
A Categorical Analysis of Multi�Level Languages �Extended Abstract�

Zine El�Abidine Benaissa���� Eugenio Moggi���� Walid Taha���� Tim Sheard���
��� Oregon Graduate Inst�� Portland� OR� USA ��� DISI� Univ� di Genova� Genova� Italy

E�Moggi� DISI� Univ� di Genova� v� Dodecaneso 	
� ����� Genova� Italy
tel �	������	
	 ����� fax �	������	
	 ����� e�mail moggi�disi�unige�it

Abstract� We propose categorical models for ���
��� MetaML� and AIM� First� we focus on the under�
lying logical modalities and the interactions between
them� then we investigate the interactions between log�
ical modalities and computational monads� We give
two examples of categorical model� one simpler but
with some limitations� the other more complex but
able to model all features of AIM�

Keywords� categorical models� semantics� type sys�
tems �multi�level typed calculi�� combination of logics
�modal and temporal��

� Introduction

This paper proposes a categorical semantics for multi�
level languages like ��� ��� MetaML and AIM �see �	�

� ��� ���� Developing such a semantics has a number
of bene�ts� including�

� Suggesting simpli�cations and extensions� We have
already simpli�ed the type system of MetaML and
proposed an extension with closed code types called
AIM �see �����

� Validating equational reasoning principles� In this
paper we have not established any computational
adequacy results� and therefore we cannot formally
claim that equality in a model entails observational
equivalence �where code inspection is not among the
allowed observations�� However� we expect such re�
sults to hold� and their proof should exploit Kripke
logical relations �see �����

� Explaining multi�level languages in terms of more
primitive concepts� namely logical modalities �in the
sense that the modalities are characterized by uni�
versal properties� and computational monads�

Multi�level languages provide generic constructs for the
manipulation of code fragments� They can be viewed

as instances of two�level languages� in which the object
language is the multi�level language itself� We study
four multi�level languages�

� �� �
� proving constructs for the construction and
the execution of closed code� Such a language is
useful in machine�code generation�

� �� �	� providing constructs for manipulating open
code fragments� Such a language is useful in high�
level program generation and inlining�

� MetaML ���� ��� providing an additional construct
for the execution of such fragments� and cross�stage
persistence� Cross�stage persistence is the ability to
use at one level a variable declared at a lower level�
Both features are important for pragmatic reasons�

� AIM ���� revising and extending MetaML with a
closed code type for expressivity and modularity�

�� and �� already have clean� logical foundations �see
�	�
� �� ��� there is a Curry�Howard isomorphism
between �� and linear time temporal logic� and be�
tween �� and modal logic S	� MetaML had no such
foundations� nor the formal hygiene they often pro�
mote� Indeed� MetaML had a complex type system
and a number of ad hoc restrictions �see ����� which
demanded deeper investigation and possibly simpli��
cation� Starting from the categorical account of two�
level languages ��� we arrive at a number of results for
multi�level languages�

� We analyze� from a categorical point of view� the
logical modalities and how they interact� Borrow�
ing ideas from the work by Benton and others on
categorical models for linear logic �and more specif�
ically the adjoint calculus��� we give a de�nition of
what constitutes a categorical model for simply typed
multi�level languages� namely ��� ��� and AIM�
and consider some examples�

�We replace the notion of symmetric monoidal adjunction

with FP�adjunction�

�

� We give the interpretation �denotational semantics�
of AIM without cross�stage persistence nor compu�
tational e�ects in an AIM�model�

� We investigate the interaction between modalities
and computational monads� since computational ef�
fects are a pervasive feature of programming lan�
guages� In particular� we re�ne the interpretation of
AIM in the presence of computational e�ects� and
discuss the subtleties involved in the interpretation
of the run�with construct�

Notation ���We introduce notation and terminology
used throughout the paper�

� If C is a category� we write jCj for the set of objects�
C�A�B� for the hom�set of maps from A to B�

� We write GF for G �F and GFA for G�FA�� when
F and G are functors�functions and A an object�

� We write arrow �
� for a full and faithful functor�

and F a G for an adjunction� where F is the left�
adjoint and G the right�adjoint�

� We write �xnjn � N � for an in�nite sequence� and
�xiji � m� for a �nite sequence of length m �we
identify the natural number m with the set of its
predecessors�� Sometimes we write xi for �xiji � m�
when m is clear from the context� If s is a sequence
and x an element� we write x� � s for the sequence
obtained by adding x in front of s�

� We write n� for n� � and n� for n� ��

� We use Haskell�s notation dofxi � ei� eg and ret e

for monads� instead of the notation let xi � ei in e

and �e from ��� If op�
Q
i
Ai � MB� we write

op�
Q
iMAi � MB for its monadic extension�

i�e� op�ui�
�
� dofxi � ui� op�xi�g�

� Multi�Level Languages

We begin by describing the syntax and type systems
of the four multi�level languages investigated in this
paper� i�e� ��� ��� MetaML and AIM� We adopt the
following uni�ed notation for types�

� � T � � � b j t� � t� j hti j �t

i�e� base types� functions� open code fragments� and
closed code fragments�

�� of �
 features function and closed code types�
Typing judgments have the form ��� � e� t� where
��� 	 fxi� tiji � mg� The syntax for �� is as follows�

e � E� � � c j x j �x�e j e�e� j box e j let box x � e� in e�

The type system of �� is given in Figure ��

��� MetaML and AIM feature function and open code
types� Typing judgments have the form � � e� tn�
where � 	 fxi� t

ni
i ji � mg and n is a natural called the

level of the term� The syntax for �� is as follows�

e � E� � � c j x j �x�e j e�e� j hei j �e

The �rst four constructs are the standard ones in
a ��calculus with constants� Bracket and Escape
�called Next and Prev in �	� allow the construction
and combination of open code� Brackets construct
code� and Escapes splice a code fragment into the con�
text a bigger code fragment� A term such as �fn x

�� ���x��x��� ��� yields ������� when executed�
The rules for constants� variables� and applications are
essentially standard�

MetaML ���� �� uses a more relaxed type rule for vari�
ables than ��� in that variables can be bound at a
level lower than the level where they are used� This is
called cross�stage persistence� Furthermore� MetaML
extends the syntax of �� with

e � E� � � � � � j run e

Run allows the execution of a code fragment� For ex�
ample� run �	
�� is well�typed and evaluates to ��

AIM ��� extends MetaML with an analog of the Box
type of �� yielding a more expressive language� and
yet has a simpler type judgment than MetaML�� The
syntax of AIM extends that of MetaML as follows�

e � E� � � � � � j run e with fxi � eiji � mg j
box e with fxi � eiji � mg j unbox e

Run�With generalizes Run of MetaML� in that it al�
lows the use of additional variables xi in the body of
e if they satisfy certain typing requirements�

The type systems of ��� MetaML and AIM are given
in Figure �� � and 	� while the big�step operational
semantics of AIM and its sub�languages is in Figure
�

Now that the basic multi�level constructs have been
introduced� we illustrate the need for both open and
closed code types in staged programming�

�The presentation of MetaML in this paper uses the simpler

type judgment of AIM� for reasons of space�

Uses of open code� Taylor Series� Consider gen�
erating code for an embedded system �e�g� the con�
troller of a robot� that requires computing the sin

function using Taylor series polynomial around ��

nX
k��

��k x�k��

��k � ���
� x�

x�

��
�
x�

�
���

First we write a function to add the �rst n coe�cients�

val sinN int �� real �� real

If we determine n at the time of generating our pro�
gram� Brackets and Escapes can be used to derive a
similar function that manipulates �representations of
x instead of the value of x itself� and where the result
is a representation of the desired polynomial�

val sinN int �� �real� �� �real�

To construct the de�nition of the desired code frag�
ment� we need the following construction�

fun sinN� n � �fn x �� ��sinN n �x����

 int �� �real �� real�

which allows us to derive the expansion for any n�

val sinN	 � sinN� 	�

� ��fn a ��

let val b � a � a� val c � b � a�

val d � b � c� val e � b � d

in a����
 c�����

 d������
 e��������

end�� �real �� real�

where b is bound to x�� c to x�� d to x�� and so on�
In this code� the factorial expressions have been pre�
computed� and fairly e�cient code was generated to
perform this computation� Thus� the construction of
the desired expression is performed symbolically� once
and for all� before we know the value of x�

To achieve this kind of �unfolding ��symbolic compu�
tation � or �reduction under lambda �� it is necessary
to apply sinN to the open code fragment �x�� where
x has not yet been bound� and is therefore still a free
variable� Such unfolding cannot be achieved in ���

To execute sinN	 we use the Run construct�

val sin � �run sinN	� real �� real

Caveat� Typing Run Unfortunately� typing the
above use of Run is problematic� In fact� typing the
use of Run on a code fragment constructed in a pre�
vious declaration is problematic� even in the trivial
example

val one � let val a � ��� in run a end

because� using the standard interpretation for let� it is
the same as typing�

val one � �fn a �� run a� ���

But �fn a �� run a� ��a� �� �a is not derivable
in MetaML�s type system� and for good reason� An
open code fragment� in general� cannot be executed�
One solution is to use �for type checking purposes
only� an interpretation of the let�statement using di�
rect substitution� This would make the �rst declara�
tion for one typable� but impairs the e�ciency of type�
checking� In the existing implementation of MetaML�
ad hoc solutions were used to overcome this problem
for top�level declarations �See �����

Solution� Closed Code AIM�s type system ad�
dresses the cause of the typing problem described
above� to ensure that a code fragment can be executed�
we ensure that it is closed� This is achieved by adding
the Box type to MetaML� From the programmer�s
viewpoint the main new concept is that all code frag�
ments and functions used in the construction of a new
closed fragment� must be Boxed to ensure that they
do not have free variables� In the trivial example of
let�binding� we simply rewrite our expression as�

val one � let val a � box ���

in run �unbox b� with �b�a� end

In our example� the basic function must have the type�

val sinM �int �� �real� �� �real��

This is easily accomplished by surrounding the de�ni�
tions of the symbolic sinN by box ������ Now� we can
describe the desired computation using the following
well�typed AIM terms�

val sinM� � box fn n �� �fn x �� ��s n �x���

with �s�sinM���

 �int �� �real �� real��

val sin � run �unbox s� 	 with �s�sinM��

 real �� real

� Categorical Models

In this section we de�ne what is a categorical model for
various multi�level languages� namely ��� �� andAIM
�see De�nition ���� ��� and ������ At �rst we ignore
computational e�ects� and focus on the logical modal�
ities underpinning these languages� Previous work by

Davies and Pfenning has already established a corre�
spondence between closed code types and the necessity
modality of S	� and between open code types and the
next modality of linear time temporal logic� We show
that these modalities can be described in terms of FP�
adjunctions� and explain how they should interact to
provide a model for AIM�

De�nition ��� D

G �

�
F

C is an FP�adjunction

i� it is an adjunction in the ��category of categories
with �nite products and functors preserving them �or
equivalently it is an adjunction where the left adjoint
F preserves �nite products�	

Remark ��� We use the FP� pre�x to indicate any
��categorical notion �e�g� category� functor� monad�
adjunction� specialized to the ��category introduced
above�

An FP�adjunction is a special case of a symmetric
monoidal adjunction� which has been used to give an
elegant de�nition of what is a categorical model for
intuitionistic linear logic �see ��� �� ���

We recall some properties of FP�adjunctions �and FP�
functors�� which will be exploited in the sequel�

Proposition ��� If C is a CCC and D
�

�

�
F

C

is an FP�adjunction� then D is an exponential ideal of
C� i	e	 Y X � D �up to iso� for any Y � D and X � C	

De�nition ��� An FP�functor F � C � D induces the
following simple C�indexed FP�category S� Cop � Cat

� jSX j
�
� jDj and SX�A�B�

�
� D�FX �A�B�	

� h�Xg
�
� h�h��� gi � SX �A�C�� where g � SX�A�B��

h � SX �B�C� and ��� �FX� � A � FX is the �rst
projection	 While the identity for A in SX is the
second projection ���FX � A� A	

� substitution f��SX � SY along f � C�Y�X� is given

by f��A�
�
� A and f��g�

�
� g � �Ff � id�	

S is called simple because the action on objects of the
substitution functor f� is the identity�

Proposition ��	 The simple indexed category S of
De�nition
	� has the following categorical structure�

� �nite products� i	e	
Y
i�m

SX�A�Bi� �� SX �A�
Y
i�m

Bi�

� simple existential quanti�cation YA
�
� FY �A� i	e	

SX�Y �A�B� �� SX �YA�B�

� exponentials� i	e	 SX �C �A�B� �� SX �C�BA�� pro�
vided D is CCC

� simple universal quanti�cation �YA
�
� AFY � i	e	

SX�Y �A�B� �� SX �A� �YB�� provided D is CCC

� simple comprehension� i	e	 SX��� A� �� C�X�GA��
provided F a G is an FP�adjunction	

De�nition ��
 A ���model is given by a CCC D and

an FP�adjunction D

G �

�
F

C	

Remark ��� The pattern for interpreting �� is to
interpret a type t by an object ��t of D� namely

���t � FG��t and ��t� � t� � ��t�
		t�

and a term fxi� tiji � mg� fxj� tjjj � ng �� e� t is by a

map in SX �
Q
j�n��tj� ��t� where X

�
� �
Q
i�m G��ti��

The FP�adjunction induces an FP�comonad B � FG

on D� B is all that is needed for interpreting ��� In
fact� the objects of C relevant for the interpretation
have the form GA� and so we could take C to be the
co�Kleisli category DB for B� which is always a CCC
�however in a ���model C is not required to be a CCC��

The separation of typing contexts in two parts is not
essential� In fact� there is a bijection �modulo semantic
equality� between terms of the form �� x� t� � �� e�� t�

and those of the form ��x� �t�� �� e�� t� given by

e� �� let box x � x in e� e� �� e��x� � box x

By analogy with the adjoint calculus� one may consider
a variant of �� in which the category C and context
separation have a more prominent role�

De�nition ��� A ���model is given by a CCC D and

an FP�adjunction D
�

N �

�
P

D	

Remark �� The pattern for interpreting �� is to
interpret a type t by an object ��t of D� namely

��hti � N��t and ��t� � t� � ��t�
		t�

and a term fxi� t
ni
i ji � mg �� e� tn by a map in

D�
Y
i�m

Nni ��ti�N
n��t��

The assumption �N is full and faithful ensures that
N preserves the whole CCC structure �see Proposi�
tion ����� therefore one may safely confuse Nn��t� � t�
with �Nn��t��N

n		t�

 �formalizing Section � of �����

In AIM closed and open code types coexists� and so
the key point is to clarify how the modalities of �� and
�� interact� The basic idea is that a model for AIM
is a ���model where the category D has the structure
of a ���model parameterized w�r�t� C� The precise
formulation uses the simple indexed category of De��
nition ��	�

De�nition ���� An AIM�model is given by a CCC

D� an FP�adjunction D

G �

�
F

C� and a C�indexed

FP�adjunction S
�

N �

�
P

S	

Remark ���� The above de�nition of an AIM�model
fails to capture cross�stage persistence� This can
be easily �xed by requiring a natural transformation
up�A � NA �satisfying some additional properties��
but we prefer not to include up in the de�nition of an
AIM�model �we will see also models without up��

The pattern for interpreting AIM mimics that for ���
i�e� a type t is interpreted by an object ��t ofD� namely

���t � FG��t � ��hti � N��t and ��t� � t� � ��t�
		t�

and a term fxi� t
ni
i ji � mg � e� tn by a map in

D�
Y
i�m

Nni ��ti�N
n��t��

Proposition ���� In any AIM�model there are two
canonical isomorphisms compile�GNA � GA and
down�PFX � FX	

Remark ���� These isomorphisms suggest an exten�
sion of AIM with up � �t � h�ti� i�e� cross�stage per�
sistence for close code types� and compile� �hti� �t�

��� Examples

We give examples of AIM�models parameterized w�r�t�
the category C� making explicit what additional struc�
ture or properties are needed� For each example we
de�ne the category D� the action on objects of the
functors N� P� F and G�

Example ���� Let N be the set of naturals� Given a
CCC C with N �indexed products� take

� D
�
� CN � hence an object A � jDj is a sequence

�An � jCjjn � N � and a map f � D�A�B� is a
sequence �fn � C�An� Bn�jn � N ��

� NA
�
� �� �A� where � is the terminal object of C�

while PA
�
� �An�jn � N ��

� FX
�
� �Xjn � N �� i�e� the sequence which is con�

stantly X� while GA
�
�
Y
n�N

An�

Example ���	 does not support cross�stage persistence�
Therefore� it is suitable for interpreting ��� but not
MetaML or AIM �as de�ned in ���� ����

Example ���	 Let �op be the category of natural
numbers with the reverse order� i�e�

� � � � � � n � n� � � �

Given a CCC C with �nite and �op�limits� take

� D
�
� C�

op

� hence a map f � D�A�B� amounts to a
commuting diagram

A�
� a�

A� � � � An �
an

An� � � �

� � � � � �

B�

f�

�
�

b�
B�

f�

�
� � � Bn

fn

�
�

bn
Bn�

fn�

�
� � �

while an object of D is a sequence of maps in C�

� NA
�
��A� � �A� where �A� is the map � � A� in C�

while PA
�
� �an�jn � N ��

� FX
�
� �id�X � Xjn � N �� i�e� the sequence which

is constantly idX � while GA
�
� lim

n��op
An�

In this model we can de�ne the natural transformation
up�A� NA modeling cross�stage persistence� namely

up�
�
���A� � � and upn�

�
� an�An� � An�

Note that exponentials in D are not de�ned pointwise�
However� existence of exponentials and �nite limits in
C ensures that D has exponentials �and �nite limits��

� Interpretation of terms

We have already given the interpretation of types for
AIM without computational e�ects or cross�stage per�
sistence in an AIM�model� namely

���t � B��t � ��hti � N��t and ��t� � t� � ��t�
		t�

This section gives the corresponding interpretation of
terms� Before doing that� we introduce some auxil�
iary morphisms� which simplify the de�nition of the
interpretation� and clarify the similarities with the in�
terpretation of the ��calculus in a CCC�

� cn� � � NnA where c� � � A is a global element of
A �e�g� the interpretation of a constant�� Since N

preserve �nite products� we de�ne cn
�
� Nnc�

� �n� �NnB�N
nA � NnBA� Since N preserves the CCC

structure� �n is the iso �NnB�N
nA � NnBA�

� !n�NnBA � NnA � NnB� !n is essentially an in�
stance of evaluation eval� �NnB�N

nA�NnA� NnB�

� unboxn�NnBA � NnA� Since B is a comonad with
co�unit ��BA � A and co�multiplication ��BA �

B�A� then unboxn
�
� Nn��

� boxn�f��
Q
i N

nBAi � NnBB when f �
Q
i BAi � B�

Since all functors preserve �nite products� it su�ces

to say that boxn�f�
�
� Nn��Bf�� ���NnBA� NnBB

when f �BA� B and A
�
�
Q
i
Ai�

� runn�f��C �
Q
iN

nBAi � NnB when f �NC �Q
i N

nBAi � Nn�B� As in case of boxn�f� it
su�ces to give runn�f��C � NnBA � NnB when

f �NC � NnBA� Nn�B and A
�
�
Q
iAi�

By the canonical iso down �see Proposition ����� we
have C � NnBA �� C � NnPBA� We have an FP�

monad In
�
� NnPn on D with unit 	In�A � InA

induced by the FP�adjunction Pn a Nn� Moreover�
we have an iso PNA � A given by the co�unit of
the adjunction P a N� since N is full and faithful�
Therefore� modulo some canonical isos runn�f� is

C � NnPBA
	In� InC � NnPBA

InPf� NnB

Figure � de�nes the interpretation of a well�formed
term � � e� tn by induction on the typing derivation
in the type system of Figure 	�

� Modalities and monads

We have given a simpli�ed interpretation of AIM �and
other multi�level languages� in the absence of compu�
tational e�ects� This interpretation is the analogue of
the interpretation of the simply typed ��calculus in a
CCC� However� we are interested in multi�level pro�
gramming languages� like Mini�ML� Mini�ML�� and

MetaML �see �
� 	� ���� where logical modalities co�
exist with computational e�ects� In this section we
de�ne a CBV monadic interpretation of AIM in an
AIM�model equipped with a strong monad �see ����

De�nition 	�� A monadic AIM�model is a AIM�
model with a strong monad M over D s	t	 the canoni�
cal morphism MNBA � �MNB�NA is an iso� and we
call ��� �MNB�NA �MNBA its inverse	

The idea is thatM models computation at level �� We
extend the AIM�models of Examples ���	 and ���
 to
monadic AIM�models�

Example 	�� A strong monad M over C induces a

strong monad M over CN given by �MA��
�
� MA�

and �MA�n�
�
� An�� It is immediate to check that

the additional requirement is always satis�ed� since
exponentiation in CN is pointwise�

Example 	�� A strong monad M over C induces a
strong monad M over C�

op

� namely MA is given by

MA�
�Ma�

MA� � � � MAn �
Man

MAn� � � �

The additional requirement holds� provided the monad
M over C preserves pullbacks and the commuting

square

M �BA�
e� �MB�A

�M��

M�

M �

�

k
� �M��A

�M ��A

�

is a pullback� where

e�u�
�
� �x�A�doff � u� ret �fx�g and k�u�

�
� �x�A�u�

Remark 	�� The interaction of M with pullbacks is
important� because exponentials in C�

op

are computed
using exponentials and pullbacks in C� Many monads
over the category of cpos �e�g� lifting� state and ex�
ception monad� satisfy the properties required in Ex�
ample
��� but notable exceptions are power�domains
and continuations�

Interpretation of types� A type t is interpreted
�as usual� by an object ��t of D� namely�

���t � BM ��t� ��hti � NM ��t� ��t�� t� � �M ��t��
		t�

We introduce the shorthand N� for MN and Mn for
�MN�nM � We call MnA the type of n�stage com�

putations returning �at stage n� a value of type A�

In a monadicAIM�model a term fxi� t
ni
i ji � mg � e� tn

is interpreted by a map in D�
Y
i�m

Nni ��ti�Mn��t��

Remark 	�	 This interpretation is a re�nement of the
interpretation given in Section 	� which is recovered by
replacing M with the identity monad� and it extends
the CBV interpretation of the simply typed ��calculus
�in a CCC with a strong monad�� Mn is always a
functor� but in general it is not a monad�

Auxiliary morphisms� We introduce some auxil�
iary morphisms� similar to those given in Section 	�
The only exception is the morphism runn�f�� which
we have been unable to de�ne in general� but will be
given for speci�c models� �We use notation intro�
duced in Notation �����

� 	n�N
nA� Nn�A is given by induction�

�� A
id � A

n�� Nn�A
	� MNn�A

MN	n� Nn�� A

where 	�A�MA is the unit of the monad M �

�
n�
Q
i N

n
�Ai � Nn�

Q
iAi is given by induction�

��
Y
i

Ai
id�

Y
i

Ai

n��
Y
i

Nn�� Ai

� N�

Y
i

Nn�Ai
N�
n� Nn��

Y
i

Ai

where
�
Q
iMAi �M �

Q
iAi� is given by
�uiji�

�
�

dofxi � ui� ret �xiji�g� and we exploit preservation
of �nite products by N�

� cn
�
� �

Nnc� NnMA
	n� Nn�MA 	 MnA� where

c� ��MA is a global element of MA�

� varn
�
� NnA

Nn	� NnMA
	n� Nn�MA 	 MnA�

� �n� �MnB�N
nA �Mn�MB�A is given by induction�

�� �MB�A
	� M �MB�A

n�� �Mn�B�N
n�A ��� N��MnB�N

nA

�
�
N��n
R

Mn��MB�A

� !n�Mn�MB�A � MnA � MnB is given by
�Nn� �eval�� �
n� where eval� �MB�A � A � MB

is an instance of evaluation�

� unboxn�MnBMA�MnA is given by Nn� ���� where
��BMA�MA is an instance of the co�unit for B�

� boxn�f��
Q
iMnBMAi � MnBMB is given by

Nn� ��Bf� � �� �
n� where f �
Q
i BMAi � MB� � is

an instance of the co�multiplication for B� and we
exploit preservation of �nite products by B�

The interpretation of terms� Figure � de�nes the
interpretation of a well�formed term � � e� tn by in�
duction on the typing derivation in the type system
of Figure 	 �without run�with�� We give the inter�
pretation of run�with in the monadic AIM�models of
Example
�� and
��� To interpret run�with we need
an auxiliary morphism

� runn�f��C�
Q
iMnBMAi �MnB for any f �NC�Q

i N
nBMAi �Mn�B�

For simplicity� in the sequel we assume that there is
only one Ai� and call it A�

Example 	�
 In the monadic AIM�model based on
CN we can de�ne runn�f� only when C is replaced by
NnC� In this model we have

�MnA�m �

��
�

M� when m � n

MA� when m � n

Am�n when m � n

Let g
�
� runn�f��NnC �MnBMA�MnB� we de�ne

its mth component gm �a map in C� by case�analysis�

� n� gm�x� �� v�M�� � dofy � v� fm�x� y�g� where
fm� �� ��M�

� n� gn�x�C�� v�MX� � dofy � v� fn��� y�� fn��x� y�g

where X
�
� �
Q
nMAn�� fn� � � X � M� and

fn��C� �X �MB�

� n� gm�x�Ck� v�MX� � dofy � v� fm��x� y�g� where
k � m � n and fm��Ck �X �MBk�

Remark 	�� In the absence of computational e�ects
we de�ned runn�f� by applying the functor NnPn�

to f � In CN this functor replaces the mth component
fm with �� when m � n� If the codomain of fm is
the terminal object �� we don�t lose any information�
However� in the monadic interpretation the codomain
of fm is not � but M�� Informally speaking� the above
de�nition of g � runn�f� does not loose information�
because it maps fm to gm when m � n� collapses fn
and fn� into gn� and maps fm� to gm when m � n�

The interpretation in CN has a serious caveat� namely
if we have a natural transformation c� � � MA in C
�e�g� �� � � A�� there is no generic way of lifting it
to a natural transformation cn� �� MnA in CN �

Example 	�� In the monadic AIM�model based on
C�

op

we de�ne runn�f� without imposing any restric�
tion on C� In this model we have

�MnA�m �

�
Mm�� when m � n

Mn�Am�n when m � n

Let X
�
� GMA� then f �NC�NnFX �Mn�B and we

have to de�ne runn�f��C �MnFX �MnB�

� �rst we de�ne F �C � PMn�N�MB�FX as

P� NC
"f� �Mn�B�N

n
FX �n� Mn�N�MB�FX �

� then we de�ne R�PMn�N�MB�FX � Mn�MB�FX �
namely its mth component Rm� by case�analysis�

� n�� Rm
�
� Mm���Mm����Mm��

� n�� Rn�
�
� Mn��Mn��M��X �Mn�

� n� Rm
�
� Mn�X �Mn��M�Bk�

X � Mn��MBk�
X �

where k � m � n

although exponentiation in C�
op

is not pointwise� in
the special case of exponentiation by FX it is�

� �nally we de�ne runn�f��C �MnFX �MnB as

C �MnFX
R � F � id� Mn�MB�FX �MnFX

!n� MnB

Remark 	� The monadic AIM�model in C�
op

does
not have the serious caveat we mentioned for CN �
Moreover� it has a property that we call cross�stage
persistence of computational e�ects� i�e� there exists
an iso downM �MPA � PMA �commuting with the
monad structure��

Monadic interpretation of compile� In any AIM�
model there is an iso compile�BNA� BA �see Propo�
sition ������ and therefore the pure interpretation of
�hti and �t are isomorphic� Although the monadic
interpretations of these types are not isomorphic� in
the monadic AIM�models described above there is a
morphism compile��BMNMA�MBMA suitable for
interpreting compile� �hti � �t with the following op�

erational semantics
e

�
�� box e� e�

�
�� hv�i

compile e
�
�� box v��

�

We de�ne compile� in CN �in the other model one must
assume that M over C preserves �op�limits�� First�

note that �BMA�m � X
�
� MA� �

Q
nAn�� and

�BMNMA�m � M� � X� It is now easy to de�ne
the mth component compile�m by case�analysis�

�� compile���u�M�� v�X�
�
� dofu� ret vg

� �� compile�m�u�M�� v�X�
�
� v�

�� � � c� tc ��� � x� t if t � ��x� or ��x�

�� �� x� t� � e� t�

��� � �x�e� t� � t�

�� � � e� t

��� � box e� �t

�� � � e�� t� � t� ��� � e�� t�

��� � e�e�� t�

��� � e�� �t� �� x� t�� � � e�� t�

��� � let box x � e� in e�� t�

Figure �� �� Type System

� � c� tnc � � x� tn if tn � ��x�

�� x� tn� � e� tn�
� � �x�e� �t� � t��

n

� � e�� �t� � t��
n � � e�� t

n
�

� � e� e�� tn�

� � e� tn�

� � hei� htin
� � e� htin

� � �e� tn�

Figure �� �� Type System

� � x� tn if tm � ��x� and m � n

�� � e� htin

� � run e� tn

Figure �� MetaML Type System �� Figure ��

� � ei� �ti
n

��� fxi� �ti
nji � mg � e� htin

� � run e with xi � ei� t
n

� � ei� �ti
n fxi� �ti

�ji � mg � e� t�

� � box e with xi � ei� �t
n

� � e� �tn

� � unbox e� tn

Figure 	� AIM Type System �� Figure ��

e�
�
�� �x�e e�

�
�� v� e�x� � v�

�
�� v�

e� e�
�
�� v�

�x�e
�
�� �x�e

e
�
�� hvi

�e
�
�� v

ei
�
�� vi

box e with xi � ei
�
�� box e�xi� � vi

e
�
�� box e� e�

�
�� v

unbox e
�
�� v

ei
�
�� vi e�xi� � vi

�
�� hv�i v��

�
�� v

run e with xi � ei
�
�� v

e
n�
�� v

hei
n
�� hvi

x
n�
�� x c

n�
�� c

e�
n�
�� v� e�

n�
�� v�

e� e�
n�
�� v� v�

ei
n�
�� vi

box e with xi � ei
n�
�� box e with xi � vi

e
n�
�� v

�x�e
n�
�� �x�v

e
n�
�� v

�e
n��
�� �v

e
n�
�� v

unbox e
n�
�� unbox v

ei
n�
�� vi e

n�
�� v

run e with xi � ei
n�
�� run v with xi � vi

Figure
� Big�Step Operational Semantics

��� � c� tnc
�
� ��cn���C � Nn��tc ��� � x� tn

�
� �x�C � NnA if tn � ��x�

���� x� tn � e� t�n � f �C � NnA� NnB

��� � �x�e� t� t�n
�
� �n � �"f��C � Nn�BA�

��� � e� �tn � f �C � Nn�BA�

��� � unbox e� tn
�
� unboxn � f �C � NnA

��� � e� tn� � f �C � Nn�A

��� � hei� htin
�
� f �C � Nn�NA�

��� � e� htin � f �C � Nn�NA�

��� � �e� tn�
�
� f �C � Nn�A

��� � ei� �ti
n � fi�C � Nn�BAi�

��fxi� �ti
�jig � e� t� � f �

Q
iBAi � A

��� � box e with xi � ei� �t
n

�
� boxn�f� � hfijii�C � Nn�BA�

��� � e�� t� t�n � f��C � Nn�BA�
��� � e�� t

n � f��C � NnA

��� � e� e�� t�n
�
� !n � hf�� f�i�C � NnB

��� � ei� �ti
n � fi�C � Nn�BAi� ����� fxi� �ti

njig � e� htin � f �NC �
Q
i N

n�BAi�� Nn�NA�

��� � run e with xi � ei� tn
�
� runn�f� � hidC � hfijiii�C � NnA

where C
�
� ���� A

�
� ��t� B

�
� ��t� and Ai

�
� ��ti�

Figure �� Pure Interpretation in AIM�Models

��� � c� tnc
�
� ��cn���C �Mn��tc ��� � x� tn

�
� varn � �x�C �MnA if tn � ��x�

���� x� tn � e� t�n � f �C � NnA�MnB

��� � �x�e� t� t�n
�
� �n � �"f��C �Mn�MB�A

��� � e� �tn � f �C �Mn�BMA�

��� � unbox e� tn
�
� unboxn � f �C �MnA

��� � e� tn� � f �C �Mn�A

��� � hei� htin
�
� f �C �Mn�NMA�

��� � e� htin � f �C �Mn�NMA�

��� � �e� tn�
�
� f �C �Mn�A

��� � ei� �ti
n � fi�C �Mn�BMAi�

��fxi� �ti
�jig � e� t� � f �

Q
iBMAi �MA

��� � box e with xi � ei� �t
n

�
� boxn�f� � hfijii�C �Mn�BMA�

��� � e�� t� t�n � f��C �Mn�MB�A

��� � e�� tn � f��C �MnA

��� � e� e�� t
�n

�
� !n � hf�� f�i�C �MnB

where C
�
� ���� A

�
� ��t� B

�
� ��t� and Ai

�
� ��ti�

Figure �� Monadic Interpretation in AIM�Models without run

References

�� N� Benton� A mixed linear and non�linear logic�
Proofs� terms and models� LNCS� ���� ���
�

�� N� Benton and P� Wadler� Linear logic� mon�
ads and the lambda calculus� In th LICS� New
Brunswick� New Jersey� ��#�� July ����� IEEE
Computer Society Press�

�� G� M� Bierman� What is a categorical model of
intuitionistic linear logic$ LNCS� ���� ���
�

�	 R� Davies� A temporal�logic approach to binding�
time analysis� In th LICS� New Brunswick� New
Jersey� July ����� IEEE Computer Society Press�

�
 R� Davies and F� Pfenning� A modal anal�
ysis of staged computation� In �
rd POPL�
St�Petersburg Beach� Florida� January �����

�� S� Martini and A� Masini� A computational inter�
pretation of modal proofs� In H� Wansing� editor�
Proof Theory of Modal Logic� Kluwer� �����

�� A� Masini� ��Sequent calculus� Intuitionism and
natural deduction� Journal of Logic and Compu�
tation� ��
�� �����

�� E� Moggi� Notions of computation and monads�
Information and Computation� ������ �����

�� E� Moggi� A categorical account of two�level lan�
guages� In MFPS ���� �����

��� E� Moggi� Functor categories and two�level lan�
guages� In FoSSaCS ���� volume ���� of LNCS�
Springer Verlag� �����

��� E� Moggi� W� Taha� Z� Benaissa� and T� Sheard�
An idealized MetaML� Simpler� and more expres�
sive �includes proofs�� Technical Report CSE����
���� OGI� October �����

��� W� Taha� Z� Benaissa� and T� Sheard� Multi�stage
programming� Axiomatization and type�safety�
In ��th ICALP� Aalborg� Denmark� �����

��� W� Taha and T� Sheard� Multi�stage program�
ming with explicit annotations� In PEPM� ACM�
�����

