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Abstract

In this paper we propose changing the decades-old practice of allocating CPU to threads
based on priority to a scheme based on proportion and period. Our scheme allocates to each
thread a percentage of CPU cycles over a period of time, and uses a feedback-based adaptive
scheduler to assign automatically both proportion and period. Applications with known require-
ments, such as isochronous software devices, can bypass the adaptive scheduler by specifying
their desired proportion and/or period. As a result, our scheme provides reservations to applica-
tions that need them, and the benefits of proportion and period to applications that do not need
reservations. Adaptive scheduling using proportion and period has several distinct benefits over
either fixed or adaptive priority based schemes: finer grain control of allocation, lower variance
in the amount of cycles allocated to a thread, and avoidance of accidental priority inversion and
starvation, including defense against denial-of-service attacks. This paper describes our design of
an adaptive controller and proportion-period scheduler, its implementation in Linux, and presents
experimental validation of our approach.

1 Introduction where the correct portion and period are ana-
CPU scheduling in conventional generallytically determined by human experts. How-
purpose operating systems performs poorly fofVer: .reservatlon-based scheduling has yet to
real-rate applications, applications with speP® widely accepted for general purpose sys-
cific rate or throughput requirements in whicht®ms because of the difficulty of correctly esti-
the rate is driven by real-world demandsmating a thread's required portion and period.
Examples of real-rate applications are software [N this paper we propose a technique to
modems, web servers, speech recognition, arffynamically —estimate the proportion and
multimedia players. These kinds of applicaP€riod needed by a particular job based on
tions are becoming increasingly popu|ar,observat|ons of its progress. As a result_, our
which warrants revisiting the issue of schedulSyStem can offer the benefits of proportional
ing. The reason for the poor performance ischeduling without requiring the use of reser-

that most general purpose operating systemé@tions. With these estimates, the system can
use priority-based scheduling, which is inflexi-SSign the appropriate proportion and period to

ble and not suited to fine-grain resource alloca@ 1ob’s thread(s), alleviating the need for input
tion. Real-time operating systems have offereffom human experts. Our technique is based on
another approach based on proportion anfg€dback, so the proportions and periods

period. In this approach threads are assigned@sSigned to threads change dynamically and
portion of the CPU over a period of time, @utomatically as the resource requirements of
the threads or processes change. Given a suffi-
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ciently general, responsive, stable, and accwsonable performance. For example, the sched-
rate estimator of progress, we can replace théder can give interactive jobs reasonable
priority-based schedulers of the past withperformance by assigning them a small period
schedulers based on proportion and periodnd estimating their proportion by measuring
and thus avoid the drawbacks associated witthe amount of time they typically run before
priority-based scheduling. blocking.

The fundamental problem with priority- The remainder of this paper describes our
based scheduling is that knowledge of a job'approach in more detail. Section 2 motivates
priority by itself is not sufficient to properly the need for adaptive proportion/period sched-
allocate resources to the job. For example, onglers. Section 3 presents our solution, includ-
cannot express dependencies between jolisg a description of our implementation.
using priorities, or specify how to shareSection 4 discusses implications of our solu-
resources between jobs with different priori-tion, and presents experimental measurements
ties. As a result, priority-based schemes havef our prototype. Section 5 describes similar
several potential problems, including starvaapproaches to the question of scheduling.
tion, priority inversion, and lack of fine-grain
allocation. Use of adaptive mechanisms like2 Motivation
the classic multi-level feedback scheduler alle- The limitations of priority-based scheduling
viate some of these problems, but introducgvere graphically demonstrated to the world
new ones as the recent deployment of fixegecently when NASAs Mars Pathfinder robot
real-time priorities in systems such as LinuxXexperienced repeated resets due to priority
and Windows NT can attest. inversion [10]. Occasionally, a high priority

Our approach avoids these drawbacks byask was blocked waiting for a mutex held by a
using a controller that assigns proportion angobw priority task. Unfortunately, the low prior-
period based on estimations of threadsty task was starved for CPU by several other
progress. It avoids starvation by ensuring thagasks with medium priority. Eventually, the
every job in the system is assigned a non-zergystem would detect that the high priority task
percentage of the CPU. It avoids priority inver-was missing deadlines and would reset itself.
sion by allocating CPU based on need as medore insidious than the problem itself is the
sured by progress, rather than on priority. Iyifficulty of finding the bug when it occurs. In
provides fine-grain control since threads canhis case, the mutex was buried under several
request specific portions of the CPU, e.g.layers of abstraction; no reasonable amount of
assigning 60% of the CPU to thread X anctode inspection would have discovered the
40% to thread Y. bug. Fortunately, a combination of good engi-

The key enabling technology to ourneering, run-time debugging support, and the
approach is a feedback-based controller thghct that a mutex was the source of the inver-
assigns proportion and period to threads basefion helped NASA engineers to correct the bug
on measurements of their progress. For exan9][15].
ple, the progress of a producer or consumer of The problems of priority inversion and star-
a bounded buffer can be estimated by the fiation occur because priorities alone are not
level of the buffer. If it is full, the consumer is expressive enough to capture all desired rela-
falling behind and needs more CPU, whereagonships between jobs. As a result, priority-
the producer has been making too muclpased schemes are forced to use kludges to
progress and has spare CPU to offer. In casgempensate, such as passing priorities through
where progress cannot be directly measuregnutexes or decreasing the priority of CPU-
we provide heuristics designed to provide reabound jobs. These mechanisms have worked



Controller }-Actuate Scheduler/Dispatchep—! Resources

This diagram shows the rough architecture of our scheduler. A feedback controller monitors the rate of
progress of job threads, and calculates new proportions and periods based on the results. Actuation
involves setting the proportion and period for the threads. The scheduler is a standard proportion/
period reservation-based scheduler. The controller's execution period and the dispatch period can be
different.

Figure 1: Diagram of closed-loop Control

well in the past, but they have untoward sidewill delay the job. In essence, our solution
effects. monitors the progress of jobs and increases or
For example, to ensure that the kernel allodecreases the allocation of CPU to those jobs
cates sufficient CPU to an important CPU-as needed. In our terminology, a job is a collec-
bound job running on Unix, one coutice(1) tion of cooperating threads that may or may
it. However, as it continues to use its time-slicenot be contained in the same process.
the kernel will automatically reduce its priority  Figure 1 shows the high-level architecture
until it is running at or below less importantof our design. The scheduler dispatches
jobs. Alternatively, one could assign it a fixedthreads in order to ensure that they receive
real-time priority which is higher than the nor-their assigned proportion of the CPU during
mal priorities, guaranteeing that it will run. their period. A controller periodically monitors
Unfortunately, it will then run to the exclusion the progress made by the threads, and adjusts
of all jobs in the system with lower priority. each job’s proportion automatically. We call
Consider a job running at a (fixed) real-timethis adjustmengactuationor adaptation,since
priority that spin-waits on user input. Since thet involves tuning the system’s behavior in the
X server typically runs at a lower priority thansame sense that an automatic cruise control
the real-time thread, it will be unable to generadjusts the speed of a car by adjusting its throt-
ate the input for which the thread is spinningtle. Astute readers will note that the diagram
and the system will livelock. Note that theresembles a classic closed-loop, or feedback,
solution to the Mars Pathfinder of passing pricontrolled system. This dynamic adaptation
ority through mutexes[17] will not help in this controlled by feedback is necessary because

situation. the needs of jobs, and the composition of jobs
_ running on the system vary with time. The fol-
3 Our Solution lowing subsections address each of the key

Our solution is based on the notion ofpoints in the architecture.
progress ldeally, resource allocation should )
ensure that every job maintains a sufficient rat-1 The Reservation Scheduler
of progress towards completing its tasks. Allo- Our scheduler is a standard proportion/
cating more CPU than is needed will beperiod scheduler which is usually referred to as
wasted, whereas allocating less than is needé¢eservation-based.”The scheduler allocates



CPU to threads based on two attributes: praime priorities. For purposes of experimenta-
portion and period. The proportion is a per+ion, the scheduler implements both earliest-
centage of the duration of the period duringdF) and rate-monotonic scheduling (RTF)[11],
which the application should get the CPUalthough we use EDF in the numbers presented
specified in parts per thousand. For example, ibelow. Note that since the controller can detect
one thread has been given a proportion of .0&8nd prevent overload, our scheduler will never
(5%) and a period of 30 milliseconds, it shouldsuffer the limitations of EDF in overload. The
be able to run up to 1.5 milliseconds. scheduler uses Linux’s scheduling queues to
Intuitively, the period defines a repeatingstore jobs based on rates, with highest priority
deadline. To meet the deadline, the applicatiogoing to jobs with the highest rate, and also
must perform some amount of work. Hence, ti&keeps a queue sorted by earliest deadline.
satisfy the application the scheduler must alloUsing Linux’s interval timer, it schedules a
cate sufficient CPU cycles, which in our case isvakeup for the next pending deadline. When it
the proportion times the period times theawakes, it removes the thread from the front of
CPU's clock rate. If the scheduler cannot allothe queue, calculates the next deadline for the
cate the appropriate amount of time to thehread, and re-inserts the thread into the queue.
thread, the thread is said to have missed la then schedules the next wakeup and dis-
deadline. patches the next thread. We could have also
An advantage of reservation-based schedised another RBS scheduler such as SMaRT
uling! (RBS) is that one can easily detect overf13], Rialto [8], or BERT [1], but ours was suf-
load by summing the proportions: a sumficient for the needs of our prototype.
greater than or equal to one indicates the CPU
is oversubscribed. If the scheduler is conserva3.2 Monitoring Progress
tive, it can reserve some capacity by setting the The novelty of our approach lies in the esti-
overload threshold to less than 1. For examplenation of progress as the means of controlling
one might wish to reserve capacity to cover thegne CPU allocation. Unfortunately, estimating
overhead of scheduling and interrupt handlingan application’s progress is tricky, especially
Upon reaching overload, the scheduler hagiven the opaque interface between the appli-
several choices. First, it can perform admissiogation and the operating system. Good engi-
control by rejecting or cancelling jobs so thatneering practice tells us that the operating
the resulting load is less than 1. Second, it cagystem and application implementations
raise quality exceptions to notify the jobs ofshould be kept separate in order that the oper-
the overload and renegotiate the proportions sating system be general and the application be
that they sum to no more than the cutoffportable.
threshold. Third, it can automatically scale Our solution to this problem is based on the
back the allocation to jobs using some policyhotion of symbiotic interfaces which link
such as fair share or weighted fair share. In owpplication semantics to system metrics such
system, these mechanisms are implemented kg progress. For example, consider two appli-
the controller, and are discussed below. cations with a producer/consumer relationship
We have implemented a RBS scheduler ising a shared queue to communicate. A sym-
the Linux 2.0.32 kernel using Linux’s real- biotic interface that implements this queue cre-
ates a linkage to the kernel by exposing the
1. Our use of the term “reservation” is some- buffer's fill-level, size, and the role of each
what lose, since we do not need strict guar-  thread (producer or consumer) to the system.
antees from the scheduler. As a result, a With this information, the kernel can estimate

ood enough best-effort proportion/period
gchedmer \?mmd suffice. brop P the progress of the producer and consumer by




monitoring the queue fill level. As the queue < 1/O intensive

becomes full (the fill-level approaches the
maximum amount of buffering in the queue),

the kernel can infer that the consumer is run-
ning behind and needs more CPU and that the
producer is running ahead and needs less CPU.
Similarly, when the queue becomes empty the
kernel can infer the producer needs more CPU
and the consumer less. This analysis can be
extended to deal with pipelines of threads by
pair-wise comparison. Over time, the feedback

controller will reach equilibrium in steady-
state provided the design is stable.
Our solution is to define suitable symbiotic

interfaces for each interesting class of applica-

tion, listed below. Given an interface, we can
build a monitor that periodically samples the

progress of the application, and feeds that

information to the controller.

* Producer/Consumer:

Applications that process large data sets
can be considered consumers of data that is
produced by the I/O subsystem. As such,
they need to be given sufficient CPU to
keep the disks busy. For applications that
use asynchronous I/O such as the TIP sys-
tem [14], progress can thus be measured by
treating the buffer cache as a bounded
buffer as in the producer/consumer case
above.

» Other

Some applications are sufficiently
unstructured that no suitable symbiotic
interface exists, or may be legacy code that
predates the interface and cannot be
recompiled. In such cases where our
scheduler cannot monitor progress, it uses
a simple heuristic policy to assign propor-
tion and period based on whether or not the

The applications use some form of
bounded buffer to communicate, such as a
shared-memory queue, unix-style pipe, or When an application initializes a symbiotic
sockets. Pipes and sockets are effectivelinterface (such as by submitting hints, opening
gueues managed by the kernel as part & file, or opening a shared queue), the interface
the abstraction. By exposing the fill-level, creates a linkage to the kernel usingnata-
size, and role of the application (producelinterface system call that registers the queue
or consumer), the scheduler can determinéor socket, etc.) and the application’s use of
the relative rate of progress of the applicathat queue (producer or consumer). We have
tion by monitoring the fill-level. implemented a shared-queue library that per-

forms this linkage automatically, and have
*» Server extended the in-kernel pipe and socket imple-
Servers are essentially the consumer ainentation to provide this linkage.
a bounded buffer, where the producer may
or may not be on the same machine. 3.3 Adaptive Controller
Given the scheduler and monitoring compo-
* Interactive nents, the job of the scheduler is to assign pro-

Interactive jobs are servers that listen tortion and period to ensure that applications
ttys instead of sockets. Since interactivamake reasonable progress. Figure 2 presents
jobs have specific requirements (periodghe four cases considered by the controller:
relative to human perception), the schedreal-time, aperiodic real-time, real-rate, and
uler only needs to know that the job ismiscellaneous threads. Real-time threads spec-
interactive and théysin which it is inter-  ify both proportion and period, aperiodic real-
ested. time threads specify proportion only, real-rate

do not specify proportion or period but supply

application uses the allocation it is given.



Proportion Progress Period Specified| Period Unspecified
Specified Metric
Yes N/A Real-time Aperiodic real-timg
Yes Real-rate
No .
No Miscellaneous

Figure 2: Taxonomy of thread-types for controller

a metric of progress, and miscellaneous
threads provide no information at all.

* Real-time threads

Reservation-based scheduling using
proportion and period was developed in the
context of real-time applications [11],

scheduling, since they require that the
work of dispatching happen more often. As
a result, the controller picks a value that is
likely to be low enough without adding too
much overhead. Our prototype uses 20
msec.

applications that have known proportion < Real-rate threads

and period. To best serve these applica-
tions, the controller sets the thread propor-
tion and period to the specified amount and
does not modify them in practice. Such a
specification (if accepted by the system) is
essentially a reservation of resources for
the application. Should, however, the sys-
tem be placed under substantial overload,
the controller may raise a quality exception
and initiate a renegotiation of the resource
reservation.

« Aperiodic real-time threads

For tasks that have known proportion
but are not periodic or have unknown
period, the controller must assign a period.
Truly aperiodic threads have a (singleton)
period whose duration is equal to the
thread’s deadline and the thread’s start
time. Since the period provides a bound on
when the scheduler can allocate the requi-
site CPU to the thread, underestimating the
bound cannot harm the application. Low
periods do however raise the overhead of

2. To be honest, we are unaware of any appli-
cations that fall into this category. We have
included it in this discussion for complete-
ness.

We call threads that have a visible met-
ric of progress but are without a known
proportionreal-rate since they do not have
hard deadlines but do have throughput
requirements. Examples of real-rate
threads are multimedia pipelines, isochro-
nous device drivers, and servers. During
each controller quantum, the controller
samples the progress of each thread to
determine thepressure exerted on the
thread. Pressure is a number between -1/2
and 1/2; negative values indicate too much
progress is being made and the allocation
should be reduced, 0 indicates ideal alloca-
tion, and positive values indicate the thread
is falling behind and needs more CPU. The
magnitude of the pressure is relative to
how far behind or ahead the thread is run-
ning.

Figure 3 contains the formula used by
the controller to calculate the total pressure
on a thread from its progress metrics, or
input/output queues. For shared queugs, F
is calculated by dividing the current fill-
level by the size of the queue and subtract-
ing 1/2. We use 1/2 as the optimal fill level
since it leaves maximal room to handle
bursts by both the producer and consumer.
Rt is used to flip the sign on the queue,



] 0
Q = gRt,iFt,%k*' Qti(1-K)

R, = 0-1 If tis a producer of i
! El If tis a consumer of i

Q:, the progress pressure, is a measure of the
relative progress of thread t using its progress
metric(s). k; is a value between -1/2 and 1/2,
derived from the progress metric i (e.g. buffer
fill level), R;; flips the sign of F; for produc-

ers. k is used to calculate an exponential aver-
age to smooth sudden changesto F

Figure 3: Progress Pressure Equation

P/Q, Q;=0 andP, on target
AP, = E Q; Q;<0 andP, on target
E —C P, too generous

AP, is the change in allocation calculated from
the progress pressurg ghd the previous allo-
cation R. If Q; is positive, the allocation is
increased exponentially relative to the progress
pressure. If Qis negative, the allocation is
reduced linearly with a slope relative tq Q
When the previous allocation overestimates
the thread’s needs, the controller linearly
decreases the allocation using a constant slope.

Figure 4: Proportion Estimation Equation

since a full queue means the consumer
should speed up (positive pressure) while type), and increases or decreases it based
the producer should slow down (negative on the first derivative of the thread’s use of
pressure). For stability, we use an exponen- its allocation.
tial average based on the constant k, which
reduces the influence of a sample as it ageSstimating proportion
(). The estimation algorithm for proportion
For aperiodic real-rate threads, the coneperates using fast-start and slow back-off.
troller must also determine the period. WeWith fast-start, the controller quickly ramps up
use variation in the pressure for this purthe allocation for a new thread by growing it
pose. When the variation is small, theexponentially over time in order to be respon-
period can be increased because the likelsive to sudden increases in load as might occur
hood of a queue under- or over-flow iswhen a new job starts. With slow back-off, the
small. When the variation is large, thecontroller linearly decreases a thread’s alloca-
period should be decreased. Decreasing th#n over time. Using exponential increase and
period gives the controller finer grain con-back-off would make the system more respon-
trol over the allocation, since it gets tosive to drops in CPU usage, but would also
adjust allocation more frequently. likely result in an unstable system.
Our use of fast-start and slow back-off may
* Miscellaneous threads be surprising because it is the opposite of the
The controller uses a heuristic forapproach taken by the best known feedback
threads that do not fall into the previouscontroller in operating systems: Van Jacob-
categories. For proportion, the controllerson’s TCP flow-control algorithm [6]. Our
approximates the thread’s progress with approach is possible because we can easily
positive constant. In this way there is con-determine when the CPU is overloaded, in par-
stant pressure to allocate more CPU to &cular we can detect overload before the sys-
miscellaneous thread, until it is either satistem begins to thrash. In addition, we control all
fied or the CPU becomes oversubscribedusers of the CPU, and so can enforce back-off
Initially the controller sets the thread’s globally.
period to a small value as for aperiodic

real-time threads (20 msec in our proto-



The controller decides whether to increas&Vith a fair-share policy, squishing happens by
or decrease the CPU based on the progrestealing equal percentages of allocation from
pressure Qdescribed above, and on a meaall real-rate or miscellaneous threads. This,
surement of the accuracy of the previous allohowever, assumes that all jobs have equal
cation. The later value is calculated byimportance.
subtracting the CPU used by a thread from the We have extended this simple fair-share
amount allocated to #.If the difference is policy by associating an importance with each
smaller than a threshold, the controllerthread. The result is a weighted fair-share,
assumes the pressure estimate is valid. If thehere the importance is the weighting factor.
difference is larger than the threshold, the pred?lease note that importance is not priority,
sure is overestimating the actual need and tte@nce one job will not starve another if it is
allocation should be reduced. This may hapmore important. Instead, importance deter-
pen, for instance, when the CPU is not the botmines the likelihood that a thread will get its
tleneck for the thread; increasing the CPU willdesired allocation. For two jobs that both
not increase the progress made by the thread desire more than the available CPU, the more
this case. Figure 4 presents the equation usé@aportant job will end up with the higher per-
by the controller to estimate proportion. centage.

Responding to Overload Implementation
When the controller seeks to increase the We have implemented this controller using
total allocation past the overload threshold, ithe SWIFT software feedback toolkit [3].
must scale back its allocation of other jobsSWIFT embodies an approach to building
This increase can result either from theadaptive system software that is based on con-
entrance of a new real-time thread, or from thérol theory. With SWIFT, the controller is a cir-
controller’'s periodic estimation of real-rate orcuit that calculates a function based on its
miscellaneous threads’ needs. In the formenputs (in this case the progress monitors and
case, the controller performs admission contramportance parameters), and uses the func-
by rejecting new real-time jobs which requestion’s output for actuation.
more CPU than is currently available. We For reasons of rapid prototyping, our con-
chose this approach for simplicity, we hope tdroller is implemented as a user-level program.
extend it to support a form of quality negotia-This has clear implications on overhead, which
tion such as that used in BBN’s Qualitylimits the controller's frequency of execution,
Objects [19]. which in turn limits its responsiveness. We
In the latter case, the controllequishes have plans to move the controller into the
current job allocations to free capacity for theLinux kernel in order to reduce this overhead.
new request. In some cases, the squishing halonetheless, our experiments discussed below
pens to a related thread such as squishingshow the overhead to be reasonable for a pro-
producer that has filled a bounded buffer. Inotype system for most common jobs.
other cases, the squishing must be felt by all. In our prototype, jobs must either explicitly
register themselves in order to be scheduled by
3. We assume that the RBS is giving threads as ~ OUr RBS scheduler (as opposed to the default
much CPU as the controller allocated, since  Linux scheduler) or be descended from such a
we reserve some spare capacity. Ifthe RBS  job. In the future, we hope to schedule all jobs

is missing deadlines, it notifies the control- using our scheduler. Currently we limit it to
ler which can increase the amount of spare g cific jobs such as real-time applications, the
capacity by reducing the admission thresh-

old. controller process, and the X server.



4 Discussion

The following sections discuss various
aspects of our solution in more detail. Sectior
4.1 characterizes our prototype’s performance
Section 4.2 discusses the implications of thes
dispatch and controller periods on the accuracs
of the system and its overhead. Section 4.3 jusg
tifies our claims about the benefits of our§
approach, and Section 4.4 describes the effe&
of our approach on conventional applications
for which priority-based schemes have per-
formed well.

4.1 Characterization

To better understand the characteristics of
our system, we measured its overhead and
response time; presenting an analysis of its sta-
bility is beyond the scope of this paper. At the
lowest level, we measured the time to execute
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0.01 4
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Number of processes
This figure shows the overhead of our user-
level controller. The cost is linear in the num-
ber of processes it is controlling, with a slope
of .001 additional CPU utilization per process.
The y-axis is the amount of CPU consumed by
the controller, where 1 corresponds to 100%

the two key routines in our RBS scheduler, ~Utilization.

schedule() and do_timers(). The
former routine is called every dispatch quan-
tum, but typically performs no work. The latter the kernel, calculate the new allocations and
routine is called when a thread does need t0 Bgyriods, and send the new values to the in-ker-
dispatched, either because the current threggh| RBS. Although this is not an optimal

used its proportion, yielded the CPU, or a NeWmplementation, it allows easy tuning and

system, a Pentium II 233 Mhz Linux system.q\wirT’s debugging tools. Figure 5 depicts the
the time to execute the default scheduler is 6.3yntroller's overhead in terms of additional

usec, the time to execute oschedule() CPU utilization. The first process is the con-
routine is 5.3usec, and the time 10 executeyjier jtself, running with a 10 msec period.
do_timers()  is 5.0usec In practice, the Tne additional processes are dummy processes
overhead of our scheduler is small sincgnat consume no CPU but are scheduled, moni-
do_timers() s only called once per thread tpreq, and controlled. Although the incremen-
period, and the thread periods are an order @f overhead of new processes is fairly small
_magnltude larger than the dispatch period. FOf19% per process), a shorter controller period
instance, we measured .25% overhead fQEoyid result in unacceptable overheads.
scheduling 15 threads comprising a typical g characterize the responsiveness of our
workload of our multi-media pipeline, the X system, we wrote a program that simulates a
server, and gcc. Although our prototype wouldyise function for our controller. The pulses
not work well for threads with periods lower correspond to periods in which the process
than 10 msec, we believe the overhead can erabs as much CPU as it can for 500 msecs,
substantially reduced by tuning our prototype. ihe troughs correspond to periods of sleeping
We also measured the overhead of our usefar 1500, 500, and 60 msecs respectively. We

level controller. At each controller perl_od, thegelected these values to show our scheduler
controller must read the progress metrics from

Figure 5: Overhead of Controller
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This figure shows the amount CPU allocated This figure shows the overhead of dispatch in
and used by a thread. The thread’'s workload terms of available CPU for different operating
represents a pulse input to the controller 500 frequencies. The graph shows the amount of
msec wide, intermingled with pauses 1500, CPU available to processes, the area above the
500, and 60 msec wide. The exponential ramp- curve is the dispatch overhead. There is a clear
up and linear back-off can be seen. It takes 100 knee around 4000Hz. At this point the over-
msec to rise fully, and 1.2 seconds to drop. head is around 4%.
Figure 6: Controller Responsiveness Figure 7: Dispatch Overhead vs. Frequency

responds to interactive, network, and disk 1/Gour controller can tolerate allocation that
delays. Except for this process and the controbxceeds 100% as long as actual usage does not.
ler, the system was idle. For example, we could preserve a thread’s
Figure 6 shows the results of this experiallocation when it blocks on certain types of
ment. The solid line is the amount of CPUevents, such as input from ttys, in order to
allocated to the benchmark thread, the dashezhsure fast response time. This is similar to
line indicates the amount it actually receivedusing conservative estimates for proportions in
From the graph, one can see how the exponereservation systems, and would have similar
tial fast-start results in fast responses taletrimental effects. However, due to our use of
increases in load, while the linear decrease feedback, the degree of conservatism and
less responsive, and results in much less difience its negative impact could be dynami-
ruption to the allocation from the short pausegally tuned based on the current workload.
due to I/O. We have several ideas for increas-
ing the accuracy of the allocation. First, we4.2 Scheduling Period
plan to lower the overhead of the controller in  One issue introduced by RBS is the need
order to run it at a higher frequency. Calculatfor fine-grain scheduling to handle jobs with
ing the exponential and linear curves more freshort periods and to reduce the amount of over-
quently causes the allocation to change fastesy under-allocation due to round-bffin our
and results in a more responsive system withsystems, there are two quanta of interest, the
out affecting its stability. An alternate dispatch quantum and the controller's quan-
approach that used exponential start and backim. The dispatch quantum is the smallest
off would likely be unstable. In fact a priority-
based scheme is perfectly responsive, but is
also unfortunately inherently unstable. Second,

4. This is similar in nature to the problem of
internal fragmentation in file systems.
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schedulable unit, and must be large enough tim reduce the controller’s overhead to allow for
account for dispatch overhead due to handling smaller period in order to handle more real-
a timer interrupt, re-queueing the currentrate jobs, such as software radios.
thread, dispatching the next thread, and context
switch overhead. In addition, smaller quant##.3 Benefits of real-rate scheduling
allow the scheduler to approximate the speci- The benefit of scheduling based on progress
fied allocation more closely in the same wayis that allocation is automatically scaled as the
that a small\t decreases error in calculating anapplication’s requirements change. In our sys-
integral. However, as the quantum sizeem, the amount of CPU given to a thread
approaches the amount of overhead from disyrows in relation to its progress pressure and
patching, the percentage of usable CPU godmportance. For example, we have a multime-
down. dia pipeline of processes that communicate
Figure 7 shows the overhead of differentwith a shared queue. Our controller automati-
dispatch frequencies for our scheduler. We ravally identifies that one stage of the pipeline
this experiment on a 233 Mhz Pentium Il run-has vastly different CPU requirements than the
ning Linux augmented with our scheduler. Weothers (the video decoder), even though all the
ran a prograngpugrabberthat attempts to use processes have the same priority. This results
as much CPU as it can. The number plotted thié a more predictable system since it's correct-
amount the program was able to grab, normahess does not rely on applications to be well-
ized to the amount it can grab on the defaulbehaved. In other words, when a real time job
scheduler. We repeated the experiment for difspins instead of blocking, the system will not
ferent dispatch frequencies, from 100 to 1000Qvelock.
Hz (corresponding to quanta of 10 msec to 100 Another benefit is that starvation, and thus
usec. The figure clearly shows the results ofriority inversion, cannot occur. Dependent
the higher overhead for smaller quanta, with @rocesses (connected (in)directly by progess
knee around 4000 Hz (2%(sec). We conjec- metrics) cannot starve each other since eventu-
ture that we could run with a dispatch quantunally one will block when its fill-level reaches
in the range of 50usec on faster CPUs, full or empty. Further, dependent processes can
although our prototype currently uses 1 msec.dynamically achieve stable configurations of
The controller's overhead is much higher,CPU sharing that fair-share, weighted fair-
since it involves monitoring progress, calculatshare, or priorities cannot. For independent
ing adjustments in proportion, and squishinghon real-rate threads, we prevent starvation
or stealing proportion. Fortunately, the controlthrough our fair-share or weighted fair-share
ler needs to run much less frequently than thpolicies. In particular, one process cannot keep
dispatcher. In some sense, the controller's jothe CPU from another process indefinitely
is to accurately capture the progress of all theimply because it is more important.
jobs via sampling. The Nyquist Theorem states
that to do so, the sampling must occur at twicd.4 Effect on miscellaneous applications
the highest frequency. In our case, the highest Although the importance of real-rate appli-
frequency is the inverse of the smallest threadations such as speech recognition, multime-
period. In our experience, periods tend to belia, and Web servers will grow to dominance
larger than 10 msec, so a controller period of in the future, many PCs still run a mix of more
msec should be fine. Since our prototype conrraditional applications that have no rate
troller is implemented at the user level, we useequirements and for which priorities have suf-
a period of 10 msec which is sufficient for typ-ficed. For these applications, our approach can
ical tasks on Linux. In the future, we may wishpotentially reduce performance (modulo
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responsiveness). However, these applicatiortsy next week when these are both turned into
can still suffer from priority inversion and star- tech reports), this omission will certainly be
vation, even if they do not benefit from pre-rectified [1]. The SMaRT scheduler lets users
dictable scheduling and fine-grain control. Weassign priority to either conventional or real-
suggest the right solution for these applicationime threads, but gives weight to non-real-time
is to add a pseudo-progress metric which maphreads within the same equivalence class [13].
their notion of progress into our queue-basedlthough we implicitly give precedence to
meta-interface. For example, a pure computaeal-time tasks (those that specify both propor-
tion (finding digits ofrtor cracking passwords) tion and period), we expect most jobs to fall
could use a metric such as the number of keyiato the real-rate category. This includes all of
it has attempted. The alternate approach offhat most people consider “soft-real-time”
improving our heuristic may also suffice, butapplications such as multi-media.

we feel that such an approach has diminishing Our solution is similar to Rate-based sched-

returns. uling proposed by Jeffay and Bennett [7], in
that resources are allocated based on rate spec-
5 Related Work ifications of x units of execution every y time

There exists a large body of work which haginits. However, their units are events which are
attempted to provide real-time scheduling supconverted to CPU cycles using a worst-case
port in operating systems, Jones et al. [8] proestimate of event processing time. Applica-
vide a nice summary. Linux, Solaris, and NTtions must specify x, y, and the worst-case esti-
provide “real-time” priorities, which are fixed mation, and an upper-bound on response time.
priorities that are higher in priority than regu-In addition, these values are constant for the
lar priorities. More relevant to this work are duration of the application Their system also
efforts to schedule based on proportion and/ddses pipelines of processes so that dependent
period [8][13][18][20]. To date, all such stages do not need to specify their rate, merely
approaches require human experts to supplpeir event processing time. In contrast, our
accurate specifications of proportion and/osystem provides dynamic estimation and
period, and focus on how to satisfy these spe@djustment of rate parameters, and only
ifications in the best way. None of them try torequires that the process metric be specified.
infer the correct proportion, or adapt dynami- In short, to the best of our knowledge we
cally to changing resource needs of the appliare the first to attempt to schedule using feed-
cations. back of the application’s rate of progress with

In addition, several systems use hybridespect to its inputs and/or outputs. The power
approaches to merge the benefits of reservatid¥ this approach lets us provide a single uni-
and priority scheduling. Typically these form scheduling mechanism that works well
approaches use a heuristic that gives a static[fgr all classes of applications, including real-
[5] or biased [4] partition of the CPU to eithertime, real-rate, and conventional.
real-time jobs or non-real-time jobs. A new .
approach is taken by the BERT and SMaR® Conclusion
schedulers, which dynamically balances Real-rate applications that must match their
between the needs of both kinds of jobsthroughput to some external rate, such as web
Unfortunately, the best description of BERT isservers or multimedia pipelines, and real-time
under preparation for submission to OSDI.applications are poorly served by today’s gen-
Given our mutual time constraints, we cannoteral purpose operating systems. One reason is
address the relationship between our work irthat priority-based scheduling, widely used in
time for submission. If accepted (and probablyexisting operating systems, lacks sufficient
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control to accommodate the dynamically
changing needs of these applications. In addi-
tion, priority-based scheduling is subject to

Proceedings of the SIGCOMM '88 Conference
on Communications Architectures and Protogcols
1988.

failure modes such as starvation and priorit)W] K. Jeffay, and David Bennett. A rate-based execution

inversion that reduce the robustness of the sys-
tem.

In this paper we have described a new
approach to scheduling that assigns proportion
based on measured rate of progress. Our sys-
tem utilizes progress monitors such as the fill-
level in a bounded buffer, a feedback-based

abstraction for multimedia computing. In
Proceedings of the Fifth International Workshop
on Network and Operating System Support for
Digital Audio and Videp Durham, NH, April
1995. Published inecture Notes in Computer
Science T.D.C. Little and R. Gusella, editors.
Volume 1018, pages 64-75. Springer-Verlag,
Heidelberg, Germany, 1995.

controller that dynamically adjusts the CPUI8] M. B. Jones, D. Rosu, and M-C. Rosu. CPU

allocation and period of threads in the system,
and an underlying proportional reservation-
based scheduler. As a result, our system
dynamically adapts allocation to meet current
resource needs of applications, without requir;,
ing input from human experts.
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