
— 1 —

Adaptation Space:
Surviving Non-Maskable Failures

Crispin Cowan, Lois Delcambre, Anne-Francoise Le Meur, Ling Liu,
David Maier, Dylan McNamee, Michael Miller, Calton Pu,

Perry Wagle, and Jonathan Walpole
Department of Computer Science and Engineering

Oregon Graduate Institute of Science & Technology
(crispin@cse.ogi.edu)

http://www.cse.ogi.edu/DISC/projects/heterodyne

Abstract

Some failures cannot be masked by redundancies, because an unanticipat-
ed situation occurred, because fault-tolerance measures were not adequate,
or because there was a security breach (which is not amenable to replica-
tion). Applications that wish to continue to offer some service despite non-
maskable failure must adapt to the loss of resources. When numerous
combinations of non-maskable failure modes are considered, the set of
possible adaptations becomes complex. This paper presents adaptation
spaces, a formalism for navigating among combinations of adaptations.

An adaptation space describes a collection of possible adaptations of a
software component or system, and provides a uniform way of viewing a
group of alternative software adaptations. Adaptation spaces describe the
different means for monitoring the conditions that different adaptations
depend on, and the particular configurations through which an adaptive
application navigate. Our goal is to use adaptation spaces to provide sur-
vivable services to applications despite non-maskable failures such as ma-
licious attacks. We present the basic concepts concerning adaptation spac-
es, with examples. We then present a formal model for reasoning about
and selecting alternative adaptations, allowing developers of survivable
application to automate their system’s adaptive behavior.

1 Introduction

Some failures cannot be masked by redundancies. Non-maskable failures can occur because more
failures occurred than anticipated; a trivial example is the case where no redundant resources were
provided. Non-maskable failures can also occur due to a design or implementation failure, includ-
ing and especially failures that result in security breaches[13]. Design and implementation failures
are not amenable to replication, because replicas faithfully reproduce the failure [23].

— 2 —

Applications that wish to continue to offer some service despite non-maskable failure must adapt
to the loss of resources. Numerous projects have developed adaptive capabilities for various con-
ditions [2, 4, 5, 10, 12, 14, 16, 20, 21, 24, 28, 29]. However, when one wishes to compose these
adaptive techniques, one encounters a complex space of alternatives, especially when some of the
adaptations affect the same resources, producing conflicting adaptive behavior.

This paper presents adaptation spaces, a framework for navigating among combinations of adap-
tations. It is theoretical work with immediate practical applicability. Adaptation spaces provide ap-
plication designers with a framework in which to reason about various contingencies, including
non-maskable failure scenarios. Using such a theoretical framework can enhance confidence that
all contingencies have been considered, and an understanding of what will happen to the system in
each case.

Section 2 describes the concepts of Adaptation Spaces, and how they can be used to make software
adapt to loss of resources, and then thrive when resources are returned. Section 3 provides a formal
definition of adaptation space. Section 4 describes our experimental uses of adaptation spaces, and
Section 5 discusses the implications. Section 6 presents our conclusions.

2 Adaptation Spaces and Cases

An adaptation space is a collection of alternative configurations, called adaptation cases, for a
software component. We use the term “configuration” loosely. The adaptation cases in an adapta-
tion space might represent completely independent pieces of code that accomplish similar func-
tions, variants on a single piece of code, different selections of configuration parameters for the
same piece of code, or simply different behaviors a program exhibits under different conditions.
Each adaptation case has a use condition: a predicate that must be true in order for that case to be
usable. The use condition is expressed in terms of items in the context where the adaptation space
runs. The context can include items internal to a component—such as the value of a variable—and
external to the component—such as the state of another component. Each adaptation case also has
a set of provided properties: conditions that will hold if that adaptation case is selected. Properties
provided by examples in this paper specify enabled functionality, quality-of-service guarantees, se-
curity levels, resource use and accuracy of answers.

In addition to information about its cases, the implementation of an adaptation space must provide
a mechanism to ensure that use conditions hold for the current case (and a means to switch to an-
other case if they don’t) and a policy for selecting among cases when more than one is enabled ac-
cording to their use conditions.

An adaptation space may cover only a subset of the conceivable configurations of its components
as adaptation cases. The adaptation space represents design decisions about which of the possibil-
ities are of interest in a particular situation. Some possible cases may not confer any benefit, such
as an alternative query plan that consumes more resources while providing a less accurate answer,
and hence are not worth including. Other cases may be judged to occur so rarely as to not be worth
the added complexity of including them, or it might be that the conditions under which a case holds
are so transitory that the cost of switching to and from the case outweighs any benefits from being
in the case. Finally, some cases provide properties that are so weak that the case is judged unac-
ceptable by the designer.

— 3 —

2.1 Specialization Classes

Adaptation spaces are a generalization of specialization classes [11, 32], which in turn generalize
on predicate classes [6]. We begin by describing an example using specialization classes, and then
expand the concepts to include the other capabilities of adaptation spaces. While specialization
classes could be employed in a non-object-oriented setting, they fit the object paradigm nicely, so
we will explain them in those terms.

A specialization plan is collection of specialization classes all implementing the same type. By
type here we mean an interface composed of operation signatures [3, 17]. Each specialization class
is described by giving the a specialization context, which is a predicate over the program state that
must hold for the specialization class to function correctly. Some example predicates are:

instance_variable_x == value
instance_variable_y == instance_variable_z

Specialization class predicates are conjunctions of these expressions. Each specialization class in-
dicates which of its methods should be specialized relative to its specialization context, exploiting
the predicate to make the specialized methods more efficient than in the general case. Often spe-
cialization using predicates can be automated using partial evaluation [9, 8, 7].

For example, consider the read() operating system call. The general case handles numerous con-
ditions, such as various kinds of files (including sockets and NFS file systems), concurrent writers,
etc. We can specialize the implementation of read() to exploit various predicates [22], such as:

refcount == 1: Exclusive access, only one process has the file open, so there cannot be any
concurrent writers.

fs_type == local: The file resides on a local file system, and therefore is not an NFS-mount-
ed file, socket, FIFO, etc.

fs_type == NFS: The file resides on an NFS-mounted file system, and therefore is not a local
file, socket, FIFO, etc.

A specialization plan for the read() system call combines these predicates into a set of special-
ization classes that the specialization designer deems useful. We can draw a specialization plan as
a hierarchy of specialization classes, with the general case at the bottom, as shown in Figure 1. Note
that if the condition of a specialization class is true, the conditions of all classes below it in the im-
plication hierarchy are also true.

Generic

Figure 1 read() Specialization Plan

NFS Exclusive Local

NFS/Exclusive Local/Exclusive

More
Specialized

More
General

— 4 —

Each specialization class is responsible for guarding its context condition, and selecting an alter-
native class to switch to if the predicate condition becomes false. The switching between special-
ization classes is done independently, on an object-by-object basis, and a single conceptual object
might be implemented by different specialization classes over its lifetime.

2.2 Adaptation Space

Adaptation spaces generalize specialization classes in several regards. These generalizations facil-
itate adaptations to provide continued operation in a partially degraded mode when non-maskable
failures occur, enhancing the survivability of the application [25].

1. Code for adaptation cases can result from means other than code specialization. The cases in an
adaptation space might represent settings on some configuration parameters on a routine, or
they could represent completely separate implementations of a component.

2. The property of interest might be something other than execution speed. The provided property
for a specialization class is assumed to be more efficient execution. Adaptation cases may pro-
vide properties concerning resource usage, quality of service, or robustness. An adaptation case
may also provide a combination of properties of different types, representing trade-offs such as
quality of service versus resource usage, or convenience versus security of communication.

3. Specialization plans implicitly select the most specialized case whose condition is true to max-
imize efficiency. To provide more than one kind of property, adaptation spaces allow more so-
phisticated selection policies that reflect preferences for provided properties, restrictions on
movement between adaptation cases, and costs of moving to a particular adaptation case.

4. An adaptation space may use other mechanisms for monitoring the validity of the use condi-
tions. In specialization classes, use conditions are predicate expressions using state variables
from the system being specialized. An adaptation space may use other mechanisms to compute
dynamic values like “average available bandwidth,” using tools such as SWiFT [15].

5. The implementations of adaptation spaces may use a wider variety of mechanisms for switching
between adaptation cases. It might be some form of dynamic replugging of code used for spe-
cialization of a monolithic kernel [10], or it might be adjustment of configuration parameters,
replanning a query, externalizing a program’s state then reinitializing a different program from
that state, turning on a software feedback loop [5], and so forth. It might even be that no explicit
change is needed when changing cases. The adaptation space may simply document the change
in behavior depending on context of a single implementation, for purposes of analyzing its in-
teraction with other parts of an application.

2.3 Sample Adaptation Spaces of Interest

Here we describe some existing technologies, both our own and others’, using adaptation spaces.
We also consider new kinds of adaptations that might enhance application survivability.

1. Quality of Service: Much of the current work in distributed multimedia systems looks at ways

to intelligently manage quality of service, as seen at the application interface [5, 12, 28, 34]. Ad-
aptation cases can represent trade-offs between quality of service and resource consumption,
such as video frame rate versus available bandwidth, or trade-offs between different quality di-
mensions, such as frame rate versus spatial resolution. The resource-quality trade-off is partic-

— 5 —

ularly interesting as a survivability adaptation, because it provides a way to reduce resource
needs when resources are lost or need to be freed for a more important capability.

2. Quality Objects: The Quality Object (QuO) framework developed by BBN [19, 34] is a means
of expressing adaptivity between objects, currently expressed via extensions to CORBA. A
QuO quality contract is described by a client using a Contract Description Language (CDL),
which specifies its adaptation preferences within individual negotiated regions. When available
resources or client behavior exits a negotiated region, the system invokes a specified client call-
back to negotiate a new region. The adaptation space of a QuO system is the sum total of the
quality contracts between all client/server pairs. Adaptation cases are the individual negotiated
regions, and the use cases are the contract transition rules in the client callbacks.

3. Hardening of Components: A software component can be modified or wrapped [31, 1, 33] in
order to check for out-of-range behavior, such as induced in an attack [13]. Such changes will
generally be at the of expense efficiency, so they are candidates for adaptation spaces to manage
these trade-offs. An example is StackGuard [14], which can insert varying degrees of self-
checking for evidence of “stack smashing” attacks. More checking induces more overhead, so
different efficiency-safety trade-offs can be cases in an adaptation space.

4. Alternative Mechanism: Mobile applications operate in a dynamically changing environment.
An adaptation space can specify cases that provide the same or similar service using different
underlying mechanisms. For example, a mobile application might need network connectivity to
a remote resource, but the machine hosting the application might sometimes have a wired or
wireless network connection, and have to rely on a modem link at other times. Adaptation cases
can represent the various connection mechanisms: Ethernet, Wavelan, or PPP over a modem.

5. Information Quality: Applications that access information from remote, autonomous informa-
tion sources (including all information on the World-Wide Web) will have to be prepared to
make trade-offs not normally required in accessing a dedicated, local database. Information
sources may come and go; servers can go off-line due to a security breach; the response time of
a source can vary depending on demand at its server and congestion in the network leading to
it; the information at a source can go out of date; and so forth. These faults are non-maskable
for the application, which might need to back off from a complete or absolutely correct answer
in order to get that answer in a timely manner, or to get an answer at all. Consider a SQL-style
query with the basic form select <data elements> from <sources> where
<conditions>. Adaptation cases for such a query can reduce the set of data elements re-
quired, change or eliminate sources, or relax the conditions.

3 Formal Definition of Adaptation Space

We formally define an adaptation space as a set of adaptation cases, partially ordered by the rela-
tion “more specialized than.” Case a is more specialized than case b if the use condition in case a
is logically implied by the use condition in case b, which we write , and say that “a special-
izes b”. Conversely, case b is more general than case a if the use condition of case b is a subset of
the use condition in case a, which we write , and say that “b generalizes a”.

Let S be the set of all individual predicates in the use conditions we are considering. A complete
adaptation space can be computed by taking the power set of all of the individual predicates
being considered, including a separate case for each value of a predicate of the form “foo ==

a b⊇

b a⊆

r S()

— 6 —

...” If some of the predicates are equalities for continuous values (i.e. foo is an integer or a float)
then this set is infinite. Being a power set, it is a lattice [30].

The “bottom” of the lattice is the case where none of the predicates are known to hold, and “top”
is the case where all of the predicates hold. An implementation that can function in the bottom case
is trivial, but likely uninteresting: the null function. An implementation that functions in the top
case may not exist. However, “top” can be abstractly modelled as an “oracle” that always returns
the right answer immediately.

The meet operation on two cases a and b in the lattice is the intersection of their use conditions,
which we write . The join operation is similarly the union of their use conditions, which we
write . Conceptually, means that c generalizes a and b, because the use condi-
tions for c are satisfied by . Similarly, means that d specializes a and b.

3.1 An Example: Query Relaxation

Consider an application where we would like to contact all faculty who have taught classes in the
past calendar year. Let Query 1, the SQL query to find all faculty names and e-mail addresses be:

SELECT F.name, F.e-mail
FROM Faculty F, Course-Schedule C
WHERE F.ssn = C.f-num AND

C.year = 1997;

The two tables of interest, Faculty and Course-Schedule, may be stored in different loca-
tions, and thus each may become unavailable. To make our query survive the loss of these tables,
we consider two adaptations using query relaxation [18], which generalize the query to require
fewer (or different) tables. If only the Faculty table is available (without the Course-Sched-
ule table) then we get a superset of the involved faculty and can use that to dispatch our message.
Query 2 generalizes Query 1, producing a less precise answer with some false positives:

SELECT name, e-mail
FROM Faculty;

If we lose access to the Faculty table, then we consider using a different table (Phonebook)
which includes both faculty and staff. Query 3 generalizes Queries 1 and 2, giving us a larger su-
perset of the involved faculty that includes staff:

SELECT name, e-mail
FROM Phonebook;

To describe these adaptations as an adaptation space, we first consider the use conditions for the
various queries: when is it appropriate to use Query 1? Query 2? or Query 3? The use condition for
these three queries hinges on the availability of tables. Query 1 requires tables Faculty and
Course-Schedule; Query 2 requires Faculty; and query 3 requires the Phonebook table.
The adaptation space resulting from the power set of these three bits of information is shown in
Figure 2. The use condition for each case is shown inside each node in the lattice, where F repre-
sents the Faculty table, C represents the Course-Schedule and P represents the Phone-
book table.

a b∩
a b∪ c a b∩=

a b∩ d a b∪=

— 7 —

The adaptation cases have also been colored according to the properties provided. In this example,
the provided properties describe the precision with which the query captures the faculty involved.
All the cases capture all the faculty involved except C, which captures none of them. However, the
“Approximate” cases also capture uninvolved faculty, and the “Sloppy” cases capture staff as well.

Note that while the adaptation space contains all 8 nodes from the power set of conditions, we do
not implement 8 queries. In particular, if no relevant tables are available, then only the null query
still operates, and that does not provide us with any useful results. We indicate this in Figure 2 by
dashed lines around cases that are not implemented. We would also eliminate any nodes where the
use conditions conflict, e.g. “foo < 2” and “foo >3”. This begs the question of which cases
are implemented, and when to switch between them. The relationship between the adaptation
space and its implementation is specified by the transition graph, described in Section 3.2.

3.2 The Transition Graph

To map the adaptation space to a set of implementations, we first re-examine the adaptation space.
Often multiple cases can be accommodated by a single implementation, needing only a parameter
change, or even no change at all, as shown in Figure 3. Each query accommodates two adaptation
cases. No changes at all are required to span the two cases, because the more specialized case in-
cludes a table that the query is not using. Each group of cases in a single implementation is marked
with the use conditions enabling that implementation, which is the meet of all the cases in the
group. The mapping in Figure 3 also reveals that case C is not used; if we only have the Course-
Schedule, we cannot generate any faculty e-mail addresses, and thus this case is not useful.

From the marked-up adaptation space in Figure 3, we can compute the transition graph in Figure
4. The nodes in the transition graph are labelled with the software used to implement this space,
and have been annotated with the use conditions required for each implementation. The edges rep-
resent transitions from one implementation to another, and have been labeled with the changes in
use conditions that mandate transitioning to another node, as well as the cost of making the transi-
tion. In this case, the cost of transitioning to and from Query 3 is higher because Query 3 uses a
completely different table, necessitating re-optimizing the SQL query. The cost values are arbi-

F C P

F P F C C P

F P C

No Tables Available
Figure 2 Adaptation Space for Query Relaxation Example

More
Specialized

More
General

Provided
Properties

Precise
Approximate
Sloppy
Useless

— 8 —

1. Combine cases in the adaptation space that can be satisfied by a single implementation. Mark
each combination with the of each case, i.e. the intersection of use conditions.

2. Place the implemented nodes on the transition graph.

3. For each edge in the adaptation space connecting separate implementations, add a directed edge
to the transition graph, labelling the edge with the changes in use conditions between the two
cases in the adaptation space. Transitions “upward” in the adaptation space represent thriving:
they are optional (representing an opportunistic improvement in service), and are labelled only
with the use conditions of the destination case. Transitions “downward” are mandatory (repre-
senting a survivability adaptation to the loss of some resource) and are labelled “destination &
!source”. For instance, in Figure 3 the edge from FP to FCP is upward, and is labelled “C”, while
the edge from FP to P is downward, and is labelled “P & !F”.

4. Combine and simplify the edges connecting implementations in the transition graph. For in-
stance, step 3 added two edges from Query 1 to Query 2 to the transition graph, both of which
are labelled “F&!C”, thus these two edges from Query 1 to Query 2 can be combined.

F C P

F P F C C P

F P C

No Tables Available
Figure 3 Implementations and the Adaptation Space

More
Specialized

More
General

Query 1

Query 2 Query 3

FCP FC∩ FC=

F P 'F∩ 'F=

F P 'F∩ 'F=

Query 1

Query 2 Query 3

Figure 4 Transition Graph: When to Change Implementations, and What it Will Cost

F&!(FC)=F&!C
2

FC
2

FC

P&!F

10
F 10

P&!(FC)

10

F P

FC 10

∩

— 9 —

5. Label the transition edges with the relative expected cost of each transition. The cost results
from computations necessary to transition from one implementation to another, such as refresh-
ing caches, initializing state, etc.

From this exercise, we have identified a minimal set of implementations that provide a selection of
“acceptable” properties. We have a complete understanding of all the combinations of failures that
might occur, we know which combinations of failures will still allow us to produce results (of vary-
ing quality) and we know which combinations will result in total failure of the application.

3.3 Composing Adaptation Spaces

Here we describe the composition of adaptation spaces, to account for the fact that a component
may need to be adapted in more than one way, accommodating more than one kind of failure. One
can just consider all possible failure modes in a single adaptation space, but that requires one to
contemplate all kinds of failure, and to understand their interactions. Instead, we provide for the
composition of adaptation spaces. Composing adaptation spaces proceeds via the following steps:

1. Unify name spaces of the two adaptation spaces

2. Compose the spaces

3. Simplify

Unifying the name spaces is necessary if the adaptation space designers used different granularity
to identify the terms in the use conditions. For instance, one designer might have said “# servers
>= 3”, while another said “servers a and b are available”.

Once the name spaces are unified, we inspect the use conditions of the two adaptation spaces for
overlap. If there is no overlap at all, i.e. none of the names from one space appear in any of the use
conditions in the other space, then the two adaptations are said to be orthogonal. The adaptations
do not affect each other, and thus can be trivially composed.

If there is overlap, then we compose the adaptation spaces by computing the direct product of the
two lattices representing the respective complete adaptation spaces, say S and T. Since S and T are
both lattices, the direct product is a lattice [30]. Once the spaces are composed, they can be pruned
of impossible and uninteresting cases, grouped into implementations, and transformed into transi-
tion graphs as described in Section 3.1 and Section 3.2.

4 Experimental Implementation of Adaptation Spaces

This section illustrates our use of adaptation spaces in practice. We describe two efforts to build
applications that are adaptive in more than one dimension. Section 4.1 describes adaptations to en-
hance the survivability of a distributed information system, and Section 4.2 describes adaptations
to manage audio quality in the presence of variable bandwidth availability.

4.1 Adaptive Information Survivability

We have developed a simulation of a DoD distributed mission planning system using a client serv-
er architecture. This system consists of three servers and any number of clients. Each server pro-
vides a particular type of information: targets, available resources (aircraft), and planned missions,

— 10 —

respectively. Clients provide user interfaces to create new missions. The “normal” (optimal) case
has all clients fully connected with all of the servers and all of the other clients. This case will end
up being the “top” of our adaptation lattice, as it has the strongest possible set of assumptions: all
servers and clients are available. We build this adaptation space by considering two simple adap-
tation spaces, and then composing them. One adaptation space considers the possible failure of the
servers, and the other considers possible partitioning of the network of clients.

4.1.1 Server Failure Adaptation Space

Access to a server can be lost due to network or server failure. Clients can adapt by sharing data
instead of depending on the server to provide the data. The non-accessed server will not be updated
with any new data from newly created missions, but the clients can continue to operate, enhancing
the system’s survivability. Figure 5 shows the (trivial) adaptation space for a single client adapting
to the failure of the target (T) server. The component of the client that provides a list of targets to
the user adapts to either get the data from the target server, or from the other clients .

4.1.2 Network Partition Adaptation Space

Connectivity between clients can be lost due to a network partition. A possible adaptation is to par-
tition the targets and available resources a priori among the clients. When a network partition oc-
curs, each client restricts its activities to the union of the targets and resources assigned to the cli-

T

!T

Figure 5 Target Server Failure Adaptation Space

N-1

N-2

2

0

N-3

1

...

Figure 6 Network Partition Adaptation Space for N Clients

Fully connected to all clients

Partially connected to some clients

Completely isolated

Number of other
reachable clients

n >= N-2

n >= N-3

n >= 2

n >= 1

n >= 0

— 11 —

ents that are still accessible in the reachable network partition. Clients in the other network parti-
tion(s) are presumed to continue operating on their respective partitions of targets and resources.

Clients in partitions other than the server poll other clients to find the scope of their network par-
tition, and compute the set of targets and resources that they can still use. Figure 6 shows the ad-
aptation space for a single client, in terms of the number of other clients that it can still reach.

4.1.3 Composing Server Failure and Network Partition Adaptation Spaces

Consider composing the adaptation spaces shown in Figure 5 and Figure 6 with respect to a client’s
target handling component. These adaptations are not orthogonal, because they both affect the set
of targets presented to the user. Thus we compose the two spaces by computing the direct product,
as shown in Figure 7. This adaptation space consists of two copies of the space in Figure 6, one
with and one without the target server, denoted T and !T, respectively. Sets of cases have been
grouped to indicate the different implementations of the client target handler that will cover those
cases, as described in Section 3.2. Figure 8 shows the client target handler’s transition graph.

4.2 Adaptive Audio Quality

Streaming media presentations using shared resources such as the Internet are greatly enhanced by
adapting to available resources. We are developing quality of service specifications [28] that help

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

More
Specialized

More
General

!T N-1T N-2

!T N-2T N-3

!T N-3T N-4

!T 2T 1

!T 1T 0

!T 0

Figure 7 Composition of Target Server Unavailable and Partitioning Spaces

Provided
Properties

Missions
limited
Server not
Updated
Missions limited
and server not updated

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A

Missions
unlimited

T server
available

N

Target

number
of clients

Total

Targets partitioned
T N-1

unavailable
Targets server

unavailable
& targets server

Targets partitioned

n
Number of
reachable
clients

— 12 —

the system navigate the adaptation space provided by sets of media filters to maximize perceived
user quality. Our model [26, 27] defines quality in terms of deviation from a perfect presentation.
The quality of service specification allows the user or application to relatively weight various pro-
vided properties through the adaptation space.

Figure 9 shows three simple adaptation spaces, representing three different dimensions of audio
quality: sampling frequency, bit resolution of the sample, and whether it is stereo or mono. The use
condition for each case is that there be sufficient data bandwidth to support that case. However,
these cases must be combined to discover the bandwidth requirement, because the needed band-
width is a function of all three parameters: needed bandwidth = frequency * bits * # of channels.
The use conditions in the three separate adaptation spaces are only relative, i.e. the bandwidth re-
quired for 44 KHz is twice as great as for 22 KHz, but we don’t know the absolute bandwidth need-
ed without knowing the frequency, resolution, and # of channels.

Unifying the name space of the three spaces is trivial, because they all have a single use condition:
sufficient bandwidth, in bits per second. We compute the product of the three lattices, and then la-
bel each case with the absolute bandwidth requirement in bits per second, as shown in Figure 10.

Figure 10 shows a different kind of adaptivity than in Section 4.1. This lattice has several cases
with identical use conditions, i.e. “22KHz/16-bit/stereo”, “44KHz/8-bit/stereo” and “44KHz/16-
bit/mono” all have a use condition of at least 705 Kbits per second of available data bandwidth.
Yet we do not seek to group them together in a single implementation, because they provide dif-
ferent properties.

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

Figure 8 Transition Graph for Composed Spaces

Provided
Properties

Missions
limited
Server not
Updated
Missions limited
and server not updated

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

A
A
A
A
A
A
A

Missions
unlimited

T server
available

N

Target

number
of clients

Total

T, n>=N-1

T

n>=0

!T, n>=N-1

!T, n>=0

!T

T
N-1>n

n>=N-1

n>=N-1

N-1>n

n
Number of
reachable
clients

!T

stereo16 bits44KHz

mono

11KHz

8 bits22KHz

filter 1: frequency filter 2: bits per sample filter 3: channels

Figure 9 Independent Audio Quality Adaptation Spaces

— 13 —

This example shows the need for sophisticated adaptation case navigation: user preference, encod-
ed as a quality of service specification, selects which case to use under each bandwidth condition.

5 Discussion

Adaptation spaces provide a systematic way to consider possible adaptations for a software com-
ponent. The initial lattice of the adaptation space is generated exhaustively from the use conditions
of interest. The complexity of this lattice illustrates the number of issues to be considered to make
an application survive non-maskable failures, illustrating the need for a systematic approach.

Within the lattice, we are guaranteed substitutability of all cases less-specialized-than the current
case based on the implication of a use condition of a more-specialized case to a less-specialized
case. Similarly, we are guaranteed that all cases more-specialized than the current case will provide
more desirable properties. Thus adaptation spaces define the essence of surviving, by adapting to
a less-specialized case, and thriving, by adapting (back) to a more-specialized case.

The choice of implementations to be built for an adaptation space is made by the designer of the
survivable application. In the query example involving faculty in Section 3.1, the judgement that
Query 2 and Query 3 are acceptable, albeit degraded, queries is clearly application-dependent. It is
through the transition graph that the designer specifies the appropriate action for each adaptation
case in the initial lattice. Either the case is NOT mapped to an implementation (indicating that the
case does not permit an acceptable behavior) or the case is mapped to the specific implementation.

The generation of the transitions in the transition graph is done algorithmically based on the rele-
vant use conditions. The transition graph is ideally suited to drive the adaptive behavior of the pro-
gram because the conditions of interest as well as the proper transitions are concisely and precisely
represented. The exhaustive, initial lattice of the adaptation space allows the application designer
to consider the various alternatives in a systematic way whereas the transition graph condenses the
information needed at run-time.

44K/16/stereo

44K/8/mono

22K/16/stereo 44K/8/stereo 44K/16/mono

22K/16/mono11K/16/stereo 22K/8/stereo

11K/8/stereo 22K/8/mono11K/16/mono

11K/8/mono

Figure 10 Adaptation space for audio quality adaptation.

Bandwidth Required (bits per second)

1411 Kbps

705 Kbps

352 Kbps

176 Kbps

88 Kbps

— 14 —

When considering multiple adaptations for a software system, there are several ways to compose
adaptation spaces. In the simplest case, orthogonal adaptation spaces can be used independently;
the transitions graphs can each guide the adaptation of the relevant components. In more complex
situations, the adaptation spaces are formally composed to arrive at appropriate adaptations for
multiple considerations. In future work, we will consider other types of composition of interest in-
cluding layered adaptation spaces, and functionally composed adaptation spaces.

6 Conclusions

Adaptation spaces capture the essence of adaptive behavior through orderly assembly of the adap-
tation cases, with the associated use conditions and provided properties. Adaptation spaces enable
systematic analysis of the combinations of failures to be considered. We have used adaptation
spaces to analyze and direct the behavior of several of our systems in diverse areas, including da-
tabase fault-tolerance, application fault-tolerance, and adaptive quality of service. Use of this
framework should both ease the difficulty of constructing applications that survive non-maskable
faults, and enhance the quality of these survivable applications.

References

[1] AUSCERT. overflow_wrapper.c – Wrap Programs to Prevent Command Line
Argument Buffer Overrun Vulnerabilities. ftp://ftp.auscert.org.au/pub/
auscert/tools/overflow_wrapper, May 1997.

[2] Veronica Baiceanu, Crispin Cowan, Dylan McNamee, Calton Pu, and Jonathan Walpole.
Multimedia Applications Require Adaptive CPU Scheduling. In Workshop on Resource
Allocation Problems in Multimedia Systems, Washington, DC, December 1996.

[3] Andrew P. Black. Object Identity. In Proc. International Workshop on Object-Oriented
Operating Systems, Asheville, NC, December 1993.

[4] Jeremy Casas, Ravi Konuru, Steve W. Otto, Robert M. Prouty, and Jonathan Walpole.
Adaptive Load Migration Systems for PVM. In Proceedings of Supercomputing ’94, pages
390–399, Washington, D.C., November 1994.

[5] Shanwei Cen, Calton Pu, Richard Staehli, Crispin Cowan, and Jonathan Walpole. A
Distributed Real-Time MPEG Video Audio Player. In Proceedings of the 1995 International
Workshop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV’95), pages 151–162, New Hampshire, April 1995.

[6] Craig Chambers. Predicate Classes. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’93), Kaiserstautern, Germany, July 1993.

[7] C. Consel and O. Danvy. Tutorial notes on partial evaluation. In ACM Symposium on
Principles of Programming Languages, pages 493–501, 1993.

[8] Charles Consel, Luke Hornoff, Jacque Noye, Francois Noël, and Eugen-Nicolae Volanschi.
A Uniform Approach for Compile-Time and Run-Time Specialization. In International
Workshop on Partial Evaluation, Dagstuhl Castle, Germany, February 1996. Springer-
Verlag LNCS.

— 15 —

[9] Charles Consel and Francois Noël. A General Approach to Run-time Specialization and its
Application to C. In 23rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’96), St. Petersburgh Beach, FL, January 1996.

[10] Crispin Cowan, Tito Autrey, Charles Krasic, Calton Pu, and Jonathan Walpole. Fast
Concurrent Dynamic Linking for an Adaptive Operating System. In International
Conference on Configurable Distributed Systems (ICCDS’96), Annapolis, MD, May 1996.

[11] Crispin Cowan, Andrew Black, Charles Krasic, Calton Pu, Jonathan Walpole, Charles
Consel, and Eugen-Nicolae Volanschi. Specialization Classes: An Object Framework for
Specialization. In Proceedings of the Fifth International Workshop on Object-Orientation in
Operating Systems (IWOOOS ’96), Seattle, WA, October 27-28 1996.

[12] Crispin Cowan, Shanwei Cen, Jonathan Walpole, and Calton Pu. Adaptive Methods for
Distributed Video Presentation. ACM Computing Surveys, 27(4):580–583, December 1995.
Symposium on Multimedia.

[13] Crispin Cowan, Calton Pu, and Heather Hinton. Death, Taxes, and Imperfect Software:
Surviving the Inevitable. Submitted for review, April 1998.

[14] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Peat Bakke, Steve Beattie, Aaron
Grier, Perry Wagle, and Qian Zhang. StackGuard: Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks. In 7th USENIX Security Conference, San Antonio,
TX, January 1998.

[15] Ashvin Goel, David Steere, Calton Pu, and Jonathan Walpole. SWIFT: A Feedback Control
and Dynamic Reconfiguration Toolkit. In Proceedings of the Second USENIX NT
Symposium, Seattle, WA, August 1988. http://www.cse.ogi.edu/DSRG/swift/.

[16] Ajei Gopal, Nayeem Islam, Beng-Hong Lim, and Bodhi Mukherjee. Structuring Operating
Systems using Adaptive Objects for Improving Performance. In Proceedings of the Fourth
International Workshop on Object-Orientation in Operating Systems (IWOOOS ’95), pages
130–133, Lund, Sweden, August 1995.

[17] Wilf LaLonde and John Pugh. Subclassing not = subtyping not = is-a. Journal of Object-
Oriented Programming, 3(5), January 1991.

[18] Ling Liu and Calton Pu. A Metadata Based Approach to Improving Query Responsiveness.
In Proceedings of the IEEE International Conference on Metadata, June 1987.

[19] J.P. Loyall, R.E. Schantz, J.A. Zinky, and D.E. Bakken. Specifying and Measuring Quality
of Service in Distributed Object Systems. In Proceedings of the First Interational
Symposium on Object-Oriented Real-Time distributed Computing (ISORC’98), Kyoto,
Japan, 20-22 April 1988.

[20] Henry Massalin and Calton Pu. Fine-Grain Adaptive Scheduling Using Feedback.
Computing Systems, 3(1):139–173, Winter 1990.

[21] Bodhisattwa Mukherjee and Karsten Schwan. Improving Performance by use of Adaptive
Object: Experimentation with a Configurable Multiprocessor Thread Package. In Second
IEEE International Symposium on High-Performance Distributed Computing (HPDC-2),
Spokane, WA, July 1993. Also available as GIT-CC-93/17, ftp://
ftp.cc.gatech.edu/pub/coc/tech_reports/1993/GIT-CC-93-

— 16 —

17.ps.Z.

[22] Calton Pu, Tito Autrey, Andrew Black, Charles Consel, Crispin Cowan, Jon Inouye,
Lakshmi Kethana, Jonathan Walpole, and Ke Zhang. Optimistic Incremental Specialization:
Streamlining a Commercial Operating System. In Symposium on Operating Systems
Principles (SOSP), Copper Mountain, Colorado, December 1995.

[23] Calton Pu, Andrew Black, Crispin Cowan, and Jonathan Walpole. A specialization toolkit to
increase the diversity of operating systems. In Proceedings of the 1996 ICMAS Workshop on
Immunity-Based Systems, Nara, Japan, December 1996.

[24] Calton Pu and Jonathan Walpole. A case for adaptive OS kernels. In Proceedings of the 1994
OOPSLA Workshop on Flexibility in Systems Software, Portland, Oregon, October 1994.

[25] Howie Shrobe. ARPATech ’96 Information Survivability Briefing. http://
www.darpa.mil/ito/ARPATech96_Briefs/survivability/
survive_brief.html, May 1996.

[26] R. Staehli and J. Walpole. Using script-based QOS specifications for resource scheduling. In
Proceedings of the Fourth International Workshop on Network and Operating Systems
Support for Digital Audio and Video, pages 93–95, Lancaster, UK, November 1993.

[27] Richard Staehli, Jonathan Walpole, and David Maier. Device and Data Independence for
Multimedia Presentations. ACM Computing Surveys, 27(4):640–642, December 1995.
Symposium on Multimedia.

[28] Richard Staehli, Jonathan Walpole, and David Maier. Quality of Service Specifications for
Multimedia Presentations. Multimedia Systems, 3(5/6):251–263, November 1995.

[29] H. Thimm and W. Klas. Delta-sets for Optimized Reactive Adaptive Playout Management
in Distributed Multimedia Database Systems. In 12th IEEE International Conference on
Data Engineering, New Orleans, LA, February 1996.

[30] Jean-Paul Tremblay. Discrete Mathematical Structures with Applications to Computer
Science, chapter Lattices and Boolean Algebra, pages 378–397. McGraw-Hill, 1975.

[31] Wietse Venema. TCP WRAPPER: Network Monitoring, Access Control, and Booby Traps.
In Proceedings of the Third Usenix UNIX Security Symposium, pages 85–92, Baltimore, MD,
September 1992. ftp://ftp.win.tue.nl/pub/security/
tcp_wrapper.ps.Z.

[32] Eugen N. Volanschi, Charles Consel, Gilles Muller, and Crispin Cowan. Declarative
Specialization of Object-Oriented Programs. In Proceedings of the Conference on Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA’97), Atlanta, GA,
October 1997.

[33] Joe Zbiciak. wrapper.c Generic Wrapper to Prevent Exploitation of suid/sgid
Programs. Bugtraq mailing list, http://geek-girl.com/bugtraq/, May 19 1997.
http://cegt201.bradley.edu/ im14u2c/wrapper/.

[34] J.A. Zinky, D.E. Bakken, and R.E. Schantz. Architectural Support for Quality of Service for
CORBA Objects. Theory and Practice of Object Systems, April 1997.

