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Abstract. If there exist efficient procedures (canonizers) for reducing 
terms of two first-order theories to canonical form, can one use them to 
construct such a procedure for terms of the disjoint union of the two the- 
ories? We prove this is possible whenever the original theories are convex. 
As an application, we prove that algorithms for solving equations in the 
two theories (solvers) cannot be combined in a similar fashion. These 
results are relevant to the widely used Shostak's method for combining 
decision procedures for theories. They provide the f i s t  rigorous answers 
to  the questions about the possibility of directly combining canonizers 
and solvers. 

1 Introduction 

In his 1984 paper [19], Shostak proposed a method for combining decision proce- 
dures of first-order theories that has influenced the design of several leading tools 
for automated verification, including PVS [14], SVC [4], and STeP [6]. Shostak's 
method applies to a collection of signature-disjoint theories, where one theory is 
free (entailing valid formulas only) and the others belong to a restricted class, 
recently christened Shostak theories. Each Shostak theory must be convex3, and 
it must have: (1) a canonizer that can compute a unique normal form for every 
term over the theory's signature, and (2) a solver that can transform an equation 
a w b between terms into an equivalent set of equations xi w c; that express the 
variables xi occuring in a b as terms ci over a (possibly empty) set of fresh 
variables. 

Originally, Shostak's method was based on: 

Sho-1: An efficient decision procedure for the union of one free theory and one 
Shostak theory; 

Sho-2: The claim that the disjoint union of two (and therefore any finite number 
of) Shostak theories is a Shostak theory. 

It was first discovered in 1996 that there were mistakes in the Sho-1 algorithm 
[8]. Finding a correct version of the algorithm became an active research area, 
and satisfactory solutions have been obtained only recently [16,5,9]. 
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Surprisingly, the validity of Sho-2 has received minimal serious attention. 
Shostak himself provided little evidence that this observation was correct. The 
current status appears to be this: 

- Almost all sources restate "the fact" that a canonizer for a disjoint union 
of theories is easy to obtain from canonizers of individual theories, but no 
proof is given. 

- It is generally accepted that solvers cannot always be combined to produce a 
solver for the union theory. There are convincing arguments for this, e.g. in 
[la], but no reasonably complete proof. 

- It is also often stated, e.g. in [5], that solvers for some Shostak theories do 
combine, but without proofs that this happens even for one pair of theories. 

This paper is the result of our attempt to understand and prove what can 
and what cannot be combined. While reasonable definitions for a combination 
of two canonizers are not difficult to come up with, it is hardly self-evident 
that the "canonizers" they define satisfy the required properties. We prove in 
Theorem 2 that combining canonizers indeed goes as expected, assuming that 
the component theories are convex. The proof requires some effort, and simple 
counterexamples show that the convexity assumption would be difficult to relax. 

In Theorem 3, we prove that under mild assumptions a disjoint union of 
theories cannot have a solver, regardless of the existence of solvers for the original 
theories. This is a strong negative result, at odds with claims that solvers of some 
common theories can be combined and at odds with implementations which 
apparently realize such combinations. 

The paper is organized as follows. Section 2 contains preliminary material. 
Section 3 defines the candidate canonizer for a combined theory as the normal 
form function corresponding to a reduction system induced by canonizers of the 
component theories. Our main results about the (im)possibility of combining 
canonizers and solvers are given in Sections 4 and 5 respectively. The paper is 
self-contained in the sense that the two main results (Theorems 2 and 3) are 
given with sufficient proof details. 

The paper also incIudes several apposite results that are not directly needed 
for the proof of the main theorems. They are alphabetically enumerated (Lemma 
A etc.) and proved in the appendix. 

2 Preliminaries 

This section contains a brief survey of adopted (mostly standard) notation, fol- 
lowed by the definition of canonizers. 

Terms If E is a first-order signature (a collection of function symbols and 
relation symbols, with arities), the corresponding set of terns will be denoted 
TE(X), where X is some chosen set of variables. Every term is either a variable, 
a constant (function symbol of arity zero), or of the form f (tl, . . . , tk),  where f 



is a function symbol of arity k and t l , .  . . , tk are terms. Terms are standardly 
visualized as ordered rooted trees whose leaves are labeled with variables and 
constants, and whose interior nodes are labeled with function symbols of positive 
arity. Each node has a unique position determined by the approach path to 
it from the root. The position of the root is the empty string e ,  and if 7r is 
the position of some node, then wi is the position of the node's ith child. (For 
example, in Figure 1 below, the node labeled "-" has position 112.) There is an 
obvious bijection between positions of a term t and occurrences of subterms of 
t; the subterm corresponding to the position T will be denoted t,. (For example, 
if t is the term depicted in Figure 1, then tllz = car(x) - car(x).) 

We write t[7r I+ u] for the term obtained by replacement of the subterm t, 
in t by the term u. Simultaneous replacement of subterms t, with terms u(w), 
where w belongs to a set P of positions, is denoted t[7r ct ~ ( 7 r ) ] ~ ~ ~ .  Note that 
this is unambiguous only if all positions occurring in P are incomparable (none 
is a prefix of another). 

Any partial function 8: X + Tc(X) with finite domain will be called a substi- 
tution. Its action on terms is a multiple replacement: tQ = t[7r I+ 8(t,)]tnEd0m(e). 
A variable renaming is a substitution whose range is a subset of X. 

Theories Formulas over C are built from atomic formula using logical connec- 
tives A,  V, 7,  +,V, 3. An atomic formula is either an equation t M t', or has 
the form p(t1,. . . , tk ) ,  where p is a relation symbol of arity k, and the ti's are 
terms. Literals are atomic formulas and their negations. Dasequataons ~ ( t  w t') 
are written as t $ t'. 

A E-model is a non-empty set together with interpretations of symbols in E 
as functions and relations of appropriate arity. In all models, the symbol w is 
interpreted as the equality predicate. Given a C-model M ,  a E-formula 4, and 
an assignment p of elements of M to free variables in 4, we write M k, q5 if 4 is 
true in M under the assignment p. A set r of formulas is satisfiable if M +, r 
(that is, M k, 4 for every q5 E r) for some M, p. We write T 4 if M k, q5 is 
true whenever M k, r is true. 

A theory is a satisfiable set of closed formulas over some signature Z1. If 7 
and 4 are a theory and a formula over C,  we say that 4 is 7-satisfiable if 7 U 4 
is satisfiable. Every theory 7 defines an equivalence relation on its set of terms: 
u and v are 7-equivalent if 7 k u w v. 

A theory 7 is called convex if the validity of the judgment 

where II, is a conjunction of literals implies that 7 k $ --+ ui w v; holds for 
some i. 

Equational theories, and, more generally, theories closed with respect to  the 
direct product are convex. Note, however, that some important theories (e.g. the 
theory of arrays) are not convex [13]. 



Disjoint Unions of Theories Two theories are called disjoint if their signa- 
tures are disjoint sets. We will use the notation 7; + 72 for the union of disjoint 
theories. Unions of theories with non-disjoint signatures will not be considered 
in this paper. 

Suppose El and E2 are signatures of 7; and 72. Define i-terms as those terms 
over El + E2 whose root symbol is in Ci. Thus, variables are not i-terms for 
any i. Pure i-terms are those whose function symbols are all in E{. The word 
mixed is used for a general (pure or not) term over El + E2. Aliens of a mixed 
i-term are its maximal non-variable subterms whose top symbol is not in Ei. 
Alien positions o f t  are those T such that t, is an alien o f t .  A11 these definitions 
obviously extend to unions of more than two signature-disjoint theories. 

Fig. 1. A term (left) belonging to the disjoint union of arithmetic and the theory of 
lists, and its blocks (right). Shading indicates different theories. 

Mixed terms exhibit a block structure, with blocks corresponding to maximal 
"pure parts" of the term. Formally, a block is a set of positions: two positions 
T and T' belong to the same block if and only if all symbols occurring on the 
unique simple path between (and including) T and T' belong to the same Ei. 
An example is given in Figure 1. Note that alien positions in t are roots of the 
children blocks of the root block of t .  Note also that positions corresponding to 
occurrences of variables are not part of any block, though each such position is 
clearly associated with a unique block. 

Canonizers A canonizer for a theory 7 would, by the most inclusive definition, 
be any function u:Tc(X) + TE(X), which, for a given input u picks a unique 
representative (the canonical form) of the 7-equivalence class of u. Thus, a 
computable canonizer solves the word problem for 7. In the literature about 
Shostak's Algorithm, canonizers are usually required to satisfy also the following 
properties: 



(CAN-1) a(u(u)) = a(u) 
(CAN-2) 7 k u M v if and only if u(u) = u(v) 
(CAN-3) every variable occurring in a(u) occurs in u 
(CAN-4) If a(u) = u, then a(v) = v for every subterm v of u 

Note that these conditions imply 7 k a(u) w u. Also, u is a canonical form 
if and only if a(u) = u. 

For reasons that will become apparent in Section 3, we will also need to 
require that canonizers are well-behaved with respect to variable renaming. Full 
invariance under renaming cannot be expected since, for example, x + y and y +x 
cannot both be canonical if + is commutative. We will postulate the invariance 
one normally finds in practice, where preference is defined in terms of an explicit 
ordering of variables. 

Thus, from now on, we will assume a fixed ordering on X that puts the 
variables in an infinite sequence, and we impose the following condition on can- 
onizers: 

(CAN-5) a(ucr) = a(u)a for every order-preserving renaming a: X -b X 
whose domain contains all variables of u 

In this paper, a canonizer is by definition any function, not necessarily com- 
putable, satisfying the five CAN properties. By the following lemma, the existence 
of canonizers is guaranteed for all theories with enough ground terms. 

Lemma A. A canonizer for 7 exists if and only if every variable independent 
term of 7 is equivalent to  a ground term. (By  definition, t is variable indepen- 
dent if 7 k t w t8  for every substitution 8.) 

3 Combining Canonizers 

Throughout this section, we assume that 5 , .  . . ,Tn are disjoint theories with 
respective signatures El,. . . , En and canonizers 0 1 , .  . . ,on. We will write 7 for 
the union theory 5 + -.  . + Tn, and E for its signature El + . . . + En. Our goal 
is to  define a function 

which is a natural candidate for a canonizer of 7. It will be obtained as the 
normal form function of a certain reduction system that canonizers u1, . . . , an 
induce on the set Tx(X) of mixed terms. 

3.1 Extending ui to Mixed Terms 

If t is a (not necessarily pure) i-term, we can still apply the canonizer a; to it 
by treating its alien subterms as variables. For example, the term cons(x, y) + 



(car(x) - car(x)) becomes the pure term u + (v - v )  after replacing its alien 
subterms cons(x, y) and car(x) with fresh variables u, v; the canonizer for linear 
arithmetic simplifies the pure term into u, SO the original mixed term is "can- 
onized" into ums(x, y ) .  To make this extension of ui well defined we need to 
resolve the ambiguities presented by terms like car(x) + car(y), where the result 
of canonization could depend on the choice of variables used to denote the alien 
subterms. So let us assume a fixed total ordering of 6-terms (e.g., lexicographi- 
cal). Then, given an i-term t ,  a partial function y: T E ( X )  + X will be called an 
alien abstraction function for t if 

- y is monotonic and injective; 
- the domain of y contains all alien subterms oft;  
- the co-domain of y does not contain any variable occurring in t. 

When y is an alien abstraction function for t ,  we write t y for the term 
t[a e y(t,)lTEP, where P is the set of all alien positions of t .  Thus, t y is 
obtained by replacing the aliens o f t  with variables specified by y. We denote by 
y-l the obvious substitution X -+ T x ( X )  that inverts y. 

Definition 1. The extended canonizer ki: T c ( X )  + T x ( X )  is given by 

( ~ i ( t  7 ) ) ~ - I  i f t  is an i-term k i ( t )  = 
otherwise 

where y is an alien cabstraction function for t. 

This definition is a slight modification of the one given by Rue6 and Shankar 
[16,18]. Using the propery (CAN-5), it is easy to check that the definition is 
correct, i.e. independent of the choice of r. 

~ o t e  that i f t  is an i-term, then ki(t) is also an i-term, unless, as in our 
introductory example, ui(t y) is a variable. In such cases &(t)  is an alien 
subterm of t or a variable occurring in t .  Note also that ki is not a canonizer for 
7. 

3.2 Reduction Systems for Mixed Terms 

The extended canonizers ki lead immediately to a reduction system + on the 
set T z ( X )  of mixed terms. For convenience, we will also consider two smaller 
reduction systems + I  and +s, all defined as follows. 

Definition 2. Suppose a is a position in a C-term t and suppose the top symbol 
o f t ,  is in 6i. 

1. If ki(t,) # t,, we say that a is a redex oft and that t reduces to t' = t[a H 

ki(t,)], symbolically t + t'. 
2. We say that a is a block redex oft if it is a redex and also the root position 

of a block oft .  The corresponding reduction will be written t + B  t ' .  



3. W e  say that n i s  a n  innermost redex if it is  a block redex and no t  a p r e h  of 
another block redex. Reduction at innermost  positions will be denoted t -+I t'. 

Example 1. The term t in Figure 1 has four redexes: 11 and 12 are innermost 
redexes; E is a block redex, but not innermost; 112 is a redex, but not a block 
redex. 

Lemma 1. T h e  reduction systems +, + B ,  + I  have the same notion of iwe-  
ducible terms.  

Proof. A position n is a redex of t if and only if the alien abstraction t ,  y 
is not a canonical form in the corresponding theory 7;. If n is a redex and n' 
the position of the root of the block containing n, then t , ~  y contains t ,  y as 
a subterm, and by (CAN-4), it too must be a redex. Thus, existence of a redex 
implies existence of a block redex. Clearly, existence of a block redex implies 
existence of an innermost redex. 

The following theorem together with Lemma 1 implies the equality of the 
equivalence relations H*, ~ ; j ,  H; generated by our three reduction systems. 

Theorem B. Every equivalence class of H* contains exactly one irreducible 
term.  

The obvious approach to proving Theorem B by demonstrating local con- 
fluence and termination of + does not work because, as the following example 
shows, termination is not guaranteed in general. 

Example 2. Let 71 be the equational theory with one binary symbol f axioma- 
tized by f ( x ,  y) = f ( x ,  x). Let 72 be any theory with a term u which canonizes 
to a different term v. It is not difficult to see that there exists a canonizer for 
7; which canonizes f ( x ,  y )  to f (x, x ) ,  for any variables x,  y. Then we have a 
cyclic derivation: f (u, v) + f (u, u) + f (u, v) + - - ., where in the first step the 
reduction occurs at the root position of f (u,  v), and in the second step it occurs 
at the root of the second occurrence of u in f (u, ti). 

Because of space limitations, we relegate the proof of Theorem B to the 
technical report [ll]. We prove a weaker statement that is still sufficient to make 
the paper self-contained. 

Lemma 2. Every equivalence class of i+; contains exactly one irreducible term.  

Proof. Since the relation -+I is clearly normalizing, it suffices to check that it 
satisfies the diamond property [I]. Indeed, if the reductions t 41 u and t +I v 
correspond to innermost redexes n and n' of t ,  then n and n' are innermost 
redexes of v and u respectively, and reducing v at n produces the same result as 
reducing u at n'. 



3.3 The Candidate Canonizer 

Definition 3. The candidate canonizer for 7 induced by canonizers 0 1 , .  . . , u, 
is the function a1 * . . - * an that maps every 7 - t e r m  t to  its normal form-the 
unique irreducible t erm i n  the H;-equivalence class o f t .  

Remark 1. Using Theorem B, it can be proved that the candidate canonizer 
u = u1 * . - . * an is characterized by properties 

where x is any variable, and f is any functional symbol (in E;, of arity k). These 
properties are used as a recursive definition for the combined canonizer in [16, 
181. 

It is easy to check that ul * . . * an satisfies all the defining properties of 
canonizers, except perhaps (CAN-2) .  We show now that it also always satisfies 
the soundness part of (CAN-2) .  

Lemma 3. Denote u = a1 * . . -  * a,. Then: 

(a) 7 k u w u(u);  
(b) If u (u)  = u(v), then 7 k u w v. 

Proof. Part (b) expresses the soundness of our candidate canonizer o and it 
follows immediately from the part (a). As for (a), it suffices to prove 

where T is the root position of a &-block of u. Since u = U[T * u,], we only 
need to prove 

7 k &i(um) w U S -  

With a suitable variable abstraction function y, we have 

Since ui is a canonizer, we also have 

Combining the last three relations finishes the proof. 

Corollary 1. ul * - . . *a,  is a canonizer if and only if u $ v as 7-satisfiable for 
any two distinct irreducible ternas u, v. 

Proof. In view of Lemma 3(b) and the remark preceding it, we only need to 
check that u(u) = u(v) must hold whenever 7 /= u w v. By Lemma 3(a), this 
goal is equivalent to proving that u $ v is 7-satisfiable for every two distinct 
irreducibles u and v. 



In the following section we will proceed to show that the condition in Corol- 
lary 1 is satisfied when the component theories are convex. For the remainder 
of this section, we divert to discuss two additional properties of the candidate 
canonizers. 

First, we note that composability of canonizers is a property of the set of 
theories (5,. . . ,Tn): various candidate canonizers for 7 obtained for various 
choices of 01,. . . ,an are either all canonizers for 7, or none of them is. This is 
a consequence of the following result, proved in [ l l ] .  

Theorem C. Let & be the equational theory axiomatized b y  equations u m v,  
where u and v are x-equivalent terms for some i .  Then, the candidate canonizer 
a1 * . . . * an is a canonzzer if and only all 7-equivalent terms are &-equivalent. 

Clearly, if the canonizers 01,. . . , u, are computable, then the candidate can- 
onizer a = al * .. - * an is computable too. We can sharpen this observation as 
follows. 

Proposition 1. Suppose k 2 1 and each of the canonizers al,. . . ,an is im- 
plemented with time complexity O(Nk)) ,  where N denotes the size of the input 
term. Then the time complexity of any implementation of a1 * - - .  * an that uses 
innermost reduction strategy is also O(Nk) .  

Proof. Assume that the size of trees is measured by the number of nodes and 
suppose that each of the canonizers ai takes time at most cNk for any input 
term of size N.  

Let t be a C-term of size N ,  m the number of blocks in t ,  and Ni the number 
of nodes in the ith block. We need these easily checked properties of the innermost 
reduction: 

(1) if u +I v ,  then every root block position of v is a root block position of u;  
(2)  if u +I v, then the size of every block of v does not exceed the size of the 

corresponding block of u; 
(3) if the reduction u +I v takes place at  the redex position T, then T is not a 

redex in v.  

It follows that bringing t to its normal form can take at  most m steps, each 
associated with a unique block of t .  The reduction at  any step is an application 
of an operator ei, the essential part of which is a call to ai with an input term of 
size equal to the size of the currently processed block. The total time needed to 
execute all these calls to canonizers ai is thus at  most cNF + - .  . + cN&, where 
Nl, . . . , Nm are the sizes of all blocks of t .  This upper bound is not greater than 
c(N1 + + Nm)k = cNk.  Since k 2 1 and the time needed for the rest of the 
algorithm is clearly O ( N ) ,  this finishes the proof. 

4 Convexity and Canonization 

Unfortunately, not all candidate canonizers satisfy the completeness part of the 
critical condition (CAN-2). For a simple concrete example take the theory 7 with 



signature consisting of  three constants p, q, r constrained by the axiomp x qvp = 
r ,  and take T with one ternary functional symbol f constrained by  axioms 
f ( x ,  2, Y )  = f ( x , x ,  2)  and f ( x ,  Y ,  2)  = f ( x ,  2, x ) .  Then f (P,  9, r )  = f (P, P,  PI is a 
theorem o f  7 + TI, while f (p,  q, r )  and f (p,p,p) are distinct irreducibles. 

This is not an isolated example. W e  show now that the same idea applies 
whenever 7 entails a disjunction o f  equalities without entailing any of the dis- 
juncts. 

Proposition 2. Suppose that  for some theory 7 and i ts  terms u l ,  v l ,  . . . , uk, vk 
the statement 

T k U l  M U 1  V . - - V U k  M V k  

is  true, but none of the  statements 7 ui = v,  is  true. T h e n  there exist a n  
equational theory 7' such that u * u1 is  no t  a canonizer for 7 + T', for any  
canonizers a, u1 of 7 and 7'. 

Proof. Take the signature of T to  consist o f  one constant c and one function 
symbol f of  arity 2k.  Axiomatize T by k formulas 

Clearly now, T+T1 k f ( u l ,  v l ,  u2, v2, . . . , uk, vk) M cis true, so the normal forms 
o f  c (which is c itself) and f ( u l , v l ,  u2,v2,. . . , uk,vk) must be the same. I t  is no 
loss o f  generality to  assume that the terms ui ,  vi are a-reduced, so the only redex 
in f ( u l ,  vl , u2, v2, . . . , uk, vk) is the root position. The result o f  the alien abstrac- 
tion o f  this term is of  the form f ( X I ,  yl,x2, y2,. . . , xk,  yk), where xi, yi are vari- 
ables, some o f  which may be equal (because there may be equals among the terms 
ui ,  vi) .  However, we know that xi # yi for any i (because ui $ v,  is 7-satisfiable). 
On the other hand, is easy to  see that T k f ( X I ,  yl, x2,y2,. . . , x k , ~ k )  M c 
cannot be true unless xi = yi for some i. Consequently, the normal form of  
f (ul, v l ,  u2 ,  v2,. . . , uk, vk) cannot be c. 

In Theorem 2 below we prove that convexity o f  the component theories guar- 
antees that the candidate canonizer for their union is indeed a canonizer. This 
is as much as we can hope for, in view of the examples given in Proposition 2. 

For use in the proof o f  Theorem 2 we need the following modification o f  
the theorem o f  Tinelli and Harandi about satisfiability in the disjoint union o f  
theories. 

Theorem 1. Let 7 = 5 + . . -  + Tn, where the  theories 7; are convex, and let 
cPi be a conjunction of %-literals (i = 1 , .  . . , n). Suppose the set V of variables 
occurring in all the 4i has a t  least two elements, and let A be the conjunction of 
all disequations x gC: y, where x ,  y E V and x # y. If q& A A is  7;-satisfiable for 
every i, then  A - - - A $, A A i s  7-satisfiable. 



The original result ([20], Proposition 3.8) differs from Theorem 1 mainly 
in that it assumes that the theories 7; are stably-infinite4, rather than con- 
vex. For all practical purposes, convexity is a stronger assumption than stable- 
infiniteness, as shown recently by Barrett, Dill, and Stump ([5], Theorem 4). 
Still, there exist convex theories that are not stably-infinite, so Theorem 1 does 
not directly follow from known results. We omit the proof, based on ideas in [20] 
and [5]. 

Theorem 2. Let 7 = 71 + 0 . .  + 7,, where each 7; is a convex theory with a 
canonizer ui. Then a1 * . . . * u, is a canonizer for 7. 

Proof. We shall write a for a1 * - - -  * u, and call a term t irreducible when 
u(t) = t. In view of Corollary 1, it suffices to prove that u # v is 7-satisfiable 
for every two distinct irreducibles u and v. Using Theorem 1, we can translate 
this 7-satisfiability problem to a set of simpler 7;-satisfiability problems. The 
necessary first step is to transform u $ v to an equisatisfiable conjunction of 7;- 
formulas, which is commonly done by breaking down mixed terms using variable 
abstraction repeatedly. 

Formally, we let Xo be the set of variables occurring in u and v, and we 
let A be the smallest set of terms that contains u and v, and is closed under 
taking alien subterms. (Thus, the elements of A are of the form w,, where w is 
u or v, and T is the root position of a block of w.) Then we associate a variable 
x(t) 4 Xo to every t E A, making sure that the map t H x(t) is injective and 
order-preserving. Next, with every t E A, we associate the equation 

where P is the set of alien positions of t. Let us use the shorthand e(t) for the 
term occurring on the right-hand side of E(t). Each e(t) is a pure 7;-term, for 
some i. Moreover, since u and v are irreducible, each e(t) is a canonical form for 
its theory 7;. Note also that the terms e(t) are all distinct. 

Let A = Al + . - .  + A, be the partition such that t E Ai when e(t) is a 
7;-term. Let also Xi be the corresponding set of variables x(t). Note that the 
sets Xo, X I , .  . . , X, are disjoint. 

Let q5i be the conjunction of equations E(t )  where t E Ai. Clearly, c$i is a 
%-formula. We also have 

for every t E A, by induction on the size of t. As a consequence, proving that 
A ..- A 4, A xu # x, is 7-satisfiable will imply our goal that u # v is 7- 

satisfiable. 
We proceed to prove that $1 A - .  . A 4, A A is 7-satisfiable, where A is the 

conjunction of disequations x, # xt, for all distinct terms s, t E A. By Theorem 1, 
it suffices to check that 4i A A is %-satisfiable for each i. 

A theory 7 is stably-infinite if every quantifier-free ?-satisfiable formula is true in 
some infinite model for 7. 



Now, the set of equations occurring in q5i is in solved form for variables in 
Xi: every x E Xi occurs once as a left-hand side, and does not occur at  all in the 
right-hand sides. Thus, for any formula $, we have that q5i A $ is 7;-satisfiable 
if and only if the associated formula $' = $[x(t) I-, e(t)ltEA; is 7;-satisfiable. 
We need the instance $ = A of this observation. It reduces our goal to checking 
that the formula A' is 7;-satisfiable. 

The conjuncts of A' are disequations each side of which is either a variable in 
X - Xi, or a term e(t) where t E Ai. Thus, every conjunct in A' is a disequation 
of two distinct terms in TE, (X -Xi),  which are both canonical for IT;. Therefore, 
by definition of canonizer, each of these disequations is IT;-satisfiable. Convexity 
of 7; then implies that their conjunction A' is x-satisfiable as well. 

5 Non-Existence of Solvers 

If u w v is an equation involving variables X I , .  . . ,xk, its general solution is a 
set of equations 

21 w t l ,  ..., Xk Mtk 

such that 
7 U K5 V t, (38) (21 w t l  A . . . Xk M tk) 

where 5 stands for the set of variables occurring in t l ,  . . . , tk ,  and variables xi 
do not occur among the y's. 

A solver for a theory T is a function s o l v e  that takes an equation u w v 
as argument, and returns a general solution for u. M v if this equation is T- 
satisfiable. If u x v is 7-unsatisfiable, then so lve (u  w v) returns 15. 

In some trivial cases, it is possible to combine solvers. Suppose, for example, 
that 7 is a theory in which all function symbols are "projections" in the sense 
that 7 f (xl , .  . . , x,) = xi holds for some i. It is not hard to see that then 
T + T has a solver for every theory 7' which has a solver. I t  turns out that 
these are pretty much all the cases when a combined theory allows a solver. 

Let us say that a function symbol f (of any arity) of T is non-collapsing 
when f (x, . . . , x) gC: x is satisfiable. 

Theorem 3. Suppose 5 and 5 are stably-infinite theories with non-collapsing 
function symbols, and suppose ul ,  u2 are canonizers of these theories. If a1 * u2 
i s  a canonizer for T = 5 + 72,  then 7 does not have a solver. 

Proof. Consider the equation 

where f and g are non-collapsing symbols of 5 and 5 respectively. Assume the 
theory 5 + 72 is consistent; otherwise, there is nothing to prove. We need to 

The power of effective solvers is in their ability to reduce the decidability problem 
for Horn clauses over a given theory 7 to  the word problem for 7; see [5] and [9]. 



check that both E and -E are 7-satisfiable. Indeed, since 7; is stably infinite 
(i = 1,2), it has an infinite model Mi containing distinct elements ai and bi 
such that f Mi (ai, . . . , ai) = bi. Every bijection between the carrier sets of these 
models produces a "fusion" model for 71 + 72 [2]. Choosing the bijection so that 
a1 corresponds to a2 and bl corresponds to b2 will result in a model satisfying 
E. Another choice, where a1 corresponds to a2 but bl does not correspond to b2 
will give a model satisfying TE. 

Arguing by contradiction, assume there exists a solver for 7. Since E is 
satisfiable, solve(E) is an equation of the form x = w, where x does not occur 
in w. It follows that 

and, since a1 *u2 is a canonizer, the normal forms off  (w, . . . , w) and g(w, . . . , w) 
must be the same. We proceed to show that their normal forms must also be 
distinct. 

We may assume without loss of generality that w is irreducible. Since TE is 
satisfiable, w cannot be x (or any other variable). For definiteness, suppose the 
top symbol of w is in 5. 

The only possible redex of the term g(w, . . . , w) is E .  Since g is a non- 
collapsing symbol, uz(g(x,. . . , x)) is not a variable, but some proper %-term. 
Thus, reduction will not change the block height of g(w, . . . , w), which is one 
greater than the block height of w. 

On the other hand, the block height of f (w,. . . , w) equals that of w, and 
cannot increase when f (w, . . . , w) is reduced. Thus, f (w, . . . , w) and g(w, . . . , w) 
have different normal forms. 

6 Conclusion and Related Work 

Along with the combination algorithm of Nelson and Oppen [13], the method 
suggested by Shostak [19] has been a cornerstone for implementation of auto- 
mated verification tools based on combining decision procedures. In a recent 
survey [17], Shankar discusses the promise and success of such tools, stressing 
also the need for stronger theoretical support. Clarifying theoretical foundations 
of the area has become a subject of intensive research; the list [3,9,10,18,12,7] 
is a sample from the spate of last year's publications. Much of this effort, includ- 
ing the present paper, is devoted to the demystification of the Shostak method. 
Our contribution is in providing answers to two basic questions that have not as 
yet been adequately addressed. 

With Theorem 2 we confirm the common view that canonizers for disjoints 
unions of theories can be obtained by a straightforward combination of can- 
onizers for the component theories. Our analysis reveals also that this result 
only holds with some additional assumptions on the theories involved, and that 
convexity of theories is a sufficient condition. 

Since the existence of an effective canonizer is equivalent to the solvability of 
the word problem, our Theorem 2 can be viewed as a generalization of Pigozzi's 



theorem [15] which states that the word problem is solvable for disjoint unions 
of equational theories with solvable word problems. Pigozzi's result has recently 
been revisited and generalized in a different direction by Baader and Tinelli 
[2]. In fact, their version of the algorithm for combining solutions of the word 
problem for disjoint equational theories remains correct even for some sets of non- 
equational input theories. It appears that this algorithm correctly works for any 
set of theories whose canonizers are combinable, and that this could be proved 
by exploiting the characterization of combinability given in our Theorem C. 

Combination of canonizers is a basic technique that provides grounds for 
equational reasoning about terms in unions of theories, much like normal forms 
in various colimits of algebraic structures do. We expect therefore Theorem 2 
to be of wider interest and applicability. Its usefulness is demonstrated by our 
proof of Theorem 3. 

Theorem 3 itself confirms another observation, made only recently [5,18], 
namely that there is no general way of producing a solver for the disjoint union 
of theories from solvers of the component theories. Acknowledging this fact, and 
thus abandoning the idea of producing the combined solver altogether, the de- 
signers of the prover ICS make decision procedures of Shostak theories cooperate 
in a Nelson-Oppen framework, reducing the role of Shostak solvers to efficient 
generation of new equalities [18]. 

On the other hand, Theorem 3 implies that a direct combination of solvers 
is not possible for theories of practical interest, and this seems to contradict the 
common wisdom, as well as practice, where some tools (e.g. CVC, as described 
in [3]) apparently combine solvers of several Shostak theories into a global solver. 
This conundrum needs to be resolved, but it would be premature to claim that 
Theorem 3 destroys the possibility of global solvers. Perhaps such solvers exist in 
some modified setting that has not been fully explained yet. With this additional 
motivation, we would join Tinelli and Ringeissen [21] in their call to investigate 
combining decision procedures for rnultisorted theories. 
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7 Appendix: Omitted Proofs 

7.1 Proof of Lemma A 

Proof. Let us say that a finite set V of variables supports a term t if t is 7- 
equivalent to a term that involves only variables from V. Suppose now V and V' 
both support t and let W = V n V'. We claim that W also supports t. If W = 0, 
then it is easy to check that t is variable independent, so by assumption W 
supports t. For the case W # 0 suppose 7 t = t', where t and t' contain only 
variables from V and V' respectively. Then 7 t" w t', where t" is obtained 
from t by substituting variables in V \ V' by any other variables. Chosen the 
latter variables from the set W shows that t is supported by W, as claimed. 

It follows that for every t there exists a unique smallest set of variables 
supporting t. Let us call a term frugal if it does not contain occurrences of any 
variables except those belonging to its minimal supporting set. 

Let us say now that a set of terms is transversal if it 

- consists only of frugal terms; 
- does not contain two 7-equivalent terms; 
- is closed under taking subterms; 
- is closed under order-preserving variable renarnings. 

All we need is to show that there exists a transversal set of terms that contains 
a representative of each class of 7-equivalent terms. If S is such a set, then we 
can define a canonizer u for 7 as the function that maps each term to the 
unique equivalent term that belongs to S. The properties (CAN 1-5) will clearly 
be satisfied by u. 

It  is easy to see that the family of all transversal sets, ordered by inclusion, is 
closed under taking unions of chains. By Zorn's Lemma, there exists a maximal 
transversal set, say S. We claim that S contains a representative of each class 
of 7-equivalent terms. Arguing by contradiction, assume t is a term such that 
t' $! S for any t' that is 7-equivalent to t. Without loss of generality, t is frugal 
and every subterm o f t  is frugal. Now, there exists a subterm of t ,  all of whose 
subterms (if any) belong to S. Without loss of generality, this subterm is t itself. 
Thus, we can assume that t is frugal and all its subterms are in S. Let T be the 
set of all terms t a ,  where a is an order-preserving variable renaming. Since S is 
closed under such renamings, all subterms of terms in T are in S. Thus, S U T 
satisfies the last two conditions for being transversal. It is easy to check that it 
satisfies the other two conditions as well, so it is a transversal set, contradicting 
maximality of S. 

7.2 Proof of Theorem 1 

Proof. Suppose V = {XI,. . . , x,). We prove first that, for every i E (1,. . . , n), 
the theory 7;' = 7; U { ( 3 ~ ) + i  A A )  has an infinite model. (The notation Z is 
for the string of variables XI,. . . , x,.) Assume the contrary. By Compactness 



Theorem, there is finite upper bound k on the set of cardinalities of models of 
TI'. Thus, with variables yo,. . . , yk that do not occur in V, we have 

Equivalently, 

X, 4i b V xp M xq v V YT M 3s- 
P#P r f s  

Convexity of x implies 

x, $i xp M xq for some p, q 

or 
7;, +i + yr M ys for some r ,  s. 

The first relation contradicts IT;-satisfiability of di A A. The second even asserts 
that 7; U (32)4i can only have a one-element model, which again contradicts 
IT;-satisfiability of bi A A. 

Thus, 71' has an infinite model, and by the Lowenheim-Skolem Theorem, it 
has a countably infinite model, say Mi. This Mi is a model for x in which the 
formula Qi A A is satisfiable, via some interpretation that associates distinct el- 
ements a i l , .  . . , aiP to variables X I , .  . . ,%,. It is no loss of generality to assume 
that the underlying sets of models MI,.  . . , Mn are all the same, and that equali- 
ties a l j  = -. . = a,j hold for all j E (1,. . . , n). (The underlying sets, if different, 
can be identified via bijections that respect interpretations of the variables xi.) 
It is not difficult to see that this common underlying set now becomes a model of 
7 in which A . . . A 4, A A is satisfiable. (For more details about this "fusion" 
technique of constructing models of unions of theories, see [2,21].) 

7.3 Proof of Theorem B 

We prove three lemmas first. 

Lemma 4. (a) If u is a E- term and p is the root position of a block of u, then 
u +; u[P t+ O(up)]. 

(b) Suppose 8 is a substitution such that, for every x i n  its domain, 8(x) is not 
an i-term. Then u8 +f u(uB), for every pure i-term u. 

Proof. (a) If p is a root block position in u and up + I  v, then clearly u + I  

u[p C )  u]. Consequently, if p is a root block position in u,  and up +; v, then 
u +; u[p C )  u]. The statement of the lemma follows from this by taking v = 

d u p ) .  
(b) Let P be the set of all positions T in u such that u, is a variable belonging 

to the domain of 8. By assumption, every .rr E P is an alien position in u8. Thus, 



we have 

where the middle step is justified by Part (a) of the lemma. 

Lemma 5. Suppose u is a pure i-term, 8: X + T z ( X )  is a substitution, and 
y : T c ( X )  + X is an alien abstraction function for u8. Then 

for some substitution 8: X -+ Tzi ( X )  that depends only on 8 and y. 

Proof. Consider the partition of dom(8) into three subsets X I ,  X z ,  X3 defined by 

x E X I  iff 8(x)  is a j-term for j # i 
x E X z  iff 8 ( x )  is an i-term 

x E X z  iff 8(x)  is a variable 

Alien positions of u8 are either of the form T ,  where u ,  E X I ,  or of the form 
a d ,  where 7r E X z  and T' is an alien position in B(u,). In the first case, the 
alien (u8),  is just O(u,). In the second case, the alien ( U B ) ~ , ,  is 8(u,),j. It is 
now easy to see that the substitution 

satisfies the requirement u8 y = u8. 
Fig. 2 depicts a situation where X1 = { z ) ,  X z  = { x ,  y), X3 = 0. 

Lemma 6. Suppose u , v  are pure i-terms, 7; + u w v ,  and 8 is a substitution 
such that B(x) is irreducible for every 3; E dom(8). Then u(u8) = u(u8). 

Proof. For both u8 and v8, the root position is the only possible innermost redex. 
Thus, we only need to prove 

Let y be an alien abstraction function for both u8 and v8. In view of Lemma 5, we 
have Gi(u8) = (ui(u8 y))y-I = ~ ~ ( u e ) ~ - l ,  and similarly Gi(v8) = U ~ ( V ~ ) ~ - ~ .  

This reduces our goal to proving ui(u8) = oi(v8),  which is indeed true, since ai 



Fig. 2. On the left is a term u0 with its top block highlighted. The term u0.y is obtained 
from this top block by attaching equal fresh variables to positions corresponding to 
equal aliens. On the right is the term ue. 

is a canonizer, and 71 ue = v 8  is true as a consequence of one of the lemma's 
assumptions. 

Proof of Theorem B. Since u(t) is irreducible and belongs to the equivalence 
class of t ,  it remains to prove that g(t)  is the only irreducible in that class. 
Clearly, it suffices to prove that u(t) = ~ ( t ' )  holds for every t ,  t' such that t + t'. 

The reduction t + t' happens at  some position a ,  so we have t' = t[a H 
ki(t,)], for the appropriate i .  Let p be the root position in t of the block con- 
taining a. First we check that it no loss of generality to assume here that p = e, 
the root position of t. 

Clearly, t' = t[p * t;], so in view of Lemma 4(a) we have 

t +; t[p H u(t,)] and t' +; t[p c+ u(tb)]. 

Thus, it suffices to prove u(t,) = u(tb). Since t, + tb (with the reduction taking 
place at the position .rr' such that .rr = p'), this is just the restatement of the 
original goal with t and t' in place oft ,  and tb respectively. 

Thus, we can assume p = e, so that a is a position within the top block of t .  
Let a be the pure i-term t 07, where y is an alien abstraction function for t. Now 
we have t = ay-', a, = t, o y  and t, = a,?-'. Thus, Ci(t,) = (ui(a,))y-', and 
from t' = t[* 6i(t,)] we can derive 

where the second equality is is an instance of the simple fact (c[x H d])0 = 
(c0)[.rr H dB] that holds for all terms c, d, substitutions 8, and positions .rr in c. 

Using Lemma 4(b), it follow that 



and also (since t = ay-l) 
t +; a(ay-l). 

Now (ay-l)(x) is irreducible for every variable x, so Lemma 6 will imply 
u(tl) = ~ ( t )  as soon as we check 7; a [ r  H ui(a,)] = a. This is indeed true, 
because a = a[r  H a,] (trivially) and 7; ai(a,) = a, (since ai is a canonizer). 

7.4 Proof of Theorem C 

Let us denote by =, the equivalence relation on E-terms induced by the candi- 
date canonizer a = a1 * . . . * a,: 

u I, v if and only if a(u) = a(v). 

Note that the condition (CAN-2), necessary and sufficent for a to be a canonizer, 
can be expressed as the equality of equivalence relations E, and ~ 7 ,  the latter 
being the 7-equivalence of terms. 

Lemma 7. (a) u =, v holds for all pure i - terms such that 7; u = v; 
(b) r, is a congruence; 
(c) I, is closed under substitutions: u =, v implies u6' =, v0. 

Proof. (a) For pure i-terms, u 5, v holds if and only if u =,, v. 
(b) Clearly, f (tl ,  . . . , t i , .  . . , tk) + f (tl, . . . , t i , .  . . , tk) holds whenever ti -+ ti 

does. Thus, f (tl, . . . , tk) +' f ( ~ ( t l ) ,  . . . , ~ ( t k ) ) .  
(c) It suffices to prove that u -+ v implies u8 I, v6'. We have v = u[n H 

~?~(u,)] for some r and i ,  and so v6' = (u6')[r H ~?~(u,)6']. Since u = u[r H u,], 
we also have u6' = (u6')[r t-+ u,f?]. Thus, it suffices to prove &i(u,)6' G ,  u,O. We 
proceed to prove that t8 I, ci(t)8 holds for any i-term t; instantiating this with 
t = u and t = ei(u,) and combining with &i(u,) 5, u,, which true by part (a), 
would finish the proof. 

Let a = t y, the result of variable abstraction of t. We have t = ay-' and 
&i(t) = ai(a)y-l. What we need to prove is thus a(6' o y-l) I, ai (a) (6' o -y-'). 

We claim now that t6' -+* t(a o 8) holds for every t and 8. Assuming the 
claim, our goal simplifies to a(a o 6' o y-') , ai(a)(a o 6' o Y-'), which is an 
instance of Lemma 6. 

As for the proof of the claim, it is just like that of Lemma 4(b), with + in 
place of + I .  

Clearly, a is a canonizer if and only if I, and =7 are equal. To prove T h e  
orem C, it remains to check that the equivalence relations =, and = E  are the 
same. 

By Birkhoff's Theorem [I] the relation =E is the smallest congruence that is 
closed under substitutions and contains all pure equations in 5,. . . ,7, .  In other 
words, -E is the smallest relation satisfying the properties (a)-(c) of Lemma 7. 
Since =, satisfies these properties, we have that EE is included in 5,. 



For the opposite direction we need to prove that u r, v implies u r& v. 
This would follow immediately if we can prove that a( t )  =& t holds for every 
t .  This last goal reduces to proving t r~ t' under the assumption t + t'. Now 
t' = t[a e &(t,)] for some a and i, and our goal becomes t ,  r~ ei(t,). If 
a = t ,  y is the result of variable abstraction of t,, we have t ,  = ay-' and 
Si(t,) = ai(a)y-l. So it suffices to prove a r~ ui(a) which is clearly true because 
ui is a canonizer and so a and ai(a) are x-equivalent. 


