
Feedback-based Dynamic Proportion Allocation for Disk I/O �

Dan Revel, Dylan McNamee, Calton Pu, David Steere, and Jonathan Walpole
�revel,dylan,calton,dcs,walpole�@cse.ogi.edu

Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology

20000 NW Walker Road, PO Box 91000
Portland, OR 97291-1000

December 7, 1998

Abstract

In this paper we propose to use feedback control to
automatically allocate disk bandwidth in order to
match the rate of disk I/O to the real-rate [13] needs
of applications. We describe a model for adaptive re-
source management based on measuring the relative
progress of stages in a producer-consumer pipeline.
We show how to use prefetching to transform a pas-
sive disk into an active data producer whose progress
can be controlled via feedback. Our progress-based
framework allows the integrated control of multiple
resources. The resulting system automatically adapts
to varying application rates as well as to varying de-
vice latencies.

1 Introduction

Real-rate applications [13] have specific disk I/O
rate and throughput requirements that are driven
by real-world demands. Examples of applications
with real-rate disk I/O requirements include multi-
media applications, real-time databases, and Internet
servers. Real-rate applications suffer from uneven
I/O throughput on conventional systems.

To secure predictable disk I/O rates, programmers
have turned to systems that provide proportional
reservations of disk bandwidth. However, reserva-

�This project was supported in part by DARPA con-
tracts/grants N66001-97-C-8522, N66001-97-C-8523, and
F19628-95-C-0193, and by Tektronix, Inc. and Intel Corpora-
tion.

tions have a practical limitation: they depend on ap-
plications, and ultimately application programmers,
to assign disk bandwidth allocations. The problem
is that it is difficult to determine the correct alloca-
tion. The fact that an application’s resource require-
ments may vary over time further complicates the
matter. Our success with using feedback to dynam-
ically control proportional CPU allocations without
reservations [13] suggests a solution: using feedback
to dynamically control disk bandwidth allocations.

In this paper, we describe an automatic controller
that dynamically adjusts proportional disk band-
width allocations. The goal of our controller is
to match disk I/O rates to the real-rate needs of
applications. Rather than relying on reservations,
our controller monitors each application’s rate of
progress and controls disk I/O rates by adjusting
disk bandwidth allocations. Given a suitable metric
of progress our feedback-based approach allows the
system to automatically adjust to variations in both
the application rate and the performance of the un-
derlying disk subsystem.

The rest of this paper is organized as follows:
Section 2 explains the model we use for adap-
tive resource management. Section 3 describes our
feedback-based disk bandwidth allocator. Section 4
describes related work on resource management. Fi-
nally, section 5 discusses the current status of our re-
search and presents some concluding remarks.

1



2 Adaptive Resource Management

In general, data processing applications consist of
a series of data producers and consumers. For ex-
ample, a multimedia player consists of a movie on
disk, the device driver that fetches the movie into the
buffer cache, the user process that reads and decodes
the movie, and finally a display device. Our over-
all goal is to ensure that data flows smoothly through
this pipeline of producers and consumers. The way
we propose to achieve this goal is to measure the rel-
ative progress of each pipeline stage and to adjust re-
source allocations to affect their relative rates. Real-
rate applications include an externally clocked ele-
ment in the pipeline that provides the rate that other
stages adjust to match. In a data-flow application the
relative progress between a producer and consumer
can be measured by the fill level of a bounded buffer
between them. We have written a CPU scheduler
[13] that allocates CPU to different pipeline stages
using a feedback controller that monitors fill lev-
els and adjusts CPU allocations to meet the real-rate
needs of the application. Our goal in this paper is to
describe a feedback controller that ensures smooth
flows of real-rate data from a disk device. To achieve
this, the components we need are a feedback con-
troller, a progress measure and an allocation mecha-
nism.

3 Disk Bandwidth Allocation

Figure 1 shows the high-level architecture of our disk
bandwidth allocator. Our architecture contains three
key components: the disk bandwidth allocator, the
monitor, and the controller. The disk bandwidth al-
locator dispatches I/O requests in order to ensure
that each client stream receives its assigned propor-
tion of disk bandwidth during its period. The buffer
cache monitor tracks the progress of each I/O request
stream and measures the rate at which client applica-
tions consume the resulting data streams. The con-
troller uses information from the buffer cache mon-
itor to make ‘automatic’ adjustments of disk band-
width allocations.

Our disk bandwidth allocator works by interpos-
ing between applications and the disk scheduler. We
allocate bandwidth by controlling the rate at which

Controller

Monitor
Buffer Cache

Disk

A

B

C

A

B

C

Allocator
Disk Bandwidth

In this figure, the disk bandwidth allocator is multiplex-
ing three real-rate streams (A, B, and C) based on alloca-
tions set by the controller. The buffer cache is monitored
to track the progress of each stream. Stream A is below
its target fill level, the controller will increase its propor-
tion. Stream B is above its target, its proportion will be
decreased. Stream C is on target, its proportion will be
kept constant.

Figure 1: A closed-loop feedback controller

Fixed Dynamic
allocation allocation

Demand-driven Real-time Best-effort
Prefetched Reserved Real-rate

Table 1: Taxonomy of I/O streams

streams can issue requests. This approach will work
with any underlying disk scheduler, including SCAN
or EDF. The following subsections discuss the re-
maining two components: the adaptive controller
and the progress monitor.

3.1 Adaptive Controller

The job of the controller is to allocate disk band-
width to ensure that each stream makes reasonable
progress. Table 1 shows the four classes of I/O
streams distinguished by our controller: real-time,
best-effort, reserved, and real-rate. For these classes
we describe the controller’s goals and the policies it
uses to achieve these goals:

Real-time and reserved streams can be modularly

2



supported by a separate I/O controller. All our sys-
tem has to do is to respect these streams’ alloca-
tion requirements. The main goal for these streams
is to perform admission control to ensure that there
are sufficient resources. If there are insufficient re-
sources admission control rejects these streams. The
goal for best-effort streams is to maximize their
throughput given the available resources. Our con-
troller’s policy for thses streams is to evenly share
the available bandwidth.

Real-rate streams are distinguished from the other
classes by two characteristics. First, they have exter-
nally imposed rate requirements. Second, they ex-
port to the controller a progress metric which the
controller uses to determine bandwidth allocation.
The goal of the controller is to allocate bandwidth to
streams in order to meet their real-rate requirements.
When the system reaches overload the controller
automatically scales back the allocated bandwidth
using weighted fair share based on each stream’s
progress.

3.2 Enabling Feedback Control of Real-
Rate Streams Using Prefetching

The goal of our controller is to match the rate at
which devices produce data to the real-rate needs
of consuming applications. Demand-driven I/O is
a problem for the controller because the producer
and the consumer are synchronous, therefore no rel-
ative control is possible. Prefetching separates the
production of real-rate streams from their consump-
tion, and it introduces a prefetch buffer which can
be monitored to determine relative progress. In ef-
fect, prefetching transforms passive demand-driven
devices into active producers that can be controlled
by feedback.

While prefetching may be inferred, as is common
for sequentially accessed files, we allow the use of
informed interfaces that enable applications to com-
municate complex access patterns to the prefetcher.
The informed interface we have implemented is
called synthetic files [7]. In addition to expressing
complex access patterns, synthetic files can describe
how to adapt the bandwidth requirements of a data
stream. For example, a synthetic file describing a
video stream can provide a control that adapts the

frame rate by specifying which frames to drop. In
overload situations for real-rate applications, we can
use a separate feedback controller to scale the syn-
thetic file’s bandwidth in order to fit the real-rate ap-
plication’s requirements to within the available re-
sources.

The goal of the controller is to match the rate
at which the prefetcher produces data to that of
the real-rate consumer. In order to meet this goal,
the prefetcher needs to remain asynchronous from
the consumer. This means that it has to adjust its
prefetch buffer size according to the application’s
rate and the device latency to avoid buffer misses.
We do this according to the following equation,
adapted from TIP [11]:

BufferSize = 2 * DeviceLatency * ObservedRate

Our feedback controller adjusts the rate of the
prefetcher in order to keep the prefetch buffer half
full. The resulting system automatically adapts to
varying application rates as well as to varying device
latencies.

4 Related Work

Both Anderson [1] and Jones [4] use resource plan-
ners to coordinate the reservation and scheduling of
a set of resources on behalf of applications. These
planners are reservation-based. They rely on appli-
cations to specify their resource requirements and
in cases of overload must re-negotiate the set of re-
served resources. Instead of using reservations, our
system uses a metric of progress, such as buffer fill
levels, exposed by applications, to discover their re-
source requirements and dynamically adjust resource
allocations to match the application’s real-rate needs.

Rather than using resource reservations, the
Odyssey system [10] seeks to support agile
application-aware adaptation by monitoring the
amount of available resource (e.g. network band-
width) and then allocating the available resource
between competing applications according to their
stated resource expectations. If an application’s re-
source expectations cannot be met, an upcall is made
to the application requesting a change in fidelity, es-
sentially telling the application to adapt its resource

3



requirements. In contrast to Odyssey, our resource
allocation model is based on an application’s mea-
sured progress rather than its stated requirements. In
addition, synthetic files allow our system to automat-
ically adapt the bandwidth requirements of a data
stream to fit within available resources.

Real-time systems can also be used to support
real-rate applications. The trade-off is that appli-
cations have to use reservations to specify their re-
source requirements. Examples of real-time file sys-
tems include RT-Mach [8] and Cello [12]. The RT-
Mach file-system [8] uses a “Just-in-Time” slack-
stealing algorithm for disk scheduling that is an
EDF-SCAN hybrid and supports bandwidth reserva-
tions with variable periods. The Cello file-system
[12] has a two-level architecture that uses deadlines
and slack-stealing to allocate disk bandwidth be-
tween class specific schedulers that implement poli-
cies for different classes of applications. We could
use either of these systems as an underlying mecha-
nism to provide bandwidth control to our feedback
controller. This alleviates the application task of
specifying reservations.

Feedback scheduling of system resources has been
investigated by a number of researchers [6, 2, 3]. Our
system extends this work to a new resource. In ad-
dition, the progress-based framework allows us to
integrate the control of multiple resources. In our
system, the bandwidth allocation is ultimately driven
by the real-rate pipeline scheduled by the feedback-
controlled CPU allocator.

The use of access pattern information to drive
prefetching is not new. Kotz investigated automatic
detection and prediction of complex access patterns
[5]. Because of the limits of automatic prediction-
based approaches, more recent file-system research
has proposed informed interfaces. TIP [11], for ex-
ample, uses ”disclosure hints” of upcoming accesses
to drive its buffer management policy. Other ex-
amples of informed interfaces include dynamic sets
[14], and the Galley file system [9]. Synthetic files
is a generalization of informed interfaces for file sys-
tems prefetching Synthetic files extend informed in-
terfaces by providing a mechanism to adapt the band-
width requirement of the data stream.

5 Conclusions

Conventional operating systems perform poorly
for applications that need real-rate disk I/O. Our
feedback-based approach allows the system to auto-
matically adjust to variations in both the real rate of
the application and the performance of the underly-
ing disk subsystem.

The thing that enables this feedback-based ap-
proach, which is based on monitoring the progress
of producers and consumers, is to turn the disk into a
variable rate producer using adaptive prefetching.

We are currently constructing a research proto-
type.

References

[1] David P. Anderson. Metascheduling for contin-
uous media. ACM Transactions on Computer
Systems, 11(3):226–252, August 1993.

[2] Shanwei Cen. A Software Feedback Toolkit and
its Application In Adaptive Multimedia Sys-
tems. PhD thesis, Oregon Graduate Institute of
Science and Technology, October 1996.

[3] Ashvin Goel, David Steere, Calton Pu, and
Jonathan Walpole. Adaptive resource manage-
ment via modular feedback control. Simultane-
ously submitted to Hot OS, 1999.

[4] Michael B. Jones, Paul J. Leach, Richard P.
Draves, and Joseph S. Barrera, III. Support for
user-centric modular real-time resource man-
agement in the rialto operating system. In Pro-
ceedings of NOSSDAV’95, April 1995.

[5] David Kotz. Prefetching and Caching Tech-
niques in File Systems for MIMD Multiproces-
sors. PhD thesis, Duke University, April 1991.
Available as technical report CS-1991-016.

[6] H. Massalin and C. Pu. Fine-grain adaptive
scheduling using feedback. Computing Sys-
tems, 3(1):139–173, Winter 1990. Special Is-
sue on selected papers from the Workshop on
Experiences in Building Distributed Systems,
Florida, October 1989.

4



[7] Dylan McNamee, Dan Revel, Calton Pu, David
Steere, and Jonathan Walpole. Synthetic
Files: Enabling Low-Latency File I/O for QoS-
Adaptive Applications. Technical Report CSE-
98-012, Dept. of Computer Science and Engi-
neering, Oregon Graduate Institute of Science
and Technology, 1998.

[8] Anastasio Molano, Kanaka Juvva, and Raj Ra-
jkumar. Real-Time Filesystems: Guaranteeing
Timing Constraints for Disk Accesses in RT-
Mach. In Proceedings of the IEEE Real-Time
Systems Symposium, December 1997.

[9] Nils Nieuwejaar and David Kotz. The Gal-
ley parallel file system. Parallel Computing,
23(4):447–476, June 1997.

[10] Brian D. Noble, M. Satyanarayanan,
Dushyanth Narayanan, James Eric Tilton,
Jason Flinn, and Kevin R. Walker. Agile
application-aware adaptation for mobility. In
Proceedings of the 16th ACM Symposium on
Operating System Principles, October 1997.

[11] R. Hugo Patterson, G. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed
prefetching and caching. In Proceedings of the
Fifteenth ACM Symposium on Operating Sys-
tems Principles, December 1995.

[12] Prashant Shenoy and Harrick Vin. Cello: A
Disk Scheduling Framework for Next Genera-
tion Operating Systems. In Proceedings of SIG-
METRICS’98, June 1998.

[13] David Steere, Ashvin Goel, Joshua Gruenberg,
Dylan McNamee, Calton Pu, and Jonathan
Walpole. A Feedback-driven Proportion Allo-
cator for Real-Rate Scheduling. In Proceedings
of the 1999 Symposium on Operating Systems
Design and Implementation. USENIX Associ-
ation, 1999.

[14] David C. Steere. Exploiting the Non-
Determinism and Asynchrony of Set Iterators
to Reduce Aggregate File I/O Latency. In Pro-
ceedings of the 16th ACM Symposium on Oper-
ating System Principles, October 1997.

5


