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ABSTRACT

It is generally acknowledged that time-alignment of phonemes
is of better quality when obtained from manual segmentation
as compared to automatic segmentation.  However, empirical
evidence for this belief is sparse.  This paper describes a
controlled study of two recognizers created using manually-
aligned and automatically-aligned training data.  Both
recognizers were trained on the digits task using telephone-
channel continuous speech.  The manual alignments were
generated by expert labelers, while the automatic alignments
were obtained from our best general-purpose forced alignment
system.  The two recognizers were trained and evaluated using
the same set of data and parameters whenever possible.  The
results of the recognizer trained on manually-aligned data were
97.54% word accuracy and 90.18% sentence accuracy.  The
results for the recognizer trained on automatically-aligned data
were 97.24% word accuracy and 88.80% sentence accuracy.
This represents an 11% reduction in error at the word level and
a 12% reduction in error at the sentence level.  The sentence-
level results are statistically significant using McNemar’s test,
with p=0.002.

1. INTRODUCTION

The phonetic alignment of speech is thought to be performed
better by humans than by computers.  Evidence for this belief
is seen in the statements of researchers in the field. Andrej
Ljolje notes that “due to the … inherent limits in the
parameterization of the speech signal and the speech model
structure, the accuracy of the transcription [by automatic
methods] is inferior to that achieved by human transcribers.”
[1].   Piero Cosi states that “The accuracy of automatic
alignment systems will always be checked using references
manually segmented by phonetic or speech communication
experts.”  [2]  Stephen Cox reports that “It is well known that
… variation [of manual alignments] is generally small when
compared with alignments produced by automatic systems.”
[3]

Empirical evidence for this prevalent belief is scarce, however.
This paper reports the results of a controlled study of the
performance of two recognizers; one trained with manual
alignments, and the other trained with automatic alignments.
Both recognizers were trained using the CSLU Toolkit, on the
OGI Numbers corpus.

The recognizers in the CSLU Toolkit use a hybrid HMM/ANN
framework [4].  In these systems, frame-based recognition is
performed using context-dependent sub-phonetic states, where
the state probability estimation is computed using a neural
network.

We have developed a set of procedures within the Toolkit for
training special-purpose recognizers for tasks such as
continuous digit recognition.  This method is simple enough
that a bright high-school student can complete the tutorial in a
few days.  On the continuous digits task, the training procedure
yields recognition results that compare favorably to standard
HMM systems [4].

2. CORPUS

The OGI 30K Numbers corpus [5] was used for training,
development, and testing.  The data in this corpus were
collected from thousands of people within the United States
who recited their telephone number, street address, zip code, or
other numeric information over the telephone in a natural
speaking style.  Because the data were collected from a large
number of speakers from different backgrounds in different
environments, the corpus contains a noticeable amount of
breath noise, glottalization, background noise (including
music), and other “real-life” complications.  Of almost 15,000
utterances, approximately 6600 utterances have been
transcribed and time-aligned at the phonetic level by
professional labelers. For the experiments reported here, we
used only those utterances that consist entirely of digits (zero
through nine and “oh”). Before separating the data into
training, development, and test sets, about 5% of the corpus
was culled for independent testing and set aside.   Three
speaker-independent partitions were created from the
remaining data: 3/5 for training (6087 files, of which 2547
were hand-labeled), 1/5 for development (2110 files), and 1/5
for testing (2169 files). The development partition was further
split into five sets, and the development results reported in this
paper are for the first of these five sets (423 files).

3. MANUAL-ALIGNMENT SYSTEM

The manual alignment system, referred to here as the System
M, was created in two passes.  The first past trained a
recognizer using all available manually-aligned data in the
training set.  The second pass used the recognizer created in the
first pass to automatically re-align the data and train a new



system.  This second pass often yields better performance
because the automatic alignment is capable of specifying the
alignments of sub-phonetic categories, which is not possible
with manual alignments.

For training System M, hand-labeled phonetic symbols are
mapped, if necessary, to a consistent set of symbols for each
word, /oU 9r/ (in “four”) is merged into one />r/ phone, and /kh
s/ (in “six”) is merged into one /ks/ phone.  (Phonetic symbols
are written in Worldbet).

The system is trained to recognize context-dependent units. For
left and right contexts, pauses and stop closures are mapped to
the symbol /uc/ (unvoiced closure), and dentals (/th/, /s/, and
the right half of /ks/) are mapped to the broad-category symbol
/den/; otherwise the contexts are phoneme-specific.  Each
phoneme can be split into one, two, or three parts. The left part
is dependent on the context of the preceding phoneme (or
phonetic broad category), the center part (if any) is context
independent, and the right part is dependent on the following
phoneme (or phonetic broad category).  Phonemes that remain
as a one-part phoneme can either be context-independent or be
dependent on the following phoneme.

The system is trained using 13 MFCC features (12 cepstral
coefficients and 1 energy parameter) plus their delta values,
with a 10-msec frame rate.  The input to the network consists
of the features for the frame to be classified, as well as the
features for frames at -60, -30, 30, and 60 msec relative to the
frame to be classified (for a total of 130 input values). As many
as 2000 samples per category are collected for training.
Neural-network training is done with standard back-
propagation on a fully-connected feed-forward network. The
training is adjusted to use the negative penalty modification
proposed by Wei and van Vuuren [6].  With this method, the
non-uniform distribution of context-dependent classes that is
dependent on the order of words in the training database is
compensated for by flattening the class priors of infrequently
occurring classes; this compensation allows better modeling
for an utterance in which the order of the words can not be
predicted.

During the Viterbi search, transition probabilities are set to be
all equally likely, so that no assumptions are made about the
likelihood of one category following another category. The
search was constrained to minimize insertion errors by having
minimum duration values for each category, where the
minimum value for a category was computed as the value at
two standard deviations from the mean duration. During the
search, category durations less than the minimum value are
penalized by a value proportional to the difference between the
minimum duration and the proposed duration.

The grammar allows any number of digits in any order,  with
an optional silence between digits.  In addition, a “garbage”
word is allowed at the beginning and end of each utterance to
account for sounds not in the vocabulary. The “garbage” word
is defined as a word with a single context-independent
category; the value of this category is not an output of the
neural network, but is computed as the Nth-highest output from

the neural network at each frame [7].  In this study, N was set
to 5.

Training is done for 30 iterations, and the “best” network
iteration is determined by word-level evaluation of each
iteration on the development set data.  This “best” network is
then used to force-align the same training utterances, and
training and evaluation are repeated to determine the final
digits network for System M.

4. AUTOMATIC-ALIGNMENT SYSTEM

The automatic-alignment system, referred to here as System A,
was also trained in two passes.  In the first pass, label
alignments were created using the CSLU Toolkit’s general-
purpose recognizer, and network training was performed on
these labels.  In the second pass, the recognizer created in the
first pass was used to automatically re-align the data and train a
new recognizer, just as was done for System M.

The automatic alignment system in the CSLU Toolkit is a
forced-alignment system.  Forced alignment uses an existing
HMM (in this case, an HMM/ANN) recognizer and constrains
the search path to be the correct (known) sequence of
phonemes.  The search result provides not only the (known)
correct answer, but the time locations of each phoneme.  The
forced alignment system in the Toolkit was trained on
telephone-channel speech; the corpora used were the OGI
Stories, Names, and Numbers corpora.  The fact that the
general-purpose system was trained on data from the Numbers
corpus does perhaps give this system an advantage over other
general-purpose forced alignment systems, and so the results
reported here for the automatic alignment system may be
higher than results generated with other systems.

The same training files, mapping, feature set, and negative-
penalty  modifications that were used in the creation of System
M were used in the creation of System A.  In addition, the same
context-dependent units were specified.  However, because the
two alignment procedures yielded slightly different results, the
number of data samples in each context-dependent category for
System M is slightly different than the number of data samples
in each context-dependent category for System A.

5. SYSTEM PARAMETERS

In this section, we will provide information specific to the
training of each recognizer.  Both recognizers were trained on
2547 files from the OGI Numbers corpus in the first pass, 6087
files in the second pass, developed using 2110 files, and
evaluated for the final test using 2169 files.  Each of these
partitions of the Numbers corpus are speaker-independent.

Both recognizers used 130 input features, 200 nodes in the
hidden layer, and 218 context-dependent output categories.
Categories representing silence were context-independent, all
consonants (except for /th/) and reduced vowels were split into
two context-dependent parts, all long vowels and diphthongs
were split into a context-dependent left third, a context-
independent middle region, and a context-dependent right



third.  The /th/ phoneme was dependent on its right context
only.

The first pass of each recognizer was trained using as many as
2000 samples per category, and the second pass of each
recognizer was trained using all available data samples.  The
first pass of each recognizer was trained for 45 iterations, and
the second pass of each recognizer was trained for 30
iterations.

6. RESULTS

The results of test-set evaluation on the first and second passes
are summarized in Table 1.  The 90.18% sentence-level result
on 2169 files (sentences) for System M is significantly better
than the 88.80% sentence-level result for System A, as
evaluated using McNemar’s test (p=0.002).  The recognizer
trained on manually-aligned data has an 11% relative reduction
in error at the word level and a 12% relative reduction in error
at the sentence level.

System Word
Accuracy

Sentence
Accuracy

Reduction in
Error

Automatic 97.24% 88.80% n/a
Manual 97.54% 90.18% 11% (w), 12%(s)

Table 1: Test-set results for the recognizers trained on
manually-aligned and automatically-aligned data. Evaluation
was done on 2169 telephone-channel continuous-speech digit
utterances (12437 words).

7. DISCUSSION

The 11% to 12% reduction in error obtained from these
experiments indicates that phonetic alignments obtained from
expert human labelers are, in fact, superior to alignments
obtained from an automatic-alignment system.  Furthermore,
this superiority is reflected in the performance of recognizers
trained on the phonetically-aligned data.  These results are
statistically significant, with p=0.002, indicating that the
improvement in results with the manually-aligned data did not
occur by chance.
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