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ABSTRACT 

With the advent of next generation sequencing techniques like RNA-Seq, there is the 

potential for unbiased transcriptome-wide analysis of gene expression and alternative splicing 

irrespective of abundance class of the transcript. One of the potential uses of this technology is 

to help us understand the role that alternative splicing plays in brain region-specific differences.   

In this study we focused on two RNA-Seq datasets derived from the mouse brain, one from the 

striatum and the other from the whole brain.  We first quantified the abundance of the different 

forms of alternative splicing events using a very conservative approach utilizing exon definition 

information from both the Ensembl and ASTD public databases.  We then applied a measure 

that quantified transcript isoforms and examined whether biases existed in these quantities 

when stratified by overall gene expression measured using a microarray.  Further, we explored 

whether there was concordance between alternative splicing events quantified using RNA-Seq 

and those measured using a statistical model for an Affymetrix exon array experiment.  Finally 

we examined whether a simple model-based strategy could be pursued in order to detect 

alternative splicing in a high confidence dataset and explored some of the properties of this 

model using simulation.  Overall, we found that a major confounder for many of our analyses 

was the lack of sample size.  This is an issue that will be explored further in future work.   
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Chapter 1 

Introduction 

Background 

It has been recognized that alternative pre-mRNA splicing is a common and important 

occurrence in mammalian genomes. Relatively modest differences in the number of predicted 

protein coding genes between different organisms have suggested that protein diversity is not 

due to large numbers of discrete gene regions, but selective utilization by the cellular machinery 

of the different transcribed structures (exons) within those units (1-2). Up until very recently it 

has been estimated that around 70% of genes are alternatively spliced between tissues in 

humans (3-4).  However, using RNA-Seq it has been described as being a nearly universal 

occurrence for multi-exon genes (5).  Alternative splicing is not strictly a beneficial phenomenon.  

Disruptions of exon splicing patterns through mutations are thought to result in disease, such as 

the neuromuscular disorder myotonic dystrophy (6) or certain cancers such as melanoma (7).  

Similar mutations have also been shown to influence disease and drug susceptibility, even 

providing targets for drugs (8).   An example of such a target is the inhibition of a particular 

transcript variant of a gene, COX-1, by acetaminophen-type drugs (9).  In order to fully 

understand the implications of alternative splicing, aberrant or otherwise, for disease or 

complex traits such as height or alcoholism, it is necessary to quantify transcript isoforms as well 

as gene expression levels for many samples and for many organisms.  A technology that may 

allow this to be feasible is RNA-Seq.   

Splicing occurs after the transcription of an initial RNA molecule from DNA when the 

intervening sequences or introns are removed from the RNA transcript allowing the remaining 

pieces known as exons to be joined together.  Alternative splicing can provide different versions 

of transcripts that originate from a single gene (10). These species of transcripts can generally be 
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called transcript isoforms.  According to the ASTD database (11), a collection of alternative 

splicing predictions based upon the Ensembl gene predictions (12), there are 5 different forms 

of alternative splicing events that commonly occur: intron and exon isoforms, cassette and 

mutually exclusive exons, and intron retention events (11).  Intron and exon isoforms both 

involve a change in exon boundary relative to an exon in another transcript; the main difference 

being a requirement that the boundaries of an exon isoform be precisely defined (11).  Cassette 

and mutually exclusive exons both involve the uneven incorporation of entire exons in one 

transcript isoform relative to another (11).  Cassette exon events involve the skipping of one or 

more exons in one transcript isoform relative to another (11).  Similarly, mutually exclusive 

events refer to transcript isoforms that each have a unique and non-overlapping set of skipped 

exons (11).  Intron retention involves the complete incorporation of an intron in one transcript 

isoform when compared to another (11).  Closely related to alternative splicing events are those 

defined to be alternative start sites and alternative polyadenylation sites (11).  These 

respectively involve transcript isoforms that start at a later position in the genome or terminate 

earlier relative to another isoform (11).   The preceding groups of transcript events can be 

referred to generally as alternative events (AEs).  AEs for genes have been assessed for 

eukaryotic organisms in relation to developmental stage, tissue type or disease state—especially 

in the central nervous system (13).  Regardless of context the most important and most difficult 

step in any AE analysis is the detection of all transcript isoforms present in an RNA sample.  It is 

important because without knowledge of the types and quantity of exons being produced from 

one sample relative to another, it is hard to say with confidence whether the two samples 

produce significant quantities of different transcript isoforms.  It is difficult because the ability to 

experimentally detect alternatively spliced exons and therefore AEs depends on several factors: 

resolution of the technology, sample size and expression level.  The latter being the most 
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important limitation since the best estimate to date is that 86% of human genes produce 

measureable levels of two or more distinguishable transcript populations (5).  Two main 

experimental methods have been traditionally used to assess genome-wide levels of AEs: 

sequencing and microarrays.  

A direct way of measuring AEs is by sequencing mRNA or its reverse transcribed form—

complementary DNA or cDNA (14).  Large scale Sanger sequencing (15) of cDNAs was (and still is 

to a certain extent) labor intensive and expensive.  To circumvent this, higher throughput tag-

based methodologies for studying transcript populations were created.  Expressed sequence 

tags or ESTs were formed by sequencing short fragments of cDNA that were still long enough to 

be reliably realigned to the genome (16). This made them faster and cheaper to produce than a 

whole cDNA sequence (16).  Even today, these tags are considered to be relatively expensive, 

low throughput and susceptible to cloning bias (17).  Serial Analysis of Gene Expression or SAGE 

(18) provided a faster alternative, though the tags were initially very short and limited to the 3’ 

end of the transcribed region.  They were later extended to the 5’ end (19).  Throughput was 

expanded by a proprietary SAGE-like method called massively parallel signature sequencing 

(MPSS) (20).  However, it seems to be rarely used today.  The current state of this technology is 

digital gene expression (DGE) using the Illumina GA platform which has been shown to be an 

effective way to assess expression (21).  Cap analysis of gene expression or CAGE, similar to 

SAGE, produces sequences from the first 20 bases of each transcript (22).   This procedure is 

immensely useful for defining the transcription start site and therefore alternative promoter 

usage but like SAGE and MPSS, cannot address any forms of alternative splicing (19).  High 

throughput sequencing was first applied to cDNA sequencing with the polony multiplex analysis 

of gene expression or PMAGE (23).  This technology produced tags of length 14 bases, which are 
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too small for accurate mammalian genome realignment for many situations.  The 

Solexa/Illumina GA and the Applied Biosystems SOLiD platform were first applied to cDNA 

sequencing by several groups in 2008 (17, 24-27).  

Prediction of alternative splicing events relies upon the utilization of spliced alignments 

of cDNAs and/or tag data to a genomic sequence using fast realignment tools such as BLAT (28),  

GMAP (29),  SPA (30) or more recently Splign (31). Also, smaller regions have been assessed 

using programs such as SIM4 (32) or Spidey (33).  This has also been attempted for Illumina GA 

output using the QPALMA program (34) which is an adaptation of the PALMA program (35) to 

handle short reads.  Very recently Tophat was described, which promises to provide efficient 

production of spliced alignments for these datasets (36).  However, spliced alignments do not 

actually provide predictions of alternative splicing events; other programs have to be used in 

conjunction with their output as part of a prediction pipeline.  Many such pipelines exist for 

annotation of genes using cDNAs and ESTS.  One that produces AE predictions exclusively is 

ASTD (11).  The framework for this pipeline was initially described by Clark and Thanaraj in 2002.  

ASTD uses Ensembl (12) gene predictions and expands upon them by applying a combination of 

BLAT, BLAST and custom heuristics to look for different intron/exon boundaries than those 

annotated in Ensembl (11).  CAGE and SAGE-like tags are constrained in the types of AEs they 

can detect because of the way they are derived experimentally.  Multiple groups of CAGE tags 

occurring within a gene can be used to infer alterative promoter usage (22).  Similarly, SAGE-like 

tags can only assess alternative splicing events at the opposite end of the transcript such as 

alternative poly-A events (21, 37-38).   

 In addition to measuring gene expression, microarrays can also be used to detect certain 

types of AEs (39).  Splice-junction, exon and tiling arrays have all been successfully used to 
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detect such events.  Splice junction arrays rely on synthesized probes that span annotated 

boundaries between exons—so called splice junctions (40-41). Using the signal from these 

probes, differences in expression between predefined exon combinations can be measured and 

used to infer splicing, alternative or otherwise (40-41).  Tissue specific alternative splicing has 

been examined using variations on this approach for mammalian organisms (3, 42-49).  It also 

has been addressed using a similar approach involving fiber optic microarrays (50).  These 

experiments are constrained to cassette or mutually exclusive exon events that have to be 

defined a priori (39).  Exon arrays (51-52), microarrays containing probes present at several 

positions within annotated exons, can be used for the detection of de novo splicing events (4, 

51, 53-55).  However, the ability to detect such changes in expression may be affected by quality 

and placement of the probe (55) and SNPs for some types of experiments (56).  Genome level 

tiling expression arrays were created as an attempt to lessen the impact of probe placement by 

dramatically increasing the number of probes.  AEs have been assessed using this approach for 

Drosophila (57) and yeast (58-59).  A relatively new approach is the use of “whole-transcript” 

custom microarrays that can provide multiple sources of information regarding transcript 

expression and alternative splicing (60).   

 Although multiple strategies have been developed for high throughput sequencing, 

three have been successfully commercialized and implemented in the context of transcriptome 

sequencing.  They are the 454 platform (61) now part of Roche, Illumina GA formerly Solexa and 

the Applied Biosystems SOLiD machine, an adaptation of a protocol by Shendure et al. 2005 

(62).   Roche’s 454 platform is a high-throughput implementation of pyrosequencing, a 

procedure first described by Hyman in 1988 (63) and implemented by Ronaghi et al in 1996 (64).  

Pyrosequencing relies on the detection of released inorganic phosphate from DNA polymerase 
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activity using luciferase (64).  Although first utilized in the context of de novo sequence 

assembly, it was extended to transcriptome sequencing of a prostate cancer cell line (65).  The 

Solexa/Illumina and Applied Biosystem’s platform both implement versions of cyclic reversible 

termination chemistry (66).  For both, sequencing depends on the utilization of a base or probe 

combined with a fluorescent group that can be successfully removed at the end of each base-

calling cycle (66).  Solexa/Illumina initially gained popularity through studies of chromatin 

binding using a procedure called ChIP-Seq (67-70).  In 2008 it was used to sequence the 

transcriptome of tissues from multiple organisms including: A. Thaliana, S. Pombe, S. Cerevisiae, 

mouse and human (17, 25-27, 71-72).  SOLiD has been used to sequence the transcriptome of 

several mouse embryonic stages (24).  

 Most of the groups using either the Illumina or SOLiD platform have addressed AEs with 

variations on a single method.  This method utilizes public gene prediction tools and/or 

databases to query for the presence of known alternative splicing events as well as to create in 

silico splice junctions.  Two of the earliest experiments were carried out in yeast (25, 27).  

Wilhelm et al. 2008 utilized both Illumina sequencing and a tiling microarray to analyze the 

transcriptome of S. pombe.  They identified both alternative start and poly-A sites, and 

examined splice junctions using what they referred to as “trans-reads”—reads that spanned 

exons (27).  Using S. Cerevisiae, Nagalakshmi et al. 2008 examined gene boundary definitions 

and through this strategy they identified possible alternative poly-A usage.  It was Mortazavi et 

al. 2008, applying the Illumina platform to a subset of tissues from the mouse that first directly 

addressed alternative splicing (17).  This was done by mapping otherwise unmapped reads to a 

database of known splicing events from UCSC (17, 73).   As the only group to apply the SOLiD 

platform, Cloonan et al. 2008 also implemented a unique approach to alternative splice 
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detection (24).  In addition to querying a public database for exon splicing definitions, they 

adapted a de novo assembly algorithm, VCAKE (74), to assemble overlapping non-mapping reads 

and realigned them to the mouse genome using BLAT (24, 28).   

The use of database-defined splicing events was extended to de novo splice site 

detection through the mapping of trans-reads to splice junctions found from the pair-wise 

connection of defined exon sequences.  Sultan et al 2008 followed this strategy for human 

HEK293T and Ramos B cells (26); Marioni et al. 2008 followed an expanded version for human 

liver and kidney cells (75).  Instead of pair-wise concatenation within a gene, Marioni et al. 2008 

concatenated exons in a pair-wise manner for the entire genome, probing them for trans-reads 

(75).  A simpler approach was taken by Rosenkranz et al. 2008 who looked for trans-reads that 

resulted from 1, 2 or 3 exon skipping events in mouse ES cells (72).  Pan et al. 2008, choosing to 

implement their own annotation pipeline, aligned publically available mRNA and EST sequences 

to the human reference genome using a combination of BLAST (76) and SIM4 (32, 77).  From this 

they created an exon junction database, searched for trans-reads and successfully used a logistic 

regression and a decision tree to discriminate real from false junctions (77).  They showed that 

the percent inclusion (%in) could be used to assess changes in the inclusion level of cassette 

exons in transcript isoforms between tissues (77).  The %in measure was then shown to 

correlate with their previous microarray experiments and GenASAP algorithm (77).  The most 

impressive and complete examination of alternative splicing has been carried for a large number 

of human tissues by Wang et al. 2008 (5).  Combining gene predictions from GENSCAN (78) and 

EXONIPHY (79) along with three databases containing exon definitions, they created a database 

of all possible exon junctions (5).  Relying upon their exon predictions and Ensembl (12) gene 

boundaries for their junction database, they successfully mapped trans-reads to these junctions 
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(5).   Wang et al. 2008 also made several unique contributions to the field.  The first was the idea 

of the inclusion ratio, which estimated the proportions of the different transcript isoforms in the 

sample (5).  The second was the percent spliced in or PSI(ψ) which was an estimate of the 

proportion of the transcripts that contained an exon, a construct similar to the %in concept 

discussed by Pan et al. 2008 (5).  With these measures they examined several AE characteristics 

related to this study.  They examined the extent and quantity of tissue-specific and individual 

specific AEs through the use of a Fisher’s exact test (5). The test addressed whether the number 

of reads that were included and excluded from AEs between tissues (and individuals) were 

significantly different (5).  They then estimated the difference using a measure termed the 

inclusion ratio (5).  Both cassette and mutually exclusive exons were grouped by their change in 

ψ to look at the features that accompanied large changes between tissues (5).   

Since the paper by Wang et al. 2008, other proposals have been made on how best to 

quantify and compare the transcript isoform levels of one or more samples.  Jiang and Wong 

2009 devised a model that simplified to the RPKM measure for the case of a single transcript, 

but used a Bayesian approach to model the isoform ratio for the cases where there were 

multiple transcripts (80).  Similarly, Zheng et al. 2009 implemented a hierarchical Bayesian 

model to attempt to declare transcript isoforms differentially expressed between multiple 

samples (81).       

Study Aims 

 For this study there were two main objectives.  The first was to utilize C57BL/6J (B6) 

mouse inbred strain whole-brain and striatum RNA-Seq datasets to address the question 

whether alternative splicing differs between a heterogeneous and homogenous tissue within an 
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inbred mouse strain.  The first step was to realign the reads from both datasets to a reference 

genome and a set of splice junctions formed using Ensembl (12) and ASTD (11) definitions.  This 

was done using both reads that mapped solely to a unique location in the genome and 

combining the unique reads with multi-mapping reads that were mapped to their most probable 

position.  This process is described in Chapter 2.  From the reads that mapped to splice 

junctions, alternative splicing was inferred using the positional relationships of the verified 

splice junctions. The analysis of these events and comparison of alternative splicing between the 

mouse whole-brain and striatum is the subject of Chapter 3.  The work on quantifying transcript 

isoforms carried out by Wang et al. 2008 (5) and Pan et al. 2008 (77), was of much use since it 

allowed a better assessment of the makeup of the transcriptome than could have been provided 

by microarrays.  A comparison of the isoform ratio calculation (5) with data from exon arrays 

along with a comparison of a generalization of the %in (77) to an exon array alternative splicing 

detection platform is the subject of Chapter 4. 

 Most of these procedures have not drawn on the full potential of this technology.  By 

limiting characterization of AEs to splice junctions, which can be examined using microarrays, 

they lose many of the advantages of the increased resolution that may be provided by RNA-Seq 

technology.  A possible solution to all three of these problems would use the read depth 

measure of expression from these experiments to identify promising AEs.  If a population of 

mRNA molecules is considered; for a given gene many types of transcripts can be produced via 

AEs.  Each of these transcripts can have exons that differ in size and/or number from the exons 

in other transcripts.  From an RNA-Seq experiment, if two exons from separate alternatively 

spliced transcripts overlap based upon genomic position, then both should contribute reads to 

the dataset at a level consistent with their expression.  These reads, when realigned back to the 
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genome, should produce locally higher read depth in the overlap region compared to a region of 

non-overlap.  A form of this idea has been successfully used by Wang et al. 2008 to identify 

tissue regulated AEs and compare the proportion of corresponding transcript isoforms between 

tissues and individuals (5).  However, it was of interest to see if this could be extended to the 

detection of overlapping exon regions within a gene.  The results of which, given a cDNA or 

genomic sequence, could predict whether non-annotated isoforms of that gene transcript 

existed and the proportion of the sample they make up.   Before this can be done, the first step 

is to determine whether these local differences in read depth are both present and identifiable 

for well defined exons and AEs.  This was the second objective of this study.  The most obvious 

way of accomplishing this was through the use of generalized linear models to assess 

significance of the read count, which could be used as a rate.  The results and implications of an 

exploratory analysis of this type is the subject of Chapter 5.  An overall summary and concluding 

remarks is made in Chapter 6. 
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Chapter 2 

Read Realignment Strategy and Implications 

Introduction 

 In order to use RNA-Seq as a measure of expression, these data have to be mapped back 

to reference sequences.  For sequencing performed by Illumina, this procedure has typically 

been done by ELAND, which is their proprietary realignment software.  Since ELAND is 

proprietary, it is not readily available to groups who do not own their own sequencer.  To deal 

with this problem, many open source short read mapping software programs have now been 

created.  Examples of these include Maq (82), RMAP (83), and Bowtie (84).  In addition to read 

malformations that can cause mis-mapping (85), the process of sequencing mRNA transcripts 

results in some reads that will fail to map because they are derived from transcript regions 

containing splice sites—areas where two transcribed exons were spliced together (17).  In 

addition to providing better utilization of the data, mapping reads to the areas bordering splice 

sites, known as splice junctions, provides evidence for splicing and more interestingly alternative 

splicing (17).  The standard way to look for these splice site crossing reads has been to form in 

silico splice junctions based upon exon definitions from gene predictions (68).  Generally 

speaking this has been done in two ways: a guided approach or a combinatorial approach.   The 

guided approach was first carried out by Mortazavi et al. 2008 and involved forming splice 

junctions based upon previously known splice sites (17).  The combinatorial approach 

exemplified by Wang et al 2008 and Pan et al. 2008, involved using all known exons and 

concatenating the exons together in every possible manner for each gene (5, 77).  The benefit to 

the latter approach was that novel alternative splicing isoforms could be discovered, whereas 
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the former approach only looked for and measured the existence of known events.  More 

recently, spliced alignment programs have been developed especially for use with the Illumina 

GA and other high throughput sequencers.  The purpose of these programs is to predict splice 

junctions from the genomic alignment of reads with large insertions or deletions (indels) in their 

sequence similar to the more traditional BLAT program (28).  These new RNA-Seq spliced 

aligners include QPALMA (34) and the recently developed Tophat (36).  Since the data from 

reads mapped to in silico splice junctions and from splice alignments would essentially be the 

same, it would be relatively easy to allow the utilization of either type of analysis in a software 

package.  

 One of the more interesting techniques employed by two of the first groups to apply 

high-throughput sequencing to mRNA was the use of a multi-mapping assignment strategy (17, 

24).  Briefly, this involved assigning reads that mapped to multiple locations to their most 

probable location based upon relative expression levels (17, 24).  Mortazavi et al. 2008 showed 

that the use of the multi-reads increased a gene-level correlation with a microarray experiment 

from an R2

 

 value of .62 to a value of .69.  However, they did not mention whether it was 

statistically significant (17).  The approach they used was similar to a maximum entropy strategy 

where they assigned fractions of reads to locations based upon the unique read count (17).  Of 

special interest was the utility of these multi-reads for alternative splicing analyses, which to my 

knowledge, has not been thoroughly addressed.  The goal of this chapter was to examine the 

issues regarding splice junction formation and read assignment.  This was done in relation to the 

use of multi-reads in the context of an analysis concerning alternative splicing in the mouse 

brain.     
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Methods 

 In order to verify and quantify the transcript population in the C57BL/6J inbred strain of 

mouse, a guided splice junction formation approach was taken using the exons defined in 

Ensembl (12) in conjunction with the alternative splicing events from the alternative splicing and 

transcript diversity database (ASTD) (11).  To do this, the exon boundaries were retrieved from 

Ensembl build 53 (12) and the alternative splicing events were retrieved in BED format from the 

February 2008 release of ASTD (11).  To provide global access to sequence, the 2bit compressed 

version of the mm9 mouse genome build (86) and an accompanying extraction tool was 

downloaded from UCSC (73).  This extraction tool was used to pull out all of the reference 

strand sequence for both the Ensembl (12) and ASTD (11) exon boundary definitions.  This 

sequence was reverse complemented if the gene was on the negative strand.  From these 

sequences, only k – 4 bases were kept from each end, if bordering a splice site, where k was the 

read length.  Starting from the first exon as defined in Ensembl (12), each exon boundary region 

was concatenated with the neighboring exon with whom it shared the intron.  For the situation 

where exons were smaller than the read length, bases were used from the exon(s) downstream 

or upstream of the splice site in question.  Bases were borrowed from the neighboring exons in 

this manner until either the desired splice junction size was met, or there were no more exons in 

the gene.  The ASTD (11) events were prepared similarly.  First, since the ASTD (11) data release 

was built using the older mm8 genome, the coordinates were converted to the newer mm9 

genome build using LiftOver (73).  These events were then merged with the Ensembl (12) exons, 

looking for any overlap between the Ensembl (12) exon definition and the alternative ASTD (11) 

definition.  The successfully merged events were used to determine in what order the ASTD (11) 

exons were concatenated with the Ensembl (12) exons, supplementing the splicing information 
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provided by the event definition.  For example, a cassette exon event would be guided both by 

the ASTD (11) internal boundaries and by the Ensembl (12) definitions for the external 

boundaries—the first and last exon of the event.  Similarly, splice junctions involving exon 

isoforms would be formed using the bordering Ensembl defined exons (12).  These sets of splice 

junctions from Ensembl (12) and ASTD (11) were then filtered to remove redundancy for the 

situations where the two covered the same splice junctions.  This was expected to occur 

because ASTD (11) reported both the normal splice event, which generally was covered by 

Ensembl (12) and the alternative exon definitions which generally were not. 

 The Bowtie short-read realigner was used to map the Illumina RNA-Seq reads to both 

the mm9 genome and the collection of splice junctions.  For this analysis the datasets consisted 

of the whole-brain dataset from Mortazavi et al. 2008 (17) and the striatum RNA-Seq dataset 

from the Portland Alcohol Research Center (PARC).  Both of these were derived from the same 

strain of inbred mouse: C57BL/6J, also known as B6.  Each alignment was carried out in four 

steps.  First, the reads were mapped to the genome separating those that mapped uniquely 

from the rest.  Second, the reads that did not map to unique positions were remapped, keeping 

those that were placed in fewer than 10 possible positions.  Those that mapped to more than 10 

locations were discarded and those that failed to map anywhere were placed in a separate file.  

The non-mapping reads from this file were realigned to the splice junction set, again keeping 

any that mapped uniquely or to fewer than 10 locations.   

Reads that mapped equally well to multiple places, known as multi-mapping reads, were 

assigned based upon the strategies by Mortazavi et al. 2008 and Cloonan et al. 2008.  The multi-

mapping reads were assigned to a position based upon the read depth of the regions that were 

2k in length for the case of genomic reads and 2(k-4) for splice junction reads.  Reads were 
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assigned at a level proportional to the relative read depth, so that the multi-read expression 

would be adjusted in a manner similar to what has been termed a rich-get-richer approach (87).  

The original reason for using such an approach was to ensure that the data was kept as whole 

counts, so as not to interfere with any foreseeable downstream statistical tests.  Summary 

statistics and plots were then generated using R (88). Correlation plots were generated to make 

some basic inferences about the properties of the mapped reads.  Expression was measured 

using a measure of normalized read count referred to as the reads per kilobase of exon model 

per million mapped reads (RPKM) (17).  However, this measure was calculated differently than 

the method proposed in Mortazavi et al. 2008 (17).  It was calculated by averaging the read 

count that was normalized by the exon length, over the number of defined Ensembl transcripts 

(12).  This was further normalized by the number of million mapped reads.  It differed from the 

calculation of Mortazavi et al. 2008 mainly because it did not take into account the splice 

junction reads (17).  This was done originally in an effort to make the results more comparable 

to common microarray platforms which also do not interrogate splice junctions.  Three basic 

plots were formed.  First, the RPKM (17) measures for each gene were plotted against 

expression summarized at the gene-level from exon array experiments.  These experiments used 

existing microarray datasets from the PARC that were also derived from mouse whole-brain and 

striatum.  These microarray datasets were renormalized and analyzed using the methods from 

the ExonModelStrain package (55) utilizing only the core probes.  See chapter 4 for more details.  

The RPKM (17) measures from both datasets were plotted against one another to look for both 

biologically meaningful results and to identify any potential biases in the microarray datasets.  

Finally, the length and normalized read count for splice junctions were plotted against gene 

RPKM (17).   The splice junction read counts were calculated individually for each splice junction 

and the read count was divided by the length of the splice junction, 62 or 42 in most cases and 
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the number of million mapped reads.  Correlation coefficients were computed using Spearman’s 

rank correlation and confidence intervals were computed through bootstrapping.  Comparing 

confidence intervals was a straight-forward way to test for differences between Spearman’s 

rank correlations.  

Results 

 There were a total of 266,005 distinct splice junctions formed from the combined set 

from Ensembl (12) and ASTD (11).  Of these there were 201,404 that were from Ensembl (12) 

and 64,601 from ASTD (11).  From the total list, 9,094 were redundant and subsequently 

removed.  For the striatum dataset 727,112 reads were uniquely assigned to a position.  A total 

of 5,578 multi-mapping reads were present and could be assigned.  All together, a total of 

105,033 splice junctions were found with at least one unique read mapping to them.  Similarly, 

there were 799,483 unique reads assigned from the whole-brain dataset, with 101,145 multi-

reads that were present and successfully mapped.  This led to a total of 100,048 verified splice 

junctions.  

For the striatum dataset there were a total of 13,948,348 reads and 9,728,363 were 

assigned to a unique position in the genome.  Bowtie reported 1,831,535 multi-mapping reads, 

871,499 of these mapped equally well to multiple positions and 960,036 mapped to one 

position with a fewer number of mismatches than the other positions.  These latter reads were 

flagged, but were included in the unique read counts.  Of the true multi mapping reads, 643,955 

could be assigned to one position with a greater probability than the others and were 

reassigned.  The others mapped to regions where no uniquely mapping reads were present, and 

therefore could not be assigned to a position.  This led to a total of 11,332,354 reads assigned to 
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the genome. Similarly for the whole-brain dataset, there were 31,116,663 reads, 12,552,370 

mapped to a unique location with 1,660,481 of the 3,530,701 multi-reads mapping to a one 

position with fewer mismatches than the others.  Of the remainder, 1,402,910 were reassigned 

to one position with the greatest probability.  This resulted in a total of 15,615,761 reads.  The 

genomic reads and splice junctions combined resulted in a grand total of 12,065,044 reads for 

striatum and 16,516,389 for whole-brain.   

Fig. 1 shows the RPKM (17) calculated using both the unique (1a) and unique plus multi 

(1b) reads from striatum plotted against the RMA (89) from the corresponding microarray 

experiment.  There was a high correlation between these datasets using both the unique and 

unique plus multi-mapping reads (rho= .893 95% CI: (0.888, 0.897) for unique reads and .898 

95% CI (0.894, 0.902) for unique + multi-reads; Spearman’s rank correlation, bootstrap CIs).  The 

correlation was higher between the unique plus multi-mapping read RPKM (17) and the 

microarray experiment, than the corresponding unique-only mapping experiment, however the 

difference was not significant.  Likewise, Fig. 1 c and d show the unique and unique plus multi-

mapping RPKM (17) values for whole-brain plotted against the microarray experiment.  Again, 

the correlation was higher, though non-significant for the unique plus multi-mapping read RPKM 

(17) than for the uniquely mapping version (Rho= 0.809 95% CI (0.802, 0.816) for unique reads 

vs. 0.812 95% CI (0.804, 0.819) for unique + multi-reads; Spearman’s rank correlation).  Shown in 

Fig. 2 were the RPKM (17) values for both whole-brain and striatum plotted against each other.  

Interestingly in this case, 2a which plots the uniquely mapping reads, had a significantly higher 

correlation than 2b, which plots the unique plus multi-reads (rho=0.908 95% CI (0.905, 0.911) 

for unique reads and 0.892 95% CI (0.889, 0.896) for unique + multi-reads; Spearman’s rank 

correlation, bootstrap CIs).  Figure 3 shows the relationship between the splice junction 
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normalized read depth and the overall gene expression as measured in RPKM (17) for both 

whole-brain and striatum.  The correlation values were computed using Spearman’s rank 

correlation and rho was estimated to be .886 (95% CI: 0.880, 0.892; bootstrap CI) and .871 (95% 

CI: 0.864, 0.878; bootstrap CI) for the uniquely and uniquely plus multi-mapping reads in the 

striatum and likewise .894 (95% CI: 0.888, 0.899; bootstrap CI) and .883 (95% CI: 0.877, 0.889; 

bootstrap CI) for the whole-brain. 

1a.) 
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1c.) 
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1d.) 

 

Figure 1.   Relationship between RPKM and microarray RMA for mouse striatum and whole-

brain.  The log base 2 RPKM (17) was calculated using the uniquely (a, c) and uniquely plus multi 

(b, d) mapping reads (x-axis).  The uniquely mapping reads were those assigned to one position 

best using the Bowtie (84) realignment program.  Multi-mapping reads were assigned by 

determining their most probable Bowtie (84) assigned position based upon read depth for 

windows of length 2k for genomic reads or 2(k-4) for splice junctions.  Where k was the read 
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length.  These results were plotted against normalized gene-level striatum or whole-brain gene 

expression (89) from an exon array experiment (See chapter 4) also log base 2 transformed (y-

axis). Correlation for (a) and (b): rho= .893 (95% CI: 0.888, 0.897; bootstrap CI) and .898 (95% CI: 

0.894, 0.902; bootstrap CI) using Spearman's rank correlation.  Correlation for (c) and (d): rho = 

.809 (95% CI: .802, .816; bootstrap CI) and .812 (95% CI: .804, .819; bootstrap CI) using 

Spearman’s rank correlation. 

2a.) 
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2b.) 

 

 

Figure 2.  Relationship between mouse whole-brain and striatum RPKM expression.  Whole-

Brain RPKM (17) expression (Y-axis) was plotted against striatum RPKM (17) expression (X-axis).  

This was done for both the uniquely mapped reads (a) and uniquely plus multi-mapped reads 

(b).  Unique reads were assigned to their position using the Bowtie realignment program (84).  

Multi-mapping reads were assigned to their most probable positions from Bowtie (84) using 

read depth from windows of 2k for genomic positions and 2(k-4) for splice junctions.  Where k 
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was the read length.  RPKM (5) values were log base 2 transformed.  The correlation values were 

rho=0.908 (95% CI: .905, .911; bootstrap CI) for (a) and rho= 0.892 (95% CI: .889, .896; bootstrap 

CI) for (b) using Spearman’s Rank Correlation. 

3a.) 
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3d.) 

 

Figure 3.  Relationship between gene and splice junction RPKM expression for mouse whole-

brain and striatum.  The RPKM (17) measure was calculated for each gene region (Y-axis) and 

compared to the normalized read count for each splice junction within the gene (X-axis).  The 

read count was normalized by both the splice junction length in kilobases and the number of 

million mapped reads.  Unique reads were assigned to the positions given to them by Bowtie 
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(84).  Multi-mapping reads discovered by Bowtie (84) were assigned to their most probable 

positions based upon the read depth of genomic windows of size 2k and splice junction windows 

of size 2(k-4).  Where k was the read length.  Plots for both unique and uniquely plus multi-

mapped reads for striatum are shown in (a) and (b), for whole-brain they are shown in (c) and 

(d).  Correlation values were .886 (95% CI: .880, .892; 95% CI) and .871 (95% CI: .864, .878; 

bootstrap CI) for unique and multi-mapping reads for the striatum respectively.  For whole-brain 

the correlation values were .894 (95% CI: .888, .899; bootstrap CI) and .883 (95% CI: .877, .889; 

bootstrap CI) for the unique and multi-mapping reads respectively using Spearman’s rank 

correlation. 

Discussion 

 Similar to the results given in Mortazavi et al. 2008, the inclusion of multi-mapping reads 

for the striatum dataset both increased the total read count from 10,455,475 to 12,065,044, 

which is about 86.5% of the total number of reads used as input and improved correlation with 

a microarray experiment.  However, the 25 base whole-brain reads created for their experiment 

were not able to be assigned at an equivalent rate to the mouse genome.  All together 53.08% 

total were successfully mapped or reassigned.  This rather excessive failure rate was also 

mentioned by Mortazavi et al. 2008, since they reported that only 50.3% of their reads mapped 

uniquely to the genome—similar to the 45.6% achieved here using a different realignment 

algorithm.  It seems likely that read length was the main cause of the difference in the 

percentage of mapped reads between the two datasets.  As shown by Whiteford et al. 2005, the 

ability to place a read uniquely in a complex mammalian genome is related to read length.  This 

problem was compounded even further by the presence of base-calling errors that increase in 

likelihood at the read ends (85).  If a read had too many errors, it would not be realigned 

successfully to the genome.     
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 The normalized gene expression levels stayed in approximately the same range for both 

the whole-brain and striatum datasets when compared to the microarray experiment, even 

though the number of reads successfully mapped was different (Fig. 1).  However, the whole-

brain dataset had more data points spread out and shifted upward, resulting in a lower 

correlation.  This meant that the RMA (89) levels reported were higher than would be expected 

from the RPKM (17) levels.  One possible explanation was that the relative failure to map reads, 

unique or otherwise, resulted in fewer reads mapping to the exons thereby lowering the 

reported expression level for the RNA-Seq dataset.  This also may have caused more reads to be 

present for the highly expressed and/or longer transcripts (90) than would be expected, 

resulting in overestimation of the RPKM (17) measure as compared to the RMA (89), something 

that was also observed.   

 Comparing Fig. 2a and 2b, we saw that the whole-brain and striatum were very similar 

in gene expression levels, as would be expected.  Again, the whole-brain seemed to have a 

group of genes that had higher than expected expression levels.  Whether this was due to true 

biological processes or technical noise still needs to be determined. 

 The expression level of splice junctions as compared to entire genes is shown in Fig. 3.  

The two expression levels were highly correlated with the gene expression level containing a 

much greater dynamic range.  All plots in Fig. 3 showed some under-expression of genes in 

relation to splice junctions at lower overall expression levels, something that would be expected 

given that the splice junctions were constrained in size.  Interestingly, even though the inclusion 

of multi-reads decreases correlation, the outliers seemed to become more evenly distributed to 

both sides of the main body of points resulting in a more equal level of over and under 

estimation.  Overall, the inclusion of multi-reads seemed to improve the homoscedasticity of the 

splice junction versus gene expression plots at the expense of the correlation. 
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Of special interest was the observation that although using multi-mapping reads for 

these samples seemed to not have an effect on correlation with a microarray dataset (Fig. 1), 

use of multi-mapping reads decreased the correlation between two similar datasets and 

between splice junction (Fig. 3) and gene-level expression (Fig. 2).  This may have indicated that 

rather than improving the expression values, the inclusion of multi-reads may have caused them 

to be overestimated.  Likewise, the microarray experiment may have overestimated gene 

expression as well, and lead to an improved correlation value when compared to the 

overestimated expression values.  These results may have been unique to this analysis since the 

calculations used here were different than those performed elsewhere.  One concern was that 

the use of this multi-mapping assignment approach may bias the read count in favor of the 

highly expressed splice junctions and would not improve our ability to detect rare splice 

variants.  It may be beneficial to adapt this approach to use fractional count assignment for 

multi-mapping reads similar to that used by Mortazavi et al. 2008 as opposed to the whole-read 

assignment strategy.  Since the read fractions would be distributed in a relative manner based 

upon unique read count, this strategy might reduce the overestimation currently seen in splice 

junctions when compared to gene expression.  Further analysis is necessary to determine 

whether the use of multi-mapping reads provides a benefit to RNA-Seq experiments and may be 

addressed in future studies. 
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Chapter 3 

Alternative Splicing in the Mouse Whole-Brain and Striatum 

Introduction 

 The demonstrated uses of RNA-Seq have extended beyond simply quantifying gene 

expression to interrogating the diversity of the transcript populations themselves.  The 

developers of the RNA-Seq methodology showed that some of the reads that failed to map to 

the genome could be realigned to sequences consisting of in silico splice junctions (17). These 

splice junctions were composed of a set of exons gathered from the knownGene collection from 

UCSC (73) that were concatenated together to simulate the sequence present in an mRNA 

transcript, but separated by intronic sequences in the genome (17).  However, the Mortazavi et 

al. 2008 group did not infer alternative splicing isoforms but indirectly hinted at their presence 

by looking at the number of exons mapped to by each splice crossing read. This methodology 

was expanded to look for de novo splicing events by Sultan et al. 2008 and Marioni et al. 2008.  

Existing exon definitions were supplemented with predictions for Pan et al. 2008 and Wang et 

al. 2008.  The splice site-centric view taken by the latter groups can be easily harnessed to 

identify putative splicing and alternative splicing events based upon relatively simple heuristics.  

In this manner alternative splicing and the conceptually similar phenomena of alternative 

transcription start sites (ATSS) and alternative poly-A sites (APA) can be detected.  These ideas 

have been implemented to globally assess alternative splicing in both the mouse whole-brain 

and striatum using splice junctions whose creation was guided from Ensembl (12) exon 

definitions and the alternative splicing and transcript diversity database (ASTD) (11) events. 
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Exon/Intron Isoform 

 

Cassette Exon 

 

Mutually Exclusive 

 

Intron Retention 

 

Figure 4.  Graphical depiction of alternative splicing events.  These pictures were retrieved 

from the alternative splicing and transcript diversity database (ASTD) (11).  Exon/intron isoforms 

were used as one category to generally refer to any event where two different exons in separate 

transcripts overlapped, but had different boundaries (11).  A cassette or skipped exon referred 

to any pattern where one or more exon was skipped in one transcript versus another (11).  The 

mutually exclusive event was similar, with each transcript containing at least one skipped exon 

(11).  Intron retention events referred to situations where there was a lack of splicing in one 
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transcript relative to another (11).  In these representations, orange and blue boxes represented 

exons and the black or blue lines represented introns (11).   

Methods 

 Two sets of splice junctions were formed and reads were mapped to them as described 

in Chapter 2 for whole-brain and striatum.  Six types of events were searched for using the 

definitions given by ASTD (11).  These events were the exon/intron isoform, cassette and 

mutually exclusive exons, intron retention and ATSS and APA events.  The ASTD (11) depiction of 

these events is shown in Fig. 4.  To detect these events all splice junctions with at least one 

unique read mapped to them were extracted and organized by chromosome. All distinct splice 

junctions from ASTD (11) or Ensembl (12) were associated with their full length exons and the 

coordinates of these exons were used to sort the splice junctions by starting genomic coordinate 

position.  For those from genes on the negative strand, the start and end coordinates had to be 

reversed to maintain compatibility with those on the positive strand.  These splice junctions 

were then stepped through and the genomic coordinates of the first and second exons of each 

consecutive junction were compared.  Examples of these relationships are shown in Fig. 5.  Note 

that the relationships shown in Fig. 5 are simplified and that the actual implementation was 

further generalized.  Some of these generalizations included looking for overlap as opposed to 

exact matching based upon boundaries and procedures that could handle multiple alternative 

splicing events occurring within the same grouping of splice junctions.  The described procedure 

in addition to judicious filtering to remove inaccuracies and redundant events was used to 

create a set of alternative splice junctions for both the whole-brain and striatum.  Certain ATSS 

and APA events could also be determined in this manner.  They are shown in Fig. 6.   
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Since putative ATSS and APA events were only supported by one splice junction instead 

of two, they were associated with two other types of data that could provide evidence for their 

existence: CAGE tags (22) and poly-A signals. For the whole-brain, CAGE tags from the FANTOM3 

project (91) were retrieved from RIKEN (91).  The tags used were of length 20 bases and derived 

from adult mouse whole-brain.  They were mapped to the genome using Bowtie (84) allowing 

up to 2 mismatches.  The count of these tags was taken from an area 50 bases upstream of the 

start of each exon to 50 bases downstream or the length of the exon, whichever was shorter.  

For the APA events, a collection of 13 poly A signals (Table 4) that were used in the AltPAS 

pipeline of ASTD (11) were searched for in all exons for the transcripts that had at least one 

uniquely mapping read assigned to each Ensembl-defined (12) splice junction.  This search 

required an exact match to one of the sequences in Table 4.  

Cassette Exon Event 

 

 

Mutually Exclusive Event 

 

 

Figure 5.  Splice junction spatial relationships for two alternative splicing events.  Alternative 

splicing events were detected using the relationship of splice junction positions along a 

chromosome.  These are examples of such splice junction layouts that would be classified as a 
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cassette exon (top) and mutually exclusive event respectively (bottom).  Shown in orange are 

exons and the black lines separating them represent introns. 

Alternative Poly-A Site (APA) 

 

Alternative Transcription Start Site (ATSS) 

 

Figure 6.  Graphical depiction of APA and ATSS events. The only detectable APA and ATSS 

events via splice junctions consisted of those where one exon was behind (trailing) of or in front 

of (leading) another at the start or end of a gene.  The leading exon will be considered to be the 

unique outermost boundary exon.  The trailing exon will be considered the unique exon 

following the leading exon.  The orange boxes represent exons and the black lines represent 

introns. 

Results 

 The total number of events found is shown in Table 1 categorized by type.  The most 

common type of event was the cassette exon with a total of 1,398 events, followed by the 

exon/intron isoform with 1,024 events observed.  At the other end of the spectrum there were 

only of 31 mutually exclusive exon events and 37 APA events.  A total of 145 and 183 intron 

retention and ATSS events were also found.  Some of the events were only seen in one sample, 
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the overall overlap for the two samples are depicted in Fig. 7 and are shown broken down by 

category in Table 2.  Overall, the majority of events overlapped between tissue types and this 

held true for half of the individual categories with the exceptions of ATSS, APA and intron 

retention events.  Possible reasons for lack of overlap of alternative splicing events were the 

different levels of sequencing (sample size) and potential differences in expression between the 

two samples.  Since events were only counted if all splice junctions within the event were 

present it was possible that for the genes with lower expression some junctions within an event 

might have lacked a unique splice-crossing read and the event therefore would not have been 

counted.  To examine this possibility, summary statistics for the splice junctions involved in the 

unique and common alternative splicing events were tabulated and are shown in Table 3.  

Although there were massive outliers for both, the mean and the median average read depth 

values for the common events were higher than those for the unique events.  This was true 

when both uniquely and uniquely mapping plus multi mapping reads were counted.  This 

indicated that the events may have only been unique in one tissue because of the failure to map 

any unique reads to one or more participating splice junctions in the other tissue.  

Sample Isoforms Cass. Ex. Mut. Ex. Intron Ret. Alt. TSS Alt. PolyA Total 
Whole-Brain 533 661 15 78 101 16 1404 

Striatum 491 737 16 67 82 21 1414 

 

Table 1.  Alternative splicing events seen in the whole-brain and striatum.  This table shows 

the total count of each type of alternative transcript event for both the whole-brain and 

striatum requiring a minimum of one uniquely mapping read to be assigned to each splice 

junction.  Shown are the exon/intron isoform (Isoforms), cassette exon (Cass. Ex.), mutually 

exclusive (Mut. Ex.), and intron retention splicing events (Intron Ret.).  Also shown are alterative 
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transcription start sites (Alt. TSS) and the related alternative poly-A events (Alt. PolyA).  The 

events are defined in Fig. 4 and Fig. 6. 

Sample Isoforms Cass. Ex. Mut. Ex. Intron Ret. Alt. TSS Alt. PolyA 
Both 302 369 10 39 45 8 

Whole-Brain 231 292 5 39 56 8 
Striatum 189 368 6 28 37 13 
% Total 39% 48% 1% 5% 6% 1% 

Wang. et al 19% 32% .05% .05% 32% 16% 
 
Table 2.  Common and unique events for each type of event.  Shown was the number of each 

type of alternative splicing event seen in whole-brain or striatum uniquely as well as those seen 

in both regions.  The event types shown are exon/intron isoforms (Isoforms), cassette (Cass. 

Ex.), mutually exclusive exon (Mut. Ex.), and intron retention (Intron Ret.) events.  Alternative 

transcription start (Alt. TSS) and poly A (Alt. PolyA) events are also shown.  In order for an event 

to be defined it had to have at least one uniquely mapping read assigned to each splice junction.  

The relative quantity of each category observed (% Total) was compared to a similar measure 

seen by Wang et al. 2008 from a large survey of a variety of human tissue types.  Also note that 

Wang et al. 2008 also had data for another category which was not included in this analysis.  

Alternative events are defined in Fig. 4 and Fig. 6.   
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Figure 7.  The number of alternative splicing events that were shared between the two tissues.  

Shown is the overlap between the total alternative splicing events seen in only striatum, only 

whole-brain or in both.  In order for an event to be defined it had to have at least one uniquely 

mapping read assigned to each splice junction. 

Uniquely mapping read depth for the common striatum events 
Minimum Median Mean Max Std. Dev. 

1.00 4.00 10.86 520.00 27.06 
Uniquely mapping read depth for the common whole-brain events 

Minimum Median Mean Max Std. Dev. 
1.00 5.00 14.23 1129.00 45.85 

Uniquely mapping read depth for events unique to striatum 
Minimum Median Mean Max Std. Dev. 

1.00 2.00 4.30 130 7.08 
Uniquely mapping read depth for events unique to whole-brain 

Minimum Median Mean Max Std. Dev. 
1.00 2.00 7.032 445.00 18.91 

 

 

 

 

773 Events 
 

Striatum 
641 Events 

Whole-Brain 
631 Events 
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Multi mapping read depth for common striatum events 
Minimum Median Mean Max Std. Dev. 

1.00 5.00 11.21 523.00 27.73 
Multi mapping read depth for common whole brain events 

Minimum Median Mean Max Std. Dev. 
1.00 5.00 14.56 1194 47.14 

Uniquely mapping read depth for events unique to striatum 
Minimum Median Mean Max Std. Dev. 

1.00 2.00 4.43 130 7.25 
Uniquely mapping read depth for events unique to whole-brain 

Minimum Median Mean Max Std. Dev. 
1.00 2.00 7.31 457.00 19.42 

 

Table 3.  Summary statistics for alternatively spliced junctions.  Summary statistics are 

presented for the number of reads mapped to alternative event junctions for both those events 

that were unique to whole-brain or striatum compared to those that were shared between the 

two.  This was done distinguishing the counts of uniquely-mapping reads from the counts of 

unique reads plus multi mapped reads.  Alternative events were detected as defined in Fig. 4 

and Fig. 6, requiring a minimum of 1 uniquely mapped read.   

  For striatum, out of the 8,433 transcripts that were defined in their entirety with at 

least one read crossing each splice junction, 4,576 contained a poly-A signal at the last exon that 

met the defined criteria.  Of the 21 candidate alternative poly-A events seen in striatum, 7 

contained at least one signal in the leading exon (Fig. 6) and 4 contained a signal in the trailing 

exon.  All of the leading exons and 14 of the trailing exons were defined to be the last exon in a 

transcript by Ensembl (12).  Similarly, for whole-brain there were 8,978 transcripts defined with 

5,043 of them containing the canonical consensus signals (11).  Eight of the leading and 4 of the 

trailing exons contained a signal out of the 16 total sets of leading and trailing exons.  Again, all 

of the leading and 14 of the trailing exons were considered to be the last exons by Ensembl (12).  

There were a total of 25,341 CAGE tags from the whole-brain library (91) and 11,551 were 
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successfully remapped to the genome at unique positions.  Of the 8,978 whole-brain verified 

transcripts, 1,454 had at least one CAGE tag mapped to the defined first exon.  All of the leading 

and 82 of the trailing exons were defined to be first exons in Ensembl (12).  Of these 7 of the 

leading and 11 of the trailing contained one or more CAGE tags. 

Discussion 

The proportions of the different types of alternative splicing events were similar to what 

was seen in Wang et al. 2008, the largest such study to date (Table 2).  They found that out of 

their set of 37,782 events seen between one or more human tissues, around 32% were cassette 

exons, .05% were intron retention events, 19% were exon/intron isoforms, .05% were mutually 

exclusive, 32% were ATSS and 16% were APA.  Another group, tandem 3’ UTRs, made up the 

rest (5).  This compares to around 48% cassette, 39% exon/intron isoforms, 1% for both 

mutually exclusive and APA and 5 and 6% for intron retention and ATSS respectively for this 

experiment.  Mortazavi et al 2008, who created the whole-brain RNA-Seq dataset, reported 

1,516 alternatively spliced genes by defining an alternative splicing event as any time a read 

either started or ended on multiple exons.  Here 1,404 events were found for whole-brain, the 

difference between the two numbers could have been caused by realignment strategy or the 

use of a different database to guide the creation of the splice junctions.  Also Mortazavi et al. 

2008 did not rely on the reconstruction of alternative splicing events using splice-crossing reads, 

but used the simpler method outlined above.  All together, this seemed to indicate the 

proportions and numbers of alternative splicing events seen here were not unusual with regards 

to sample size and tissue of origin.   Especially since alternative splicing is thought to occur 

frequently in the brain (13).  Detection of alternative splicing is highly dependent on either 

expression and/or sequencing depth.  This was shown much more elegantly in Wang et al. 2008, 
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but can be seen in Table 3, where differences between the average number of reads mapped to 

splice junctions may have lead to the failure to observe an event in one tissue.  The inclusion of 

multi-mapping reads did not seem to change the relationship between the unique or common 

splice events.  Also of interest was the massive outlier seen in Table 3, reaching a read depth of 

520 for one splice junction in the striatum.  This gene was the myelin basic protein or MBP and 

was massively expressed, for example one exon of size 234 bases had 5,295 striatum reads 

mapped to it.  It was also alternatively spliced, containing a cassette exon event (Fig. 8).  

Although there were relatively few poly-A sites detected in alternative (trailing) APA exons, this 

could have been due to further degeneracy of the sites, which may have even been the cause of 

the events.  Also, it was very possible that the 13 defined signals did not represent the entire 

population of such signals, as evidenced by the incomplete presence of these signals with 

respect to the defined transcripts ends for both whole-brain and striatum.  A similar situation 

existed for the CAGE tags, with the presence of such tags being evident in a vast minority of 

events.  It was expected here because of the relatively low coverage of such data. 

There were limitations to detecting alterative splicing with this approach.  False 

positives likely existed based upon the complexity and diversity of the transcriptome.  To further 

limit this possibility more reads could be required to span splice junctions at the cost of 

sensitivity.  The practicality of this requirement was also constrained by sequencing depth, 

sample size in this context, although this may be overcome in the future.  There were also cases 

where genes overlapped or where very different transcripts were produced from the same 

locus.  If alternative splicing-like events occurred in these cases, they were kept simply because 

not doing so ignores the complex reality of biology.  However, further modifications and 

improvements to the alternative splicing pipeline can and will be done in the future.  These will 
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include de novo alternative splicing detection based upon the strategies implemented by Wang 

et al. 2008 and Pan et al. 2008  and support for spliced-alignment output from programs such as 

Tophat (36).   

 

Figure 8.  Cassette exon event of the MBP gene.  The MBP gene was determined to be very 

highly expressed in both striatum and whole-brain and was also alternatively spliced.  This is a 

cassette exon event for this gene that was annotated by Ensembl (12) and visualized using the 

UCSC Genome Browser (73).   

AATAAA CATAAA 
ATTAAA GATAAA 
TATAAA AATGAA 
AGTAAA TTTAAA 
AAGAAA ACTAAA 
AATATA AATAGA' 
AATACA  

 

Table 4.  Defined poly-A signals.  These are the poly-A signals from ASTD (11) that were used as 

the query against all the exon sequences in the completely defined transcripts.  Completely 

defined in this context refers to those containing a minimum of one read mapped to each splice 

junction. 
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Chapter 4 

Quantifying Transcript Isoform Differences 

Introduction 

 Knowing the number and type of alternatively spliced transcripts is useful; however 

reliable quantification of these transcripts is the ultimate goal.  This quantification in 

conjunction with overall gene expression information will allow us to further analyze the 

contributing mechanisms behind disease states, inherited traits or tissue differentiation. 

Statistical methods (80-81) that are in development in conjunction with splice junction mapping 

data will provide estimates of the type and quantity of transcripts that are produced at a given 

time.  The makeup of transcript isoform populations has been shown to be more different 

between tissues than between individuals or cell lines (5). In some instances proper cellular 

function is dependent on this isoform ratio such as in the case of MAPT where proper 

functioning of neurons depends on this ratio (92).  RNA-Seq provides a very effective platform to 

assess transcript isoform abundance and methods have been put forward to measure it as was 

done by Pan et al. 2008, Wang et al. 2008 and more recently Jiang and Wong 2009 and Zheng 

and Chen 2009.  Commercially available microarray platforms of increased resolution have also 

been developed.  Exon arrays, microarrays that can probe individual exons, are now commonly 

used and can provide information on alternative splicing and isoform abundance as well (4, 51, 

53-55).  Pan et al. 2008 showed that an isoform ratio measure in an RNA-Seq experiment was 

highly correlated to that from their custom microarray.  Although Jiang and Wong 2009 

achieved correlation coefficients that were considerably lower when comparing their RNA-Seq 

isoform abundance measure against previous microarray experiments from the Pan et al. group 
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(49).  The goal of this chapter was to examine the measures of isoform quantification put 

forward originally by both Wang et al. 2008 and Pan et al. 2008 and apply them to the mouse 

whole-brain and striatum RNA-Seq datasets.  First addressed was the question of whether gene 

expression significant in one direction or another relative to tissue was associated with overall 

directional changes in isoform levels as measured by the inclusion ratio of Wang et al. 2008.  

Following this, a measure related to the %in derived from Pan et al. 2008 was then used to 

determine if this RNA-Seq measurement could agree with alternative splicing predictions from a 

commercially available exon array platform.  For this commercial exon array, statistical methods 

have been implemented in ExonModelStrain (55) to detect alternative splicing by looking for 

significant changes in exon expression relative to the level of gene or transcript expression 

between two samples (denoted as strains in the package).  This was termed alternative exon 

usage or AEU (55).  It should, in theory, be possible to merge the RNA-Seq alternative splicing 

events involving whole exons to the exon determined by ExonModelStrain (55) to have the 

greatest change in exon expression. 

Methods 

 The isoform ratios of the alternatively spliced junctions described in Chapter 3 for the 

mouse whole-brain and striatum were calculated as described in Wang et al. 2008.  The 

inclusion ratio was calculated by taking of the ratio of the number of inclusion reads to the total 

number of inclusion, exclusion and common reads (5).  Inclusion reads were defined as those 

that would be included in one isoform relative to another and exclusion reads were those that 

were mapped to exons bordering the included region of the other isoform (5).  Common 

referred to those reads that were common to both (5). The inclusion, exclusion or common 

reads were counted using either unique reads or unique plus multi-mapping reads.  Non-splice 
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junction reads were required to map completely within the common, inclusion or exclusion 

region (5).  Significance of the isoform ratio was determined by a Fisher’s Exact Test for a 2X2 

contingency table testing for differences between the number of inclusion and exclusion reads 

for the whole-brain and striatum as described in Wang et al. 2008.  The p-values resulting from 

these tests were converted to q-values (93) using the qvalue R package (94) to correct for the 

false discovery rate. 

 An extension of the %in defined by Pan et al. 2008, the percent trans-read contribution 

(PTC), was created to allow comparison of a greater number of events with microarray 

platforms.  Trans-reads in this context referred to reads that cross splice junctions.  The %in 

measure averaged the number of inclusion junction reads over the number of exclusion junction 

reads for single cassette exon events (77).  Inclusion and exclusion reads are defined in Fig. 9.  

This was generalized to allow all forms of cassette, mutually exclusive, intron retention events, 

ATSS and APA events by taking the averages of all inclusion and exclusion reads for cassette, 

mutually exclusive exons, APA and ATSS events.  Further, it averaged over the number of splice 

junction sized regions for intron retention events for the inclusion read measure.  The exact 

definition of inclusion and exclusion in relation to splice junctions is shown in Fig. 10 for single 

cassette and mutually exclusive exon events.  Differences between these ratios for the samples 

were measured by looking at the result of the striatum PTC divided by whole-brain PTC. 
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9a.) 

 

   

 

9b.) 

 

 

Figure 9.  Definition of inclusion and exclusion splice junctions for the PTC calculations.  Shown 

are the splice junctions defined as inclusion or exclusion for both a mutually exclusive event (a) 

and a cassette exon event (b).  Reads that mapped to these splice junctions were included into 

the listed categories.  The orange boxes are exons and the lines represent introns.  The 

designation inclusion or exclusion refers to the reads that map to the splice junctions formed 

from the concatenation of the exons (See Chapter 2 for more details). 

 The microarray platform used was the Mouse Exon Array 1.0 ST from Affymetrix.  Two 

experiments were previously run by the PARC, one using whole-brain and the other striatum.  In 

order to compare the expression between the two, they had to be renormalized.  Originally 

there were 12 whole-brain arrays, though a QC report indicated that two had scanner errors and 

were therefore not used in this analysis.  Unfortunately there were also only 7 striatum arrays, 

so two experimental setups were used, one with a balanced number of arrays--7X7 with 7 of the 

whole-brain arrays chosen at random.  This was the main experimental setup and was used for 

analysis unless labeled otherwise.  For comparison the other setup was unbalanced, 10X7 which 

Exclusion 

Inclusion 

Inclusion Exclusion 

Inclusion 
Inclusion 

Exclusion 
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compared all available arrays.  This was done to determine if the strategy of choosing only 7 out 

of 10 arrays for whole-brain would produce overly different results.  An estimate computed 

using 7 arrays could be less be precise with respect to the 10 array setup and using them both in 

a statistical model could therefore have a negative impact on the detection of differential 

expression. These experiments were RMA background corrected and normalized (89) and 

summarized at the probeset level using median polish (95).  Two different programs were used 

to analyze the data, ExonMap (96)  and ExonModelStrain (55). 

 A list of differentially expressed genes was determined using ExonMap (55)  requiring a 

fold change > 1 and a t-test p-value <= .0001 at the probe-level which was subsequently 

extrapolated to the exon and gene levels (96).  This package was used because the ExonMap  

program (96) could interrogate many more genes than the ExonModelStrain package (55) at 

that time, since it was not limited to the core probes.  The list of differentially expressed genes 

from ExonMap (55) was used to stratify the inclusion ratio (5) by gene expression.  Both the 

gene expression and inclusion ratio values were separated into three categories: striatum 

greater than whole-brain, striatum less than whole brain or neither.  This was done for both 

significant isoform ratios at a q-value (93) of .05 or a p-value at .05 and for both sets including 

unique and those including unique and multi-mapped reads.  Significance of the results was 

determined using a Fisher’s Exact Test with a p-value simulated using monte carlo methods in R 

(88).  The values reported were only for the balanced setup, though the unbalanced setup was 

used for comparison purposes. 

 A list of all exons with a max alternative exon usage (AEU) delta for each gene was 

generated using ExonModelStrain (55) for only those exons annotated as core.  This list was 

then merged with a complete list of the affected exons from all CE, ME, APA and ATSS events 
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(See Chapter 2 for definitions).  Affected exons in this sense referred to the exon(s) that were 

included in one isoform transcript relative to another.  This was done for both the balanced and 

unbalanced microarray experiment setups.  The PTC for both whole-brain and striatum as well 

as the change between the two for single cassette and mutually exclusive exon events were 

then calculated.  This measure was compared to the delta AEU measure computed by 

ExonModelStrain (55).  They were assessed first by looking at direction of expression change, 

then for significance—requiring a q-value <= .05 for the AEU delta and a change of 50% for the 

PTC delta (a measure put forward by Pan et al. 2008). 

Results 

Of the 24,104 genes annotated in ExonMap (96), 4,214 were reported to have greater 

expression in whole-brain relative to striatum, 641 had expression greater in striatum relative to 

whole-brain and 19,249 were reported to not be significantly different.  Similarly for the 

unbalanced setup, 4,496 were greater in whole-brain, 772 were greater in striatum and 18,836 

were not significantly different.  Shown in Table 5 was the agreement between the balanced 

and unbalanced array setups with respect to gene expression differences using ExonMap (96).  

They generally agreed with each other.  However, there were a large number of genes 

considered to have greater expression in whole-brain relative to striatum in the unbalanced 

setup, but were also considered to be non-significant in the balanced setup.  Table 6 shows 

contingency tables describing the significant changes in isoform ratio as compared to changes in 

exon array gene expression for both isoform ratios significant at q or p-values of .05.  There did 

not appear to be significant differences between the numbers of significant isoform ratios 

observed for each category between gene expression categories for any of the four tests  
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Unbalanced 

 

STR < WB STR > WB Neither 

STR < WB 3,906 17 291 

STR > WB 10 539 92 

Neither 580 216 18,453 

  

Table 5.  Agreement between the balanced and unbalanced exon array analyses using 

ExonMap.  The number of genes where one tissue was considered significantly expressed over 

another or otherwise is shown.  This was done using the ExonMap (96) package in R (88).  STR 

refers to striatum; WB refers to whole-brain. 

6a.)  Unique Read Count 

Isoform Ratio  

 Isoform Ratio q-value <= .05 

 

Isoform Ratio p-value <= .05 
 STR < WB STR  > WB Neither STR < WB STR >WB Neither 

STR < WB 7 4 258 20 8 241 
STR > WB 1 1 25 1 2 24 
Neither 5 5 393 14 20 369 

 
p-value = 0.2464 Fisher’s Exact 

Test 
p-value = 0.08618 Fisher’s Exact 

Test 
 

6b.)  Unique + Multi Read Count 

Isoform Ratio  

 Isoform Ratio q-value <= .05 

 

Isoform Ratio p-value <= .05 
 STR < WB STR  > WB Neither STR < WB STR >WB Neither 

STR < WB 8 5 256 19 9 241 
STR > WB 1 1 25 1 2 24 
Neither 5 7 391 14 21 368 

 
p-value = 0.2458 Fisher’s Exact 

Test 
p-value = 0.1446 Fisher’s Exact 

Test 
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Table 6.  Relationship between isoform ratios and balanced array expression.  Contingency 

tables comparing the isoform ratio (5) and gene expression as determined by ExonMap (96) are 

shown.  Tables are represented for both p and q-values of less than or equal to .05 and were 

calculated using both unique reads and unique + multi-mapping reads.  The test statistic was 

computed using a Fisher’s exact test in R with a p-value computed by simulation (88).  The q-

values were computed using the qvalue package (94). 

(p-values: .246, .086, .246 and .145 for q and p-values <= .05 for unique and q and p-values <= 

.05 for unique + multi reads; Fisher’s Exact test with simulated p-value).  The changes in 

expression category counts that would occur if the unbalanced array setup was used are shown 

in Table 7.  The effect of using that setup would be to shift 34 genes from being non-

differentially expressed to having differences in one direction or another and subsequently shift 

17 other genes back into being non-differentially expressed.  

Unbalanced 

 STR < WB STR > WB Neither 
STR < WB 255 0 14 
STR > WB 0 24 3 
Neither 29 6 368 

 

Table 7.  Change in expression category for balanced vs. unbalanced array setup.  This shows 

the shifts between gene expression categories that occurred when using a balanced or 

unbalanced microarray design with respect to the number of arrays.  The exon arrays were 

analyzed using the ExonMap (96) package.  The balanced setup involved seven arrays for both 

tissues and the unbalanced contained 10 arrays for whole-brain and 7 for striatum.  These are 

the genes that were involved in the calculation for Table 6.  STR represents striatum, WB 

represents whole-brain.  
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There were a total of 1,217 events consisting of the CE, ME, APA and ATSS events 

described in Chapter 2.  Of these, 62 had at least one exon that successfully merged with the 

max AEU delta exon from ExonModelStrain (55).  For the balanced analysis, 26 of these 

contained a q-value <= .05 as did 29 for the unbalanced analysis.  These results are summarized 

in Table 8. The total shifts that would occur for each of the events common and unique to 

whole-brain and striatum when using the unbalanced experiment instead of the balanced 

experiment are shown in Table 9.  These values largely mirrored what was seen in the ExonMap 

(96) analysis.  But even considering the small number that successfully merged, few would have 

shifted expression categories.  From Table 8, one event from each of the common and unique 

categories for both tissues that shifted from non-significance to significance is shown in Table 

10.  For two of the events, gene expression was determined to either be significant between 

whole-brain and striatum or became significant for the unbalanced experiment.  One, 

ENSMUSE00000662850, which had an event unique to whole-brain actually became non-

significant with respect to gene expression.  However, it became significant with respect to the 

change in AEU.  A possible reason for the lack of agreement between the ExonModel strain 

significant exons and those found using RNA-Seq may have been the effect size or read coverage 

of the events in question. Fig. 11 shows histograms of the log base 2 transformed PTC values for 

those alternative splicing events containing an inclusion exon that successfully merged with a 

significant AEU exon and those alternative splicing events that did not.  The average log2(PTC) 

was actually estimated to be lower for those that merged (2.757) compared to those that failed 

to merge (4.128).  Effect size may have been skewed by the presence of splice junctions 

containing very few reads.  Also shown in Fig. 11 are boxplots representing the minimum read 

depth for splice junctions for those that merged and those that did not.   
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Balanced 

 Common Unique to Striatum Unique to Whole-Brain Total 
Total 432 424 361 1217 
# merged 24 22 16 62 
q value <= .1 14 8 6 28 
q value <= .05 13 8 5 26 
p value <= .1 14 10 8 32 
P value <= .05 14 10 6 30 

 

Unbalanced 

 Common Unique to Striatum Unique to Whole-Brain Total 
Total 432 424 361 1217 
# merged 24 22 16 62 
q value <= .1 16 9 6 31 
q value <= .05 14 9 6 29 
p value <= .1 16 11 9 36 
P value <= .05 16 10 7 33 

 

Table 8.  Results from merging all CE, ME, APA and ATSS events with the AEU results from 

ExonModelStrain.  Shown are the number of CE, ME, ATSS or APA events from the striatum and 

whole-brain RNA-Seq experiments that successfully merged with the AEU results from 

ExonModelStrain (55), also using whole-brain and striatum.  Events were merged based upon 

the inclusion exon for the RNA-Seq experiments and the exon with the maximum delta for the 

AEU.  The striatum and whole-brain RNA-Seq experiments were categorized based upon 

whether they were detected in only one (Unique) or both tissues (Common).  In addition to the 

number merged, those successfully merged that also met the q and p value cutoffs of .1 and .05 

for the AEU were also counted.  This was shown for both the balanced and unbalanced 

microarray setups. 
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9a.) 
 
Total 
     Unbalanced 

 Common Unique to Striatum Unique to Whole-Brain 
 STR<WB STR>WB Neither STR<WB STR>WB Neither STR<WB STR>WB Neither 

STR<WB 18 0 0 9 0 1 11 0 0 
STR>WB 0 1 0 0 5 0 0 2 0 
Neither 0 2 3 2 0 5 0 0 3 

 
9b.)  
 
q <= .05 
     Unbalanced 

 Common Unique to Striatum Unique to Whole-Brain 
 STR<WB STR>WB Neither STR<WB STR>WB Neither STR<WB STR>WB Neither 

STR<WB 10 0 0 6 0 0 4 0 0 
STR>WB 0 1 0 0 2 0 0 1 0 
Neither 0 1 1 0 0 0 0 0 0 

 

Table 9. The shift in expression differences from balanced to unbalanced for unique and 

common events.  Shown are the number of genes contained within each RNA-Seq alternative 

splicing category that would have shifted from one category of gene expression to another if a  

different experimental design was used.  This was repeated for both (a) the total number of 

genes, and (b) those with a significant q-value at the .05 level for AEU.  STR represent striatum, 

WB represents whole-brain.   

ExonModelStrain 

  Balanced Unbalanced 
 Exon qStrain qExonStrain qStrain qExonStrain 

Common ENSMUSE00000352780 <.0001 0.075 <.0001 0.032 
STR ENSMUSE00000435932 .090 0.145 .026 0.032 
WB ENSMUSE00000662850 .074 0.059 .140 0.003 

 

Table 10.  Three ASEs that shifted from non-significance to significance based upon 

experimental setup.  Shown are three alternative splicing event (ASE) exons that shifted from 

non-significant to significant based upon use of a balanced microarray setup as compared to an 

unbalanced. Each was from a different category of alternative splicing event: Common referred 
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to those events that were seen in both tissues, STR was from those events only seen in striatum 

and WB represented those only seen in whole-brain.  The qStrain and qExonStrain variables 

represented the q-value for the test of differential expression and AEU respectively from the 

ExonModelStrain package (55).  

 A subset of size 357 from the 1,217 events mentioned above was extracted consisting of 

the single CE and ME events that were observed in both tissues.  Of these, 12 were successfully 

merged with the maximum AEU delta exons.  This was initially done using both unique reads and 

unique plus multi-mapped reads.  However, the few that successfully merged had no multi-

mapped reads so only the PTC results for the unique reads are reported.  Only considering 

similar direction with respect to tissue type expression, 4 were concordant between the two 

measures while 8 were discordant.  This data is summarized in Table 11.  When filtered based 

upon significance measured by a 50% change in the delta PTC and a q-value of .05 for AEU, only 

four exons remained as seen in Table 11b, however they were all discordant.  One of the 

concordant exons from Table 11a, ENSMUSE00000288945 was the affected exon in a CE event 

that was present in both whole-brain and striatum.  It is highlighted in Fig. 10, which plots the 

expression levels obtained for each exon using ExonModelStrain (55).  The average gene 

expression was estimated to be 11.16 for whole-brain and 10.54 for striatum.  The PTC of this 

event was .786 striatum/whole-brain.  This change was non-significant using the 50% cutoff, but 

the AEU delta was significant with a q-value of .05. 
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11a.) 
AEU 

 Striatum > Whole Brain Whole Brain > Striatum 
Striatum > Whole Brain 1 7 
Whole Brain > Striatum 1 3 

 

11b.) 

AEU 

 Striatum > Whole Brain Whole Brain > Striatum 
Striatum > Whole Brain 0 4 
Whole Brain > Striatum 0 0 

 

Table 11. Concordance of merged AEU and PTC events.  (a) The change in PTC was computed 

using uniquely mapping reads and directionality was compared to the overall direction of gene 

expression for whole-brain and striatum computed using the ExonModelStrain package (55).  

For (b) the same comparisons are made in (a) but the results were additionally filtered requiring 

significant exon/strain interactions (representing a significant AEU event) for q-values at the .05 

level and using a 50% delta cutoff for the PTC.  

PTC 

PTC 
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Figure 10.  Concordant AEU and PTC exon for CE event.  Shown is an interaction plot 

highlighting a concordant exon based upon the delta PTC and AEU.  The Y-axis shows the RMA 

(89) values for each Ensembl (12) exon computed using the ExonModelStrain package (55).  The 

Ensembl (12) exon identifiers are shown on the X-axis.  Whole-brain expression is represented 

by the dotted line and striatum expression is represented by the solid line. 
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Discussion 

 With respect to the different microarray experimental setups, it seemed that the biases 

introduced from use of an unbalanced experiment were not that great.  From the ExonMap (96) 

analysis it was determined that 580 more genes would be declared significant with whole-brain 

greater than striatum in unbalanced when compared to balanced.  However, 291 genes were 

also shifted from this category into the non-significant one. This would overall have a minor 

impact on the comparisons between the isoform ratio and the gene expression results.  Any 

impact would be lessened given the overabundance of counts in the “neither” category.  Again, 

there was an impact on the full merge between the CE, ME, ATSS and APA events most notably 

on the three exons listed in Table 10, which became significant in the unbalanced setup.   

 There was no evidence from this rather crude measure of there being co-regulation of 

isoform and gene levels.  It is possible that a network analysis approach could be successfully 

used to look for biological significance and may be implemented in the future.  It was noted that 

both measures seemed to produce consistent results.  Because of the similarity of the two 

tissues, very few differences between them could be reasonably expected in gene or transcript 

isoform expression.  Overall, the alternative splicing events found using these RNA-Seq 

experiments did not agree well with the results from ExonModelStrain (55).  Only about 5% of 

the CE, ME, ATSS and APA events successfully merged with 1% of these being usable to compare 

the change in PTC and AEU measure calculated by ExonModelStrain (55).  This lack of agreement 

was not because of lack of overlap between the genes declared to be alternatively spliced in the 

RNA-Seq dataset versus those that had significant AEU in the exon arrays.  Out of the 937 

distinct genes present in the alternatively spliced gene set, 820 overlapped with the 13,852 

genes in the balanced output from ExonModelStrain (55).  To ensure that the presence of 
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missing exons within the exon array dataset did not affect the results, these missing exons were 

extracted using ExonModelStrain (55).  Of the 13,852 genes, there were 1,829 missing exons, 

however only 19 of the 1,616 exons used in this analysis were in the missing exon list.  So this 

too was not the reason.  It was also interesting that in the 1% where the PTC could be calculated 

more were discordant than concordant.  Effect size as measured by the PTC did not seem to be 

higher in those events that merged successfully with the AEU exons.  There was a small amount 

of evidence for the idea that the alternative splicing events that did merge tended to have 

slightly greater expression (Fig. 11).  Also, the large difference in sample size between these two 

comparisons, 62 events that merged successfully versus 1,155 that did not, made statistical 

testing of this result unhelpful. This may unfortunately mean that these two technologies are 

unlikely to be successfully compared in this manner.  One of the major limitations of this study 

was the use of only the core probes in ExonModelStrain (55).  These probes only cover the best 

defined exons so it is possible that some of these events may have been missed because of this 

incomplete coverage (55, 97-98). 

 Many of the disagreements between microarrays and RNA-Seq surrounding detection of 

alternative splicing might have been due to the relative lack of difference in expression or 

splicing between whole-brain and striatum.  The greater the tissue differences, the easier it may 

be to detect changes in isoform and AEU levels between the datasets.  This in turn should 

increase the agreement between the RNA-Seq and exon array technologies.  It may suggest that 

even using cutting-edge high throughput technologies such as RNA-Seq and exon arrays, we still 

cannot accurately quantify relatively small changes in transcript isoform populations that could 

play a role in biological mechanisms.  Although much work has been done by Wang et al. 2008 in 

the context of RNA-Seq, ongoing improvement in technology make it important to continuously 
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reevaluate techniques and previous results.  This is especially true for detecting alternative 

splicing using RNA-Seq. 

Supplementary Information 

 

Figure 11.  Properties of the merged RNA-Seq/exon array events.  The distribution of log base 2 

transformed PTC values are shown for those CE, ME, ATSS, APA events containing at least one 

read mapping uniquely to each splice junction (top).  On the left are those events that had an 

inclusion exon successfully merged with an AEU exon.  On the right are those events that did not 

contain a successfully merged exon.  The PTC for each was calculated by dividing the average 

number of inclusion junction reads over the average number of exclusion junction reads.  The 

boxplots shown on the bottom display the minimum number of reads assigned to each splice 

Minimum Read Depth for Merged  Minimum Read Depth for Non-Merged 

      Log2 PTC for Merged         Log2 PTC for Non-Merged 
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junction for those alternative splicing events that had an inclusion exon that successfully merged 

with the AEU exons from ExonModelStrain (55) (left) and those that did not (right).  
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Chapter 5 

Detecting Differential Expression of Exon Segments 

Introduction 

Traditional strategies to detect splicing and alternative splicing such as aligning reads to 

preformed splice junctions or the direct spliced alignments of sequences to a genome have been 

shown to be effective (17, 28).  Furthermore, specialized tools that are readily available for 

performing these analyses for long sequences are becoming available for RNA-Seq experiments 

(36).  However, in the case of alternative splicing, it was of interest to determine whether more 

novel approaches could be taken to look for differences in transcript splicing that would utilize 

the large amount of data generated from RNA-Seq experiments.  One possible strategy would 

draw on the differences in the incorporation of exons in alternatively spliced transcripts and use 

significant read depth changes to infer the presence of alternatively spliced transcripts (Fig. 12).  

A similar idea was demonstrated using bayesian inference by Wang et al. 2008 for the detection 

of alternative poly-A sites and extended by Jiang and Wong 2009.  Segments of (or whole) exons 

that were shared between multiple transcripts will be referred to as variably incorporated exon 

segments or simply exon segments.  These exon segments can be thought of as categorical 

variables, each with a value equal to number of transcripts containing the segment.  As a first 

step it was desired to test whether it was possible to detect differential expression between 

these categories of exon segments.  The underlying future goal was to take the results from 

these explorations to reformulate the problem into a more complex machine learning context.  

These results would also serve as the initial baseline through which future, more complex, 

models would be compared against.  For this analysis the results from two separate RNA-Seq 
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experiments from the mouse brain were used.  One dataset was from the mouse whole-brain 

and one was from the mouse striatum.  See Chapter 2 for more details regarding the alignment 

and splice junction formation.  

 

 

 

Figure 12.  Levels of overlap for a theoretical gene.  The theoretical gene shown above has two 

alternative splicing events: a cassette exon event and an alternative poly-A site.  As can be seen, 

while the rest of the gene’s exons are incorporated into two transcripts, the affected cassette 

exon and overhanging segment of the poly-A event are incorporated into only one transcript. 

Methods 

In order to determine which transcripts were produced by a given gene it was necessary 

to first provide evidence for the existence of the transcripts retrieved from the public databases 

in our datasets.  Transcripts annotated in a database may not have been expressed in every 

tissue in the mouse body.  These transcripts were only kept if they had a minimum of 5 unique 

reads mapped to each splice junction and every exon within the transcript had at least one read 

mapped to it.  The cutoff of five was chosen because  it translated to a mapping rate of ~ 80 

reads per kilobase (RPK) for striatum and ~120 for whole-brain which, as will be shown later, 

was near the rate necessary for optimal detection using a statistical model.   Mapping was 

defined as the presence of a read start position within a segment boundary—a measure 

consistent with a rate.  Splice junctions were mapped to transcripts by matching the internal 

2 1 2 2 1 
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boundaries of the formed splice junctions to the corresponding boundaries from the transcript.  

For the situations where several transcripts existed that had the same internal boundary 

definitions but different start or stop positions (i.e. alternative start or end site), they were 

examined further.  In these cases the longer overhanging transcript ends were only kept if they 

had reads mapping to them.  If these overhanging ends were smaller than the read length and 

had no reads mapping within the boundaries they were checked to see if any reads ended 

within the boundaries.  If this was true, the ends were shortened to the length of the nearest 

segment containing mapped reads; otherwise the entire transcript was discarded.  The 

remaining transcripts were divided into exon segments based upon the number of verified 

transcripts that included the particular exon segments for a given set of gene boundaries.  

Again, reads were assigned to these segments requiring that a read start within a segment.  If 

this was not possible, for example the segment length was smaller than the read length, these 

segments were removed.  Once the genes that only contained one transcript were removed, the 

set that remained consisted of those genes containing alternative splicing events. 

Statistical models have been applied in the context of alternative splicing detection 

using microarrays such as the linear model implemented in ExonModelStrain (55).  This model, 

for instance, can only work at the exon level because it is constrained by the placement of the 

probes it interrogates (55).  However, RNA-Seq is not constrained by probe placement.  In this 

manner RNA-Seq may be able to detect more complex events than those that affect an entire 

exon in one transcript relative to another (e.g. CE, ME, APA or ATSS events).  If an exon segment 

is defined as any portion of or whole exon, then it would be natural to determine whether a 

statistical model could detect any differences between these portions and the rest of the gene.  

The theory behind this was that an alternatively spliced transcript should contain exon segments 
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that are incorporated into fewer transcripts than others.  Since a segment that was incorporated 

into fewer transcripts should contribute fewer reads, detecting differential expression (i.e. 

alternative splicing) of these portions may be possible.  One way to detect differential 

expression of exon segments would be to use a generalized linear model framework (99).  

Generalized linear models allow the linear regression framework to be extended to situations 

where the errors are distributed in a non-Gaussian manner (99).  For count data like RNA-Seq 

expression the Poisson or negative binomial distributions have been successfully used (100).  For 

this formulation, the response variable would consist of the read counts with the number of 

transcripts including the specific exon segment represented as categorical independent 

variables—similar to an ANOVA.  For instance if it was determined that a segment was included 

as part of two transcripts then the category would be labeled 2 and the number of reads 

mapped to it would be the dependent variable.  If there was at least one segment in another 

category, say 1, the read depth from category 2 would be compared to the depth in category 1.  

In this manner we could compare the read count of different categories within a gene to 

determine whether a gene was alternatively spliced.  Note that this model is similar to the one 

put forward by Jiang and Wong 2009, but it serves a different purpose.  There are several ways 

to approach the problem of detecting differences between categories.  Most easily the 

categories could be examined globally to look for overall trends in expression.  However, this 

strategy would not be useful since global statements about genes that would be in many cases 

very heterogeneous in structure and expression level would not be informative.    

A better strategy to detect differential exon segment expression would be to fit a model 

to each gene separately to estimate expression differences between categories.  Since the 

number and types of categories should vary from gene to gene, it was important to ensure that 
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a model be chosen that was robust enough to be valid for the majority of the examined genes.  

For this purpose three generalized linear models were created in an effort to find the most 

parsimonious model that would meet the error distribution assumptions.  The three models 

were set up in a similar manner, but used different families for the error distributions—the 

Gaussian, Poisson and negative binomial.  The general formulation of these models is shown 

below: 

 

 

Where g was the link function for which the identity function was used for the Gaussian model 

and a log function was used for the Poisson and negative binomial models.  The variables n and t 

referred to the number of categories and the offset, which was the length of the exon segments 

in kilobases.  E represented the error coefficient.  The variable n was required to be greater than 

or equal to 2, otherwise the gene in question would not be alternatively spliced.  The only 

difference between the formulations was that the counts were log transformed before being 

entered into the model for the Gaussian model in an effort to directly stabilize the variance.  An 

important concern for these local calculations was the model assumptions, especially 

overdispersion in the case of the Poisson regression.  The Poisson model estimated its variance 

directly from the mean, an assumption that was unlikely to be true.  This can be corrected 

through the use of the Poisson distribution fit using a quasilikelihood function instead of the 

standard likelihood function (101).  This allows the model to account for overdispersion through 

the use of the dispersion parameter σ2  (101). While this procedure does not affect the estimates 
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for the β coefficients, it does result in more conservative measures of significance—wider 

confidence intervals and larger p-values (100). 

A simple method to detect the appropriateness of the model assumptions was to 

extract the Pearson’s residuals and plot them against the expected Gaussian probability (100).  

Since this transformation of the residuals should be approximately normally distributed, a linear 

relationship would be observed if the underlying model assumptions are met (100).  Pearson’s 

residuals are calculated as shown below (100): 

 

Based upon this idea, a method was devised to extract the Pearson’s residuals from each model 

run and compute the Pearson’s correlation coefficient from a q-q plot calculation.  An example 

of this is shown graphically in Fig. 13. The three models were run for all genes.  Models were 

determined to fit best if their correlation coefficients were the greatest of the three. 

 To look at whether the models could successfully find differential expression between 

the sets of verified alternative splicing events, all useful comparisons were extracted.  For 

example if there were three categories of exon segments, the comparisons between category 3 

and 1, 2 and 1 and 3 and 2 for each model were extracted and the p-values recorded.  

Comparisons were made both across genes and within genes.  To correct for the false discovery 

rate q-values (93) were calculated for each set of p-values from the model runs.  Simulations 

were run using a theoretical gene to determine how a GLM (99) model would perform under 

varying conditions.  
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 Figure 13.   Q-Q plots for gene ENSMUSG00000010086 in striatum.  An example of the q-q plot 

calculations used to test the models for validity of the underlying distributional assumptions.  

The quantiles from the Pearson’s residuals were plotted against the normal quantiles.  The 

straightest line fits the model assumptions the best.  Linear relationships can be measured 

directly using Pearson’s correlation coefficient.  The plot from the Gaussian GLM (99) is shown in 

the upper left-hand corner, the plot for the Poisson is shown in the right-hand corner and the 

negative binomial plot is shown at the bottom left. 

Results 

Of the 1,184 striatum genes with all splice junctions present for at least one transcript, 6 

genes still contained an exon segment larger than the read length where the count was zero.  

These were discarded so as to not affect the log transformations.  These zero counts reflected 

rare situations that were not accounted for in the other filtering measures such as the gene 

Pearson’s Correlation Coefficients: 
Gaussian: 0.919 
Poisson: 0.939 
Negative Binomial: 0.973 
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shown in Fig. 14a.  Here the alternative poly-A event was an extension of an internal exon and 

not another terminal exon—a situation that was not handled by the script.   Of the remaining 

genes, 1,039 had categories of only 1 after filtering, meaning they were either not alternatively 

spliced or the affected regions were smaller than the read length and were subsequently 

removed.  Eleven had categories all equal to 2.  Several of these were cases where two Ensembl 

(12) transcript exon boundaries were the same, but the coding sequences were different, as 

shown by the middle transcripts in Fig. 14b.  The others were transcripts with small exon 

segments that contained no mapped reads where these segments were removed.  The 

remaining 129 were valid with the exception of 20 negative binomial models that failed to 

converge after 25 iterations—leaving 109 genes to compare.  Similarly the whole-brain sample 

had a total of 1,579 genes that met the criteria for inclusion, 9 contained a zero, 1,376 contained 

all ones and 15 contained segments that contained an equal number of underlying transcripts.  

Again, the negative binomial model fitting failed for 26 genes, leaving 157 remaining.  To assess 

model fit, the maximum correlation values of the Pearson’s residuals versus the normal 

quantiles across the different models for each of the 109 and 157 genes were counted.   The 

negative binomial model seemed to fit best since it was the highest 48 out of the 109 striatum 

runs and 68 out of the whole-brain runs.  For comparison the Gaussian and Poisson models were 

highest a total of 28 and 33 times respectively for striatum and 50 and 39 times for whole-brain.  

The overall success of the negative binomial distribution may have indicated overdispersion in a 

significant percentage of the genes surveyed.  As can be seen in Fig. 15a and b, the best fitting 

negative binomial model runs seemed to have equivalent sample sizes and category numbers 

compared to the Poisson model.  Also, the best fitting negative binomial and Poisson models 

both had larger sample sizes than the Gaussian.  The success of the negative binomial model in 

the majority of these simple goodness-of-fit tests could be extrapolated to provide evidence for 
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it being the most appropriate distribution out of the three (100).  However, since the MASS 

(102) implementation of the negative binomial generalized linear model failed to converge in 

numerous situations it would be better to use a more stable overdispersed Poisson regression 

model such as the quasipoisson model mentioned above.  

14a.) 

 

14b.) 

 

Figure 14.  Representative transcripts structures of discarded genes.  a.) shows an alternative 

poly-A site that overlaps with an internal exon.  b.) the two middle transcripts have the exact 

same boundaries except they have a different coding sequence.  This can be seen by comparing 

the thick bars, which represent the coding sequence to the thin bars which represent non-

coding sequence. 
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15a.) 

 

15b.) 

  

Figure 15.  Sample size and category number for best fitting models.   Boxplots plotting the 

distribution of sample size and category number for the best fitting models according to the 

Pearson’s correlation coefficient of the Pearson’s residuals vs. Gaussian quantiles tests are 

shown.  Striatum is a.), whole-brain is b.).  Categories in this context represent the number of 

transcripts each exon segment was incorporated into. 

 When the exon segment categories were compared globally without using a GLM (99) 

framework, an increasing trend in normalized expression was seen for those exon segment 

categories that had sufficient sample size (Fig. 16).  This was true for both striatum and whole-

brain.  Since these categories came from different genes with different levels of expression, the 
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RPK was further normalized by the gene-level RPKM (17) computed in Chapter 2 and log base 2 

transformed.  The majority of exon segments fell into either category 1 or 2.  The difference 

between the two categories also showed the greatest increase in median corrected expression 

level. 

16a.) 
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16b.) 

 

Figure 16.  Overall distribution of expression levels for exon segment categories.  Corrected 

read count for the different overlapping exon segment categories for striatum and whole-brain 

is shown.  a.)  shows the log base 2 corrected read count that was normalized by both exon size 

and gene expression for striatum for each observed exon segment category.  b.)  shows the 

same information but for whole-brain.    

Significance of the 109 striatum and 157 whole-brain genes was judged by the pairwise 

comparison of the q-values calculated for the categories across genes.   All together there were 

167 category comparisons made within the 109 striatum genes and 253 in the 157 remaining 

whole-brain genes.   The q-value is a popular method of correcting for the false discovery rate. 

404 

1240 167 

62 

21 28 
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However, for this study it provided unusual results.   As can be seen from Table 12, there were 

more significant q-values than p-values at the .05 level.  The reason for this seemed to be the 

underestimation of the q-value due to the large number of low p-values at the .05 cutoff level.   

In Fig. 17 it could be seen from a resampling of the p-values from the striatum quasipoisson 

model that when the majority of the p-values were less than .1, there tended to be more 

significant q-values than p-values at the .05 level.  This was not true for the situation where the 

majority of p-values were greater than .1.  This relationship was not seen for the .01 level.  

These highly skewed p-value distributions seemed to occur for these data as illustrated in Fig. 18 

where the vast majority of the p-values were very low.  The q-value cutoffs were kept at .01 to 

minimize false discovery rate problems resulting from the inaccurate q-value results.  However, 

the negative binomial model performed especially poorly in this area and even at this stringent 

cutoff still produced more significant q-values than p-values.  Further results pertaining to the 

negative binomial GLM (99) are presented but should be viewed with caution.  The Poisson 

model also performed poorly with respect to p and q values.  As can be seen in Fig. 18a, the p-

value histograms were highly skewed for the Poisson model.  This was true to such an extent 

that the q-value could not be computed for whole-brain Poisson run.  To remedy this problem, 

the Poisson model was replaced with the quasipoisson producing much more conservative 

estimates (Fig. 18a and b). 

 .05 q and p-value level  .01 q and p-value level 

 Striatum 

 

Whole-Brain 

 

Striatum 

 

Whole-Brain 

 q-value p-value q-value p-value q-value p-value q-value p-value 

Gaussian 84 71 140 113 35 37 72 72 

Q. Poisson 63 58 98 84 20 32 28 38 

Neg. Bin. 92 88 140 129 64 64 101 97 
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Table 12.  Overall number of significant exon segment categories for each model.  Shown 

above was the number of significant tests for each model using either a cutoff of .05 for the p or 

q values for the left side of the table and .01 for the right as the level of significance.  

Significance was determined using a Gaussian, quasipoisson and negative binomial distribution 

in a GLM (99) framework.  The q-values (93) were determined using the qvalue package (94).  

. 
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Figure 17.  Relationship  between significant p and q values as a function of p-value 

composition.  Shown is the number of significant p and q values in relation to the makeup of p-

values resampled from the striatum quasipoisson model.  One thousand samples of p-values of 

length 167 were taken with replacement from the set of 167 p-values of the striatum 

quasipoisson model.  This set was separated into two groups: those where the majority of the 

sampled p-values were less than .1 and those that were otherwise.  From these categories, the 

q-values (93) were calculated using the qvalue package (94) and both the p and q values that 

were significant at the stated level were counted.  The significance levels used for this example 

were .05 and .01 
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18a.) 
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18b.) 

 

Figure 18.  Distribution of p-values for the three models.  Striatum (a), whole-brain is (b).  For 

a.), the Gaussian, Poisson, quasipoisson and negative binomial p-value distribution are shown.  

b.)  shows only the p-value distributions for the Gaussian, negative binomial and quasipoisson 

since the Poisson could not be calculated.   

Overall, per category the whole-brain and striatum produced similar results with respect 

to GLM (99) family (Table 12).  Both the Gaussian and quasipoisson produced similar numbers of 

significant values, with respect to q-values at the .01 level and as expected showed an increased 
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number of successes using uncorrected p-values.  If we looked across genes for each type of 

segment category, we saw that the majority of comparisons took place between two 

overlapping transcript segments compared to one (2-1) or three compared to two (3-2) or one 

(3-1) (Table 13).  Within these categories the negative binomial seemed to perform the best as 

compared to the quasipoisson or Gaussian models for both whole-brain and striatum.  For each 

gene, the effectiveness of the models were compared by looking for the number of times each 

model counted a gene as having the majority of its categories declared significant.  Again the 

negative binomial models performed the best containing 44 significant genes for striatum and 

63 for whole-brain.  The Gaussian and quasipoisson contained 24 and 15 for striatum and 47 and 

20 for whole-brain.  Of these, 19, 12 and 31 were significant for every exon segment comparison 

in striatum for the Gaussian, quasipoisson and negative binomial models.  Similarly there were 

43, 18 and 54 significant for whole-brain Gaussian, quasipoisson and negative binomial 

distributions.   Significance for the majority of gene categories did not seem to depend on the 

type of event.  For the negative binomial model applied to the striatum dataset, 45% of those 

genes that were considered to be mostly significant contained both differences affecting entire 

exons (e.g. CE or ME events) and exon isoforms, 25% contained only events that involved whole 

exons and 30% contained events with only exon isoforms.  This compared to 57%, 17% and 26% 

for those genes where the majority of negative binomial category comparisons were non-

significant.  For whole-brain, the composition of event types for those genes where the majority 

of comparisons were non-significant was about the same as it was for striatum: 56%, 12% 32%.  

However, the categories contained about an even proportion of event types for those genes 

that were significant.  Interestingly, an estimate of effect size for the genes containing a 2-1 

comparison showed that the genes where the majority of comparisons were significant had a 

larger difference than those genes that were non-significant for both whole-brain and striatum 
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(Fig. 23).  All GLM (99) models agreed upon significance for 10 genes in striatum and 12 for 

whole-brain.  Considering that these numbers were out of a possible 109 and 157, they were 

rather low, though this was to be expected considering the stringent significance criteria.  A 

possible factor that may have hindered local detection of differential expression was the overall 

gene expression.  To examine this possibility, boxplots showing the log2(RPKM) (17) for each of 

the 109 and 157 genes were created for both those genes that had the majority of their exon 

segment categories declared significant by all GLM (99) models and those genes that did not 

meet this criteria (Fig. 19).  Although the median expression level for those genes that were 

considered significant was higher in both striatum and whole brain, the difference was 

significant for striatum (one sided p-value = 0.03319; wilcoxon rank sum test) but not for whole-

brain (one sided p-value = 0.2488; wilcoxon rank sum test).  

13a.) 

Whole-Brain 
Comparison  Gaussian Q. Pois. Neg. Bin. Total 

2-1 49 20 60 153 
3-1 9 5 14 25 
3-2 4 1 9 27 
4-1 4 0 7 10 
4-2 1 0 3 9 
4-3 0 0 1 9 
5-1 1 0 2 3 
5-2 1 0 1 2 
5-3 0 0 0 3 
5-4 0 0 1 3 
6-1 2 1 2 2 
6-2 0 0 0 2 
6-3 0 1 1 2 
6-4 0 0 0 2 
6-5 1 0 0 1 
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13b.) 

Striatum 
Comparison Gaussian Q. Pois. Neg. Bin. Total 

2-1 23 16 38 106 
3-1 7 4 14 19 
3-2 2 0 5 20 
4-1 2 0 3 4 
4-2 0 0 2 3 
4-3 0 0 1 3 
5-1 0 0 0 1 
5-2 0 0 0 1 
5-4 0 0 0 1 
7-1 0 0 0 1 
7-2 0 0 0 1 
7-4 0 0 0 1 
7-5 0 0 0 1 
8-1 1 0 1 1 
8-2 0 0 0 1 
8-4 0 0 0 1 
8-5 0 0 0 1 
8-7 0 0 0 1 

 

Table 13.)  Number of significant tests for each exon segment category.  Shown are the 

number of significant tests for the Gaussian, quasipoisson (Q. Pois) and negative binomial 

models (Neg. Bin.) at a q-value of .01 for whole-brain (a) and striatum (b) for each category 

comparison type (Comparison) along with the total number of comparisons (Total).  
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19a.) 

 

19b.) 
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Figure 19.  Relationship between expression and significance.  Boxplots comparing the 

log2(RPKM ) (17) expression levels of the genes that had greater than half of the exon segment 

category comparisons declared significant (Majority Significant) to those that had fewer than 

half (Majority Non-Significant).   Striatum is shown in a.) and whole-brain is shown in b.). 

The next goal was to determine under what conditions differential expression could be 

reasonably detected using a representative generalized linear model.  For this analysis a 

theoretical gene was created consisting of two transcripts, one of which contained a cassette 

exon and an alternative poly-A site.  Fig. 12 shows a representation of this gene.  Reads were 

assigned to the gene at rates starting from 10 to 150 reads per kilobase (RPK) and increasing in 

units of 10 RPK.  The reduction in read depth between the two exon segment categories was 

varied from 10% to 50% in increments of 10%.  Significance of the quasipoisson model measured 

by the p-value was used as the response variable.  As can be seen in Fig. 20, the ability to detect 

differential expression of the exon segments was dependent on both the delta, and expression 

or sequencing depth—both were represented by the RPK read assignment rate.  From this 

simulation you would need a minimum of 50 reads per kilobase of expression to comfortably 

detect a 10% drop in expression between the two categories.   To determine how well this test 

would perform when the read quantity was subject to random fluctuations in read assignment, 

another simulation was run.  Here we were looking for how robust the model would be to 

random mapping errors.  The number of significant tests was counted after each iteration of 100 

runs allowing for fluctuations up to 10% percent of the normal read assignment rate.  The 

possible values were chosen uniformly at random to attempt to simulate a more realistic 

situation.  This was done across a RPK range of 0 to 1,000, in steps of 10.  Interestingly, in order 

to achieve at least a 60% success rate it was necessary to have a minimum of 20 RPK and a delta 
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of .3 (green line Fig. 21).  Having a delta of .4 or .5 produced a very high success rate for a 

minimum of 20 reads per kilobase.  Assuming that transcript isoform levels scale with expression 

or sequencing, the ability to detect alternative splicing in this manner is more or less 

independent of sequence assignment rate after about 20 RPK and relies mainly on differences in 

expression between the exon segments.   

 

Figure 20.  P-value levels for different exon segment deltas and sequencing/gene expression 

categories.  Shown above was the relationship between gene expression, exon segment delta 

and p-value from the test of exon segment significance using the quasipoisson distribution for 

the simulate gene pictured in Fig. 12.  The deltas levels ranged from a 10% drop to a 50% drop 

from one segment to another.  Gene expression is measured in reads per kilobase (RPK). 
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Figure 21.  Robustness of quasipoisson model to random errors.  This figure illustrates the 

number of times the quasipoisson model declared a comparison between two exon segments 

significant when exposed to random errors.  A simulation similar to the one depicted in Fig. 20 

was carried out except random mapping errors affecting at most 10% of the expected reads 

were introduced and the tests were carried out a 100 times each with the number of successes 

recorded.  The read assignment rate in RPK was varied from 0 to 1,000 in increments of 10.  

 
Discussion 

The generalized linear model framework was in theory a natural fit for this type of 

analysis because of its flexibility and the fact the calculations are incorporated into many 

statistical environments such as R (88).  However, because of the variability of these exon 
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segments in genes it was hard to pick a model that would be robust in all situations.  In general 

all models succeeded in detecting alternative splicing, though the negative binomial seemed to 

be dominant both in model fit and significance tests.  However, because this implementation of 

the negative binomial model was relatively unstable in conjunction with the difficulty in 

estimating accurate q-values at both the .05 and .01 level made this model less attractive. 

Interestingly, the Gaussian model seemed to perform better than the quasipoisson.  This is likely 

to be because of the conservative nature of the dispersion parameter estimation procedure for 

the latter.  For use in detecting differential expression of exon segments, the quasipoisson 

model seemed to be a good choice even though it performed worse than the Gaussian model 

because of our desire for conservative estimates.   The highly variable nature of tests of these 

kinds warrants a conservative treatment of their results.  It is also true that interpretation of the 

quasipoisson model’s coefficients, which translate to a rate ratio (100)— could work nicely as a 

measure of isoform abundance.  Although these models, as setup, would likely produce 

marginal results. 

 Especially interesting were the issues surrounding calculation of the q-values.  These 

problems were likely to be due to lack of robustness of the q-value calculation in situations 

where the p-value distribution was highly skewed toward low p-values.  Although the other 

commonly used procedures for accounting for multiple hypothesis testing did not show a similar 

effect (Table 14).  The estimation of the q-values hinges on determining the parameter    

which represents the proportion of truly null features (103).  This is done by default through a 

curve fitting process whereby the curve is fit to the equation from Storey and Tibshirani 2003: 
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Where  is an ordered list of p-values. 

 The problem undoubtedly arises when the distribution of the m p-values are highly skewed with 

many low values.  In this case  can no longer be reliably estimated through a cubic spline 

(Fig. 22).  However, with the exception of the negative binomial distribution for whole-brain, 

requiring a small significance cutoff seemed to produce acceptable results when considering the 

relationships between the p and q values. 

As was shown, a strategy based on relatively simple linear models could detect 

differences between exon segments that were incorporated into different numbers of 

transcripts.  However, it was important to note that we were not able to determine the 

specificity of these models because of the lack of a high quality dataset containing genes with no 

alternative splicing.  Although only around 40% of the alternatively spliced genes were detected 

using the negative binomial model, firm statements about the efficacy of these models could 

not be made without power estimates.  From Fig. 20 it was determined that the change in read 

depth between two exon segments was more important than quantity of reads.  More 

specifically for reliable detection of differences between these segments it was necessary to 

have at minimum a 30% (Fig. 21) difference between them.  Wang et al. 2008, in one of the 

largest and most thorough experiments of this type performed, showed that about 90% of 

genes are estimated to have minor isoform frequencies of 20% or greater.  Their main 

statement from this was that the majority of alternatively spliced transcripts from a given gene 

in humans are expressed at levels different enough to be detected (5).   A minor isoform 
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frequency of 20% could be represented by 4 reads mapping to one segment and 16 mapping to 

another (5).  This would be equivalent to a delta of .75 in a scenario in which the exon segment 

comparisons were made solely between the major and minor isoforms.  For example this would 

be the case for the simulated gene in Fig. 20 if the top transcript was the minor isoform.  Based 

upon the prediction from Wang et al. 2008, events for human tissue could be detected with 

near 100% accuracy at any combination of sequencing or expression that resulted in sequence 

assignment rate greater than 30 reads per kilobase for the simplest type of comparison between 

a major and minor isoform (5).  However, the framework presented here only looks at the 

number of transcripts that the exon segments would be incorporated into.  For complex 

alternative splicing situations, there is likely to be a mixture of isoforms represented in these 

exon segments.  This makes detection of the events much more difficult as seen by the relatively 

low rate of success of these models in differentiating between exon segments for a set that are 

all alternatively spliced.  The exact quantity of these mixtures is unknown since the extent of 

alternative splicing has not been quantified in its entirety.  How best to incorporate individual 

isoform expression information into the model will be examined in future studies.     

Supplemental Data 

 Striatum Whole-Brain 
 p-value q-value BH-FDR Bonferroni p-value q-value BH-FDR Bonferroni 

Gaussian 71 84 46 13 113 140 77 30 
Q. Poisson 58 63 32 10 84 98 35 3 
Neg. Bin. 88 92 70 43 129 140 107 63 

 

Table 14.  Significance of the GLM models for the most common multiple hypothesis 

corrections.  The p-values were generated using three GLM (99) models: the Gaussian, 

quasipoisson and negative binomial fit to the exon segment comparisons for each gene.  All such 

comparisons were extracted and the q-value, Benjamini and Hochberg FDR (BH-FDR) (104), and 
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Bonferroni correction were calculated.   The q-value was computed using the qvalue R package 

(94), and the BH-FDR and Bonferroni corrections were performed using the multtest R package 

(105).  

 

Figure 22.  Cubic splines fit to whole-brain negative binomial p-values and the p-values from 

Storey and Tibshirani 2003.  P-values were extracted from both the total negative binomial 

model run (blue)and microarray data reported in Storey and Tibshirani 2003 originally from 

Hedenfalk et al. 2001 (red) (106).  This data was retrieved from: 

http://genomine.org/qvalue/results.txt and the plot was generated using a modified version of 

the qplot function from the qvalue package (94).  The lines are from cubic spline fits. 

http://genomine.org/qvalue/results.txt�
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23b.) 

 

Figure 23.  Log2 ratio of 2-1 comparisons for the two gene significance categories.  Presented 

are boxplots showing the log base 2 transformed ratios consisting of the mean RPK from exon 

section category 2 comparisons divided by the mean RPK from the category 1 comparisons for 

each GLM (99).  This was done for both those genes that had the majority of their category 

comparisons declared significant and those that did not.  Striatum is shown in (a), whole-brain in 

(b).   
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Chapter 6 

Conclusion 

 Overall the whole-brain and striatum from inbred C57BL/6J mice exhibited very similar 

patterns of expression and alternative splicing.  Both had expression levels that correlated highly 

with exon array experiments.  Considering that they were derived from two separate 

experiments from two separate labs, once normalized, they exhibited a very high correlation 

with each other.  Multi-reads that were reassigned to their most likely position increased the 

correlation with the exon array experiment, though the increase was non-significant.  This was 

similar to what was shown in Mortazavi et al. 2008.  No improvement of the correlation was 

seen for comparisons of the splice junction and gene expression levels or for a comparison of 

expression values between the samples.  The differences seen from the inclusion of multi-reads 

were relatively minor and, at least for the splice junction and gene comparison, seemed to 

create a more even spread of the points around the mean. This was an improvement from the 

consistent underestimation that occurred from only using the unique reads.    

The different types of alternatively spliced isoforms were seen at similar levels to what 

had been reported previously.  This, of course, takes into the differences in sample size (5) (15  

RNA-Seq experiments from many tissues vs. 2 from the brain) and that the brain is known to 

have a high level of alternative splicing (13).  Alternative splicing events that were unique to a 

single tissue were not observed at a higher rate in one tissue type relative to the other.  Since 

the unique events seemed to have less read coverage than the common events, the loss of one 

or more splice junctions which lacked uniquely mapped reads likely contributed to the number 

of observed unique events.  The presence of multi-mapping reads within these junctions likely 
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exacerbated this problem.  However, within this set of unique alternative splicing events there 

were likely situations where a transcript was alternatively spliced in one tissue type, but not in 

the other.  This was more likely to occur in whole-brain since the whole-brain should contain all 

of the alternative splicing events within the striatum.  Promising candidates still need to be 

confirmed experimentally to provide evidence for this situation.   

 When the transcript isoforms from alternative splicing events were quantified using the 

isoform ratio from Wang et al. 2008, there was no significant global relationship between gene 

expression and isoform regulation.  In other words genes that were up-regulated in one tissue 

compared to the other using the exon arrays did not have isoforms that were significantly 

regulated in either direction.  This seemed to indicate that many genes in these two samples did 

not have expression levels that were different enough to discover relationships of this kind.  

Overall, the comparison of RNA-Seq-derived alterative splicing events with those found from the 

ExonModelStrain (55)  package did not go well.  Very few of the exons determined to be 

affected by alternative splicing were predicted to have the maximum difference in expression by 

ExonModelStrain (55), taking the overall gene expression into account.  Even loosening this 

requirement to include multiple candidate exons from ExonModelStrain (55) did not appreciably 

help (data not shown).  The sample sizes were too different to be able to tell if effect size 

measured by the PTC or the minimum number of reads mapping to a splice junction event was 

significantly associated with the successfully merged events.  When a related measure to the 

%in measure put forward by Pan et al. 2008 (the PTC) was compared to a measure of alternative 

splicing using exon arrays, the two generally did not agree.  The lack of concordance between 

the two measurements could have easily been a byproduct of the overall lack of compatibility of 

the comparisons.  Using a microarray analysis that was unbalanced in the number of replicates 
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would have had a minor impact on the results.   Bias from using an unbalanced array analysis 

may have been more noticeable if there was better agreement between the microarray and 

RNA-Seq datasets for alternative splicing. 

  Detection of alternative splicing events using differences in incorporation of exon 

sections into transcript isoforms was highly dependent on the magnitude of the actual 

differences between the segment categories.  After we carried out exploratory data analysis it 

was determined that a generalized linear model framework (99) could detect differences 

between exon segments, though this process was fraught with difficulties.  The negative 

binomial model framework seemed to provide the best results out of the three models 

compared using a set of verified alternative splicing events.  However, the issues with model 

convergence and the creation of p-value distributions that were highly irregular made this 

model seem less attractive.  The Poisson model, fit using quasilikelihood as opposed to the 

standard likelihood function made more sense because of ease of interpretation of the results 

and its relatively conservative estimation of the regression coefficients.  Probably the best 

strategy to perform de novo prediction of alternative splicing would be to utilize the recent work 

on this problem implementing a Bayesian methodology (80-81).  Although the exact details have 

yet to be worked out regarding how this is to be improved  

Even though it has been around for a relatively short period of time, RNA-Seq has been 

shown to be useful to be able to address many of the questions that have been asked of the 

field of transcriptomics. Quantification of gene expression through the reads per kilobase of 

exon model per million mapped reads (RPKM) measure has been put forward by Mortazavi et al. 

2008.  Alternative splicing and quantification of transcript isoforms in the human genome has 

been examined thoroughly by Wang et al. 2008.  However, the techniques from these landmark 
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papers are still being refined.  Transcript isoform expression, such as the work pursued in 

Chapters 4 and 5 has become an active area of research for statisticians with groups putting 

forward sophisticated methods to attempt to provide a solution to this problem (80-81). 

Differential expression, whether it is at the gene or transcript level, is still unable to be reliably 

determined.  This is because the role variability, both biological and technical, plays in these 

analyses is still being addressed.  This study provided a glimpse into possible issues that occur 

when attempting to compare different datasets from different labs.  Sequencing depth and read 

length are major factors in RNA-Seq analyses and can influence the outcome of an experiment 

comparing gene expression between two or more samples.  Concerns involving sequencing 

errors (85) for Illumina sequencing and biases in expression measurements resulting from 

differences in transcript length (90) are other issues that persist.  As with microarrays, these 

issues will be resolved once more data can be generated and analyzed, revealing the strengths 

and limitations of this technology. 

The work presented in the preceding chapters addresses some important questions 

concerning the viability of RNA-Seq to detect and quantify alternative splicing between two very 

similar tissues—whole-brain and striatum.  Because of the similarity of the two tissues the 

differences in effect size, in this case the differences in the population of transcripts, was very 

small.  The easiest way to increase observed effect size is to compare alternative spicing in 

different types of tissues.  As more RNA-Seq datasets become available it will become feasible to 

quantify these events for multiple tissues and time points.  It has been suggested from this work 

that RNA-Seq can detect alternative splicing events, however this technology seemed highly 

dependent on the differences in the makeup of the transcript populations.  For example, Wang 

et al. 2008 estimated, based on simulation, that an event with a minor isoform frequency of 10% 
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could be detected reliably (.79 power) at 100 RPKM.  An event with a minor isoform frequency 

of 1% would need ten times that amount or around 1000 RPKM (5).  The minor isoform, as 

defined by Wang et al. 2008, referred to the lesser expressing transcript of the two compared 

for a given alternative splicing event. This dependence on effect size may not have been 

overcome through more sequencing for some lowly expressed genes.  Mortazavi et al. 2008 

estimated that for their dataset consisting of 40 million reads a splice junction could be detected 

with 95% confidence at expression values greater than 11 RPKM.  The RPKM measure by 

definition takes into account the total number of reads so if we assume that the values would 

remain constant between datasets then about 27.2% of the expressed genes (those that had at 

least one read mapping to their exons) in the striatum dataset met this threshold. A rough 

calculation shows that in order to lower this requirement to include those genes that had 

expression values of 5 RPKM or greater (45.5% of the striatum dataset) we needed around 44 

million mapped reads, equivalent to about 7-8 lanes.  This calculation assumes that we would 

need 220 reads per kilobase for accurate splice junction detection since only ~50% of the reads 

from Mortazavi et al. 2008 mapped uniquely.  However, in order to truly determine the 

necessary sample size for these experiments larger datasets are needed to accurately estimate 

the effectiveness of alternative splicing detection at saturation.  It was clear that this analysis 

had insufficient sample size for both tissues.  This was especially true since the two tissues it 

focused on were closely related, which limited the achievable effect size and likely made the 

minor isoforms more difficult to reliably detect.  Future work in the short term will need to first 

focus on accurately estimating the sample size needed for these experiments and on quantifying 

technical variation.  Long term future work should focus on applying more advanced statistical 

and machine learning approaches to aspects of RNA-Seq data analysis including the detection of 

alternative splicing. 
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