Taking the hol out of HOL

Nancy A. Day
Oregon Graduate Institute
Portland, OR, USA
nday@Qcse.ogi.edu

Michael R. Donat and Jeffrey J. Joyce
Intrepid Critical Software Inc.

Vancouver, BC, Canada

{Michael.Donat, Jeffrey.Joyce}@intrepid-cs.com

Technical Report CSE-00-003
Department of Computer Science
Oregon Graduate Institute

January 31, 2000

Abstract

We describe a systematic approach to building
tools for the analysis of specifications expressed
in higher-order logic (hol) outside the framework
of a conventional, interactive theorem proving
environment. Tools such as HOL and PVS in-
tegrate the tasks of parsing and typechecking a
hol specification with substantial and complex
theorem-proving functionality. In contrast, we
have taken “the hol out of HOL” by building au-
tomated tools on top of just a parser and type-
checker to eliminate the burden of the skilled
interaction required in a conventional theorem
prover. Our lightweight approach allows a hol
specification to be used for diverse purposes such
as refutation-based analysis and the algorithmic
generation of test cases. Our toolset contain-
s a variety of general-purpose utilities for the
manipulation of higher-order logic specification-
s. For example, one utility allows a hol specifi-
cation to be “evaluated” in a manner similar to
the evaluation of a functional program. These u-
tilities are combined to implement analysis tech-
niques such as symbolic model checking. After
five years of experience with this approach, we
conclude that by decoupling hol from its conven-
tional environment, we retain the benefits of an
expressive specification notation, and can gener-
ate many useful analysis results automatically.

1 Introduction

Formal methods have come a long way. Industri-
al standards such as IEC 61508, and DO-178B

include explicit references to the use of formal
methods as a means of increasing confidence
in safety-related systems. Formal methods add
precision and checkability to various aspects of
the system development process.

A decade ago, there was a wide chasm between
specialized automated methods such as mod-
el checking [5], specification-intensive methods
such as the use of Z [31], and general proof-based
reasoning found in tools such as HOL [15]. The
input notations of the analysis tools matched
the analysis capabilities of the tool. For exam-
ple, the SMV [25] notation describes finite state
machines, whereas the use of higher-order logic
(hol)! as the specification language of PVS cor-
responds to the intended use of PVS [27] as an
interactive theorem-prover.

Progress is being made rapidly on bridging
this chasm and uniting the capabilities of the
various tools under one roof. For example, the
SCR toolset includes a consistency checker, a
simulator, a link to a model checker, and a link
to a theorem prover [19, 2]. PVS has many auto-
mated decision procedures on call [26]. Most of
these examples are, however, either application-
specific such as the SCR toolset, or start from a
heavyweight theorem prover.

We have been exploring a different point in
the design space of these combined systems. For
the past five years, in an industry /university col-
laborative research project, we have used hol as
a specification notation and applied automated
analysis techniques such as refutation-based ap-

IWe will use “hol” or “Hol” for higher-order logic by
itself, and “HOL” to refer to the HOL theorem proving
system.



proaches (i.e., those that generate counterexam-
ples), and test generation to these specifications.
We have taken “the hol out of HOL” by build-
ing these automated procedures on top of just a
parser and typechecker to eliminate the burden
of the skilled interaction required in a conven-
tional theorem prover.

The combination of hol with automated anal-
ysis may seem crippled from the beginning: we
do not have all the tools we might need to work
with our specification. However, our experience
shows that less power is often better. The ex-
pressivity of higher-order logic allows us to em-
bed more familiar notations within hol. The d-
ifficulties for new users come when the only tool
support available has a high learning curve, and
they struggle to understand the feedback the
tool provides them about their specification. We
offer a solution that lessens the learning curve,
delaying the need to use a theorem prover until
the problem requires it and the user is ready for
it.

In Sections 2, and 3 we present our reasons for
choosing to work with higher-order logic outside
of a theorem proving environment. In Section 4,
we describe our toolset, a collection of cooperat-
ing utilities that manipulate hol expressions in
“truth-preserving” ways, i.e., the result of every
transformation could also have been produced
by a formal derivation using inference rules in
HOL. In Section 5, we describe how the block-
s are used in combination to construct analy-
sis procedures such as symbolic model checking,
and test generation.

Unlike our related presentations of this
project [23, 9, 8, 7, 13], in this paper we focus
on the capabilities of the tool and how it is engi-
neered. This paper is intended to be an “under
the hood” look at building an analysis tool, il-
lustrating how our toolkit facilitates significan-
t reuse of components for diverse applications
such as test generation and model checking. We
have also created new analysis methods such as
constraint-based simulation. Our focus on auto-
mated analysis forces us to provide the user with
control of performance factors such as BDD [3]
variable order. We have also created methods
that allow us to maintain the information neces-
sary to produce readable, traceable results given
in terms of the original specification.

By providing a lightweight interface between
a general-purpose notation and automated anal-
ysis, we offer a middle ground between special-
purpose analysis tools and general-purpose the-

orem provers. Our goal is to bring the power
of a range of automated analysis techniques to
specifiers without sacrificing suitability and ex-
pressiveness of notation.

2  Why higher-order logic ?

Initially we chose higher-order logic as a speci-
fication notation independently of consideration
for tool support. Our notation S [23] is a syn-
tactic variant of the object language of the HOL
theorem proving system. S was also influenced
by Z in that it includes constructs for the dec-
laration and definition of types and constants.
It was developed to support the practical ap-
plication of formal methods in industrial scale
projects. In this section, we explain our motiva-
tion for choosing to work with S.

First, S is general-purpose notation; it does
not impose any particular style of specification.
We have used it to capture a stimulus-response
style of specification. In other cases, we have em-
bedded other notations such as statecharts [16],
and tables in S [8, 1]. By placing specialized no-
tations within a general-purpose environment,
we can take advantage of many general-purpose
features such as parameterization, and re-usable
auxiliary definitions and infrastructure. In the
specification of an aeronautical telecommunica-
tions network (ATN) written in our embedded
statecharts style, we witnessed these benefits,
which reduced the specification effort, and re-
sulted in a more concise and readable specifica-
tion [1]. Also, we do not have to repeat the effort
of building analysis tools for particular notation-
s. Once a notation is embedded in hol, many of
our analysis tools can be applied.

Second, S is a logic. We have found that un-
interpreted constants in a logic play a key role
in allowing us to match the level of abstraction
found in requirements specifications. Joyce has
called uninterpreted constants, “a modern-day
Occam’s razor”? and points out their value in
filtering non-essential details and in improving
the readability of the specification [22]. Unin-
terpreted constants can be used to represent ele-
ments that have meaning to domain experts but
whose definition is irrelevant for analysis of a
requirements specification. For example, many
air traffic control specifications depend on the

2The idea that the simplest approach should be used;
essentially not adding details when they are unnecessary.
(William of Occam, 1300 - 1349)



“flight level” of an aircraft. The details of how
the flight level is determined may be irrelevant
for analysis of some aspects of the system. The
calculation of the “flight level” can be captured
by an uninterpreted constant. Analysis results
produced for a specification hold for any inter-
pretation of the uninterpreted constants. While
a final specification should be complete, the use
of uninterpreted constants along the way allows
some results to be produced without having to
specify all the details.

Furthermore, a logic contains quantifiers,
which often allow the expression of formal re-
quirements to more closely correspond to their
expression in natural language. Quantified s-
tatements can be used to capture domain knowl-
edge that describes the environment of the spec-
ification. The ability to use a quantifier elimi-
nates the need to spell out all cases where the
assumption is relevant.

Third, S is expressive; while we will never
be able to prove automatically every property
of our specifications, our notation is unlikely to
limit adding more automated analysis capabili-
ties as they are developed.

3 Why not use a theorem
prover 7

In our approach, we have focused on automat-
ed analysis of our specifications. There have
been a variety of successful efforts to combine
theorem provers with automated decision proce-
dures, such as PVS. Our experience with HOL-
Voss [24] suggest that having the theorem prover
control the link to the decision procedures is not
the optimal approach for automated analysis.
First, the infrastructure of the theorem prover
is unnecessary for automated analysis and makes
the approach clumsy and intimidating to the
novice specifier. These difficulties are a factor in
industry’s resistance to formal methods. For ex-
ample, we particularly wanted to avoid the need
to learn a meta-language to accomplish the spec-
ification task. Therefore we made S the input
language to our tool, and have very simple com-
mands to invoke our analysis procedures. A sec-
ond example is that rewriting by means of tactic
application was used for expansion of definition-
s in HOL-Voss. This step was different for each
specification analyzed. We have shown that an
automatic technique, called symbolic functional
evaluation, is sufficient for this task and requires

no user expertise.

Second, theorem provers are verification-
based analysis tools. The output of a theorem
prover is confirmation of a conjecture. Often,
more useful results of analysis are either evi-
dence that refutes an interpretation of the re-
quirements, or truth-preserving rearrangements
of the specification in order to distill atomic be-
haviour. Refutation-based techniques produce
a variety of results other than just theorems.
For example, when analyzing a table for incon-
sistency, refutation-based techniques can clearly
isolate the source of the inconsistency. Conse-
quently, it is easier to interpret the result of a
successful refutation attempt than a failed veri-
fication attempt. In using formal methods for
an independent validation and verification ef-
fort, Easterbrook and Callahan abandoned the
use of PVS to carry out completeness and con-
sistency checks because of the difficulty of deter-
mining the source of an inconsistency in a failed
proof [14].

Third, the results need to be expressed in
terms of the original specification. In contrast
to our approach, translating the specification for
input to a specialized decision procedure results
in output in terms of the translated version.

Theorem provers definitely have a role to play
in the analysis of complex systems. We advo-
cate an approach that complements the use of
theorem provers because we work with the same
notation. Novice users and experts can work
side-by-side. We have a tool that translates our
S specifications to input for the HOL theorem
prover [23].

4 The Toolkit

Our toolkit consists of techniques that manipu-
late S expressions in truth-preserving ways. In
this section, we describe the collection of tech-
niques that are combined to build analysis pro-
cedures such as symbolic model checking. Fig-
ure 1 captures the architecture of our tool. In
addition to the specification and commands, the
input of semantic definitions allow the specifier
to work with notations such as statecharts em-
bedded in hol.

Some of the techniques, such as Boolean ab-
straction, can also be found in tools such as PVS.
Others, such as symbolic functional evaluation
(SFE) for expanding S expressions, we devel-
oped because we wanted to move outside the
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Figure 1: Architecture

theorem proving environment. In some cases,
we rely on syntactic conventions for particular
styles of specification. For example, we distin-
guish between the stimuli and response for test
generation based on vocabulary conventions.

We also provide user access to performance
tuning for some of these automated techniques.
For example, while SFE is automatic, the user
can control the depth of evaluation. For BDD-
based analysis, we provide a way to input a vari-
able order.

4.1 Symbolic Functional Evalua-

tion

A specification consists of a collection of con-
stant definitions, and declarations of types and
constants. If we are using an embedded nota-
tion, then a set of semantic definitions are added
to this collection. Often, the first step in analysis
is to expand all of these definitions to determine
the meaning of the specification.

Symbolic functional evaluation [7] (SFE) is a
technique that we developed to “evaluate” or
unfold S expressions, i.e., carry out the logical
transformations of expanding definitions, beta-
reduction, and simplification of built-in con-
stants in the presence of quantifiers and uninter-
preted constants. It extends mechanisms from
functional language evaluation to carry out lazy
evaluation of S expressions. Unlike using quote
symbols in a language like LISP, SFE gives the

user control over the depth of evaluation. For ex-
ample, with the following declarations and defi-
nitions:

z1 : num,;
f1, f2, f3 : num — num;
2o = f1 21;
23 = fo 22;

fa(a) = fs(a);

The constants z1, f1, f2, and f3 are uninterpret-
ed. When we evaluate the expression fy(z3), we
can instruct SFE to evaluate to one of three lev-
els of evaluation. At the level of “complete” e-
valuation, it is expands all the definitions and
returns the expression f3(f2(f1(z1))). At the
“point of distinction” level, SFE stops after it
determines the tip of the expression is an unin-
terpreted function, and returns f3(z3). One fur-
ther level called “evaluated for rewriting” proved
useful and evaluates the arguments of an unin-
terpreted function at the tip to the point of dis-
tinction. In this case, it would return f3(f2(22)).
When abstracting an expression to proposition-
al logic (see Section 4.3), the point of distinction
level is most appropriate because any details re-
vealed by evaluation are lost in abstraction.

Our implementation benefits from the use of
a canonical syntactic representation of expres-
sions, and caching of results.

SFE can be used to carry out symbolic simu-
lation of specifications of hardware circuits as
has been done previously in theorem provers
e.g., [33, 32].

4.2 Rewriting

Once a specification has been sufficiently unfold-
ed, several analyses require logical manipulation
of the resulting hol formula. A rewrite toolk-
it component is useful for performing this task.
For example, the following set of rewrite rules
could be used to rewrite a specification so that
negation () is only applied to predicates:

VX, Y X=Y=-XVY
VX, Y~(XAY)=-XV-Y
VX, Y~(XVY)=-XA-Y

VX=X =X
VP.~Vz.Px = dz.~Px
VP.—~dz.Px =Vx.~Px

Some analysis algorithms can be implemented
as a series of rewriting operations. An example
is the derivation of tests from an hol specification



using a series of sets of rewrite rules [9, 12]. Im-
plementing the test generator using rewriting is
a better way to preserve logical soundness than
an implementation as a series of ad-hoc manip-
ulations.

Our lightweight rewrite system differs from
some well-known rewrite systems, such as the
one found in HOL. For performance reasons,
the rewrite system cooperates with other means
of simplification such as evaluating expression-
s with concrete values. The user of the rewrite
system must ensure that each set of rewrite rules
are confluent — otherwise, rewriting may not ter-
minate. The user must also ensure that the
rewrite rules are themselves sound. The check-
ing of the rules need only be performed once as
part of the development of an analysis proce-
dure, and can be accomplished using a theorem-
prover such as HOL or PVS.

Rewrite rules are stated as universally quan-
tified equalities, e.g., Vo.E; () = Es(x), where
x is a vector of variables. For rules specifying
rewrites involving quantifiers and lambda ab-
straction:

1. variable capture is avoided using alpha con-
version; and

2. if variable release occurs, the rewrite fails.

The concept of variable release is the opposite
of variable capture. During rewriting, if a vari-
able is quantified in an expression matching the
left-hand side of the rewrite rule and is unquan-
tified in the corresponding instance of the right-
hand side, variable release has occurred. For ex-
ample, applying VP, Q.(Vz.PVQ) = ((Vz.P)VQ)
to Vz.f x V y succeeds. However, applying the
same rule to Vz.f = V g x fails because the = of
g = is released, i.e., x has become unquantified
because it was free in ). Rewrite rules requiring
conditions on free variables can often be stated
in terms of variable release.

The rewrite system also recognizes alpha e-
quivalence, e.g., (Az.E(z)) = A\a.E(a).

The capabilities of variable release and alpha-
equivalence allow many of the logical manipula-
tion accomplished by conversions in a theorem
prover to be performed by the rewrite system.

The rewrite system provides routines for ap-
plying a single rewrite to an expression, or to
an expression and all its subexpressions. Set-
s of rules can also be applied. The depth of a
rewrite operation can be limited by providing
a call-back function that examines the current

subexpression and signals the rewrite system to
continue with this subexpression or go no deep-
er.

4.3 Abstraction to Propositional
Logic

By abstracting our specifications to proposition-
al logic, we can produce conservative analysis
results automatically. As in Rajan [28], we de-
compose our S expression based on the logi-
cal operators of conjunction, disjunction, and
negation. The fragments are assigned unique
Boolean variables with alpha-equivalent subex-
pression matched to the same variable. We
maintain a table matching the fragments to their
Boolean variables to apply and reverse this pro-
cess.

We also deal with enumerated types so
that they are represented by multiple, related
Boolean variables as in Ever [21]. Sections 4.5
and 4.7 discuss further ways of making this ab-
straction process less conservative.

Currently, we represent the expressions built
from the Boolean variables using BDDs. A key
to making this process efficient is to cache the
match between hol expressions and BDD expres-
sions. Once a BDD expression is created, an
analysis procedure can manipulate it with the
usual BDD package operations such as negation,
conjunction, and quantification.

BDD variable order affects the size of the B-
DD representation of our hol expression. For
small examples, it is sufficient to create the B-
DD variable as needed in the abstraction pro-
cess, but for larger examples, a better method
was required. In PVS, it is possible to request
that dynamic variable order be carried out with-
in the BDD package doing propositional simpli-
fication [30]. But, we found it critical to have
direct support for providing the abstraction pro-
cess with a BDD variable order to allow us to
reuse a good order, as well as store and manip-
ulate abstractions of expressions matched with
constant names. Furthermore, we wanted the
variable order stated in terms of expressions of
the specification, not in terms of the Boolean
variables that are substituted for those expres-
sions during abstraction.

Therefore, we developed a way of supplying a
variable ordering for BDDs as a list of S expres-
sions. There are three types of substitutions: a
single Boolean variable matched with a Boolean
S expression, partitions discussed in Section 4.5,



an enumerated types. Each type of substitution
is accompanied by a list of numbers giving the
position in the order of the Boolean variables
used to represent the S expressions. We pro-
vide some utilities to help the user determine a
good variable order by subcontracting the prob-
lem to existing verification tools such as the Voss
Verification System [29]. Further details on our
approach can be found in Day [6].

Creating a Boolean abstraction of an S ex-
pression and then reversing the process, can be a
useful method of simplifying expressions that in-
clude quantification over Boolean variables. The
resulting expression is logically equivalent to the
original. Our tool provides a command that e-
valuates an expression to the desired level of e-
valuation using SFE, creates a BDD represen-
tation of the expression, and then creates an S
expression from the BDD. We used this process
in constructing a large next state relation by
constructing conjuncts representing concurrent
states individually first.

4.4 Distinguishing Current and
Next Values

Specifications written in notations such as fi-
nite state machines describe a next state rela-
tion. Since hol has no built-in notion of dynam-
ic behaviour, a means is required to distinguish
the value of a variable in the current state from
its value in the next. The following sections
describe two approaches to this problem both
based on syntactic conventions.

4.4.1 Variables as Functions

One approach is to make each variable a func-
tion mapping system states to values. This ap-
proach can be hidden from the user in an em-
bedded notation. By explicitly representing the
current and next states, and making variables
be functions from states to values, we avoid the
need to group the variables in a record structure
explicitly as has been done in PVS [28].

For analysis procedures that iteratively ex-
plore the state space using the next state re-
lation, such as symbolic model checking, and
simulation, this element of the toolkit separates
the Boolean variables representing the current
state values and those for next state values. We
use the syntactic convention that the variable
cf represents the current state, and cf’ the next
state, thus a Boolean expression such as z cf’

refers to the value of the variable x in the nex-
t state. Care must be taken with expressions
such as z cf' = (z ¢f + 1) that are considered
as one Boolean variable by the Boolean abstrac-
tion process, because they contain both cf and
cf'. These expressions are treated as belonging
to the next state.

4.4.2 Analysis-Guided Distinction

In some cases, the convention used to distinguish
values in time is intrinsically linked the type of
analysis. This is true of test generation, which
guides the rewrite system to place expressions in
certain forms to separate stimuli from responses.
While this process is not technically not part
of the toolkit, but rather is part of the specific
analysis procedure, the two mechanisms that we
describe here could be used in a similar manner
to treating variables as functions mentioned in
the previous section.

One mechanism is to base the distinction on
whether variables within predicate arguments
refer to the current or next state. As in Z, a
prime (’) is used to distinguish current state
values from next state values. Thus, in the
specification (z = g(z,5)) = V(z' = g(x,10)),
z = g(z,5) refers to the current state because
it does not contain a primed variable. The p-
resence of z' indicates that 2/ = g¢(z,10) is a
condition on the next state.

The second mechanism uses the syntactic con-
vention that a literal beginning with a lower case
letter indicates a next state predicate. A com-
mand can specifically label a literal as referring
to either state, overriding this convention. This
mechanism is appropriate in situations where
the vocabulary used to specify next state val-
ues is different from that of specifying current
state values, e.g., some applications of system-
level requirements-based testing [13].

4.5 Interval Checking

The Boolean abstraction process is very con-
servative. Expressions such as z < 5,
(5<zAxz<10), and 10 < z should be ab-
stracted to related Boolean expressions. One
simple approach is to rewrite predicates involv-
ing inequalities into a canonical form to find re-
lationships between expressions such as x < 5
and 5 > z. However, this fails to capture the re-
lationship between z < 5 and x < 10. Another
approach is to abstract to a logic with a linear



decision procedure. A third alternative is to use
an external tool to add constraints based on the
numeric relationships [4].

We chose a fourth approach that treats relat-
ed expressions that partition a numeric value as
an enumerated type. Based on known structure
of a particular notation, we can identify some
related expressions without a global search of
the complete specification We encountered lin-
ear inequalities in tabular specifications where
the cases in a table were based a partition of
the range. A row of the table consisted of a
list of expressions all relevant to the same nu-
meric value. We can identify the row structure
within the specification by searching for the Row
keyword used in the embedding of the tabular
notation.

To exploit the structure we extended our tool
with a registry mechanism such that when cer-
tain keywords are encountered by SFE, partic-
ular procedures are carried out. The Row key-
word is associated with a simple “interval check-
ing” algorithm that takes the list of expression-
s in a row and determines if they represent a
non-overlapping partition. In our current im-
plementation, interval checking works for S ex-
pressions that contain relational numeric oper-
ators and have a concrete value on at least one
side of the operator. Interval checking also re-
turns any ranges not used in the row entries.
This partition is used in the Boolean abstrac-
tion step of analysis to encode in Boolean values
the related expressions that had previously been
considered independent. Our registry mechanis-
m makes it possible to extend easily SFE with
other structure-specific rules.

4.6 Readable Results

A significant challenge in requirements analysis
is returning results that are understandable and
in the same terms as the specification despite
the abstractions used in analysis. One step to-
wards this goal is maintaining the information
to reverse the Boolean abstraction as described
in Section 4.3.

We are able to produce even better results by
tracking information through the expansion and
simplification processes of SFE and rewriting.

4.6.1 Unexpansion

Through an enhancement of the expression rep-
resentation structure, we are able to return an

expression in its unevaluated, and usually more
compact form. Technically, lazy evaluation re-
places a subexpression with its evaluated form,
so the work of evaluation is done only once for
all common subexpressions. We have modified
our representation of expressions to include a
pointer to the original, unevaluated version of
the expression.

At the expense of memory, we are able to keep
both the evaluated and unevaluated forms of the
expressions during SFE. Some analysis proce-
dures choose to output the unevaluated form of
the expression to present a more abstract repre-
sentation of the output.

4.6.2 Traceability

Unexpansion is not sufficient when manipula-
tions other than expansion are performed. For
analyses that perform rewriting, it is often crit-
ical to the user that the results be traceable to
the source in the specification.

For example, tests generated from a specifi-
cation are logical consequences of it. If a test
is produced that represents clearly unintended
behaviour, then its source in the specification
needs to be located before it can be corrected.

An extension to our parser allows subexpres-
sions within the hol specification to be tagged
with user defined identifiers [10]. This use of i-
dentifiers is consistent with many requirements
specification techniques now used in industry.
During rewriting, the tags are propagated. By
displaying these tags with the analysis results,
the source of the results can be determined.

4.7 Quantification

Our specifications can include quantifiers. In
abstraction, quantified subexpressions can be
treated as single Boolean variable for the pur-
pose of automated analysis. However, we can do
a better than this conservative approach in cer-
tain circumstances. The substitutions and sim-
plifications described in this section can either
be done during SFE or rewriting, or as a sepa-
rate function.

For quantified variables of types with a finite
number of members we can substitute the possi-
ble values for the variable, e.g., universal quan-
tification over a finite set of values can be ex-
panded into a conjunction of conditions.

For quantified variables of infinite or uninter-
preted types, we have methods for determining



appropriate substitutions. For certain types of
analysis such as completeness and consistency
checking, and model checking, a conservative ab-
straction method is used to substitute any rel-
evant uninterpreted constants into a universal-
ly quantified statement used in a negative posi-
tions, such as the antecedent of an expression.
We found this form of substitution very useful
for environmental assumptions, which are often
stated with universal quantification. This re-
duction is conservative in that the abstracted
expression is satisfied by more values than the
original expression.

Another approach used in test generation is
particularly interesting from a test coverage
point of view. The user identifies the type of
a quantified variable, treated as a set, as ei-
ther static or dynamic. A type is dynamic if
it can be different in different contexts of the
specification. For example, quantification over
the “flight” type might be dynamic, since there
can be different numbers of aircraft within an
airspace at any given time. An type is static if
it is not dynamic, e.g., the set of natural num-
bers is a static specification element.

When a quantified variable has a type that
is a dynamic set, we consider what instances of
the type should be analyzed to ensure adequate
coverage in testing. This type of simplification
can be performed in at least three modes: none,
single, or all. In the “single” mode of coverage,
in the expression:

Ve: X. PraVPzV...VP,x

we substitute a single value of type X, because
this expression can be satisfied if one value has
one of the properties P;. In the “all” mode, we
substitute n points, each one addressing a differ-
ent P;. Any constants introduced must be new,
and free in the specification.

4.8 Codifying Domain Knowledge

Domain knowledge, or environmental assump-
tions, are conditions that must be taken into
account during analysis to disregard infeasible
combinations of conditions, and simplify expres-
sions. In system-level requirements, we found
there are relatively few dependencies between
conditions, and therefore these can be expressed
concisely using quantified axioms.

For some types of analysis, domain knowledge
can be combined with the specification in anal-
ysis. It is the antecedent of the analysis goal,

or conjuncted with the symbolic representation
of the state set to enforce the constraint. In
these cases, the substitution of relevant con-
stants in the quantified expression described in
Section 4.7 proved very useful.

In other types of analysis, such as test gen-
eration we cannot combine the statements of
the domain knowledge with the specification be-
cause every part of the output must be traceable
to the inputs. For these cases, we identified three
schemata that capture the form of many of the
axioms that are often used:

1. Vz.G = MwEx[P, z; P> z; .. ..
2. Vz.G = Subsm[P; z; P, x;... P, z], and

3. V.G = States[P, z; Py ;.. ..

These schemata map the problem of simplifying
an expression containing elements that match
the patterns given in the schemata list to the
problem of satisfying the guard G for the same
instance of z. For example, conditions that
form partial orders can be defined using Sub-
sm. Conditions on the right subsume conditions
on the left in the Subsm list. The statement
Vo,y,z.x < y = Subsm[z < z;y < z] captures
the information that y < z = = < z when z < y.
The optional guard G, in this case x < y, pro-
vides a means of converting the dependency into
a standard domain for which the analysis tool
has a decision procedure. An expression such as
5 <z A10 < z, is simplified by the schemata to
10 < x because it can check 5 < 10. The Mu-
tEx form is used to define dependencies between
mutually exclusive conditions. The States form
defines conditions that represent a set of states;
exactly one is true. These forms, combined with
the pattern-matching capabilities provided by
the rewrite system, are a powerful method of
allowing the user to provide input to the tool as
domain knowledge.

Though we found that the above approach-
es meet our needs, they have certain limitation-
s. First, when there are more dependent rela-
tionships dictated by the environment, a formal
model of the environment may be more concise
than just axioms. Second, for more complex re-
lationships it may be more efficient to provide a
specially coded decision procedure, rather than
pattern matching and basic evaluation to simply
expressions.



5 Analysis Procedures

The procedures in our toolkit are combined to-
gether to form analysis procedures. In this sec-
tion, we describe the procedures we have applied
in examples. Table 1 is a partial list of the com-
mands currently available in our tool.

5.1 Generating a Satisfying As-

signment

To further one’s understanding of the meaning
of a complicated Boolean S expression, it can
be useful to examine a satisfying assignment for
that expression. This analysis procedure first
expands the expression using symbolic function-
al evaluation, and then constructs a Boolean ab-
straction of the expression represented as a B-
DD. The user chooses the evaluation level for
SFE. Using an algorithm found in the Voss sys-
tem due to Carl Seger, we provide two possible
ways of producing a satisfying assignment. One
attempts to choose as many true assignments to
variables as possible and the other has prefer-
ence for false assignments.

5.2 Symbolic CTL Model Check-
ing

Our model checking procedure takes constants
with definitions that are 1) a CTL formula, 2) a
next state relation, 3) an initial condition, and
4) an optional environmental constraint. We
have a representation of CTL formula as an S
datatype. Internally the expression represent-
ing the CTL formula is decomposed to invoke
procedures based on the definitions of the com-
ponent formulae. The next state relation, initial
condition, and environmental constraint are all
evaluated using SFE, and abstracted to propo-
sitional logic as a BDD. The current and next
state variables are determined for the next state
relation.

We currently have counterexample generation
for AG and EF CTL formulae.

5.3 Simulation

For state machine specifications, a non-
exhaustive form of configuration space explo-
ration is simulation. The presence of uninter-
preted constants in the specification forces our
simulation to be symbolic.

Our analysis procedure does simulation based
on the BDD representing the next state relation
and constraint satisfaction. The user can con-
strain the set of assignments possible for the ini-
tial state and each subsequent state using a list
of conditions. A particular assignment to the
Boolean variables is chosen at each step. This
assignment becomes the previous configuration
for the next step. By choosing a particular as-
signment each time, this form of simulation does
not encounter the state space explosion problem
as in model checking.

A sequence of steps may not exist that sat-
isfies the listed conditions. An arbitrary choice
of a particular state that satisfies the constraints
made early in the simulation may result in a sat-
isfying sequence of steps not being found when
one does exist. An alternative, slightly more
expensive, analysis procedure carries out “one-
lookahead”. At each step, it chooses a configura-
tion that satisfies the applicable constraint and
has a next state that satisfies the next constraint
in the list.

5.4 Completeness, Consistency,
and Symmetry Checking

We use the same criteria as Heimdahl and Leve-
son [17], and Heitmeyer et al. [20] for the com-
pleteness and consistency of tabular specifica-
tions. Completeness analysis evaluates the ex-
pression consisting of the disjunction of the ta-
ble’s rows using SFE. After Boolean abstraction,
we check if the expression is a tautology. If not,
we reverse the abstraction, and use unexpansion
to produce results in a column format indicat-
ing the cases that are not covered in the table.
This presentation is possible because SFE main-
tains the unevaluated versions of expressions,
and addresses some of the problems identified
by Heimdahl in tracing the source of inconsis-
tencies through nested tables where the output
is completely expanded [18].

A similar procedure is carried out for consis-
tency checking, where all pairs of columns are
checked for overlap.

For symmetry checking, the analysis proce-
dure constructs two versions of a two-parameter
table with the parameters swapped, and checks
if the two tables are the same.



| Command | Action

%setorder <const>

use the BDD variable order given by the
expression list <const>

%save_bdd <const> <fname>

save a BDD associated with a constant in the file

%load_bdd <const> <fname>

load a BDD from the file into constant

%bddsimp <const> <ret_c>

simplify <const> using BDDs; put result in <ret_c>

/bddsatisfies <const>

using BDDs, provide a satisfying assignment

%ctlmc <ctl> <nsr> <ic> <env>

do symbolic CTL model checking given next state relation,
initial condition, and domain knowledge

%simulate <nsr> <c_list>

simulate the next state relation by satisfying the
constraint list in each step

Jcomp <const> <env>

do completeness check of a tabular expression

%cons <const> <env>

do consistency check of a tabular expression

%sym <const> <env>

do symmetry check of a two-parameter tabular expression

htcg <options> <const>

produce test classes and test frames for <const>

Table 1: Analysis Commands

5.5 Test Generation

System-level requirements-based test generation
is an analysis that makes extensive use of rewrit-
ing. The rewrite rules used were verified using
HOL. The hol specification is not assumed to be
a state machine, but rather a relation between
the stimuli and responses of the system.

After unfolding the specification to the desired
level of detail, the resulting formula is trans-
formed into its logically equivalent Test Class
Normal Form (TCNF) [9, 12]. The TCNF is a
conjunction of test classes, which describe par-
ticular stimulus/response behaviours as impli-
cations with the stimuli in the antecedent and
responses in the consequent.

The antecedents of the test classes are rewrit-
ten further to reduce the size of quantified
subexpressions. Choices (disjuncts) within an
antecedent represent different test description-
s, referred to as test frames. A test frame is a
test class that has no choice in the antecedent
(other than instantiation). Domain knowledge is
applied to simplify the test frames, and remove
any that are infeasible.

Test frames are the results of the analysis,
and are logical consequences of the given spec-
ification. Test frames are selected to cover the
Boolean function represented by the test class
antecedent using BDDs. The selection of test
frames is determined by one of several coverage
criteria chosen by the user.
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6 Conclusions

We have described a lightweight approach
for applying automated analysis techniques to
higher-order logic specifications. To support this
approach we have created utilities that that ma-
nipulate higher-order logic expressions in truth-
preserving ways. These utilities handle the fea-
tures of a logic, such as uninterpreted constants
and quantification, in evaluation and abstrac-
tion.

We have demonstrated that a common core of
utilities allows us to implement diverse analysis
procedures such as test generation, and model
checking. The common toolkit facilitates re-use
of code and extension of the suite of analysis
procedures with new methods such as symmetry
checking and constraint-based simulation. We
have also shown methods particular to embed-
ded notations can be created such as the com-
pleteness and consistency analysis of tables.

Two other innovations of our approach are:
we allow users to control performance factors
such as BDDs in terms of the language of the
specification; and through the analysis process
we maintain information that produces read-
able, traceable results in the language of the
specification.

Space does not permit us to describe the real-
world examples that we have specified and an-
alyzed using our tools. Examples include an
aeronautical telecommunications network (AT-
N) [1, 6], a separation minima for aircraft [8, 11],
a small heating system [6], a steam boiler con-
trol system [12], and parts of a proprietary air
traffic management system [13]. These examples



are non-trivial. For example, the parameterized
formal ATN statechart specification is approxi-
mately 43 pages. The expanded S representation
of the ATN next state relation consists of 52 076
nodes in a canonical form.

In the future, we would like to explore how
other automated abstraction techniques can be
used in our framework. For example, less con-
servative results can be achieved by abstracting
to a variant of first-order logic. We would like
to explore decomposition strategies to lessen the
state space explosion problem. Our approach,
which uses the same specification language as a
high-powered tool where these strategies can be
verified, allows experts to hard code their ver-
ification method to make it accessible to non-
experts.
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