed-
back policy, the policy for heavily-buffered networks, is
Sk+1=Ck+p(F-Lk)/T, where F is the target buffer-fill level in
the network, Lk is the measured buffer-fill level, 1/T is the
rate at which the controller is running, and the constant p,
0<p<1, is used to provide stability. The derivation of this
policy is left to the reader.

Figure 5  shows a block-diagram implementation of these
policies in SWiFT. The monitor measures DiffTS (the end-
to-end per-packet latency), SeqNum (the packet sequence
number), and ClientTS (the packet’s arrival time). It then
calculates Lk and Ck, and passes them to the controller. The
BufferingLatency container approximates Lk by taking the
difference of current DiffTS with the minimum DiffTS (no
buffering in the network) that it has seen, and the RateEsti-
mator approximates Ck by averaging the inverse of the time
between packet arrivals. The controller starts out with its
slow-start policy. When the LatencyGuard detects increased
latencies, it reconfigures itself to use the latency-feedback
policy. If packets are lost, it again reconfigures to use the
loss-feedback policy.

Figure 5. The monitor outputs an estimate of Lk, latency due to
congestion, and Ck, the client’s receive rate. Depending on the
activation of the LossGuard or LatencyGuard, the controller
calculates Sk+1, the desired server send rate, using the LossFB or
LatencyFB policies respectively.
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4.2  Reconfiguration Issues
Figure 6 shows a fragment of the SWiFT domain-specific

program used to construct the monitor and the reconfig-
urable controller of Figure 5. Note the explicit predicates on
the guards (in the definition of RateMonitor). The disjoint
predicate indicates that the latency and the loss guards are
not active at the same time. This implies that only three con-
troller states are possible since the latency and the loss
guards will not be active simultaneously. If the disjoint pred-
icate is not stated, SWiFT will detect that the LossFB and the
LatencyFB policies are both connected to the controller’s
output (Sk+1 in Figure 5), and raise an error. One can enable
concurrent use of both policies by adding a merger which
passes the smaller of the two policy outputs to the control-
ler’s output.

Although SWiFT does not currently support run-time
generation of controllers, the restricted interface of the feed-
back component model, and SWiFT’s support for dynamic
analysis of feedback containers, make this possible. Even
without such a capability, the reconfiguration mechanism in
SWiFT is useful because it provides explicit guards and a
high-level mechanism for expressing multiple control mech-
anisms independently.

We omit a detailed description of the language shown in
Figure 6 due to space constraints. However, we plan to in-
clude such a description in the full paper.

5  Using SWiFT on NT
We are currently working on extending SWiFT and using

it to build adaptive resource managers on NT. SWiFT exten-
sions include using run-time specialization to eliminate in-
efficiencies due to modularity, asynchronous guard
invocation, real-time visualization of dynamic reconfigura-
tion, more feedback analysis, and analysis for multiple, si-
multaneously operating feedback mechanisms for different
system resources.

We are currently exploring the use of SWiFT on three di-
verse system control domains on NT: a streaming media
player, an informed multimedia prefetching system, and a
feedback-based proportional share CPU scheduler.   The
streaming media player delivers real-time multimedia con-
tent over unreserved bandwidth network links. Media filters,
that can drop or duplicate packets, or perform increasingly
lossy compression, can be inserted in the stream at the server
or the client. The parameters of these filters can be changed
in response to changing operating environments to utilize
the available bandwidth effectively. For example, resolution
can be changed on a frame-by-frame basis depending on the
available bandwidth SWiFT helps build and analyze feed-
back mechanisms that adaptively adjust the parameters of
these filters. We plan on basing this streaming player on Mi-
crosoft DirectShow’s media infrastructure and using COM
objects to interact with the feedback controllers in SWiFT.

The prefetching system will use a feedback-based con-
troller to control the amount of data prefetched from an ap-
plication-defined view of a multimedia stream. This
approach yields a well-behaved prefetching mechanism that
is tuned to meet the dynamically changing needs of its appli-
cation. For example, video scrubbing requires dynamically
changing the stride in response to changes in play speed,
e.g., slow forward vs. fast forward. A scrubber establishes a
view of the video stream that corresponds to the current play

RateMonitor extends FBMonitor {
  LatencyGuard latencyg;
  LossGuard lossg;
  RateMonitor(F, T) {
    (Inputs = 0, Outputs = 2);
    diffts = SystemMonitor(packet.DiffTS);
    seqnum = SystemMonitor(packet.SeqNum);
    clientts = SystemMonitor(packet.TS);
    bl = BufferingLatency();
    lpf = FOLowPassFilter();
    re = RateEstimator(T);
    latencyg = LatencyGuard(F);
    lossg = LossGuard();
    connections {
      bl(0) => lpf(0), latencyg(0);
      lfp(0) => Internal(0);
      re(0) => Internal(1);
      diffts(0) => bl(0);
      seqnum(0) => lossg(0);
      clientts(0) => re(0);
    }}
  GuardPredicates() {
    disjoint latencyg, lossg;
  }}

RateFeedback extends FBContainer {
  RateFeedback() {
    (Inputs = 2, Outputs = 1);
    -- slow start policy, details omitted here
  }}

RateFeedbackOnLoss reconfigures RateFeedback
when RateMonitor.lossg {
  RateFeedbackOnLoss(delta) {
    lofb = LossFB(delta);
    connections {
      lofb(0) => Internal(0);
      Internal(1) => lofb(0);
    }}}

RateFeedbackOnHighLatency reconfigures
RateFeedback
when RateMonitor.latencyg {
  RateFeedbackOnHighLatency(p, F, T) {
    lafb = LatencyFB(p, F, T);
    connections {
      Internal(0) => lafb(0);
      Internal(1) => lafb(1);
      lafb(0) => Internal(0);
    }}}

Figure 6. The definition of the monitor and the reconfigurable
controller in SWiFT.
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speed, and the prefetcher uses its buffers to reduce applica-
tion-visible latency and to respond quickly to changes in
play speed. These goals requires a different policy mecha-
nism, and hence uses SWiFT’s dynamic reconfiguration.
NT’s modular design lets us implement this mechanism as a
user-mode NT driver [8], allowing a single user-level con-
troller to mediate the demands of multiple (possibly con-
flicting) applications.

The feedback-based proportional share CPU scheduler
will make scheduling decisions for pipelines of processes
that share data buffers. The controller monitors buffer fill
levels and dynamically adjusts a process’s share of the CPU
and its period. The controller can exist as a user- or kernel-
level driver, but the underlying scheduling mechanism
needs to be integrated with the thread scheduler in the NT
kernel. Although we could modify NT’s abstraction layer as
described by Carpenter et al. [3], an integrated approach
would allow us to provide an adaptive universal thread
scheduler, which is our ultimate goal. Unfortunately, we do
not have access to the NT sources, and so have prototyped
the basic mechanism in the Linux kernel, and will imple-
ment it in NT when we get access to the NT sources.

Although we could pursue this research on any platform,
we chose NT for its modular structure, extensibility, and
widespread use as a platform for multimedia applications.
Our designs make heavy use of NT’s user-level device driv-
ers, Microsoft’s DirectShow infrastructure, and may lever-
age Intel’s Media Framework [10].

6  Conclusions
We have presented SWiFT, a software feedback toolkit that
allows hierarchical composition of complex feedback sys-
tems based on simple building blocks. We have also intro-
duced a means of dynamically reconfiguring feedback
controllers and monitors. We have demonstrated the use of
SWiFT to build an adaptive streaming application, and have
discussed our plans for using SWiFT to build adaptive sys-
tem resource managers on NT.
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