
 
   

   1

 

1 Introduction

 

Files are a tried and true operating system
abstraction. They offer a clean and simple
byte-stream model of I/O that is intuitive for
application programmers and provides a
degree of device-independence across different
underlying physical storage devices. File sys-
tem prefetching and caching mechanisms
ensure that most file operations access memory
rather than secondary storage, making file sys-
tem performance not only fast, but predictable.
However, because of the use of simple heuris-
tics, such as sequential read-ahead, the effec-
tiveness of these mechanisms in current
systems depends heavily on file access pat-
terns. Two implicit assumptions motivate the
use of such heuristics: that access patterns are
predominantly sequential - an apparently rea-
sonable assumption given the serial byte-
streaming model on which the file abstraction
is based; and that buffer-cache misses, which

incur the full latency of accessing secondary
storage when the heuristic fails, are not a prob-
lem for applications. With the advent of QoS-
adaptive continuous media applications – an
increasingly important application class – nei-
ther of these assumptions is appropriate. 

Since such applications manipulate contin-
uous media data with real-time display
requirements, they are particularly sensitive to
the timing behavior of I/O processing. In order
to preserve a real-world playout rate, they
adapt to variations in resource-level through-
put by dropping data, and consequently reduce
the quality of the media rather than the rate at
which it is delivered. For example, when insuf-
ficient bandwidth is available to a streaming
video player it drops frames at the server in
order to adapt its video quality. During
degraded quality operation, file accesses at the
video server are strided non-sequentially.

In addition to resource-level variations, I/O
latency variations can also be problematic for

 

Synthetic Files: Enabling Low-latency File I/O for QoS-Adaptive 
Applications

 

Dylan McNamee, Dan Revel, Calton Pu, David Steere, Jonathan Walpole
Oregon Graduate Institute of Science and Technology

 

http://www.cse.ogi.edu/DISC/projects/quasar

 

Abstract

 

Files are a tried and true operating system abstraction. They present a simple byte-stream model
of I/O that has proven intuitive for application programmers and efficient for operating system
builders. However, current file systems do not provide good support for adaptive continuous media
(CM) applications – an increasingly important class of applications that exhibit complex access
patterns and are particularly sensitive to variations in I/O performance.

To address these problems we propose synthetic files. Synthetic files are specialized views of
underlying regular files, and convert complex file access patterns into simple sequential synthetic
file access patterns. Synthetic file construction can be viewed as a declarative meta-interface for
I/O, enabling application-driven prefetching strategies that can hide device access latency even for
applications with complex access patterns. Synthetic files can be realized dynamically, incremen-
tally, or even optimistically. In this paper we outline a feedback-driven, incremental creation strat-
egy that hides variations in device access latency for QoS-adaptive CM applications.

 

This project was supported in part by DARPA contracts/grants N66001-97-C-8522, N66001-97-C-8523,
and F19628-95-C-0193, and by Tektronix, Inc. and Intel Corporation. 



 
   

   2

continuous media applications. While buffer-
ing can be used to hide variations in latency, it
increases end-to-end latency which may
become unacceptably high. Hence, predict-
able, low latency I/O is desirable.

The combination of complex access pat-
terns with predictable, low-latency I/O require-
ments is what causes problems for current file
systems. Non-sequential accesses are sup-
ported via the seek operation, which can be
viewed as an imperative meta-interface for file
I/O. In effect, it allows applications to over-
ride the system’s default (sequential) file
access behavior. However, as a consequence it
also renders the system’s prefetching mecha-
nisms ineffective and makes device access
latency visible to the application. 

The goal of our research is to preserve the
simple, sequential byte-stream model of file
accesses, and to hide device access latency,
even for applications with complex access pat-
terns. The problem we have identified is that
the seek interface to complex data accesses
adds complexity to applications, and hides
information from the system that could be used
to improve performance.

This paper presents a solution to this prob-
lem, called synthetic files. Synthetic files can
be viewed in several different ways. The data-
oriented definition of synthetic files is that they
are specialized views on regular files. They can
be created dynamically, incrementally, or even
optimistically, to match the access behavior of
an application. The access-pattern oriented
definition of synthetic files is that they are a
declarative meta-interface for communicating
future file access behavior to the file system.
This information can then be used by sophisti-
cated prefetching mechanisms to hide device
access latency during the construction of an in-
memory representation of a synthetic file.
Hence, the creation of a synthetic file effec-
tively converts a series of complex accesses to
one or more underlying files into a set of
sequential synthetic file accesses that can be
satisfied from memory.

Synthetic files are described at creation
time via programs written in a domain-specific
language. They are subsequently accessed in
sequential streaming mode. In contrast to the
conventional approach of explicitly moving
the file offset during reading, this two-stage
approach has the advantages of providing
access information far enough ahead of time to
allow prefetching to occur, in addition to main-
taining the simple streaming model of file I/O. 

In this paper we describe an implementa-
tion of synthetic files in which both file
prefetching and the incremental creation of
synthetic files from prefetched file data are
controlled via feedback. This use of feedback
control allows prefetching to adapt dynami-
cally to variations in device access latency,
which might arise due to changes in load, or
synthetic file accesses that span devices. It also
allows the rate of synthetic file creation to
adapt to match applications with variable I/O
rates.

This paper is structured as follows:
Section 2 presents the synthetic file interface.
Section 3 describes implementation alterna-
tives for synthetic files. Section 4 relates our
experiences using synthetic files in adaptive
multimedia applications. Section 5 presents
our measurements of the performance of appli-
cations and the overheads of synthetic files.
Section 6 discusses the advantages and
tradeoffs of synthetic files, and Section 7
describes related work. Finally, Section 8 sum-
marizes our experiences with synthetic files
and describes future work.

 

2 Synthetic Files

 

Synthetic files present a sequential stream of
data, read via the traditional file interface. The
stream contents are determined dynamically
by interpreting a synthetic file description pro-
vided to the file system via a meta interface.

At the lowest level, a synthetic file descrip-
tion is a list of data units that are concatenated
into a single stream and read by the client
application. While such a description is suffi-



 
   

   3

cient to allow file synthesis, in practice it is
often cumbersome for clients to generate such
a list. We utilize domain specific languages to
translate application-level synthetic file
descriptions into the lower-level data unit
specifications. Figure 2 summarizes the syn-
thetic file interface.

Synthetic files can thus be used to express
the complex accesses of applications that
stride through a file’s data in arbitrary patterns.
For multimedia applications, synthetic files
can express variations in access patterns due to
quality adaptation or playback changes, such
as reverse or fast-forward. Database file
accesses, such as indexed joins or query opera-

Figure 1:   Synthetic file description.
Synthetic files describe complex access
patterns to component files. An application
describes its accesses in domain-specific
terms. This description is translated into an
assembly of data units for lower layers of the
system.

Component file

Synthetic file

Synthetic
file

description

synthetic_file_open(dsl-descriptor)- takes a 
domain-specific synthetic file description and returns 
a file descriptor to be used by read and 
synthetic_file_update.

synthetic_file_read(fd, buffer, length) - returns 
the next length bytes from file identified by fd into 
buffer.

synthetic_file_update(fd, dsl-descriptor) 

dynamically replaces the existing synthetic file 
description for fd. Subsequent reads will be satisfied 
via the new description.

Figure 2:   Synthetic file API summary.

 

tions, could be expressed via synthetic files.
Section 4 describes an implementation of a
domain specific language that creates synthetic
file descriptions from high-level quality of ser-
vice adaptation policies. 

 

2.1 Consistency Issues

 

The semantics of the read operation on a syn-
thetic file are easy to understand. It is less
obvious what other file operations should do
when applied to a synthetic file. We argue that
seek should not be supported for synthetic
files, and describe alternatives for handling
writes to synthetic files. 

The file seek operation is a meta interface
to the read operation, that alters normally inac-
cessible implementation state (the file pointer)
in order to enable complex access patterns. We
present synthetic files as an alternative meta
interface for complex accesses that obviates
the seek operation. In cases when an access
pattern is not known at synthetic file creation
time, the synthetic file description can be
updated dynamically. Not only is defining seek
on synthetic files redundant, but it also inter-
feres with the access pattern information that
allows the underlying system to optimize
itself. For these reasons, we have decided that
the seek operation should not be defined for
synthetic files. 

There are two aspects of changes to a syn-
thetic file. The first is defining a new view of
the synthetic file. This type of change is
accomplished by updating the synthetic file
description via 

 

synthetic_file_update

 

.
The other aspect is handling writes a synthetic
file or its component files. There are two direc-
tions of possible data flow that must be
addressed: whether writes to synthetic files
affect component files, and whether writes to
component files affect synthetic files. The rela-
tionships between a synthetic file and its com-
ponents could be bidirectional: writes to any
component file appear in any synthetic file that
includes it, and vice-versa. 



 
   

   4

An alternative to bidirectional consistency
for writes is to prevent 

 

any

 

 changes to either
synthetic files or component files to show up in
the other. Such copy-on-write management
significantly simplifies the data consistency
aspect of writes, but introduces significant
complexities of its own (e.g., the shadow chain
management of Mach’s virtual memory [19]). 

An intermediate option is to handle writes
to synthetic files by writing through to the
underlying file buffer cache, to be handled by
the filesystem’s write-consistency policy. In
the other direction, writes to component files
appear in a synthetic file only if that portion of
the synthetic file has not been realized in mem-
ory. This is the implementation choice we pre-
fer. However, because all of the benefits of
synthetic files can be explored without consid-
ering writes, our prototype does not support
updates to either synthetic or component files.

 

2.2 Synthetic File Representations

 

A synthetic file is an abstract description of a
file’s contents. As such, it can be represented in
many ways, with different benefits and
tradeoffs.

The simplest representation of synthetic
files is to fully realize them as a separate file on
disk upon creation. This representation results
in an eager copy of the data, and it makes non-
write-through writes very simple to imple-
ment. However, the overall overheads could be
impractical, since synthetic files are intended
for large data sets, and multiple copies of
gigabytes of data is infeasible. In addition, this
representation eliminates the possibility of
using synthetic files on streaming data. Finally,
an eager realization of synthetic file data
greatly reduces the efficiency of dynamic
updates of synthetic file descriptions, which is
required for QoS-adaptive applications. We
address this in detail in Section 4.1.

At the opposite end of the spectrum is to
delay realizing the synthetic file data until the
data is actually requested by the application.
This alternative results in the least possible

space overhead (both on-disk and in memory),
but ignores the possibility of using synthetic
file descriptions as access pattern hints to opti-
mize data prefetching.

Our choice for representing synthetic files
is to incrementally interpret the synthetic file
description, and to realize the data in memory
ahead of time, according to a feedback-con-
trolled threshold. Since synthetic file compo-
nents need not be page or block aligned, but
file reads must be, data is realized by reading
from pages of the file buffer cache. We drive
the filesystem’s prefetching into the buffer
cache by feedback control as well, according
to observed latencies to the underlying
devices. We describe these layers and the feed-
back control in Section 4.

 

3 Implementing Synthetic Files

 

Figure 3 depicts the components and interac-
tions in our prototype implementation of syn-
thetic files. The application creates a synthetic
file by specifying its contents in a domain-spe-

Application

File 

synthetic_file-
open

DSL Interpreter Synthesizer

read

File System

Figure 3:   The interactions between an
application, the file synthesizer and the
prefetcher. The synthesizer interprets the
domain-specific synthetic file description to
determine the data to fetch, and translates it
into the description needed by the
prefetcher.

Prefetcher

Synthetic 
file buffer

buffer 
cache

domain-specific
synthetic file
description

synthetic file
description



 
   

   5

cific language. The synthesizer constructs the
synthetic data stream by interpreting the
domain-specific synthetic file description and
producing the data-unit list of synthetic file
components. It shares this domain independent
synthetic file description with the prefetcher.
The synthesizer uses the description to read the
requested data units from the underlying file
system. The prefetcher uses the description to
determine the data to prefetch. 

The separation of duties in this design sim-
plifies the construction of the feedback sys-
tems used to control the data-fetching
workahead. The synthesizer’s feedback-driven
controller adapts to variations in the rate of
application reads and thus masks high-fre-
quency application variability from the under-
lying prefetcher.

The task of the prefetching layer is to adapt
to variations in device latency and in the aver-
age access rate of the synthesizer. Just as the
synthesizer masks application variability from
the prefetcher, the prefetcher provides device
independence to the synthesizer. We present
details of the feedback systems of both layers
in Section 4.2.

 

4 Synthetic Files for Adaptive 
Multimedia

 

This section describes our experience using
synthetic files in the context of a quality of ser-
vice-adaptive distributed multimedia applica-
tion.

 

4.1 Quality of Service Adaptation

 

Streaming media formats can be encoded with
multiple layers of quality information. When
resources become scarce, the system can adapt
by discarding information from different lay-
ers, resulting in a reduced quality lower band-
width stream. Synthetic files enable a clean
separation between the concerns of playing a
media stream and the concerns of adapting the
stream to available resources.

We have created a synthetic file description
language that corresponds to quality adapta-

tion via data dropping. The data format is a
modification of MPEG-1 that encodes a video
stream with two axes of adaptation: spatial res-
olution, and frame rate (temporal resolution)
[18]. As available resources vary, the stream
can be adapted by dropping packets that corre-
spond to either dropping frames or reducing
spatial resolution. The policy for choosing
which axes to adapt along can be succinctly
encoded by assigning a priority to each packet
according to its relationship to preferred qual-
ity axes. Adaptation in this system consists of
varying a priority threshold, below which
packets are discarded. Thus the synthetic file
description consists simply of specifying the
current dropping threshold. The synthesizer
translates this specification into the lower-level
file access patterns.

Synthetic file specifications for our data-
dropping virtual machine are described by
specifying three parameters: a source file, an
index, and a dropping threshold. This model
assumes that all the constituent data is con-
tained in a single file, but it can be extended to
support more general cases. Figure 4 depicts
the construction of a synthetic file description
given an index and a priority threshold. The
index is a list of data units, each unit named by

1 2 3 4 1 2 3 4

Prioritized index

Domain-specific 
synthetic file specification
(priority threshold)

< 2?

1 2 1 2 Synthetic file description

Figure 4:   Domain-specific synthetic file
specification for adaptive video
streaming. The adaptive media stream
separates quality axes into separate data
units. The adaptation policy labels each unit
with its component’s priority. The synthetic
file can be expressed with a simple priority
threshold, which is interpreted by the
synthesizer to create a synthetic file



 
   

   6

offset and length in the source file, and priori-
tized by the QoS adaptation policy. Without
the interposition of the synthetic file abstrac-
tion an application using the traditional file
interface would have to interpret the index and
issue a stream of seek and read requests in
order to access the desired stream of data. As
available resources vary, client applications
may ‘re-specialize’ the contents of a synthetic
file by specifying a new dropping threshold.
The new threshold is applied to all data read
after its application. 

 

4.2 Feedback-Control of Prefetching and 
Synthesis

 

Many file systems optimize caching and
prefetching policies for simple sequential
accesses [5, 6, 11]. Synthetic files make these
optimizations available to more complex data
access patterns, but they also complicate the
task of prefetching, since block-to-block
access times can vary significantly as a syn-
thetic file references data with long and/or
variable strides. Complicating matters further,
since synthetic files are designed for QoS-
adaptive applications, the system has to adapt
to variations from the application as well.

Our implementation of synthetic files uses
software feedback [3, 10] to dynamically
adjust the prefetch horizon based on observed
and predicted device latencies.

We used the SWiFT toolkit [3] to construct
feedback-based rate controllers for both syn-
thesis and prefetching. The synthesizer pro-
duces data for the application and consumes
data from the prefetcher. In turn, the prefetcher
produces data for the synthesizer and con-
sumes data from I/O devices. The rate control-
ler at each level monitors the rate at which data
is being read by its consumer, calculates a tar-
get fill level and adjusts the rate it reads data
from the producer. The equation used to calcu-
late the target fill level is based on the follow-
ing equation that the TIP system [13]. uses to
statically determine prefetch depth:

 

Buffer_Size = Access_Latency * Access_Rate

 

In contrast to TIP we dynamically estimate

 

Access_Latency

 

 and 

 

Access_Rate 

 

by using
system monitoring. This formula adjusts

 

Buffer_Size

 

 in response to changing conditions
in the system. 

 

5 Experimental Results

 

This section describes how we tested our pro-
totype synthetic file server. We used the soft-
ware oscilloscope provided by the SWiFT
toolkit to observe monitored and controlled
variables in our system. 

The experiments demonstrate the operation
of our feedback circuits in reaction to I/O
latency changes and to application adaptation.
The hardware we ran the experiments on is a
300MHz Pentium II, with 128 Megabytes of
DRAM and a 4.3 gigabyte Quantum Fireball
SCSI disk. Our prototype synthetic file imple-
mentation is a stand-alone user-level server
running on top of a Linux 2.0.30 kernel. 

In order to isolate the I/O behavior of the
system, our application simulates the read
behavior of an MPEG player, but does not
incur the CPU overheads of decoding or dis-
play. In the experiments below, the player is
simulating varying degrees of quality adapta-
tion, which corresponds to complex, strided
access patterns.

Figure 5 captures the system reactions to
the increased I/O latency incurred by introduc-
ing competing load over a period of four sec-
onds. The top oscilloscope shows the
measured latency of disk reads, the calculated
mean deviation of disk reads, and the number
of outstanding requests to the disk. Disk
latency immediately increases when compet-
ing load is introduced, due to competition for
the disk head and I/O queue. The deviation in
I/O latency also increases with the contention,
which the prefetcher takes into account. 

The middle oscilloscope in Figure 5 shows
the prefetch depth and the prefetch target over
the same period. One thing to notice is that the



 
   

   7

disk latency

mean deviation

I/O queue depth

prefetch depth

queue target

synthesizer queue depth

prefetch target

Device Oscilloscope

Prefetcher Oscilloscope

Synthesizer Oscilloscope

‘make’ initiated

Figure 5:   Adapting to I/O contention.
These oscilloscope snapshots depict the I/O
status of various levels of the system. A
‘make’ was initiated at the point indicated in
the top graph, which introduced contention
to the disk, resulting in increased I/O
latencies. As expected, the prefetcher adapts
to the load, hiding it from the synthesizer.

Device Oscilloscope

Prefetcher Oscilloscope

Synthesizer Oscilloscope

Figure 6:   Adapting to application-level
adaptation. This set of oscilloscope
snapshots show the system reacting to an
application adaptation. The application has
adapted to improve quality. The bottom
chart shows the synthesizer reacting to the
application by increasing its queue depth to
match the application’s higher rate. The
improved sequentiality of the higher data
rate stream results in lower I/O latencies and
correspoinding lower prefetch depth.

application 

queue target

synthesizer queue depth

adaptation
event

prefetch depth

prefetch target

disk latency

mean deviation

I/O queue depth



 
   

   8

prefetch depth momentarily drops while the
controller adapts the prefetch rate, but that the
prefetch depth was sufficient to prevent under-
flow. 

Finally, the bottom oscilloscope shows that
the synthesizer – and hence the application – is
unaffected by the change in load.

Figure 6 demonstrates the system reacting
to the application dynamically adapting the
synthetic file by raising the priority threshold
in order to improve quality. In contrast to the
previous experiment, the event flow is driven
by the application instead of the disk. 

The bottom oscilloscope shows the synthe-
sizer reacting to the application adaptation by
increasing its target queue depth (correspond-
ing to the increased access rate). 

The top oscilloscope shows the disk
latency improving in response to the adapta-
tion, which may be counterintuitive. The data
stream resulting from the increased priority
threshold has a shorter stride, which improves
sequentiality, and corresponding disk perfor-
mance. The middle oscilloscope shows the
prefetcher adapting to the improved disk
latency by reducing its prefetch depth.

To summarize our experimental results, we
have shown that the feedback-based rate con-
trollers in the prefetcher and synthesizer are
able to adapt to changes in both system and
application behavior. 

 

6 Discussion and Future Work

 

Files are used to store and retrieve data with
different degrees of structure, from raw ascii to
HTML to highly structured data such as
MPEG files and databases. It is testament to
the flexibility of traditional files that they can
accommodate so many different types of data.
One way to view synthetic files is that they
present a way of integrating some of the bene-
fits of previous structured filesystem interfaces
with the untyped byte-stream file interface.
Synthetic files do not compromise the flexibil-
ity of untyped file interfaces since the structure
is provided by application programmers via

domain-specific synthetic file descriptions.
Providing this structure to the file system
enables it to be used to improve resource man-
agement decisions, thus improving perfor-
mance.

A synthetic file description is a 

 

specialized

 

view of a generic untyped data file. As with
specialization of code [14] synthetic files can
be created statically, dynamically, incremen-
tally, and even optimistically. Specializing data
can result in additional invariants that can be
used to enable code specialization. For exam-
ple, since synthetic files can be used to guaran-
tee sequential reads, even for complex data,
this guarantee enables code specialization to
generate optimized read calls to access them
efficiently.

The relationship between code and data
specialization extends to the underlying imple-
mentation of synthetic files as well. Given the
synthetic file description, a specialized read
call could be generated that implements the
underlying complex data accesses and seeks.
Alternatively, as with synthetic files, the appli-
cation can explicitly disclose the structure of
the data, and allow the file system to specialize
the data, which it reads via an unspecialized
interface, as measured in the experiments of
Section 5. Finally, we plan to explore combi-
nations of the two approaches, to drive system
specialization via information extracted from
synthetic file descriptions.

 

7 Related Work

 

In our earlier work on adaptive prefetching
[15] we proposed a mechanism for hiding
device access latency. Synthetic files extend
this mechanism in three ways. First they sim-
plify the application interface by implementing
a sequential byte-streaming model for reading
data. Second, their incremental construction
under feedback control offers better support
for applications with variable-rate I/O. Third,
they constitute a 

 

meta-interface

 

 [7] for com-
municating access pattern information to the
prefetcher.



 
   

   9

The use of access pattern information to
drive prefetching is not new. Kotz investigated
automatic detection and prediction of complex
access patterns [8]. Because of the limits of
automatic prediction-based approaches, more
recent filesystem research has proposed

 

informed

 

 interfaces through which applica-
tions disclose information about upcoming
access patterns. TIP-2 [13], for example, uses
“disclosure hints” of upcoming accesses to
drive its buffer management policy. Clients of
TIP-2 must explicitly synchronize their data
accesses with the disclosures they provide to
the meta-interface. In contrast, synthetic file
clients communicate their access pattern only
once, in the specification of a synthetic file.
Our implementation uses the same prefetch
depth equations as TIP-2, but adapts the esti-
mations dynamically, whereas TIP-2 does it
statically.

The SETS system [16] provides an
informed interface that does not require appli-
cations to synchronize hints with accesses. An
application describes a “dynamic set” of files
that it wants to access. The system uses this
information to manage prefetching and buffer-
ing, and is free to define an order on file
accesses to improve efficiency. This reordering
behavior is not appropriate for the I/O require-
ments of continuous media applications, how-
ever. Furthermore, SETS is whole-file based,
while synthetic files accommodate complex
accesses within, as well as among, files.
Finally, neither SETS nor TIP-2 adapt dynami-
cally to variable-rate applications or to variable
device access latencies.

The meta-interface provided by synthetic
files is similar to the layer of indirection pro-
vided by the Mach external pager interface
[19]. In fact, one possible implementation of
synthetic files would be to replace the default
external pager for Mach files, called the inode
pager, with a pager that accepts and interprets
synthetic file description programs. This
implementation would be preferable in some
ways to the technique we chose, due to more

efficient communication between the layers of
buffer management. However, taking advan-
tage of this facility sacrifices portability, since
the external pager facility is not available even
on many systems derived from Mach (e.g.,
Digital Unix and the NeXT OS).

Another view of the synthetic file interface
is that it provides application-defined structure
to data at the file system level. This feature is
reminiscent of early structured file systems,
such as those described in [4]. In these systems
applications defined file data formats, which
were stored on disk in variable-length records,
and could be indexed and accessed with differ-
ent patterns. The synthetic file facility is more
powerful and flexible than these systems: its
synthetic file descriptions are more abstract,
being specified in domain-specific terms; syn-
thetic file contents can be generated dynami-
cally, “just in time” to satisfy access requests;
and it preserves the efficiency of an underlying
block-oriented file implementation.

Previous work in continuous media and
real-time file systems is also related to syn-
thetic files. Continuous media file system
research has largely focused on optimizing
overall throughput and guaranteeing individual
stream bandwidth to simple, non-adaptive
media clients [1, 2, 9]. Real-time file systems
leverage the real-time facilities of the underly-
ing operating system, and combine careful
data layout and disk scheduling to provide
latency guarantees for file system requests [12,
17]. In contrast, synthetic files aim to support

 

QoS-adaptive

 

 clients instead of offering band-
width guarantees, and offer low-latency I/O for
synthetic file accesses, even when they span
devices with greatly different performance
characteristics. 

 

8 Conclusions

 

Files are an effective interface to streaming
data, but their predictability and performance
is impeded when applications use the seek
meta-interface in order to implement complex
data access patterns. We have presented syn-



 
   

   10

thetic files, an alternative meta-interface to
complex data accesses, which enable the sepa-
ration of data access specification and the data
accesses themselves. This separation simplifies
applications, and allows the data access speci-
fication to be passed down through system lay-
ers, in order to enable sophisticated
prefetching and buffering optimizations.

Our implementation of synthetic files uses
two separate feedback control circuits. The
first feedback system controls the amount of
work-ahead for realizing the synthetic file in
memory, which adapts to variations in applica-
tion behavior. The second feedback system
controls the prefetch depth in the filesystem
buffer cache in order to mask variations in
device latency. 

We demonstrated the effectiveness of syn-
thetic files by using them to implement the
complex data accesses of a QoS-adaptive
video player. The experiments verified that the
prefetching layer effectively hides variable
device latencies from the application, and that
the synthesizer adapts to variable application
behavior. We demonstrated that the system as a
whole is able to accommodate complex
accesses to variable-latency devices from
dynamically-adaptive applications. Finally, all
of these benefits are provided with a more nat-
ural application interface than the existing
read/seek calls provided by existing systems.

 

9 References

 

[1]  Anderson, D.P., Y. Osawa, and R. Govindan, 

 

A
File System for Continuous Media.

 

 ACM Trans-
actions on Computer Systems, 1992. 

 

10

 

(4): p.
311–337.

[2]  Bolosky, W.J., R.P. Fitzgerald, and J.R. Douceur.

 

Distributed Schedule Management in the Tiger
Video Fileserver

 

. in 

 

Sixteenth ACM Symposium
on Operating Systems Principles

 

. 1997. Saint-
Malo, France.

[3]  Cen, S., 

 

et al.

 

 

 

Demostrating the Effect of Software
Feedback on a Distributed Real-Time  MPEG
Video Audio Player

 

. in 

 

Demonstration at the
1995 ACM Multimedia Conference

 

. 1995. San
Francisco, CA.

[4]  Crowley, C., 

 

Operating Systems: A Design-Ori-
ented Approach

 

. 1997, Chicago: Irwin.
[5]  Custer, H., 

 

Inside Windows NT

 

. 1993: Microsoft

Press.
[6]  Digital Equipment Incorporated, 

 

Digital Unix

 

,
1995: Waltham, MA.

[7]  Kiczales, G. 

 

Towards a New Model of Abstrac-
tion in the Engineering of Software

 

. in 

 

Proceed-
ings of IMSA 1992 Workshop on Reflection and
Meta-level Architectures

 

. 1992.
[8]  Kotz, D.F., 

 

Prefetching and Caching Techniques
in File Systems for MIMD  Multiprocessors

 

, in

 

Department of Computer Science

 

. 1991, Duke
University: Durham, North Carolina.

[9]  Lougher, P. and D. Shepherd, 

 

The Design of a
Storage Server for Continuous Media.

 

 The Com-
puter Journal, 1993. 

 

36

 

(1): p. 32-42.
[10]  Massalin, H. and C. Pu, 

 

Fine-Grain Adaptive
Scheduling Using Feedback.

 

 Computing Sys-
tems, 1990. 

 

3

 

(1): p. 139-173.
[11]  McKusick, M.K., 

 

et al.

 

, 

 

A Fast File System for
UNIX.

 

 Transactions on Computer Systems, 1984.

 

2

 

(3): p. 181-197.
[12]  Molano, A., K. Juvva, and R. Rajkumar. 

 

Real-
Time Filesystems: Guaranteeing Timing Con-
straints for Disk Accesses in RT-Mach

 

. in 

 

IEEE
Real-Time Systems Symposium

 

. 1997.
[13]  Patterson, R.H., 

 

et al.

 

 

 

Informed Prefetching and
Caching

 

. in 

 

Fifteenth ACM Symposium on Oper-
ating Systems Principles

 

. 1995. Copper Moun-
tain Resort, Colorado.

[14]  Pu, C., 

 

et al.

 

 

 

Optimistic Incremental Specializa-
tion: Streamlining a Commercial Operating  Sys-
tem

 

. in 

 

Symposium on Operating Systems
Principles (SOSP)

 

. 1995. Copper Mountain, Col-
orado.

[15]  Revel, D., 

 

et al.

 

 

 

Adaptive Prefetching for Device
Independent File I/O

 

. in 

 

Multimedia Computing
and Networking

 

. 1998.
[16]  Steere, D.C. 

 

Exploiting the Non-Determinism
and Asynchrony of Set Iterators to Reduce Aggre-
gate File I/O Latency

 

. in 

 

Sixteenth ACM Sympo-
sium on Operating System Principles

 

. 1997.
Saint-Malo, France.

[17]  Tezuka, H. and T. Nakajima. 

 

Simple Continuous
Media Storage Server on Real-Time Mach

 

. in

 

USENIX 1996 Annual Technical Conference

 

.
1996. San Diego, CA.

[18]  Walpole, J., 

 

et al.

 

, 

 

Quality of Service Semantics
for Multimedia Database Systems

 

, 1998, Oregon
Graduate Institute.

[19]  Young, M.W., 

 

Exporting a User Interface to
Memory Management from a  Communication-
Oriented Operating System

 

, in 

 

School of Com-
puter Science. 1989, Carnegie Mellon Univer-
sity: Pittsburgh, PA.


