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Abstract

 In this paper we propose changing the decades-old practice of allocating CPU to threads
based on priority to a scheme based on proportion and period. Our scheme allocates to each
thread a percentage of CPU cycles over a period of time, and uses a feedback-based adaptive
scheduler to assign automatically both proportion and period. Applications with known require-
ments, such as isochronous software devices, can bypass the adaptive scheduler by specifying
their desired proportion and/or period. As a result, our scheme provides reservations to applica-
tions that need them, and the benefits of proportion and period to applications that do not need
reservations. Adaptive scheduling using proportion and period has several distinct benefits over
either fixed or adaptive priority based schemes: finer grain control of allocation, lower variance
in the amount of cycles allocated to a thread, and avoidance of accidental priority inversion and
starvation, including defense against denial-of-service attacks. This paper describes our design of
an adaptive controller and proportion-period scheduler, its implementation in Linux, and presents
experimental validation of our approach. 
1  Introduction

CPU scheduling in conventional general
purpose operating systems performs poorly for
real-rate applications, applications with spe-
cific rate or throughput requirements in which
the rate is driven by real-world demands.
Examples of real-rate applications are software
modems, web servers, speech recognition, and
multimedia players. These kinds of applica-
tions are becoming increasingly popular,
which warrants revisiting the issue of schedul-
ing. The reason for the poor performance is
that most general purpose operating systems
use priority-based scheduling, which is inflexi-
ble and not suited to fine-grain resource alloca-
tion. Real-time operating systems have offered
another approach based on proportion and
period. In this approach threads are assigned a
portion of the CPU over a period of time,

where the correct portion and period are an
lytically determined by human experts. How
ever, reservation-based scheduling has yet
be widely accepted for general purpose sy
tems because of the difficulty of correctly est
mating a thread's required portion and period

In this paper we propose a technique 
dynamically estimate the proportion an
period needed by a particular job based 
observations of its progress. As a result, o
system can offer the benefits of proportion
scheduling without requiring the use of rese
vations. With these estimates, the system c
assign the appropriate proportion and period
a job’s thread(s), alleviating the need for inp
from human experts. Our technique is based
feedback, so the proportions and perio
assigned to threads change dynamically a
automatically as the resource requirements
the threads or processes change. Given a su
1
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ciently general, responsive, stable, and accu-
rate estimator of progress, we can replace the
priority-based schedulers of the past with
schedulers based on proportion and period,
and thus avoid the drawbacks associated with
priority-based scheduling.

The fundamental problem with priority-
based scheduling is that knowledge of a job's
priority by itself is not sufficient to properly
allocate resources to the job. For example, one
cannot express dependencies between jobs
using priorities, or specify how to share
resources between jobs with different priori-
ties. As a result, priority-based schemes have
several potential problems, including starva-
tion, priority inversion, and lack of fine-grain
allocation. Use of adaptive mechanisms like
the classic multi-level feedback scheduler alle-
viate some of these problems, but introduce
new ones as the recent deployment of fixed
real-time priorities in systems such as Linux
and Windows NT can attest.

Our approach avoids these drawbacks by
using a controller that assigns proportion and
period based on estimations of threads'
progress. It avoids starvation by ensuring that
every job in the system is assigned a non-zero
percentage of the CPU. It avoids priority inver-
sion by allocating CPU based on need as mea-
sured by progress, rather than on priority. It
provides fine-grain control since threads can
request specific portions of the CPU, e.g.,
assigning 60% of the CPU to thread X and
40% to thread Y.

The key enabling technology to our
approach is a feedback-based controller that
assigns proportion and period to threads based
on measurements of their progress. For exam-
ple, the progress of a producer or consumer of
a bounded buffer can be estimated by the fill
level of the buffer. If it is full, the consumer is
falling behind and needs more CPU, whereas
the producer has been making too much
progress and has spare CPU to offer. In cases
where progress cannot be directly measured,
we provide heuristics designed to provide rea-

sonable performance. For example, the sch
uler can give interactive jobs reasonab
performance by assigning them a small peri
and estimating their proportion by measurin
the amount of time they typically run befor
blocking.

The remainder of this paper describes o
approach in more detail. Section 2 motivat
the need for adaptive proportion/period sche
ulers. Section 3 presents our solution, inclu
ing a description of our implementation
Section 4 discusses implications of our sol
tion, and presents experimental measureme
of our prototype. Section 5 describes simil
approaches to the question of scheduling.

2  Motivation

The limitations of priority-based schedulin
were graphically demonstrated to the wor
recently when NASA’s Mars Pathfinder robo
experienced repeated resets due to prior
inversion [10]. Occasionally, a high priority
task was blocked waiting for a mutex held by
low priority task. Unfortunately, the low prior-
ity task was starved for CPU by several oth
tasks with medium priority. Eventually, the
system would detect that the high priority tas
was missing deadlines and would reset itse
More insidious than the problem itself is th
difficulty of finding the bug when it occurs. In
this case, the mutex was buried under seve
layers of abstraction; no reasonable amount
code inspection would have discovered t
bug. Fortunately, a combination of good eng
neering, run-time debugging support, and t
fact that a mutex was the source of the inve
sion helped NASA engineers to correct the b
[9][15].

The problems of priority inversion and sta
vation occur because priorities alone are n
expressive enough to capture all desired re
tionships between jobs. As a result, priority
based schemes are forced to use kludges
compensate, such as passing priorities throu
mutexes or decreasing the priority of CPU
bound jobs. These mechanisms have work
2
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well in the past, but they have untoward side-
effects. 

For example, to ensure that the kernel allo-
cates sufficient CPU to an important CPU-
bound job running on Unix, one could nice(1)
it. However, as it continues to use its time-slice
the kernel will automatically reduce its priority
until it is running at or below less important
jobs. Alternatively, one could assign it a fixed
real-time priority which is higher than the nor-
mal priorities, guaranteeing that it will run.
Unfortunately, it will then run to the exclusion
of all jobs in the system with lower priority.
Consider a job running at a (fixed) real-time
priority that spin-waits on user input. Since the
X server typically runs at a lower priority than
the real-time thread, it will be unable to gener-
ate the input for which the thread is spinning,
and the system will livelock. Note that the
solution to the Mars Pathfinder of passing pri-
ority through mutexes[17] will not help in this
situation.

3  Our Solution

Our solution is based on the notion of
progress. Ideally, resource allocation should
ensure that every job maintains a sufficient rate
of progress towards completing its tasks. Allo-
cating more CPU than is needed will be
wasted, whereas allocating less than is needed

will delay the job. In essence, our solutio
monitors the progress of jobs and increases
decreases the allocation of CPU to those jo
as needed. In our terminology, a job is a colle
tion of cooperating threads that may or ma
not be contained in the same process.

Figure 1 shows the high-level architectu
of our design. The scheduler dispatch
threads in order to ensure that they rece
their assigned proportion of the CPU durin
their period. A controller periodically monitors
the progress made by the threads, and adju
each job’s proportion automatically. We ca
this adjustment actuation or adaptation, since
it involves tuning the system’s behavior in th
same sense that an automatic cruise con
adjusts the speed of a car by adjusting its thr
tle. Astute readers will note that the diagra
resembles a classic closed-loop, or feedba
controlled system. This dynamic adaptatio
controlled by feedback is necessary becau
the needs of jobs, and the composition of jo
running on the system vary with time. The fo
lowing subsections address each of the k
points in the architecture.

3.1  The Reservation Scheduler
Our scheduler is a standard proportio

period scheduler which is usually referred to 
“ reservation-based.” The scheduler allocates

Figure 1: Diagram of closed-loop Control

ThreadThread Thread Thread

Scheduler/DispatcherController

Monitor 
Progress

Actuate
Allocate
Resources

This diagram shows the rough architecture of our scheduler. A feedback controller monitors the rate o
progress of job threads, and calculates new proportions and periods based on the results. Actuatio
involves setting the proportion and period for the threads. The scheduler is a standard proportion
period reservation-based scheduler. The controller’s execution period and the dispatch period can b
different.
3
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CPU to threads based on two attributes: pro-
portion and period. The proportion is a per-
centage of the duration of the period during
which the application should get the CPU
specified in parts per thousand. For example, if
one thread has been given a proportion of .05
(5%) and a period of 30 milliseconds, it should
be able to run up to 1.5 milliseconds. 

Intuitively, the period defines a repeating
deadline. To meet the deadline, the application
must perform some amount of work. Hence, to
satisfy the application the scheduler must allo-
cate sufficient CPU cycles, which in our case is
the proportion times the period times the
CPU’s clock rate. If the scheduler cannot allo-
cate the appropriate amount of time to the
thread, the thread is said to have missed a
deadline. 

 An advantage of reservation-based sched-
uling1 (RBS) is that one can easily detect over-
load by summing the proportions: a sum
greater than or equal to one indicates the CPU
is oversubscribed. If the scheduler is conserva-
tive, it can reserve some capacity by setting the
overload threshold to less than 1. For example,
one might wish to reserve capacity to cover the
overhead of scheduling and interrupt handling.

Upon reaching overload, the scheduler has
several choices. First, it can perform admission
control by rejecting or cancelling jobs so that
the resulting load is less than 1. Second, it can
raise quality exceptions to notify the jobs of
the overload and renegotiate the proportions so
that they sum to no more than the cutoff
threshold. Third, it can automatically scale
back the allocation to jobs using some policy
such as fair share or weighted fair share. In our
system, these mechanisms are implemented by
the controller, and are discussed below.

We have implemented a RBS scheduler in
the Linux 2.0.32 kernel using Linux’s real-

time priorities. For purposes of experiment
tion, the scheduler implements both earlies
DF) and rate-monotonic scheduling (RTF)[11
although we use EDF in the numbers presen
below. Note that since the controller can dete
and prevent overload, our scheduler will nev
suffer the limitations of EDF in overload. Th
scheduler uses Linux’s scheduling queues 
store jobs based on rates, with highest prior
going to jobs with the highest rate, and al
keeps a queue sorted by earliest deadli
Using Linux’s interval timer, it schedules 
wakeup for the next pending deadline. When
awakes, it removes the thread from the front
the queue, calculates the next deadline for 
thread, and re-inserts the thread into the que
It then schedules the next wakeup and d
patches the next thread. We could have a
used another RBS scheduler such as SMa
[13], Rialto [8], or BERT [1], but ours was suf
ficient for the needs of our prototype.

3.2  Monitoring Progress
The novelty of our approach lies in the es

mation of progress as the means of controlli
the CPU allocation. Unfortunately, estimatin
an application’s progress is tricky, especial
given the opaque interface between the app
cation and the operating system. Good en
neering practice tells us that the operatin
system and application implementation
should be kept separate in order that the op
ating system be general and the application
portable. 

Our solution to this problem is based on th
notion of symbiotic interfaces, which link
application semantics to system metrics su
as progress. For example, consider two app
cations with a producer/consumer relationsh
using a shared queue to communicate. A sy
biotic interface that implements this queue cr
ates a linkage to the kernel by exposing t
buffer’s fill-level, size, and the role of eac
thread (producer or consumer) to the syste
With this information, the kernel can estima
the progress of the producer and consumer

1. Our use of the term “reservation” is some-
what lose, since we do not need strict guar-
antees from the scheduler. As a result, a 
good enough best-effort proportion/period 
scheduler would suffice.
4
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monitoring the queue fill level. As the queue
becomes full (the fill-level approaches the
maximum amount of buffering in the queue),
the kernel can infer that the consumer is run-
ning behind and needs more CPU and that the
producer is running ahead and needs less CPU.
Similarly, when the queue becomes empty the
kernel can infer the producer needs more CPU
and the consumer less. This analysis can be
extended to deal with pipelines of threads by
pair-wise comparison. Over time, the feedback
controller will reach equilibrium in steady-
state provided the design is stable.

 Our solution is to define suitable symbiotic
interfaces for each interesting class of applica-
tion, listed below. Given an interface, we can
build a monitor that periodically samples the
progress of the application, and feeds that
information to the controller.

• Producer/Consumer:
The applications use some form of

bounded buffer to communicate, such as a
shared-memory queue, unix-style pipe, or
sockets. Pipes and sockets are effectively
queues managed by the kernel as part of
the abstraction. By exposing the fill-level,
size, and role of the application (producer
or consumer), the scheduler can determine
the relative rate of progress of the applica-
tion by monitoring the fill-level.

• Server
Servers are essentially the consumer of

a bounded buffer, where the producer may
or may not be on the same machine.

• Interactive
Interactive jobs are servers that listen to

ttys instead of sockets. Since interactive
jobs have specific requirements (periods
relative to human perception), the sched-
uler only needs to know that the job is
interactive and the ttys in which it is inter-
ested.

• I/O intensive
Applications that process large data se

can be considered consumers of data tha
produced by the I/O subsystem. As suc
they need to be given sufficient CPU t
keep the disks busy. For applications th
use asynchronous I/O such as the TIP s
tem [14], progress can thus be measured
treating the buffer cache as a bound
buffer as in the producer/consumer ca
above.

• Other
Some applications are sufficiently

unstructured that no suitable symbiot
interface exists, or may be legacy code th
predates the interface and cannot 
recompiled. In such cases where o
scheduler cannot monitor progress, it us
a simple heuristic policy to assign propo
tion and period based on whether or not t
application uses the allocation it is given.

When an application initializes a symbioti
interface (such as by submitting hints, openin
a file, or opening a shared queue), the interfa
creates a linkage to the kernel using a meta-
interface system call that registers the queu
(or socket, etc.) and the application’s use 
that queue (producer or consumer). We ha
implemented a shared-queue library that p
forms this linkage automatically, and hav
extended the in-kernel pipe and socket imp
mentation to provide this linkage. 

3.3  Adaptive Controller
Given the scheduler and monitoring comp

nents, the job of the scheduler is to assign p
portion and period to ensure that applicatio
make reasonable progress. Figure 2 prese
the four cases considered by the controlle
real-time, aperiodic real-time, real-rate, an
miscellaneous threads. Real-time threads sp
ify both proportion and period, aperiodic rea
time threads specify proportion only, real-ra
do not specify proportion or period but supp
5
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a metric of progress, and miscellaneous
threads provide no information at all. 

• Real-time threads
Reservation-based scheduling using

proportion and period was developed in the
context of real-time applications [11],
applications that have known proportion
and period. To best serve these applica-
tions, the controller sets the thread propor-
tion and period to the specified amount and
does not modify them in practice. Such a
specification (if accepted by the system) is
essentially a reservation of resources for
the application. Should, however, the sys-
tem be placed under substantial overload,
the controller may raise a quality exception
and initiate a renegotiation of the resource
reservation.

• Aperiodic real-time threads2

For tasks that have known proportion
but are not periodic or have unknown
period, the controller must assign a period.
Truly aperiodic threads have a (singleton)
period whose duration is equal to the
thread’s deadline and the thread’s start
time. Since the period provides a bound on
when the scheduler can allocate the requi-
site CPU to the thread, underestimating the
bound cannot harm the application. Low
periods do however raise the overhead of

scheduling, since they require that th
work of dispatching happen more often. A
a result, the controller picks a value that 
likely to be low enough without adding too
much overhead. Our prototype uses 2
msec.

• Real-rate threads
We call threads that have a visible me

ric of progress but are without a know
proportion real-rate since they do not have
hard deadlines but do have throughp
requirements. Examples of real-rat
threads are multimedia pipelines, isochr
nous device drivers, and servers. Durin
each controller quantum, the controlle
samples the progress of each thread 
determine the pressure exerted on the
thread. Pressure is a number between -
and 1/2; negative values indicate too mu
progress is being made and the allocati
should be reduced, 0 indicates ideal alloc
tion, and positive values indicate the threa
is falling behind and needs more CPU. Th
magnitude of the pressure is relative 
how far behind or ahead the thread is ru
ning. 

Figure 3 contains the formula used b
the controller to calculate the total pressu
on a thread from its progress metrics, 
input/output queues. For shared queues, t,i
is calculated by dividing the current fill-
level by the size of the queue and subtra
ing 1/2. We use 1/2 as the optimal fill leve
since it leaves maximal room to hand
bursts by both the producer and consum
Rt,i is used to flip the sign on the queu

2. To be honest, we are unaware of any appli-
cations that fall into this category. We have 
included it in this discussion for complete-
ness.

Proportion 
Specified

Progress 
Metric

Period Specified Period Unspecified

Yes N/A Real-time Aperiodic real-time

No
Yes Real-rate

No Miscellaneous

Figure 2: Taxonomy of thread-types for controller
6
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since a full queue means the consumer
should speed up (positive pressure) while
the producer should slow down (negative
pressure). For stability, we use an exponen-
tial average based on the constant k, which
reduces the influence of a sample as it ages
(Qt’).

For aperiodic real-rate threads, the con-
troller must also determine the period. We
use variation in the pressure for this pur-
pose. When the variation is small, the
period can be increased because the likeli-
hood of a queue under- or over-flow is
small. When the variation is large, the
period should be decreased. Decreasing the
period gives the controller finer grain con-
trol over the allocation, since it gets to
adjust allocation more frequently.

 
• Miscellaneous threads

The controller uses a heuristic for
threads that do not fall into the previous
categories. For proportion, the controller
approximates the thread’s progress with a
positive constant. In this way there is con-
stant pressure to allocate more CPU to a
miscellaneous thread, until it is either satis-
fied or the CPU becomes oversubscribed.
Initially the controller sets the thread’s
period to a small value as for aperiodic

real-time threads (20 msec in our proto
type), and increases or decreases it ba
on the first derivative of the thread’s use o
its allocation.

Estimating proportion
The estimation algorithm for proportion

operates using fast-start and slow back-o
With fast-start, the controller quickly ramps u
the allocation for a new thread by growing 
exponentially over time in order to be respo
sive to sudden increases in load as might oc
when a new job starts. With slow back-off, th
controller linearly decreases a thread’s alloc
tion over time. Using exponential increase a
back-off would make the system more respo
sive to drops in CPU usage, but would al
likely result in an unstable system. 

Our use of fast-start and slow back-off ma
be surprising because it is the opposite of t
approach taken by the best known feedba
controller in operating systems: Van Jaco
son’s TCP flow-control algorithm [6]. Our
approach is possible because we can ea
determine when the CPU is overloaded, in pa
ticular we can detect overload before the sy
tem begins to thrash. In addition, we control a
users of the CPU, and so can enforce back-
globally.

Qt, the progress pressure, is a measure of the
relative progress of thread t using its progress
metric(s). Ft,i is a value between -1/2 and 1/2,
derived from the progress metric i (e.g. buffer
fill level), Rt,i flips the sign of Ft,i for produc-
ers. k is used to calculate an exponential aver-
age to smooth sudden changes to Ft,i.

Figure 3: Progress Pressure Equation

Qt Rt i, Ft i,
i

∑ 
 
 

k Q't i, 1 k–( )+=

Rt i,
1– If t is a producer of i

1 If t is a consumer of i



=

Pt∆

Pt'Qt Qt 0 and Pt' on target≥

Qt Qt 0 and Pt' on target<

C– Pt' too generous





=

∆Pt is the change in allocation calculated from
the progress pressure Qt and the previous allo-
cation Pt’. If  Qt is positive, the allocation is
increased exponentially relative to the progress
pressure. If Qt is negative, the allocation is
reduced linearly with a slope relative to Qt.
When the previous allocation overestimates
the thread’s needs, the controller linearly
decreases the allocation using a constant slope. 

Figure 4: Proportion Estimation Equation
7
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The controller decides whether to increase
or decrease the CPU based on the progress
pressure Qt described above, and on a mea-
surement of the accuracy of the previous allo-
cation. The later value is calculated by
subtracting the CPU used by a thread from the
amount allocated to it.3 If the difference is
smaller than a threshold, the controller
assumes the pressure estimate is valid. If the
difference is larger than the threshold, the pres-
sure is overestimating the actual need and the
allocation should be reduced. This may hap-
pen, for instance, when the CPU is not the bot-
tleneck for the thread; increasing the CPU will
not increase the progress made by the thread in
this case. Figure 4 presents the equation used
by the controller to estimate proportion. 

 
Responding to Overload

When the controller seeks to increase the
total allocation past the overload threshold, it
must scale back its allocation of other jobs.
This increase can result either from the
entrance of a new real-time thread, or from the
controller’s periodic estimation of real-rate or
miscellaneous threads’ needs. In the former
case, the controller performs admission control
by rejecting new real-time jobs which request
more CPU than is currently available. We
chose this approach for simplicity, we hope to
extend it to support a form of quality negotia-
tion such as that used in BBN’s Quality
Objects [19].

In the latter case, the controller squishes
current job allocations to free capacity for the
new request. In some cases, the squishing hap-
pens to a related thread such as squishing a
producer that has filled a bounded buffer. In
other cases, the squishing must be felt by all.

With a fair-share policy, squishing happens b
stealing equal percentages of allocation fro
all real-rate or miscellaneous threads. Th
however, assumes that all jobs have eq
importance.

We have extended this simple fair-sha
policy by associating an importance with eac
thread. The result is a weighted fair-shar
where the importance is the weighting facto
Please note that importance is not priorit
since one job will not starve another if it i
more important. Instead, importance dete
mines the likelihood that a thread will get it
desired allocation. For two jobs that bot
desire more than the available CPU, the mo
important job will end up with the higher per
centage.

Implementation
We have implemented this controller usin

the SWiFT software feedback toolkit [3]
SWiFT embodies an approach to buildin
adaptive system software that is based on c
trol theory. With SWiFT, the controller is a cir
cuit that calculates a function based on 
inputs (in this case the progress monitors a
importance parameters), and uses the fu
tion’s output for actuation.

For reasons of rapid prototyping, our con
troller is implemented as a user-level progra
This has clear implications on overhead, whic
limits the controller’s frequency of execution
which in turn limits its responsiveness. W
have plans to move the controller into th
Linux kernel in order to reduce this overhea
Nonetheless, our experiments discussed be
show the overhead to be reasonable for a p
totype system for most common jobs.

In our prototype, jobs must either explicitl
register themselves in order to be scheduled
our RBS scheduler (as opposed to the defa
Linux scheduler) or be descended from such
job. In the future, we hope to schedule all jo
using our scheduler. Currently we limit it to
specific jobs such as real-time applications, t
controller process, and the X server.

3. We assume that the RBS is giving threads as 
much CPU as the controller allocated, since 
we reserve some spare capacity. If the RBS 
is missing deadlines, it notifies the control-
ler which can increase the amount of spare 
capacity by reducing the admission thresh-
old.
8
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4  Discussion

The following sections discuss various
aspects of our solution in more detail. Section
4.1 characterizes our prototype’s performance.
Section 4.2 discusses the implications of the
dispatch and controller periods on the accuracy
of the system and its overhead. Section 4.3 jus-
tifies our claims about the benefits of our
approach, and Section 4.4 describes the effect
of our approach on conventional applications
for which priority-based schemes have per-
formed well.

4.1  Characterization
To better understand the characteristics of

our system, we measured its overhead and
response time; presenting an analysis of its sta-
bility is beyond the scope of this paper. At the
lowest level, we measured the time to execute
the two key routines in our RBS scheduler,
schedule()  and do_timers(). The
former routine is called every dispatch quan-
tum, but typically performs no work. The latter
routine is called when a thread does need to be
dispatched, either because the current thread
used its proportion, yielded the CPU, or a new
thread with an earlier deadline arrived. For our
system, a Pentium II 233 Mhz Linux system,
the time to execute the default scheduler is 6.3
µsec, the time to execute our schedule()
routine is 5.3 µsec, and the time to execute
do_timers() is 5.0 µsec.  In practice, the
overhead of our scheduler is small since
do_timers()  is only called once per thread
period, and the thread periods are an order of
magnitude larger than the dispatch period. For
instance, we measured .25% overhead for
scheduling 15 threads comprising a typical
workload of our multi-media pipeline, the X
server, and gcc. Although our prototype would
not work well for threads with periods lower
than 10 msec, we believe the overhead can be
substantially reduced by tuning our prototype.

 We also measured the overhead of our user-
level controller. At each controller period, the
controller must read the progress metrics from

the kernel, calculate the new allocations a
periods, and send the new values to the in-k
nel RBS. Although this is not an optima
implementation, it allows easy tuning an
monitoring of the controller algorithm using
SWiFT’s debugging tools. Figure 5 depicts th
controller’s overhead in terms of additiona
CPU utilization. The first process is the con
troller itself, running with a 10 msec period
The additional processes are dummy proces
that consume no CPU but are scheduled, mo
tored, and controlled. Although the increme
tal overhead of new processes is fairly sm
(1% per process), a shorter controller peri
would result in unacceptable overheads.

To characterize the responsiveness of o
system, we wrote a program that simulates
pulse function for our controller. The pulse
correspond to periods in which the proce
grabs as much CPU as it can for 500 mse
the troughs correspond to periods of sleepi
for 1500, 500, and 60 msecs respectively. W
selected these values to show our schedu
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Figure 5: Overhead of Controller

This figure shows the overhead of our user-
level controller. The cost is linear in the num-
ber of processes it is controlling, with a slope
of .001 additional CPU utilization per process.
The y-axis is the amount of CPU consumed by
the controller, where 1 corresponds to 100%
utilization.
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responds to interactive, network, and disk I/O
delays. Except for this process and the control-
ler, the system was idle.   

Figure 6 shows the results of this experi-
ment. The solid line is the amount of CPU
allocated to the benchmark thread, the dashed
line indicates the amount it actually received.
From the graph, one can see how the exponen-
tial fast-start results in fast responses to
increases in load, while the linear decrease is
less responsive, and results in much less dis-
ruption to the allocation from the short pauses
due to I/O. We have several ideas for increas-
ing the accuracy of the allocation. First, we
plan to lower the overhead of the controller in
order to run it at a higher frequency. Calculat-
ing the exponential and linear curves more fre-
quently causes the allocation to change faster,
and results in a more responsive system with-
out affecting its stability. An alternate
approach that used exponential start and back-
off would likely be unstable. In fact a priority-
based scheme is perfectly responsive, but is
also unfortunately inherently unstable. Second,

our controller can tolerate allocation tha
exceeds 100% as long as actual usage does
For example, we could preserve a thread
allocation when it blocks on certain types o
events, such as input from ttys, in order 
ensure fast response time. This is similar 
using conservative estimates for proportions
reservation systems, and would have simi
detrimental effects. However, due to our use
feedback, the degree of conservatism a
hence its negative impact could be dynam
cally tuned based on the current workload. 

4.2  Scheduling Period
 One issue introduced by RBS is the ne

for fine-grain scheduling to handle jobs wit
short periods and to reduce the amount of ov
or under-allocation due to round-off4. In our
systems, there are two quanta of interest, 
dispatch quantum and the controller’s qua
tum. The dispatch quantum is the smalle
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Figure 6: Controller Responsiveness

This figure shows the amount CPU allocated
and used by a thread. The thread’s workload
represents a pulse input to the controller 500
msec wide, intermingled with pauses 1500,
500, and 60 msec wide. The exponential ramp-
up and linear back-off can be seen. It takes 100
msec to rise fully, and 1.2 seconds to drop.

4. This is similar in nature to the problem of 
internal fragmentation in file systems.
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Figure 7: Dispatch Overhead vs. Frequency

This figure shows the overhead of dispatch in
terms of available CPU for different operating
frequencies. The graph shows the amount of
CPU available to processes, the area above the
curve is the dispatch overhead. There is a clear
knee around 4000Hz. At this point the over-
head is around 4%.
10
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schedulable unit, and must be large enough to
account for dispatch overhead due to handling
a timer interrupt, re-queueing the current
thread, dispatching the next thread, and context
switch overhead. In addition, smaller quanta
allow the scheduler to approximate the speci-
fied allocation more closely in the same way
that a small ∆t decreases error in calculating an
integral. However, as the quantum size
approaches the amount of overhead from dis-
patching, the percentage of usable CPU goes
down.

Figure 7 shows the overhead of different
dispatch frequencies for our scheduler. We ran
this experiment on a 233 Mhz Pentium II run-
ning Linux augmented with our scheduler. We
ran a program, cpugrabber, that attempts to use
as much CPU as it can. The number plotted the
amount the program was able to grab, normal-
ized to the amount it can grab on the default
scheduler. We repeated the experiment for dif-
ferent dispatch frequencies, from 100 to 10000
Hz (corresponding to quanta of 10 msec to 100
µsec. The figure clearly shows the results of
the higher overhead for smaller quanta, with a
knee around 4000 Hz (250 µsec). We conjec-
ture that we could run with a dispatch quantum
in the range of 50 µsec on faster CPUs,
although our prototype currently uses 1 msec.

The controller’s overhead is much higher,
since it involves monitoring progress, calculat-
ing adjustments in proportion, and squishing
or stealing proportion. Fortunately, the control-
ler needs to run much less frequently than the
dispatcher. In some sense, the controller’s job
is to accurately capture the progress of all the
jobs via sampling. The Nyquist Theorem states
that to do so, the sampling must occur at twice
the highest frequency. In our case, the highest
frequency is the inverse of the smallest thread
period. In our experience, periods tend to be
larger than 10 msec, so a controller period of 1
msec should be fine. Since our prototype con-
troller is implemented at the user level, we use
a period of 10 msec which is sufficient for typ-
ical tasks on Linux. In the future, we may wish

to reduce the controller’s overhead to allow f
a smaller period in order to handle more rea
rate jobs, such as software radios.

4.3  Benefits of real-rate scheduling
The benefit of scheduling based on progre

is that allocation is automatically scaled as t
application’s requirements change. In our sy
tem, the amount of CPU given to a threa
grows in relation to its progress pressure a
importance. For example, we have a multim
dia pipeline of processes that communica
with a shared queue. Our controller automa
cally identifies that one stage of the pipelin
has vastly different CPU requirements than t
others (the video decoder), even though all t
processes have the same priority. This resu
in a more predictable system since it’s corre
ness does not rely on applications to be we
behaved. In other words, when a real time j
spins instead of blocking, the system will no
livelock.

Another benefit is that starvation, and thu
priority inversion, cannot occur. Depende
processes (connected (in)directly by proge
metrics) cannot starve each other since even
ally one will block when its fill-level reaches
full or empty. Further, dependent processes c
dynamically achieve stable configurations o
CPU sharing that fair-share, weighted fai
share, or priorities cannot. For independe
non real-rate threads, we prevent starvati
through our fair-share or weighted fair-sha
policies. In particular, one process cannot ke
the CPU from another process indefinite
simply because it is more important.

4.4  Effect on miscellaneous applications
Although the importance of real-rate appl

cations such as speech recognition, multim
dia, and Web servers will grow to dominanc
in the future, many PCs still run a mix of mor
traditional applications that have no ra
requirements and for which priorities have su
ficed. For these applications, our approach c
potentially reduce performance (modul
11
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responsiveness). However, these applications
can still suffer from priority inversion and star-
vation, even if they do not benefit from pre-
dictable scheduling and fine-grain control. We
suggest the right solution for these applications
is to add a pseudo-progress metric which maps
their notion of progress into our queue-based
meta-interface. For example, a pure computa-
tion (finding digits of π or cracking passwords)
could use a metric such as the number of keys
it has attempted. The alternate approach of
improving our heuristic may also suffice, but
we feel that such an approach has diminishing
returns. 

5  Related Work

There exists a large body of work which has
attempted to provide real-time scheduling sup-
port in operating systems, Jones et al. [8] pro-
vide a nice summary. Linux, Solaris, and NT
provide “real-time” priorities, which are fixed
priorities that are higher in priority than regu-
lar priorities. More relevant to this work are
efforts to schedule based on proportion and/or
period [8][13][18][20]. To date, all such
approaches require human experts to supply
accurate specifications of proportion and/or
period, and focus on how to satisfy these spec-
ifications in the best way. None of them try to
infer the correct proportion, or adapt dynami-
cally to changing resource needs of the appli-
cations.

In addition, several systems use hybrid
approaches to merge the benefits of reservation
and priority scheduling. Typically these
approaches use a heuristic that gives a static[2]
[5] or biased [4] partition of the CPU to either
real-time jobs or non-real-time jobs. A new
approach is taken by the BERT and SMaRT
schedulers, which dynamically balances
between the needs of both kinds of jobs.
Unfortunately, the best description of BERT is
under preparation for submission to OSDI.
Given our mutual time constraints, we cannot
address the relationship between our work in
time for submission. If accepted (and probably

by next week when these are both turned in
tech reports), this omission will certainly b
rectified [1]. The SMaRT scheduler lets user
assign priority to either conventional or rea
time threads, but gives weight to non-real-tim
threads within the same equivalence class [1
Although we implicitly give precedence to
real-time tasks (those that specify both propo
tion and period), we expect most jobs to fa
into the real-rate category. This includes all 
what most people consider “soft-real-time
applications such as multi-media.

Our solution is similar to Rate-based sche
uling proposed by Jeffay and Bennett [7], 
that resources are allocated based on rate s
ifications of x units of execution every y time
units. However, their units are events which a
converted to CPU cycles using a worst-ca
estimate of event processing time. Applic
tions must specify x, y, and the worst-case es
mation, and an upper-bound on response tim
In addition, these values are constant for t
duration of the application Their system als
uses pipelines of processes so that depend
stages do not need to specify their rate, mer
their event processing time. In contrast, o
system provides dynamic estimation an
adjustment of rate parameters, and on
requires that the process metric be specified

In short, to the best of our knowledge w
are the first to attempt to schedule using fee
back of the application’s rate of progress wi
respect to its inputs and/or outputs. The pow
of this approach lets us provide a single un
form scheduling mechanism that works we
for all classes of applications, including rea
time, real-rate, and conventional.

6  Conclusion

Real-rate applications that must match the
throughput to some external rate, such as w
servers or multimedia pipelines, and real-tim
applications are poorly served by today’s ge
eral purpose operating systems. One reaso
that priority-based scheduling, widely used 
existing operating systems, lacks sufficie
12
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control to accommodate the dynamically
changing needs of these applications. In addi-
tion, priority-based scheduling is subject to
failure modes such as starvation and priority
inversion that reduce the robustness of the sys-
tem.

In this paper we have described a new
approach to scheduling that assigns proportion
based on measured rate of progress. Our sys-
tem utilizes progress monitors such as the fill-
level in a bounded buffer, a feedback-based
controller that dynamically adjusts the CPU
allocation and period of threads in the system,
and an underlying proportional reservation-
based scheduler. As a result, our system
dynamically adapts allocation to meet current
resource needs of applications, without requir-
ing input from human experts.
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