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Abstract� MetaML is a multi�stage functional programming language
featuring three constructs that can be viewed as statically�typed re�ne�
ments of the back�quote� comma� and eval of Scheme� Thus it provides
special support for writing code generators and serves as a semantically�
sound basis for systems involving multiple interdependent computational
stages� In previous work� we reported on an implementation of MetaML�
and on a small�step semantics and type�system for MetaML� In this pa�
per� we present An Idealized MetaML �AIM� that is the result of our
study of a categorical model for MetaML� An important outstanding
problem is �nding a type system that provides the user with a means
for manipulating both open and closed code� This problem has eluded
e�orts by us and other researchers for over three years� AIM solves the
issue by providing two type constructors� one classi�es closed code and
the other open code� and exploiting the way they interact�

� Introduction

�If thought corrupts language� language can also corrupt thought��� Staging com�
putation into multiple steps is a well�known optimization technique used in many
important algorithms� such as high�level program generation� compiled program
execution� and partial evaluation� Yet few typed programming languages allow
us to express staging in a natural and concise manner� MetaML was designed to
�ll this gap� Intuitively� MetaML has a special type for code that combines some
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features of both open code� that is� code that can contain free variables� and
closed code� that is� code that contains no free variables� In a statically typed
setting� open code and closed code have di�erent properties� which we explain
in the following section�

Open and Closed Code A number of typed languages for manipulating code
fragments have been proposed in the literature� Some have types for open code
���	� 
� ��� and others have types for closed code ��� �
� On one hand� languages
with open code types play an important role in the study of partial evaluation�
Typically� they provide two constructs� one for building a code fragment with free
variables� and one for combining such fragments� Being able to construct open
fragments allows the user to force computations �under a lambda�� Generally� it
has been hard for such languages to include constructs for executing such code
fragments� because they can contain �not�yet�bound identi�ers�� On the other
hand� languages with closed code types play an important role in the study
of run�time �machine� code generation� Typically� they include constructs for
building closed code� and for executing them� Generally� in such languages there
is no mechanism for forcing computations �under a lambda��

The importance of having a way to execute code within a language is best illus�
trated by considering the eval of Scheme� In particular� E�cient implementations
of Domain�Speci�c or �little� languages can be developed as follows� First� build
a translator from the source language to Scheme� and then use eval to execute
the generated Scheme code� For many languages� such an implementation would
be almost as simple as an interpreter implementation �especially if back�quote
and comma are utilized�� but would incur almost non of the overhead associated
with an interpretive implementation�

MetaML ���� �� provides constructs for manipulating open code and executing
it� but does not distinguish between open and closed code types� But open code
cannot be executed because it may contain free variables that have not been
bound yet� This means that in MetaML type information is not enough to decide
whether or not we can safely execute a code fragment� In what follows� we
introduce MetaML� explain what it allows us to express� and where it falls short�

MetaML MetaML has three staging annotations� Brackets h i� Escape �

and Run run � An expression hei defers the computation of e� � e splices the
deferred expression obtained by evaluating e into the body of a surrounding
Bracketed expression� and run e evaluates e to obtain a deferred expression� and
then evaluates it� Note that �e is only legal within lexically enclosing Brackets�
Finally� Brackets in types such as �int� are read �Code of int�� To illustrate�
consider the following interactive session�

�� val rec exp � fn n �� fn x ��

if n�� then ��� else � �x 	 �
exp 
n��� x� ��

val exp � fn  int �� �int� �� �int�



�� val exponent � fn n ��

�fn a �� �
exp n �a����

val exponent � fn  int �� �int �� int�

�� val cube � exponent ��

val cube � �fn a �� a 	 
a 	 
a 	 ����  �int �� int�

�� val program � ��cube ��

val program � �
fn a �� a 	 
a 	 
a 	 ���� ��  �int�

�� run program�

val it � �  int

The function exp returns a code fragment representing an exponent� given an in�
teger power n and a code fragment representing a base x� The function exponent

is very similar� but takes only a power and returns a code fragment representing
a function that takes a base and returns the exponent� The code fragment cube
is the specialization of exponent to the power �� Next� we construct the code
fragment program which is an application of the code of cube to the base ��
Finally� the last declaration executes this code fragment�

Unfortunately� there is a problem with the above example� In particular� the
very last declaration is not typable with the basic type system of MetaML ����
Intuitively� the type system for MetaML must keep track of free variables in a
code fragment� so as to ensure that programs don�t get stuck� But there is no
way for the type system to know that program is closed� hence� a conservative
approximation is made� and the term is rejected by the type system�

Contribution and Organization of this Paper In previous work ���� we
reported on the implementation and applications of MetaML� and later ���
presented an axiomatic semantics and a type system for MetaML and proved
type�safety� However� there were still a number of drawbacks�

�� As discussed above� there is a typing problem with executing a separately�
declared code fragment�While this problem is addressed in the implementation
using a sound rule for top�level declarations� this solution is ad hoc�

�� Only a call�by�value semantics could be de�ned for MetaML� because substi�
tution was a partial function� only de�ned when variables are substituted with
values�


� The type judgment used two indices� Moreover� it has been criticized for not
being based on a standard logical system ��
�

This paper describes the type system and operational semantics of An Idealized
MetaML �AIM�� whose design is inspired by a categorical model for MetaML
�such a model will be the subject of another paper�� AIM is strictly more ex�
pressive than any known typed multi�level language� and features�



�� An open code type hti� which corresponds to�t of �� �
 and hti of MetaML�
�� A closed code type �t� which corresponds to �t of �� ���

� Cross�stage persistence of MetaML�
�� A Run�with construct� generalizing Run of MetaML�

This work is the �rst to achieve a semantically sound integration of Davies and
Pfenning�s �� �� and Davies� �� �
� and to identify useful interactions between
them� Moreover� we present important simpli�cations over MetaML ���� which
overcome the problems mentioned above�

�� The type system uses only one level annotation� like the ��type system �
�
�� The level Promotion and level Demotion lemmas� and the Substitution lemma�

are proven in full generality and not just for the cases restricted to values� This
development is crucial for a call�by�name semantics� Such a semantics seems
to play an important role in the formal theory of Normalization by Evaluation
�� and Type Directed Partial Evaluation ���


� The big�step semantics is de�ned in the style in which ��was de�ned �
� and
does not make explicit use of a stateful renaming function�

�� Terms have no explicit level annotations�

Finally� it is straight forward to extend AIM with new base types and constants�
therefore it provides a general setting for investigating staging combinators�

In the rest of the paper� we present the type system and establish several syn�
tactic properties� We give a big�step semantics of AIM� including a call�by�name
variant� and prove type�safety� We present embeddings of ��� MetaML and ��

into AIM� Finally� we discuss related works�

� AIM� An Idealized MetaML

The de�nition of AIM�s types t � T and terms e � E is parameterized with
respect to a signature consisting of a set of base types b and constants c�

t � T � � � b j t� � t� j hti j �t

e � E� � � c j x j e� e� j �x�e j hei j �e j run e with fxi � eiji � mg j

box e with fxi � eiji � mg j unbox e

Where m is a natural number� and it is identi�ed with the set of its predecessors�

The �rst four constructs are the standard ones in a call�by�value ��calculus with
constants� Bracket and Escape are the same as in MetaML ������� Run�With
generalizes Run of MetaML� in that allows the use of additional variables xi in
the body of e if they satisfy certain typing requirements that are made explicit
in the next section� Box�With and unbox are not in MetaML� but are motivated
by ��of Davies and Pfenning ��� We use some abbreviated forms�

run e for run e with �
box e for box e with �

run e with xi � ei for run e with fxi � eiji � mg
box e with xi � ei for box e with fxi � eiji � mg



� � c� tnc � � x� tn if � x � tm and m � n
�� x� tn� � e� tn�

� � �x�e� �t� � t��
n

� � e�� �t� � t��
n � � e�� t

n
�

� � e� e�� t
n
�

� � e� tn��

� � hei� htin
� � e� htin

� � �e� tn��

� � ei� �ti�
n

���� fxi� �ti�
nji �mg � e� htin

� � run e with xi � ei� t
n

� � ei� �ti�
n fxi� �ti�

�ji � mg � e� t�

� � box e with xi � ei� �t�
n

� � e� �t�n

� � unbox e� tn

Fig� �� Typing Rules

��� Type System

An AIM typing judgment has the form � � e� tn� where t � T � n � N and � is
a type assignment� that is� a �nite set fxi� t

ni
i ji � mg with the xi distinct� The

reading of � � e� tn is �term e has type t at level n in the type assignment ���
We say that � x � tn if x� tn is in � � Furthermore� we write ��r for the type
assignment obtained by incrementing the level annotations in � by r� that is�
��r x � tn�r if and only if � x � tn� Figure � gives the typing rules for AIM�
The Constant rule says that a constant c of type tc� which has to be given in the
signature� can be used at any level n� The Variable rule incorporates cross�stage
persistence� therefore if x is introduced at level m it can be used later� that
is� at level n � m� but not before� The Abstraction and Application rules are
standard� The Bracket and Escape rules establish an isomorphism between tn��

and htin� Typing Run in MetaML ��� introduces an extra index�annotation on
types for counting the number of Runs surrounding an expression �see Figure 
��
We avoid this extra annotation by incrementing the level of all variables in � �
In particular� the Run rule of MetaML becomes

��� � e� htin

� � run e� tn

The Box rule ensures that there are no �late� free variables in the term being
Boxed� This ensures that when a Boxed term is evaluated in a type�safe context�
the resulting value is a closed term� The Box rule ensures that only the variables
explicitly bound in the Box statement can occur free in the term e� At the same
time� it ensures that no �late� free variable can in�ltrate the body of a Box using
one of these variables� This is accomplished by forcing the With�bound variables
themselves to have a Boxed type� Note that in run e with xi � ei the term e may
contain other free variables besides the xi�



��� Properties of the Type System

The following level Promotion� level Demotion and Substitution lemmas are
needed for proving Type Preservation�

Lemma � �Promotion�� If ��� �� � e� tn then ��� �
��

� � e� tn���

Meaning that if we increment the level of a well�formed term e it remains well�
formed� Furthermore� we can simultaneously increment the level of an arbitrary
subset of the variables in the environment�

Demotion on e at n� written e�n� lowers the level of e from level n� � down to
level n� and is well�de�ned on all terms� unlike demotion for MetaML ����

De�nition � �Demotion�� e�n is de�ned by induction on e�

c�n�c

x�n�x

�e� e���n�e��n e��n

��x�e��n��x�e�n

hei�n�he�n��i

�e���run e

��e��n�����e�n�

�run e with xi � ei��n�run e�n with xi � ei �n

�box e with xi � ei��n�box e with xi � ei �n

�unbox e��n�unbox e�n

The key for making demotion total on all terms is handling the case for Escape
�e��� Escape is simply replaced by Run� It should also be noted that demotion
does not go into the body of Box�

Lemma � �Demotion�� If ��� � e� tn�� then � � e�n� tn�

Meaning that demotion of a well�formed term e is well�formed� provided the level
of all free variables is decremented�

Details of all proofs can be found in the Appendix�

Lemma � �Weakening�� If ��� �� � e�� tn� and x is fresh� then ��� x� tn
�

� � �� �
e�� t

n
� �

Lemma 	 �Substitution�� If �� � e�� t
n�

� and ��� x� t
n�

� � �� � e�� t
n
� then ��� �� �

e��x� � e�� t
n
� �

This is the expected substitution property� that is� a variable x can be replaced
by a term e�� provided e� meets the type requirements on x�
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�
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�
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�
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�
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�
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�
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Fig� �� Big�Step Semantics

� Big�Step Semantics

The big�step semantics for MetaML ��� re�ects the existing implementation� it
is complex� and hence not very suitable for formal reasoning� Figure � presents
a concise big�step semantics for AIM� which is presented at the same level of
abstraction as that for �� �
� We avoid the explicit use of a gensym or newname
for renaming bound variables� this is implicitly done by substitution�



De�nition � �Values��

v� � V � � � � �x�e j hv�i j box e

v� � V � � � � c j x j v� v� j �x�v� j hv�i j run v� with xi � v�i j
box e with xi � v�i j unbox v

�

vn�� � V n�� � � � c j x j vn�� vn�� j �x�vn�� j hvn��i j �vn�� j
run vn�� with xi � vn��i j box e with xi � vn��i j unbox vn��

Values have three important properties� First� a value at level � can be a Brack�
eted or a Boxed expression� re�ecting the fact that terms representing open and
closed code are both considered acceptable results from a computation� Second�
values at level n� � can contain Applications such as h��y�y� ��x�x�i� re�ecting
the fact that Brackets defer computations� Finally� there are no level � Escapes
in values� re�ecting the fact that having such an Escape in a term would mean
that evaluating the term has not yet been completed� This is true� for example�
in terms like h��f x�i�

Lemma 
 �Orthogonality�� If v � V � and � � v� �t� then � � v� �t��

Theorem � �Type Preservation�� If ��� � e� tn and e
n
�� v then v � V n

and ��� � v� tn�

Note that in AIM �unlike ordinary programming languages� we cannot restrict
the evaluation rules to closed terms� because at levels above � evaluation is
symbolic and can go inside the body of binders� On the other hand� evaluation
of a variable at level � is an error� The above theorem strikes the right balance�
namely it allows open terms provided their free variables are at level above �
�this is re�ected by the use of ��� in the typing judgment��

Having no level � escapes ensures that demotion is the identity on V n�� as shown
in following lemma� Thus� we don�t need to perform demotion in the evaluation
rule for Run when evaluating a well�formed term�

Lemma � �Value Demotion�� If v � V n�� then v�n	 v�

A good property for multi�level languages is the existence of a bijection between
programs � � e� t� and program representations � � hvi� hti�� This property holds
for AIM� in fact it is a consequence of the following result�

Proposition � �Re�ection�� If � � e� tn� then ��� � e� tn�� and e � V n���
Conversely� if v � V n�� and ��� � v� tn��� then � � v� tn�

��� CallbyName

The di�erence between the call�by�name semantics and the call�by�value seman�
tics for AIM is only in the evaluation rule for Application at level �� For call�by�
name� this rule becomes

e�
�
�� �x�e e�x� � e�

�
�� v

e� e�
�
�� v



The Type Preservation proof must be changed for this case� However� this not
problematic� since the Substitution Lemma for the AIM�s type system has no
value restriction�

Theorem � �CBN Type Preservation�� If ��� � e� tn and e
n
�� v then

v � V n and ��� � v� tn�

��� Expressiveness

MetaML�s type system has one Code type constructor� which tries to combine
the features of the Box and Circle type constructors of Davies and Pfenning�
However� this combination leads to the typing problem discussed in the intro�
duction� In contrast� AIM�s type system incorporates both Box and Circle type
constructors� thereby providing correct semantics for the following functions�

�� unbox � �t � t� This function executes closed code� AIM has no function of
type t � �t� thus we avoid the �collapse� of types in the recent work of
Wickline� Lee� and Pfenning ��
� Such a function does not exist in MetaML�

�� up � t� hti� This function corresponds to cross�stage persistence ���� in fact it
embeds any value into an open fragment� including values of functional type�
Such a function does not exist in ��� At the same time� AIM has no function
of type hti � t� re�ecting the fact that open code cannot be executed� up is
expressible as �x�hxi�


� weaken� �t � hti� The composite of the two functions above� weaken re�ects
the fact that closed code can always be viewed as open code� AIM has no
function of type hti � �t�

�� execute� �hti� t� This function executes closed code� and it can be de�ned in
AIM as �x�run x with x � x�

�� build� �hti� �hti This function forces the building of an open fragment known
to be closed� build is not expressible in the language� but it can be added as a
new combinator with the following semantics�

e
�
�� box e� e�

�
�� hvi

build e
�
�� box hvi

Type Preservation is still valid with such an extension�

Now� the MetaML example presented in the Introduction can be expressed in
AIM as follows�

�� val rec exp � box 
fn n �� fn x ��

if n�� then ��� else � �x 	 �

unbox exp� 
n��� x� ��

with �exp�exp��

val exp � �fn�  �int �� �int� �� �int��

�� val exponent � box 
fn n ��



�fn a �� �

unbox exp� n �a����

with �exp�exp��

val exponent � �fn�  �int �� �int �� int��

�� val cube � build 
box 

unbox exponent� ��

with �exponent�exponent���

val cube � ��fn a �� a 	 
a 	 
a 	 �����  ��int �� int��

�� val program � build 
box ��
unbox cube� ��

with �cube�cube��

val program � ��
fn a �� a 	 
a 	 
a 	 ���� ���  ��int��

�� execute program�

val it � �  int

In AIM� asserting that a code fragment is closed �using Box� has become part of
the responsibilities of the programmer� Furthermore� Build is needed to explicitly
overcome the default lazy behavior of Box� If Build was not used in the above
examples� the �Boxed code� values returned for cube and program would contain
level � Escapes� In general� it appears that the lazy behavior of Box is not needed
when our primary concern is high�level program generation�

Unfortunately� the syntax is verbose compared to that of MetaML� In future
work� we hope to improve the syntax based on experience using AIM�

� Embedding Results

This section shows that other languages for staging computations can be trans�
lated into AIM� and that the embedding respects the typing and evaluation� The
languages we consider are �� �
� MetaML ���� and �� ���

	�� Embedding of ��

The embedding of �� into AIM is straight forward� In essence� �� corresponds
to the Open fragment of AIM�

t � TOpen� � � b j t� � t� j hti

e � EOpen� � � c j x j e� e� j �x�e j hei j �e

The translation � �� between ��and AIM is as follows� ��t�� � h�t��i�
�next e�� � he�i� and �prev e�� � � �e��� With these identi�cations the
typing and evaluation rules for �� are those of AIM restricted to the relevant
fragment� The only exception is the typing rule for variables� which in �� is
simply � � x� tn if � x � tn �this re�ects the fact that �� has no cross�stage
persistence��

We write � �� e� t and e
n
��� v for the typing and evaluation judgments of ���

so that they are not confused with the corresponding judgments of AIM�



� � c� �tc� r�
n � � x� �t� r�n if � x � �t� p�m and m� r � n � p

�� x� �t�� r�
n � e� �t�� r�

n

� � �x�e� �t� � t�� r�
n

� � e�� �t� � t�� r�
n � � e�� �t�� r�

n

� � e� e�� �t�� r�
n

� � e� �t� r�n��

� � hei� �hti� r�n
� � e� �hti� r�n

� � �e� �t� r�n��
� � e� �hti� r � 
�n

� � run e� �t� r�n

Fig� �� MetaML Typing rules

Proposition � �Temporal Type Embedding�� If � �� e� tn is derivable in
��� then �� � e�� �t��n is derivable in AIM�

Proposition � �Temporal Semantics Embedding�� If e
n
��� v is derivable

in ��� then e�
n
�� v� is derivable in AIM�

	�� Embedding of MetaML

The di�erence between MetaML and AIM is in the type system� We show that
while AIM�s typing judgments are simpler� what is typable in MetaML remains
typable in AIM�

t � TMetaML� � � b j t� � t� j hti

e � EMetaML� � � c j x j e� e� j �x�e j hei j �e j run e

A MetaML�s typing judgment has the form � � e� �t� r�n� where t � T � n� r � N

and � is a type assignment� that is� a �nite set fxi� �ti� ri�ni ji � mg with the xi
distinct� Figure 
 recalls the MetaML ����

De�nition � �Acceptable Judgment�� We say that a MetaML typing judg�
ment fxi� �ti� ri�ni ji � mg � e� �t� r�n is acceptable if and only if 
i � m� ri � r�

Remark �� A careful analysis of MetaML�s typing rules shows that typing judg�
ments occurring in the derivation of a judgment � � e� �t� r�n are acceptable�
In MetaML typing rules are acceptable whenever its conclusion is acceptable�
simply because the index r never decreases when we go from the conclusion of
a type rule to its premise� thus� we never get an environment binding with an r

higher than that of the judgment�

Proposition 	 �MetaML Type Embedding�� If fxi� �ti� ri�ni ji � mg �
e� �t� r�n is acceptable� then it is derivable in MetaML if and only if fxi� t

ni�r�ri
i ji �

mg � e� tn is derivable in AIM�

	�� Embedding of ��

Figure � summarizes the language �� ��� We translate �� into the Closed



Syntax

Types t � T�� �� b j t� � t� j �t

Expressions e � E�� �� x j �x�e j e� e� j box e j let box x � e� in e�

Type assignments ���� �� fxi� tiji �mg

Type System

��� �� x� t if �x � t ��� �� x� t if �x � t

�� ��� x� t�� �� e� t

��� �� �x�e� t� � t

���x� t��� � �� e�� t �� � �� e���t
�

��� �� let box x � e� in e�� t

��� �� e�� t
� � t ��� �� e�� t

�

��� �� e� e�� t

�� 	 �� e� t

��� �� box e��t

Big�Step Semantics

e� ��� �x�e e� ��� v
�

e�x�� v
�� ��� v

e�� e� ��� v
�x�e ��� �x�e

e� ��� box e e��x�� e� ��� v

let box x � e� in e� ��� v
box e ��� box e

Fig� �� Description of ��

fragment of AIM�

t � TClosed� � � b j t� � t� j �t

e � EClosed� � � c j x j e� e� j �x�e j box e with xi � ei j unbox e

Furthermore� we consider only typing judgments of the form fxi� t�i ji � mg � e� t�

and evaluation judgments of the form e
�
�� v� These restrictions are possible for

two reasons� If the conclusion of a typing rule is of the form fxi� t�i ji � mg � e� t�

with types and terms in the Closed fragment� then also the premises of the typing
rule enjoy such properties� When e is a closed term in the Closed fragment� the

only judgments e�
n
�� v� that can occur in the derivation of e

�
�� v are such that

n � � and e� and v� are closed terms in the Closed fragment�

De�nition 	 �Modal Type Translation�� The translation of �� types is
given by

b� � b �t� � t��
� � t�� � t�� ��t�� � �t�



The translation of �� terms depends on a set X of variables� namely those
declared in the modal context ��

x�X � unbox x if x � X

x�X � x if x �� X

�box e��X � box e�X with fx � x j x � FV�e� Xg

�let box x � e� in e��X � ��x�e�X�fxg� e�X�

��x�e��X � �x�e�X

�e� e��
�X � e�X� e�X�

Proposition 
 �Modal Type Embedding�� If ��� �� e� t is derivable in
��� then ���� �� � e�X � t� is derivable in AIM	s Closed fragment� where X

is the set of variables declared in �� fxi� tiji � mg� is fxi� t�i ji � mg� and
�fxi� tiji � mg is fxi� �tiji � mg�

The translation of �� into the AIM�s Closed fragment does not preserve eval�
uation on the nose �that is� up to syntactic equality�� Therefore� we need to
consider an administrative reduction�

De�nition 
 �BoxReduction�� The �box reduction is given by the rewrite
rules

unbox �box e�� e

box e� with xi � ei� x � box e� xj � ej � box e��x� � box e with xi � ei� xj � ej

where e is a closed term of the Closed fragment�

Lemma � �Properties of BoxReduction��The�box reduction on the Closed
fragment satis�es the following properties�

� Subject Reduction� that is� � � e� t and e� e� imply � � e�� t
� Con
uence and Strong Normalization
� Compatibility with Evaluation on closed terms� that is� e� �� v� and e�

�
��box

e� imply that exists v� s�t� v�
�
��box v� and e� �� v��

Lemma � �Substitutivity�� Given a closed term e� � E� the following prop�
erties hold�

� e�X �y� � e���  	 �e�y� � e��
�X � provided y �� X

� e�X�fxg�x� � box e��� 
�
��box �e�x� � e��

�X

Proposition � �Modal Semantics Embedding�� If e � E� is closed and

e ��� v is derivable in ��� then there exists v� such that e��
�
�� v� and v�

�
��box

v���



� Related Work

Multi�stage programming techniques have been used in a wide variety of settings
���� including run�time specialization of C programs ����

Nielson and Nielson present a seminal detailed study into a two�level functional
programming language ��� This language was developed for studying code gen�
eration� Davies and Pfenning show that a generalization of this language to a
multi�level language called �� gives rise to a type system related to a modal logic�
and that this type system is equivalent to the binding�time analysis of Nielson
and Nielson ��� Intuitively� �� provides a natural framework where Scheme�s
back�quote and eval can be present in a language� The semantics of our Box and
Unbox correspond closely to those of back�quote and eval� respectively�

Gomard and Jones �	 use a statically�typed two�level language for partial evalu�
ation of the untyped ��calculus� This language is the basis for many binding�time
analyses�

Gl�uck and J�rgensen study partial evaluation in the generalized context where
inputs can arrive at an arbitrary number of times rather than just two �namely�
specialization�time and run�time� ��� and demonstrate that binding�time anal�
ysis in a multi�level setting can be done with e�ciency comparable to that of
two�level binding time analysis�

Davies extends the Curry�Howard isomorphism to a relation between temporal
logic and the type system for a multi�level language �
� Intuitively� �� provides
a good framework for formalizing the presence of back�quote and comma in a
statically typed language� The semantics of our Bracket and Escape correspond
closely to those of back�quote and comma� respectively�

Moggi �� advocates a categorical approach to two�level languages based on in�
dexed categories� and stresses formal analogies with a categorical account of
phase distinction and module languages�
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A Type preservation

Convention � �Notation for Proofs on Derivations�Whenever convenient�
proofs will be laid out in ��dimensions to re�ect that we are relating one deriva�

tion tree to another� Symbols such as R��
R

��� and R� will be used for �one� or
two�way� implications� where R is the list of rule�s� used to achieve this impli�
cation�

Proofs start from the left and proceed either up� down� or right� We go up or
down depending on the normal orientation of the particular rule that is being
used in an implication�

Horizontal implications are aligned with their precedents and antecedents�

Lemma � If ��� �� � e� tn then ��� ��
�� � e� tn���

Proof� By structural induction over the �rst derivation�

� Lambda abstraction�

��
��� ���� x� t�

n� � e� t�
n

��� �� � �x�e� t� � t�
n

IH
�� ��� ���

��� x� t�n� �� � e� t�
n��

��� ��
�� � �x�e� t� � t�

n�� ��

� Variables �I��

��

�� x � �t� n��
n� � n

��� �� � x� tn

��
�

��

�� x � �t� n��
n� � n � �

��� ��
�� � x� tn��

��

� Variables �II��

��

�� x � �t� n��
n� � n

��� �� � x� tn

�

��
�

��

��
��

x � �t� n� � ��
n� � � � n� �

��� ��
�� � x� tn��

��

The rest of the cases are completely structural�
� Applications�

��

��� �� � e�� t� � t�
n

��� �� � e�� t�n

��� �� � e� e�� t�n

IH
��
IH
��

��� ��
�� � e�� t� � t�

n��

��� ��
�� � e�� t�

n��

��� ��
�� � e� e�� t�n��

��

� Run�

��

��� �� � ei� �ti
n

���
� � ���

� � fxi� �ti
ng � e� htin

��� �� � run e with xi � ei� t
n

IH

��
IH
��

��� �
��

� � ei� �ti
n��

���
� � ��

��� fxi� �ti
n��g � e� htin��

��� ��
�� � run e with xi � ei� tn��

��



� Escape�

��
��� �� � e� htin

��� �� � �e� tn��

IH

�� ��� ��
�� � e� htin��

��� ��
�� � �e� tn��

��

� Bracket�

��
��� �� � e� tn��

��� �� � hei� hti
n

IH

�� ��� ��
�� � e� tn��

��� ��
�� � hei� htin��

��

� Box�
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��� �� � ei� �ti
n

fxi� �ti
�g � e� t�

��� �� � box e with xi � ei� �t
n

IH
��
��

��� �
��

� � ei� �ti
n��

fxi� �ti
�g � e� t�

��� ��
�� � box e with xi � ei� �t

n�� ��

� Unbox�

��
��� �� � e� �tn

��� �� � unbox e� tn

IH

�� ��� ��
�� � e� �tn��

��� ��
�� � unbox e� tn��

��

ut

Lemma � If ��� � e� tn�� then � � e�� tn�

Proof� By structural induction over the �rst derivation�

� Lambda abstraction�

��
���� x� t�n�� � e� t�n��

��� � �x�e� t� � t�
n��

IH
�� �� x� t�n � e�� t�n

� � �x�e�� t� � t�
n ����

� Variables�

��

��� x � �t� n� � ��
n� � � � n� �

��� � x� tn��

�

��
�

��

� x � �t� n��
n� � n

� � x�� tn
����

� Applications�
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��� � e�� t� � t�
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��� � e�� t�
n��

��� � e� e�� t�n��

IH

��
IH
��

� � e� �� t� � t�
n

� � e� �� t�
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� � e� e� �� t�n
����

� Run�
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��� � ei� �ti
n��

���� fxi� �ti
n��g � e� htin��

��� � run e with xi � ei� t
n��

IH

��
IH
��

� � e�n� �ti
n

���� fxi� �ti
ng � e�n� hti

n

� � �run e with xi � ei��n� tn
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� Escape �I�� Note that here �e�� run e�

��
��� � e� hti�

��� � �e� t�
�� ��� � e� hti�

� � �e�� t�
����

� Escape �II��

��
��� � e� htin��

��� � �e� tn��

IH
�� � � e�� htin

� � �e�� tn��
����

� Bracket�

��
��� � e� tn��

��� � hei� htin��
IH

�� � � e�� tn��

� � hei�� htin
����

� Box�
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��� � ei� �ti
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fxi� �ti
�g � e� t�

��� � box e with xi � ei� �t
n��

IH
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� � ei �n� �ti
n

fxi� �ti
�g � e� t�

� � �box e with xi � ei��n� �t
n ����

� Unbox�
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��� � e� �t

n��

��� � unbox e� tn��

IH
�� � � e�n� �t

n

� � �unbox e��n� tn
����

ut

Lemma 	 If �� � e�� tn
�

� and ��� x� t�n
�

� �� � e�� tn� then ��� �� � e��x� � e�� tn� �

Proof� By structural induction over the second derivation�

� Lambda abstraction� By Barendregt�s convention� y �� x�

��
��� x� t�n

�

� ��� y� t�
n � e� t�

n

��� x� t�
n� � �� � �y�e� t� � t�

n

IH
�� ��� ��� y� t�n � e�x� � e�� t�

n

��� �� � �y�e�x� � e�� t� � t�
n �����

� Variables �I�� If e� � x� we already know �� � e�� tn
�

� � By weakening we
have ��� �� � e�� tn

�

� � and by n � n� uses of the promotion lemma we have
��� �� � e�� tn� �

� Variables �II�� If e� � z �� x� we already know ��� x� t�
n� � �� � e�� tn� and

by weakening we have ��� �� � e�� t
n
� � The rest of the cases are completely

structural�
� Applications�
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��� x� t�
n� � �� � e�� t� � t�
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��� x� t�n
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� �� � e�� t�n
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��� �� � e��x� � e�� t�n

��� �� � e� e��x� � e�� t�
n �����



� Run� By applying promotion lemma to the premise �� � e�� tn
�

� � we get ���

� �

e�� t
n���
� � Now� we use these two judgement to apply induction hypothesis�
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��� x� t�n
�

� �� � e�i� �ti
n

���

� � x� t�n
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��� ���

� � fxi� �ti
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� Escape�
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n�� �����

� Bracket�
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n

IH
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� Box�
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��� x� t�
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fxi� �ti
�g � e� t�
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�

� �� � box e with xi � e�i� �t
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��� �� � e�i�x� � e�� �ti
n

fxi� �ti
ng � e� t�

��� �� � �box e with xi � e�i��x� � e�� �t
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� Unbox�
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��� x� t�n
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� �� � e� �tn

��� x� t�n
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� �� � unbox e� tn

IH
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��� �� � �unbox e��x� � e�� t
n �����
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Lemma 
 If v � V � and � � v� �t
�
then � � v� �t

�
�

Proof� Since v � V � and � � v� �t�� then v � box e for some e� By box rule� the
expression e must have type � � e� t�� Thus

� � e� t�

� � box e� �t
�

Proposition � If ��� � e� tn and e
n
�� v then v � V n and ��� � v� tn�

Proof� By structural induction over the derivation of
n
���

� Bottom� �
n��
�� � and � � V n�� and ��� � �� tn���

� Lambda�abstraction I� Interestingly� no induction is needed here� In particular�

�x�e
�
�� �x�e� By de�nition� �x�e � V �� and from the premise ��� � �x�e� t��



� Lambda�abstraction II� Straight forward induction�
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���� x� tn��� � e� tn��

��� � �x�e� t� � tn��
���

e
n��
�� e�

�x�e
n��
�� �x�e�

IH
�� e� � V n��

�x�e� � V n�� V �
���� x� tn��� � e�� tn��

��� � �x�e�� t� � tn��
��

� Variables I� n � � is vacuous� because we can only derive err

� Variables II� x
n��
�� x and x � V n�� and ��� � x� tn���

� Applications I� First� we use �twice� the induction hypothesis� which gives us
a result that we can use with the substitution lemma �����
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��� � e�� t� � t�

��� � e�� t��
��� � e� e�� t
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�� �x�e
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��� � �x�e� t� � t�
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��� � e��� t
�
�

��� � e�x� � e��� t
� ���

Note that we also use the judgment ���� x� t�� � e� t� when we apply the
substitution lemma�Then� based on this information about e�x� � e� we apply
the induction hypothesis for the third time to get e� � V � and ��� � e�� t��

� Applications II�
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� Run I� First� we apply the induction hypothesis once� then reconstruct the
type judgment of the result�
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By Orthogonality lemmaapplied to ��� � box e�i� �ti
�
� we get ��� � box e�i� �ti

�
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By Substitution lemmaapplied to ��� � box e�i� �ti
� and ���� fxi� �ti

�g � e� hti��
we get ��� � e�xi� � box e�i� hti

��

By IH applied to ��� � e�xi� � box e�i� hti
� and e�xi� � box e�i

�
�� he�i� we get

��� � he�i� hti��
By Bracket rule applied to ��� � he�i� hti�� we get ��� � e�� t��
By Demotion lemma applied to ��� � e�� t�� we get ��� � e�� t��



� Run II� For space reason� we assume R � run e with xi � e� and R� �
run e� with xi � e���
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� Box I� First� we apply the induction hypothesis once� then reconstruct the
type judgment of the result�
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By Orthogonality lemmaapplied to ��� � box e�i� �ti
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By Substitution lemma applied to fg � box e�i� �ti
� and fxi� �ti

�g � e� t�� we
get fg � e�xi� � box e�i� t

��
By Box rule applied to fg � e�xi� � box e�i� t

�� we get ��� � box e�xi� �
box e�i� t

��
� Box II� For space reason� we assume B � box e with xi � e� and B� �

box e with xi � e���

��

��� � ei� �ti
n��

fxi� �ti
�g � e� t�

��� � B� �tn��
���

ei
n��
�� e�i

B
n��
�� B�

IH

��
��

e�i � V n��

B� � V n�� V �

��� � e�i� �ti
n��

fxi� �ti
�g � e�� t�

��� � B�� tn��
��



� Unbox I�

��

��� � e� �t
�

��� � unbox e� t�
���

e
�
�� box e�

e�
�
�� e��

unbox e
�
�� e��

IH
��

box e� � V �
fg � e�� t�

��� � box e�� �t
� ��

By Weakening lemma applied to fg � e�� t�� we get �� � e�� t�� By IH applied

to ��� � e�� t� and e�
�
�� e��� we get ��� � e��� t��

� Unbox II�

��
��� � e� �tn��

��� � unbox e� tn��
���

e
n��
�� e�

unbox e
n��
�� unbox e�

IH

�� e� � V n��

unbox e� � V n�� V �
��� � e�� �tn��

��� � unbox e�� tn��
��

ut

Lemma 	 The judgment �
n

�o e� t� r is derivable if and only if the judgment
�	� ��r � e� tn is also derivable�

Remark � �Environment Restriction� Technically� we also assume � x � �t� n�� r��
imply r� � r� The restriction �� x � �t� n�� r�� implies r� � r� is implicit in the
original type system� In particular� r never decreases when we go from the con�
clusion of a type rule to it�s premise� thus� we never add a binding with an r

higher than that of the judgement�

Proof� By structural induction over the �rst and the second derivations �to
prove the implications in both directions�� The di�erent cases for each of the
two derivations are one�to�one� and so we combine corresponding pairs and do
the proof in both directions for each pair�

� Lambda abstraction�

�om
�� x� �t�� n� r�

n

�o e� t�� r

�
n

�o �x�e� t� � t�� r

IH��
�� �	� ��r � x� t�n�r�r � e� t�n

�	� ��r � �x�e� t� � t�
n ���m

� Variables�

�om

� x � �t� n�� r��
n� � r � n� r�

�
n

�o x� t� r

�

��
�
��

�	� ��r x � �t� n� � r� � r�
n� � r� � r � n

�	� ��r � x� tn
�m

� Applications�

�om

�
n

�o e�� t� � t�� r

�
n

�o e�� t�� r

�
n

�o e� e�� t�� r

IH
��
IH
��

�	� ��r � e�� t� � t�
n

�	� ��r � e�� t�n

�	� ��r � e� e�� t�n
�m



� Run�

�om
�

n

�o e� hti� r � �

�
n

�o run e� t� r

IH

�� �	� ��r�� � e� htin

�	� ��r � run e� tn
�m

� Escape�

�om
�

n

�o e� hti� r

�
n��

�o �e� t� r

IH
�� �	� ��r � e� htin

�	� ��r � �e� tn��
�m

� Bracket�

�om
�

n��

�o e� t� r

�
n

�o hei� hti� r

IH

�� �	� ��r � e� tn��

�	� ��r � hei� htin
�m

B Proofs of the Embedding of ��

B�� Strong Normalisation

The proof follows Harper� Honsell� and Plotkin � � We present a translation into
the simply�typed ��calculus� This translation essentially ignores all details of the
original expression� except for the cases when there is a Box�redex� in which case
the translation produces a term with a 
�redex� We translate raw terms of the
closed fragment into terms of the simply typed ��calculus with one base type o
and additional constants

app � o� �o� o�
abs � �o� o�� o

The mapping for types is simply� t� � o� The mapping for terms is

x� � x

�e� e��� � app e�� e
�
�

��x�e�� � abs ��x� o�e��
�unbox e�� � ��x� o�x� e�

�box e�� � e�

�box e with xi � ei�� � ��x�� o� � � ���xn� o�e�� e�n � � � � e
�
�

Next� we show that e� �box e� implies e�� �beta e
�
��

First� we make sure that the terms produced by the translation are indeed in
the simply typed ��calculus� in particular� that they are well�typed�

Lemma � �Star WellTypedness�� If e � EClosed and FV�e� � fxig� then
fxi� og � e�� o�

Proof� By induction over the typing derivation� ut



Then� we prove the following distributivity property that will be needed to prove
strong normalization�

Lemma �� �Star Substitution�� e��x� � e�
�
 	 �e�x� � e����

Proof� By induction on the structure of e� One issue arising in this proof is the
need for substitution to propagate into the body of Box expressions� which is
not needed when we are dealing only with well�typed terms� ut

Lemma �� �Lockstep�� If e� �box e� then e�� �� e���

Proof� By induction on the derivation of �box� Most cases are treated by an
application of the induction hypothesis� with the exception of the two cases
when a Box reduction takes place explicitly� The interesting case is when

e� 	 box e� with xi � ei� x � box e� xj � ej

and then

e� 	 box e��x� � box e with xi � ei� xj � ej

we proceed as follows�

e��
� ��xjn � o� � � ���x� o� � � � ��xi� � o�e

��� e�i� � � � � �box e�
� � � � � e�jn

�� ��xjn � o� � � � � � � ��xi� � o�e
���x� � �box e��� e�i� �x� � �box e�� � � � � � � � e�jn

By Barendregt�s convention for variable names x �� FV�ei�
� ��xjn � o� � � � � � � ��xi� � o�e

���x� � �box e��� e�i� � � � � � � � e
�
jn

By Star Distribution lemma
� ��xjn � o� � � � � � � ��xi� � o��e

��x� � box e��� e�i� � � � � � � � e
�
jn

� box e��x� � box e with xi � ei� xj � ej

ut

Finally� we can prove our main lemma

Lemma �� �Strong Normalization�� �box is strongly normalizing�

Proof� From Lockstep� and because the simply�typed ��calculus is strongly nor�
malizing� it follows that Box�reduction is likewise� ut

B�� Con�uence

Lemma ��� The �box relation is sub�commutative�

Proof� The only critical pair is the second rule with it self� It easy to check it is
convergent and close in one step�

Corollary �� The �box relation is con
uent�

Proof� Direct consequence of the previous lemma�



B�� Compatibility w�r�t the semantics of AIM box fragment

We use the notion of parallel reduction to deal with duplication of redices caused
by substitution� Roughly speaking� parallel reduction is de�ned by the simulta�
neous reduction of a set of redices in a term�

De�nition � �Parallel Reduction�� q�box is formally de�ned as follows�

e q�box e
�

unbox box e q�box e
�

a q�box a
� b q�box b

� ci q�box c
�
i

box a with xi � ci� x � box b q�box box a��x� � box b� with xi � c�i

and the usual distribution rules for all constructs including the unbox and box

constructs� Constants and variables are axioms�

Lemma �	 �Parallel Reduction and Substitution�� If a q�box a� and b q

�box b
� then a�x� � b q�box a

��x� � b��

Proof� Induction on the structure of a�

Lemma �
 �Soundness of�box�� If e� q�box e� and e�
�
�� v� then there exists

v� such that e�
�
�� v� and v� q�box v��

Proof� Induction on the lexicographic composition of the derivation of e�
�
�� v�

and the derivation of e� q�box e��

If one of the redices of e� is at the root then two cases are possible�

�� If e� � unbox box e then e� q�box e and e q�box e��

By applying IH to e�
�
�� v� and e q�box e�� we derive e

�
�� v� and v� q�box v��

Thus� we have

box e
�
�� box e e

�
�� v�

unbox box e
�
�� v�

�� If e� � box a with xi � ci� x � box b then e� � box a��x� � box b� with xi � c�i�
where a q�box a

�� b q�box b
��and ci q�box c

�
i� By the semantics of box � we know

that�

c�i
�
�� v�i

box a��x� � box b� with xi � c�i
�
�� box a��x� � box b��xi� � v�i

By applying the IH to c�i
�
�� v�i and ci q�box c

�
i� we derive ci

�
�� vi and vi q�box

v�i� Thus



box b
�
�� box b ci

�
�� vi

box a with xi � ci� x � box b
�
�� box a�x� � box b�xi� � vi

and by lemma ��� we drive box a�x� � box b�xi� � vi q�box box a��x� �
box b��xi� � v�i since a q�box a

�� b q�box b
�� and vi q�box v

�
i�

If all redices are subterms of e��

� If e� � �x�e and e� � �x�e� such that e q�box e�� It is easy the check that
v� � �x�e and v� � �x�e�� hence� v� q�box v��

� If e� � a b and e� � a� b� such that a q�box a
� and b q�box b

�� we know that

a�
�
�� �x�e� b�

�
�� v� e��x� � v�

�
�� v�

a� b�
�
�� v�

By applying IH to a�
�
�� �x�e� and a� q�box a and then to b�

�
�� v� and b q�box b

��

we derive a
�
�� �x�e and �x�e q�box �x�e

�� and b
�
�� v and v q�box v

��
By lemma ��� e�x� � v q�box e��x� � v�� Thus� we can apply the induc�

tion hypothesis to e��x� � v�
�
�� v� and e�x� � v q�box e��x� � v� to derive

e�x� � v
�
�� v� and v�

�
��box v�� Hence�

a
�
�� �x�e b

�
�� v e�x� � v�

�
�� v�

a b
�
�� v�

� If e� � box a with xi � bi and e� � box a� with xi � b�i such that a q�box a�

and bi q�box b
�
i� We know that�

b�i
�
�� v�i

e�
�
�� box a��xi� � v�i

Notice that v� � box a��xi� � v�i� By applying IH to b�i
�
�� v�i and bi q�box b

�
i� we

derive bi
�
�� vi and vi q�box v

�
i� By Lemma ��� we have a�xi� � vi q�box a

��xi� �
v�i since a q�box a

� and vi q�box v
�
i� Thus� box a�xi� � vi q�box box a��xi� � v�i

and

bi
�
�� vi

box a with xi � bi
�
�� box a�xi� � vi

� e� � unbox e and e� � unbox e� such that e q�box e
�� we have

e�
�
�� box a� a�

�
�� v�

unbox e�
�
�� v�



by applying IH to e�
�
�� box a� and e q�box e

�� we derive e
�
�� box a and box a q

�box box a�� Hence� a q�box a
�� Thus IH applies to a�

�
�� v� and a q�box a

�� to

derive a
�
�� v� and v� q�box v�� We conclude by

e
�
�� box a a

�
�� v�

unbox e
�
�� v�

Corollary �� If e� �box e� and e�
�
�� v� then there exists v� such that e�

�
�� v�

and v�
�
��box v��

Proof� Use the precedent lemma� and the facts that�box�q�box for the hypoth�
esis and q�box �

�
�� for the conclusion of this corollary�

B�	 Substitutivity

Lemma �� �Weakening�� If FV�e�  S � � then e�T � e�T�S �

Proof� By induction on the structure of e� Box case requires some simple set
logic� ut

Lemma � Given a closed term e� � E� the following properties hold�

� e�X �y� � e���  	 �e�y� � e���X � provided y �� X

� e�X�fxg�x� � box e��� 
�
��box �e�x� � e���X

Proof� By induction over the structure of e� for both properties� The interesting
case!in both proofs!is Box� which requires explicit reasoning about sets of free
variables� Some Variable sub�cases require Weakening �Lemma �	�� ut

B�
 Main Result� Embedding of ��

Proposition � If e � E� is closed and e ��� v is derivable in ��� then there

exists v� such that e��
�
�� v� and v�

�
��box v

���

Proof� Induction on the derivation of e ��� v�

� If e � x� vacuous
� If e � box e� then we have� box e� ��� box e� and box e�� � box e��� hence

box e��
�
�� box e��

� If e � e� e�� we have
e� ��� �x�e� ���
e� ��� v� ���
e��x� � v� ��� v �
�

e� e� ��� v



By applying respectively �IH� to ���� ��� and �
�� we derive e���
�
�� �x�e���

e���
�
�� v��� and e��x� � v���

�
�� v� such that �x�e��

�
��box ��x�e����� v��

�
��box

�v����� and v�
�
��box v

���
By lemma�� we have e��x� � v��� � �e�����x� � �e����� Since e��

�
��box �e����

and v��
�
��box �v����� we have e���x� � v��

�
��box �e�����x� � �e�����

Hence� we apply the compatibility lemma to derive� e���x� � v��
�
�� v�� and

v��
�
��box v�

Thus� v��
�
��box v

�� and

e���
�
�� �x�e�� e���

�
�� v�� e���x� � e��

�
�� v��

�e� e����
�
�� v��

� If e � let box x � e� in e�� we have

e� ��� box e� ���
e��x� � e� ��� v� ���

let box x � e� in e� ��� v

By applying respectively �IH to ��� and ���� we derive� e��
�

�
�� v� and e��x� � e���

�
��

v such that v�
�
��box box e��� and v�

�
��box v

���
Since v� � V � rewrite to box e��� then v� 	 box e��
By hypothesis and typing rule we know fx�� t�g� � �� e�� t� Hence� we can
apply property � of Lemma �� we have�

e
�fxg
� �x� � box e�

�
��box e

�fxg
� �x� � box e��� 

�
��box e��x� � e�

��

By compatibility of�box� we have� e
�fxg
� �x� � box e��� 

�
�� v�� and v��

�
��box v

��
thus� v��

�
��box v and

e���
�
�� box e�

e
�fxg
� �x� � box e�

�
�� v��

let box x � e� in e���
�
�� v��


