
The Design of a Ianguage for Modular ~r~gramsl

Richard B. Kieburtz
t h g o n & - d u d e Center

3eng t Nordstrom
Qralmers Technical LhEiueTsify

mzd
ljhivsrsity of Gothsnbzag

Sometimes programming is difficult because or the amount of detail that is
relevant to the problem being solved. A suitable language for these problems
should aid the programmer in organizing a program as a synthesis of parts.
Apple is a language designed for such applications. It is a typed language in
which functions are objects, and it provides three complementary ways to modu-
l a r b programs. These are the dewtion of enwoohments , the use of ,knctiond
abstraction, and the use of dcrta abstraction or parameterized, abstract data
types.

In this paper we describe the main features of Apple, and explain the
motivation tor many of the design decisions. Other documents furnish a formal
dellrution, a programmer's manual, and implementation notes.

Ksyuords: functional programming, abstract data types, static environments,
type polymorphism

Oregon Graduate Center Technical Report No. CS/E-62-01, March, 1982

lThe research reported here has been supported in part by the National Science Foundation, under
grant MCS 790411 and by Naturvetenskapha ForskningsrMd d e r grant F 3788.

Capyright (C) 1981 R. B. Kieburtz d B. Nordstrom

A programming language provides the basic vehicle for conceptualiz~ng
algorithms. We may ask why languages in use today have grown to be so compli-
cated. At least two causes are apparent. In an attempt to make programming
languages more expressive, numerous "features" are often added, somewhat
promiscuously, to a basic language design. The interaction among these
features frequently proves to be much more complex than was anticipated or
intended by the designers. For instance, the interaction between the condi-
tional statement and side-effects in Algol 60 was not well understood by the
language designers. In the Algol 60 report, the effect of "if a then b" when the
value of the expression a was false was said to be equivalent to the empty state-
ment. Tnis is a nice property but was later changed because of implementation
problems when the evaluation of the expression a had side-effects.

A second cause of complexity is the desire, lurking in the background of
almost every language designer's consciousness, to provide for efficient imple-
mentation on conventional computing hardware. This concern of ten subverts
the stated intention of a language design. It is a pitfall difficult to avoid.
Languages often have restrictions imposed to secure more efficient execution,
such as what kind of values can be assigned, passed as parameters, or returned
from a function call. There are also language constructs which explicitly reflect
the machine architecture, such as the goto statement, pointers, and assign-
ments.

We have set for ourselves the task of proposing a language design based on
a consistent set of principles, and upon certain assumptions about its mode of
use by programmers. Programs can become complicated in at least two ways.
There are some problems whose solutions (i.e., programs) are hard to find
because of the difficulty of the problem. We can't, for instance, expect the aver-
age programmer to discover a unification algorithm, For such problems it is
important to have a programming language with proof rules which are simple to
grasp so that it is relatively easy to decide whether the programs are correct.
Our language has not been designed specifically for that goal. In that case we
would have disallowed some constructs of the language.

Problems can also be difficult to solve because of the size of the problem.
For instance, it is not a di.fkzllt problem to write a PL/I - compiler but it is a big
problem because of the number of concepts involved and the irregular structure
of the problem. For such applications, a suitable language should make it easy
to compose a solution (program) from its sub-solutions (modules).

In this paper, we discuss a specific set of principles and their ramification,
and translate these into design goals. These give much of the rationale for a
programming language design. However, the most difficult task of a language
designer is to integrate a set of language features into a coherent and unified
framework. We also show how we have tried to accomplish this in the design of a
new language called Apple [I].

2. Design Goals
The goals we have set for this programming language design are motivated

by the need to cope with the intellectual burden of writing medium-sized to
large programs (say 10,000 - 100,000 lines of code). We are not primarily

concerned with the particular programming requirements of any single area of
application, but rather with the process of algorithm de6nition and description.

We are very much concerned with the need for a language to be fully
defined. Both the syntax and the semantics of the whole language should be for-
mally defined by the language designers. In this way, denotatiod semantics or
some other formal method can be used to guide the design of the language. For
instance, at a very early stage we decided not to use the domains locution and
continuation which are used to explain machine characteristics like pointers
and gotos. The first draft of the language has been revised several times because
we found irregularities in the language when we formally defined it.

Another design goal we have had is that a language should support the intel-
lectual process of abstraction and should provide for separation of t a s b
identified in a problem.

2 1. Complete Definition
It is very important that a programming language should be fully defined,

for ambiguity on a seemingly minor point has a way of pervading an entire
language. There are three categories of debt ional failure that we commonly
see affecting programming languages:

- Implicit machine dependence. It often happens that the definition of
operations on the most primitive data types of a language, the characters
and the arithmetic types, is left to be specified by the action of a machine
on which the language is to be implemented. Insofar as a programming
Language is conceived as a convenient command language for a particular
machine, this approach may seem reasonable. If the language is also
intended as a vehicle for the statement of algorithms in more abstract
form, then machine-independence of the language definition is an absolute
requirement.

-- Failure to specify non4amda.d uses of operators. We have all read
language specifications that describe the action of an operator under com-
monly lorseen circumstances, then contain a caveat such as "under other
circumstances, the effect is undefined". A program written in such a
language is well-defined only if all uses of operators conform to cases that
have been anticipated by the language designer. Of course, an implementa-
tion will often define some result for the invocation of an operator in non-
standard circumstances, and tradition dictates that the implementor
determines this action to suit lus or her convenience or prejudice. A user
of such a language is forever plagued by a variety of queer "implementation
dependencies" that must be learned and remembered. How much simpler
it would be if the language designer had completed the job!

--- Unanticipated ambiguities or omissions in language specification. The
specification of a programming language is a complex business, and it is not
surprising that errors or omissions are occasionally made. However, these
would occur much less often if the language designer had attempted to give
a correct and exhaustive formal semantics for the Language. Formal
specification forces the designer to pay careful attention to precision of
meaning, and it proceeds by systematic analysis by cases. We know from

experience that most specification h w s are discovered by implementators.
I t is a t this stage that the meaning of a language must be formalized, albeit
in a machine-dependent manner.

If for no other reason than it forces the systematic consideration of all pos-
sibilities, the methodology that must be employed in giving a formal semantic
specification justifies its use in language design. However, we believe there are
other significant reasons to use it as well. A formal semantics furnishes the
basis for a system of inference that can be used to verify properties of pro-
grams. Formal semantics gives the designer an inhcation of the complexity of a
prototype language that is orthogonal to the indication got ten by programming
examples in the language.

2.2. Simplicity of Design and d Use
A language design is simple ii its semantic rules are relatively few in

number and easy to state and to comprehend. A language is simple to use if its
operations are powerful and well-matched with one another and to the data
types. A simple but powerful language displays a high degree of orthogonality,
meaning that the rules for composing operations and types are quite generally
applicable, with few exceptions.

In addition, the syntax of a language should closely reflect its semantics.
One reason that side effects are found so troublesome is that the syntax of a
procedure call or a function application does not alert the reader of a program
text to the semantic action that it may signify.

The choice of a rich and complementary set of data types is a task that has
engaged the imagination of many language designers. However, one can never
anticipate all of the types that might be found useful for programming applica-
tions. The best that can be dune seems to be to provide in the language a few
basic data types, and a rich set of type constructors from which new types can
be composed, (The array and record templates of Pascal are such examples.)
In Apple, a dess definition is allowed to have parameters, and each abstract
data type defined by a programmer also becomes a new type constructor.

It is a great convenience if a language defines a standard notation for values
in each of its types, so that values can be writen in a uniform way, whether
within the text of a program or for input in symbolic format. There is a problem
in denoting values of abstract data types, however. I f a value is denoted by a
value of the class's representation type, then the denotation fails to hide the
representation. Alternatively, a representation-hiding denotation might use
only expressions of the free algebra generated by the operators of the abstract
data type. However, this fails to provide a unique denotation for each value of
the type. In Apple, we have not provided a denotation for values of an abstract
type.

A language is also much easier to use if values of variables of compound
types can be input or output without explicitly programming an iterative routine
to traverse all components. In general, a good language should not force the use
of temporary variables for bookkeeping, in order to compose operations.

T h s last stated principie also applies to the assignments of values. An
exchange of values, for instance, should be a simple operation. The traditional
statement sequence required to peflorm an exchange looks like:

in which t is a temporary variable, required as a place-holder. How much
simpler is the operation if multiple asignment is used:

and there is less opportunity to make an error in programming the exchange in
this way. Multiple assignment appeared as a feature of the programming
language CPL [2], but has been largely ignored in more recent languages. Its
advantages, particularly with respect to selective updating of an array, have
been commented upon in [?I.

One of the most complex aspects of programming in conventional,
statement-oriented languages involves the use of multiple, alias names for a
variable. We believe this practice to be totally unnecessary if three measures
are adopted:

-- Variables are not passed as parameters to procedures or functions;

-- Explicit pointers are eliminated from the programming language;

-- Selective updating of an indexed variable (array) is not defined in the
language .

Since each of these three practices has widespread use in programming with
current languages, their abolition must be accompanied by some suggestion of
alternatives.

Pbiables are passed as parameters in conventional language notations for
either of two reasons:

--- to secure efticiency, by saving the cost of copying large data structures;

-- to allow the return of multiple result values by a procedure or function.
A n alternative, adopted in Apple, is that all parameters have the status of

constants within the body of a function definition. Thus it becomes an imple-
mentation decision whether or not to pass an actual parameter by copying it, or
to use indwection. This decision cannot affect the semantics of a call, since alias
naming is impossible. Also, a function can return a value of any type that can be
defked, including a cartesian product type. This provides for the re turn of mul-
tiple values. Multiple assignment allows the several component values of a
cartesian product type to be assigned to several variables, of compatible types.
For example, a call such as

(Numerator, Denominator) := ReduceFraction(Numerator, Denominator)

is syntactically much more transparent than is the traditional procedure call in
which the two variables are passed (by reference) as parameters.

Pointers have been used in low-level programming to allow easy implemen-
tation of storage management routines, and to pass access to storage blocks
from one program component to another. They are used in higher-level pro-
gramming to simulate recursive data types. We are not attempting to address
the needs of low-level programming with Apple; there are many languages which
cater for these needs. Recursive type definition is explicitly supported in Apple,
obviating this particular need for pointers.

A secondary benefit of banning explicit pointers from a language is that
simpler storage administration strategies, based on reference counting, are pos-
sible when the data structures utilizing heap storage are known to consist only
of instances of recursively-defined types.

Selective u p r i d k g refers to an assignment made to a component of a vari-
able of a compund type, of which record types and array types are typical
instances. In a selective updab of 'a record, the field that is to be mo&fied is
specified by an identifier; its identity is determined statically and is apparent to
a reader of a program. ' b s is ordinarily not a potential source of confusion. On
the other hand, in a selecbve update of an array variable, the component to be
modified is specified by an expression whose value may be determined dynami-
cally. The reader of a program may or may not be able to infer correctly wbch
component or components of an array are modified by a particular selective
update assignment.

The specific point of view taken in Apple is that an array is just one possible
representation of a function. Since functions are legitimate objects of computa-
tion in Apple, function-valued variables are also possible. There is no type-
constructor for arrays in Apple, only a type-constructor for function types.
Apple provides an operator to be used instead of selective updating, when a pro-
grammer wants to specify a new function as an incremental modification of
another function (see Sec. 6.0).

Data types are introduced into a programming language in order to
categorize the values which are computed. Such categorization is important
when designing a program and also as part of its documentation. There is by
now enough experience with the use of typed languages (such as Algol-60, Pas-
cal, Mesa, kcl id , and ML [16, 17, 6, 4, 51) to justify accepting the discipline typ-
ing imposes. Although a program is more verbose in a typed language than in
one without types (except for languages such as ML where types are deduced
[14]), the additional declarative text may make it easier for a reader to under-
stand the program.

Many typed languages have an "escape" mechanism which makes it possible
to change the type of an expression. With the possible exception of a language
for low-level systems implementation (which is not one of our goals), it is neither
necessary nor desirable to have such an escape mechanism. In the data
abstraction language CLU [13], we have been shown how to restrict a representa-
tional view of a typed object to the module that implements that class of
objects, and to distinguish between the use of an object and its representation.
In this way i t is possible to preserve the protection against programming errors
that is afforded by strong typing, yet provide the programmer with the flexibility
to do both high-level and low-level programming.

Apple has the traditional types found in many other programming
languages.

tal,%,...,anl enumeration
float the rationals
integer integers
recordil:t l,...,in:tnend record

tl *,.. tn cartesian product
t -> t' function
set of f powerset
i t +...+ in#tn lR 1 disjoint union

There are two type forming operations which are new. The first is the
recursive type which is used to create lists, trees and other inductive struc-
tures. The second is the restriction [x:qb(x)j where T is a type, x is a variable
free in b(x) and b(x) is a boolean expression under the assumption that the type
of x i s T. An expression e is of type jx:Tlb(x)j i f b(e) is true and e has type T. For
instance, the subrange a..b in Pascal corresponds to the restricted type

Ix : integer 1 (a<=x) and (x>=b)j

We can for instance give the following type to a sorting algorithm:

sort : lntlist -> jx : Intlist I sorted(x)]

where "sorted names a boolean function yielding true if and only i f its argu-
ment is a sorted list. I t would perhaps be more interesting to allow the range
type of a function to depend on the value of its argument in order to write more
precise specifications as types. This would, however, require another foundation
for the language.

In order to make any real progress with the management of complexity, it
is necessary to be able to subdivide programs into parts which we will call
m & e s . Ideally, the meaning of each program module should be understand-
able independently of other modules. But since the action of a large program
occurs as an interaction among several modules, this ideal is not totally achiev-
able. Instead, we can require that the meaning of a module is to be understood
from the details of its own representation, and from the abstract meanings of
any other modules it uses. The m e w of one module must not depend upon
the representation of modules that it uses, nor upon knowledge of how other
modules make use of it.

In Apple there are three different kinds of modules: functions, classes and
environments. The f i s t two are examples of abstractions.

Informally, abstraction means the ability to understand what an algorithm
does without knowing explicitly how it does it. An abstract characterization of
an object specifies its external properties but does not specify its internal
representation. Abstraction gives us the power to generalize algorithms.

One abstraction technique commonly used in mathematics is functional
abstraction. An unspecified object is allowed to appear as an operand in an
expression, and thereby, the expression defines a function. In programming,
when a name is given to denote an object to be used in this way, we say that it is
a formal parameter of a function. If functions themselves are considered to be
objects (as they are, for instance, in Church's lambda-calculus [3]) then func-
tions can be abstracted, and the abstraction process can be carried on to as
lug h a level as is desired.

Functions should be understood by their input-output behavior. For a given
argument a, the value of f(a) should always be the same. When this is the case,
it is possible to understand the function itself, without being forced to know the
"state" in which the function is computed. We call these lunds of functions pure
functions. Other functions are not abstractions. One of the most successful
operating systems in use today (UNDC) relies heavily on the function concept as
the primary means of modularizing the system. Our old friend functional com-
positionfag has reappeared in a &sguised form as "pipes", written glf. Ths has
been considered to be a very powerful tool. Its "discovery" would have occurred
much faster i f programming languages ,were equipped with pure functions
treated as objects.

In programming, we also make use of another form of abstraction that is of
little or no concern in mathematics. Programs constantly deal with the
representation of information. Often the specific representation chosen bears
no direct relationship to the application for which a program is intended; it may
be more strongly influenced by the programming language in which an algo-
rithm is coded, or the architecture of a machine for which the program is tar-
geted.

Programming language designers have become intensely interested in the
concept that they call abstract data f y p s , by which is meant the abstraction of
a class of objects exhibiting common modes of behavior. Thus an abstract data
type is characterized by a set of operators defining the external behavior of
objects of the class. The actual representation of objects of the class is a level
of detail that can remain hidden from the users of these objects. We therefore
call this form of abstraction data abstraction.

By using data abstraction, a programmer is free to focus attention on data
objects closely related to the domain of an application [15]. It is usually much
easier to conceive a suitable algorithm if the details of representation can be
ignored initially. Subsequently, the programmer may wish to pay careful atten-
tion to the representation of one or more object types, in order to improve the
efficiency of a useful algorithm. Use of abstract data types allows these two lev-
els of programming activity, algorithm conception and performance improve-
ment, to be separated.

In Simula 67 [4] we find the origin of a genuine facility for abstracting a
class of objects. In a Sirnula class, the representation of an object is given by
declaring a data base for any instance, along with the operators that act upon it.
Multiple instances of a class can be declared, and an operator of the class is syn-
tactically bound to the instance upon which it acts. Simula was designed as a
language for simulation, and the class notation was developed to allow abstrac-
tion of the objects that are to be simulated. We have since come to understand
that most statement-oriented programs can be usefully conceived as simula-
tions of the behaviour of abstract objects, and that the class notion is therefore
more fundamental to this style of programming than even its inventors might
have anticipated.

A disadvantage in using the Simula class as originally d e h e d to represent
abstract data types is its failure to hide or protect the representation of an
object. A user of the class was allowed to & h e ad hoe, non-standard operations
on an object by directly manipulating its representation. A change of the imple-
mentation of a data type then may force a change in the programs which use the
abstract data type.

Most of the problems with the Sirnula class d e h t i o n as a means of incor-
porating an abstraction facility have been dealt with in newer languages, such as
Alphard 1191 and CLU 1131. Abstract data types in these languages do not export

their representations, but only a set of operators. A class definition consists of
the following parts:

- a heading which names the class and gives a list of its formal parameters.
These may be types and constants to be used in the class defmiticm.

-- a deflnes list which gives names and type signatures to the constants that
are to be exported by the class definition. For each type derived from the
class (i.e., a type constructed from a class by giving actual ,parameters to
the class in a type declaration), a set of these constants will be included in
the environment in which the class-derived type is defined.

- a representation part, which declares a local environment in which imple-
mentations are given to the constants named in the defines list. Ths local
environment must include :

declaration of a type named carrier, in terms of which each class-
derived type is represented.
declarations of the constants named and typed in the defines list.

The representation part may also include declarations of other constants and
types.

We can't resist the temptation to show the canonical example of an abstract
data type in Apple:

class Stack of type T / / T is a parameter of the class
== def Push : c-'*r -> c w r i e r ,

Pop : c a r r i e ~ -> ci-arrier,
Top : ccgrr ie~ -> T,
I s h p t y : carrier -> boo1

rep
type c b : record

Store : integer -> T,
Index : integer

end
hit [Store = = function(x) return . i n W (T) end,

.Index = = 0]

const
Push == hmckion (S,x)

return let P : integer = = succ S.1ndex in
[~ndex == P, Store == S.StorelP:Index]
/ / ali:s updates the mapping a on index i with s
endlet

end,

Pop = = fundion (S)
Mum let P : integer == S.index in

if P >= 0 then
[Store == S.Store, Index == pred P]
else
S
endif
endlet

end

Top = = function (S)
retum S.Store('S.1ndex)
ead,

IsEmpty == function (S)
neturn S.Index = -1
end

endclaas

As mentioned earlier, a class may have pararneters which can be types and con-
stants. The constant parameters normally include functions for the type param-
eters, for otherwise, there would be no operations applicable to an object of a
parameter type within the class definition.

For example, the following class headmg is parameterized by a type and a
function for that type:

class Storagdlass d type T const Equiv : T*T -> Bool

To form a type from this class, suitable pararneters are substituted for the for-
mal parameters, as in
type IntegeSell : Storagdlass [type T : integer,

canst Equiv : 1ntegerfInteger -> Bool ==
function (x)

return x! 1 = x!2
end

1

In this declaration of the new type Integercell, the type parameter T of
StorageClass has been bound to the type in teger , and the value parameter
Equiv to a f.unction defined by an equality relation (the notation z!i is used to
select the ith component of an expression x, of a cartesian product type.)

4. Generic Types
In the declaration of a class, or abstract data type, we may decide to utilize

a formal parameter to represent a type. The parameter is often referred to as a
generic type, since it may be replaced by various argument types, in those
declarations in whch particular types are derived from the class. This ability to
per'forrn abstraction on types gives to a lanaguage a new &mension of expres-
siveness, but also raises a non-trivial problem.

In order to make type abstraction useful, the operators of generic parame-
ter types must be available for use in the representation of the parameterized
type defined by the class. Within the representation part of the class, it should
be possible to declare instances of the parameter type, to refer to constants of
the type, and to invoke its operators. Herein lies the dBiculty. There is no uni-
form set of operator or constant names applicable to all types. The operators
are type-specific. This is in fact the whole point underlying strong data-typing.

I t must be possible to refer by a common symbol to operators having
differing representations, and applicable to difTerent types. There are two
approaches to achieving the desired non-specificity of naming.

One approach, called overlonding or more precisely, the definition of
polymorphic operators, allows an operator symbol to denote operators that
apply to distinct types. A n overloaded operator symbol carries its multiple
meanings throughout all contexts m which the various types to which it applies

are defined. Mast languages make use of overloaded operator symbols to some
degree. Examples are "=" to represent a polymorphic boolean expression,
denoting equality, and "+" to represent addition on any arithmetic type. The
point is, that language-defined overloadings usually do represent operators hav-
ing uniform algebraic or operational properties, so that the intuition of the
reader of a program is not confounded by the multiple meanings of overloaded
symbols.

When overloading is placed in the hands of the programmer, no such
assurance can be given. Tf the operator symbol "=" is allowed to be overloaded
by a programmer, the language may only impose the restriction that "=" applies
to a pair of objects of the same type, and produces a Boolean result. I t cannot
assure that the user-defined function that gets bound to this symbol will define
an equivalence relation Although years of mathematical training will have
taught the reader of a program to associate "=" with equivalence, he/she will
have to fight against rnalnng the intuitwe assumption that "=" always is an
equivdenc e relation.

An alternative to overloscding is to use formal parameter names for the
operators of generic types. A formal parameter name is restricted to the tex-
tual scope of the class in which it is defined. It is a programmer-defined name,
and so carries with it no implication of special algebraic properties. The use of
parameterization to obtain names for generic operators seems to us vastly
preferable to the strategy of programmer-defined overloading of language-
defined operator symbols.

5. Static E n . e n t s
The meanings of names that me used in a programming language are

declared relative to an environment that provides data needed to interpret
definitions. Usually today, because languages don't support multiple environ-
ments, they are implemented as separately compiled files.

An environment is said to be ddic i f once established, its data remain
invariant throughout its lifetime. Otherwide an environment is dynamic. We
believe it is important trs our ability to understand programs that all declara-
tions are interpreted in static environments.

Thus, in our concept, a static environment does not incorporate variables,
and no definition (of a type, constant, class, or function) given relative to a
static environment can depend upon the value of a variable. Ths principle
prevents the importation of "global" variables into definitions.

Therefore, an envimnmelrf in Apple is a collection of definitions of types,
constants (including functions) and type constructors, or classes. An environ-
ment has no state. An environment can be named in an environment declara-
tion:

a v display
const erase: ascii == ̂ H,
class screen == . ..

endenv
A named environment is a self-contained unit. The declarations it contains use
only those definitions given within it, or which have been imported.

In order to import some dellnitions from another environment, a reference
declaration can be given, referring to the name of an environment and to the
names of the types, constants, classes or environments that are to be imported.

ref foo (type tnewjtlcm / / declares a new name for imported type
/ / tfoo in the current environment

const c, cc / / -these constants are imported without renaming

There is a universal environment that is presumed always to be included. It
includes such types as in teger , float, Boolean, czscii, and a set of prirnitive type
constructors as well. These predefined types have machine independent
definition. A programmer who wants to impose a machine-dependent restriction
upon the integer values used by a program might dclare within the local
environment a type fnt, d e w it to be a subtype of integer, and specifymg the
values that can be represenbed in the registers of the intended target machine.
Since t h s restriction would be explicitly stated as part of a program, machne-
independence is not sacrificed. The program can be translated by a compiler
for any target machine, although the emciency of the translated program may
be better on the particular machine for which it was originally intended.

Programmer-defhed type ctsnstructors, or abstract data types, are defined
by a class notation, following Simula 67 nomenclature. We have made the class
definition a unit of rnodularization as well. A class definition may explicitly
include one or mom named environments to be incorporated into its internal
environment.

6. The imperative pcds uif Apple
Apple provides imperative language syntax for use in composing function

bodies. Although it is not necessary to take advantage of the ability to write
statements, this facility has been provided for two reasons. Many persons
engaged in the practice of programming are experienced in thnking about pro-
grams as sequences of statements. This seems to help them in decomposing a
seemingly large task into smaller ones, and we would not want to deny it to pro-
grammers who have come to rely upon it. A second reason is that we ourselves
are forced into thnking in terms of statements in order to describe a command
language for a computer system in which objects such as files exist over a
period of time. We should like to be able to use a fragment of Apple as t h ~ ~ com-
mand language.

When a variable is declared, it is always given an initial value. An initial
value can be explicitly designated by appending an assignment clause to a
declaration, but in case it is not, Apple provides a standard, default initial value
for every type. There is no such thing as an uninitialized variable in an Apple
program.

A particularly troublesome feature of imperative languages since Fortran is
the use of assignment to selectively update a component of a so-called indexed
variable, or array. This is the feature that has prevented the acceptance of mul-
tiple assignment in pmgranming languages, since selective updating may
require data-dependent +evaluation of the target of an assignment. Thus a multi-
ple assignment such as

(a[il,a[jl) := (x,y>
is potentially ambiguous, in case the values of i and j are equal. Selective updat-
ing confuses the concept of assignment to a variable with the representation of
values in the cells of a computer's memory.

A high-level view of assignment is that it replaces the value of a variable by
a new value of the same type. Thus assignment to a function-typed variable
defines a new value of the mapping that it represents. When one wishes to define

a new map ing as an incremental modification of an existing value, the operator
defined in PB]. which we call "supersedes" is appropriate. Adopting this notation,
the assignment that would be made by selective updating in Pascal, for instance,

x[i] := e
is written in Apple as an assignment to the variable x,

x := xli: e
The expression on the right of the assignment is read as "the mapping x except
where applied to argument value i, when it produces e". The notation is much
clearer, and since the target of the assignment is an entire variable, its use does
not lead to undetectable ambiguity in the definition of multiple assignment. As
to efficiency of implementation, a simple live-dead analysis of the Apple assign-
ment statement given above leads to the same implementation as in Pascal.

6.1. Tbe Recursive Statement
To secure execution other than that controlled by bounded iteration, we

have provided an explicitly iterative control called the recurswe statement [9].
Such a statement makes it possible to invocate a bracketed statement list that
fias been given a name. Within the bracketed statement-list, there can appear a
component statement

repeat <statement-identifier>
where the scope of a statement-identifier is precisely the statement list
enclosed by the brackets to which it is attached.

The initial invoction of a recursive statement occurs when it is encountered
in the course of sequential execution, as is the case for any other statement. In
a recursive invocation, the continuation of the statement following the repeat
statement is remembered, and following termination of a recursive invocation,
this continuation is executed.

The recursive statement permits repetitive execution of a bracketed state-
ment list, and thus allows the successive updating of variables each time a con-
trolled statement is repeated. This would be awkward to program if it were
necessary to deflne recursive functions to perform such computations. Thus in
a programming language that uses imperative statements and assignments to
variables, yet has no procedures, a control structure such as the recursive
statement seems essential. In fact, the recursive statement is simpler, yet
more general than is the variety of iterative control statements in more com-
mon use.

The accustomed repetitive statements of structured programming can be
emulated by the recursive statement, used in combination with a conditional
statement, imd without introducing any additional Boolean variables.

traditional etatement
(Pascal syntax)

repeat S until B

recursive equivalent
(Apple syntax)

while: :
if B then S; mpeat while endif
:while

until: :
S;
U not 33 then repeat until

endif
*skip

: :until

whilezxit: :
it B t b e n

s;
if 3' then skip

else S'; repeat whileexit
m

emdif
::while-exit

(The last of these control structures is the "loop n-and-one-half times"
construct, which is not primitive in Pascal.)

The recursive statement has a simple denotational semantics description,
and we believe it furnishes a natural way to program iteration.

82. lhmdation fnan imperative ta applicative Apple
In spite of the fact that a function body can contain a sequence of impera-

tive statements, Apple is a functional language. This is because variables are
only local to a function; there are no global variables. Therefore, all functions
are "pure". Evaluation of an appficative expression always produces the same
result, regardless of its context or the order of evaluation used.

The reader may be more easily convinced of the claim that Apple is a func-
tional language if we show a simple construction which produces purely applica-
tive Apple from any Apple program that contains imperative statements. The
construction applies to the function constructors of an Apple program, and con-
sists of two phases. First, the variables that are declared within a function con-
structor are consolidated into a single variable as follows.

A list of declarations such as
verxl : tl ==el, .,.xk: tk==

is translated into
ek

varx : d x l : tl ,.. xk : %end == [xl : el ,.. xk : ek]
Each occurrence of a variable xi within an expression is replaced by x . q, select-
ing the corresponding field of the record-typed variable x. Each assignment
statement Xi := e is replaced by

-

in which the right-side expression gives the value of x, except in the field named
by q, *ere it takes the value of e. Each multiple assignment,

where lrsijck, for l g j s rn , is replaced by

By this translation, each function constructor that contains declarations of vari-
ables is replaced by a semantically equivalent function constructor whch con-
tains only a single variable.

Atter consolidating its variables, each function constructor which contains
imperative statements is of the form

trmction(a)varx: t==vQSre tu rne end
where t is a record type-expression.

The second phase of the construction applies to the statement body of each
such function constructor a function

9 : statements -r expressions
The original function constructor is then replaced by the semantically
equivalent constructor

hmctian(a) returnletx: t== \k t [S](v) heendletend
We see that the crucial part of the construction lies in the definition of +, which
is defined by cases on the statement forms as follows:

3) Q[x:=e]=fnnctim(x)r~:tumeend
4) *iifethenRelseSd]=

function (x) return if e then +[R j(x) eliPe \kH S] (x) endjf end
5) S [r e p e a t L] = L
6) ~ [L : : S : : L ~ =

i & L : t==fumtion(p)retum+[S](p) end
in L endlet

7) fIunhmmseeofil#al:tl =>S1 11 ... endcnsel=
runctim (x) return

doncase e of il#al:tl => S1](x) ... endcase
end

In which "Q" is the operator symbol that denotes function composition in Apple.
The resulting function constructor is seen to be expressed in purely applicative
notation

The basis of the transtation is that every assignment can be translated into
a function from values of the type t into values of the same type, since the
evaluation of expressions has no side effect. Note that in (6) we rely upon the
fact that a let expression in Apple may be recursively defined, i.e. we use a corn-
rnon notation for both the let and l e h c expressions of ISWIM 1201. W e have
omitted to give a translation for the f o r statement of Apple, as it can be defhed
in terms of a recursive statement if a new identifier is also declared [I].

7. ~UrEiVeDataTJpes
For many applications of non-numeric programming, some part of the prob-

lem domain can be modelled by trees and linear lists. These classes of acyclic
graphs are of sufficient importance to warrant their inclusion, providmg type

constructors for their representation. Each recursive type can be given as the
solution of a type equation.

In many programming languages, pointer or reference variables have been
used to allow the presentation of recursively defined data structures. But when
pointers are used, one does not declare a recursive type, but rather the type of
a node with which data structures of the intended type can be represented. For
example, to utilize a binary tree as a data structure, one might define in a
language such as Pascal

type Ptr = -Node;
Node =-record

Inlo : Infotype;
left, Rigfit : Ptr

end

The trouble with such definitions is that in using them, a program in execution
m y create data structures that are not binary trees, and in fact, may not even
have acyclic graphs [10, 1 I].

Contrast the preceeding example with a declaration of a binary tree type in
Apple:

type nulltype : $null{,
treetype : tree rec emptytree # nulltype +

mktme # (Infotype tree * tree)

The definition tells us that a value of type tree is either the value null (the
unique value of type nulltype), or is constructed from a triple containq one
value of Infotype and two values of type tree. W s kind of inductive demtion of
data types is very similar to the definition of natural numbers in mathematics,
which would have the following appearance in Apple:

type Nat: Nat rec zero # nulltype + successor # Nat
It is of course not possible to create cyclic graphs with this mechanism.

The programmer is liberated from the need to conceptualize the "deferenc-
ing" operation on pointers. It isn't necessary to write program statements to
perform storage alloction or deallocation and the language provides a standard
denotation for values of type tree. For instance, the following expressions
denote trees:

emptytree # null

mktree # (3
mktree # 4, emptytree#null,
rnktree # I 5, ernptytree#null,

The language-defined default value for initialization of this type would be
emptytree#null. We shall say more later about how a default initial value is
determined.

Perhaps the most important consideration in the design of a strongly typed
imperative language should be that the control structure complements the data
types, for it is in this way that a programmer is given the power to express algo-
rithms elegantly. We have already discussed the notion of abstract data types

and their realization by classes, and the generalizations of assignment. Next we
shall review the predefined types and type constructors and the control struc-
tures of Apple.

8.1. Union types and the Unioncase Statement
The unioncase statement of Apple discriminates among the component

types of a union, associating a statement list with each. Selection is made on
the basis of the component type of the current value of a selector expression of
the union type. Similar type-discriminating statements are found in Algol 68
[I63 and in Euclid [12].

One anticipated use of union types in Apple will be to distinguish data values
that are undefined, or otherwise regarded as exceptional, and to provide the
programmer with an opportunity to deal with such special cases. For example,
consider the problem familiar from Pascal, in which a variable of a subrange
type is repeatedly incremented and tested:

(* Pascal *)
var X : 1..N;
beein

X := 1;
=%=at

<statement list>;
X := succlx)

until X > N
end

In order that the <statement List> can be executed for each value of X in the
range of its type, the final incrementation of X must take it out of its range,
which is an "undefhed" operation in Pascal. Thus the program segment given
above would be incorrect, in spite of the fact that its "exceptional condition" is
anticipated and is intended to signify termination of the iteration

Let us illustrate the use of union types to cope with t h s situation. Suppose
we declare a type

type Range : 1..N,
ClBoType : tOflo]

and define a successor function appropriate to these types:

ccmnt.
S u c c e s s o r ~ a n g e :

Range -> (Inrangeflange + OutofRange#Oflotype) ==
function (x)

returnif x<Nthen
Inrange#suc c(x)

elat?
OutofRange#Oflo

cadif
sDd

In order to refer to the case selector expression within the controlled statement
list corresponding to each case, it is renamed, following the appropriate

unioncase label. This name then designates a constant which has the value of
the case selector expression, but whose type is the particular component of the
untion type that is designated by the unioncase label. Now the desired iteration
control can be written without difliculty:

/ / Apple
var x : In.nge#Range + OutofRange#Ofiotype == Inrange#l
loop: :

unioncasexd
Inrange# y : Range do <statement list>;

x := successorinrange(y);
repeat loop

11 OutofRange# y : Ovflotype &a skip
endcame

: :loop
As a second example, consider the abstract data type Stack, as defined in

the exam le of Section 3. An operator of this class is the function Top, which
when app f' ied to an instance of a Stack type, is to return the value at the top of
the stack. If a stack is empty then Top applied to that stack should not produce
a value of the element type T, but a value distinguishable as exceptional. Rather
than using a sentinel value of type T for this purpose, suppose w e were to
redefine the type of the operator Top to be:

def Top : carrier -> (Normal#T + Exceptional#Ovfiotype)

Then, given the additional declarations

type IntStack : Stack [type T : Integer]

we can express the application Top Leftstack. This expression does not have
type Integer, however; its type is the union

(Normal#Integer + Exceptional#Ovaotype) .
In order to use the value of Top Leftstack in a statement, it must usually be pro-
jected onto its component types in a rmi01~1ase prefix. For instance, we could
write

unimcase Top LeftStack d
Normal # x : Integer & <normal statement list>

11 Exceptional # x : Motype do <exception handling statements>
m*

There are several aspects of this example that are noteworthy. First, the
"exception" is associated with data contamination, in this case with the vdue at
the top of the stack. Second, because the designer of this particular abstract
data type has made provision for the possibility of its malfunction, the user of it
must also be prepared to deal with an exceptional d u e ; the type-checking
mechanism will not allow it to be ignored! We believe that this allows a much
better solution to the problem of possibly abnormal data vlaues than is provided
when the result of a computation is said to be "undefined" when abnormal data
values occur. Furthermore, the language supports and enforces the considera-
tion of abnormal values, insofar as their occurrence is anticipated by a program-
mer.

6.2. Conditional statements and type Bodean
Tbe control structure provided for use with Boolean values is the condi-

tional statement,

tf <Boolean expr> then <statement>
[elseif <Boolean expr> then <statement>] *
else <statement>
endif

(in which the brackets denote optional phrases, and the asterisk following a clos-
ing bracket denotes repetition).

6.3. Pawexsets and Bounded Iteration
Apple permits the definition of powerset types. A powerset type can be

defined over enumerations, integers and restrictions of these. The operators on
powerset types are a membership prehcate, equality and inclusion predicates,
and the functions of union, intersection and relative complement.

A value of a powerset type can also be denoted by explicit construction.
The set constructor of Apple shows the use of a characteristic predicate to
define the members of a set, and is thus considerably more powerful than its
analog in Pascal. The basic syntax of a set constructor is:

lz:Tle]
where z is a variable of type T and may occur in the boolean expression e .

The stroke, "I", is read "such that", and the membership of the set consists
of all values of the type T such that the Boolean expression evaluates t rue, when
the value is substituted in place of the bound variable.

For convenience, another form of the set constructor, analogous to that of
Pascal, is also allowed. In the second form, members of a set are indicated by
expressions denoting individual values or intervals.

In statement-oriented programming, it is often necessary to repeat the exe-
cution of a fixed program component for each value in a prescribed set. Since
Apple provides a powerful mechanism for defining sets by the use of characteris-
tic predicates, it is natural that this mechanism should be further utilized in
specifying iteration.

The syntax of the iteration statement is:
farx:t[incr]efrompdnSeadfor

where x is a constant of type t bound in the statement list S to successive ele-
ments of the set e, starting with the element p. The keyword incr (or decr)
expresses that the iteration starts with p and then continues with elements fol-
lowing (preceding) p according to the order defined upon values of type t.

Apple programs interface to a computing system environment through
objects called streams. A stream type is derived from a class which has its

definition in the universal environment of Apple. The class signature Is:
d a s s S t r e m d t y p e T

def nullstream : carrier,
put : carrier * T -> carrier,
get : carrier -> carrier * T,
eos : carrier -> Boo1

~ d d a 8 s
The representation oT this class is not specifled, and may be implementation
dependent. However, its operators are required to obey the following four equa-
tions :

1) eos nullstream = true
2) sos put(S,x) = false

3) get nullstream = (nullstream, initial(T))

4) get put(S,x) = if eos S then (nullstream, x)
else (put((get S)!l,x), (get 5)!2)

The use of streams provides a convenient interface between a computing
system and a program compiled from an Apple function constructor taking a
stream object as its argument and delivering another stream as its result. The
argument for such a function can be implemented as a sequential l3e open for
reading, and the result by another file open for writing. The command to evalu-
ate a function application and save its result is analogous to an assignment
statement

output := f input

The evaluation rule can be lazy evaluation 1181, since application of f to its argu-
ment produces no side effect.

Function applications can also be composed, as in the assignment

output := f g h input

in which f , g, and h are all functions acting on stream-typed objects. In an
implementation in which a composite function application is evaluated lazily,
stream objects may be used by the implementation to buffer the result of one
application, which in turn forms the argument (or input) of the function symbol
to its left. In the command language of the UNIX operating system, which pro-
vides for asynchronous (although not lazy) evaluation of composite applications,
the stream-typed objects are called Hpes and are denoted by a stroke "I". Typi-
cal UNTX command language syntax for an application such as that given above
would be the pipeline expression

h input 1 g I f >output

One cannot help noticing that UNM notation would be more uniform if the appli-
cation of a Function to an argument were written in postfix notation.

10. Canc1tIShls
The programming process becomes difIicult for us when we try to consider

too many distinct, abstract concepts that interact with one another. Because of
their interaction, it oRen seems inescapably necessary to us to deal with such a
group of concepts simultaneously. I t is a well-known fact among psychologists
that the number of independent ideas that a human can cope with at one time is
between five and nine, just a few more than the number of objects a good juggler
can keep in the air.

A programming language may or may not be able to help with this difiiculty,
but if it can, it will do so in two ways. It will reduce the amount of irrelevant
detail concerned with a specific computational model that tends to clutter one's
mind when composing and analyzing an algorithm. And it w i l l aid in formulating
and composing abstractions, so that details of representation can be buried. A
language should allow and encourage us to partition a program syntactically into
modules which individually contain few enough variables, statements and
expressions that thier complexity is manageable. These goals have provided the
rationale for the design of Apple; nearly every other facet of the lamguage has
been shaped to serve them.

We have found it useful to distinguish clearly between the environment pro-
vlded to a program component, and the state of execution of that same program
component, when in execution. Environments are static, and therefore the com-
plexity of an environment is of much less concern to us than is the complexity of
a program state space. A human can cope with a complex program environment
by employing textual lookup of details if it is necessary to refresh his/her
memory. But a program state is dynamic, and in order to understand an
imperative program one must be able to conceptualize the transformations of
the state space that are brought about by executing the statements of a pro-
gram.

It is the variables of a program which contribute components to its state,
and tb key to controlling complexity is to limit the number of variables whose
values can change in any individual context. The design of Apple provides two
ways to control the proliferation of variables. One way is by restrictmg scope;
prograrn modules are never allowed to exchange variables. A variable exists
only within the body of a function constructor. For communication between
modules, only values are transmitted.

A second way in which needless complexity is avoided is to treat variables
declared to be of an abstract data type in the same way as other variables.
Assignment to such a variable is whole-value assignment, and the operators on
abstract data types are programmed functions that are functional upon only the
arguments to which they are explicitly applied. The language-defined operators
on predefined types have exactly the same properties. Earlier languages sup-
porting the concept of abstract data types have not always followed this princi-
ple. In CLU, for instance, the operators on an abstract data type may include
procedures as well as functions, and these may import global variables. In
consequence, the complete functionality of a CLU operator is not always
apparent from the local context in which it is applied.

The construction (or analysis) of a program in Apple has essentiaIly two
aspects. One is the deAnition of an environment. including the specification of
useful abstractions. The other is the composition of representations for each of
the abstractions that have been defined, in the form of a representation type
and a set of functions to/from this type. The two modes of thinking required for
these activities are practiced alternatively and interactively by a human pro-
grammer. The programming language has been structured to take this into
account.

The syntax of Apple should not be considered as frozen in its initial
definition, although we hope that its semantics will be. In particular, declarative
typing adds verbosity to a programming language. One of the attractive aspects
of the syntax of an untyped applicative language is that one isn't required to
think very much about syntax when writing an expression. It may be that tex-
tual clutter could be reduced without sacrificing clarity of meaning if Apple
adopted a more permissive policy with regard to type declaration. Declarations
of the types of constants and variables might be made optional, allowing types to

be computed in a static analysis of a program, as in 1141. Such a policy has been
adopted in the typed functional language ML 151, and subsequently in HOPE 1211.

11- Adcndedgement
We wish to thank Bruce Russell, Gary Lindstrom, f i e Wiitrom, and Kent

Petersson for readmg and commenting on early versions of this manuscript.
Special thanks are due to Gene Rollins for suggestmg the imperative-to-
applicative Apple translation given in Section 6.1.

[I] Weburtz, R. 8. and Nordstrom, 43. "The formal definition of Apple", Oregon
Graduate Center, Technical Report CS /E-82-02 (1982).

121 Birron, D. W., et. al. "The main features of CPL." Comp. J. 6 (1963), 134-
143.

[a] Church, A. The C a h d i i of IamMdkmvergion. Princeton Univ. fress,
Princeton, 1971.

[4] D d , 0-J., Myhraug, B., and Nygaard, K. Simula 67 Caman ~ a s e
Imguage. Norwegian Computing Center, Oslo. 1968.

[5] Gordon, M.J.C., Milner, R., Morris, L., Newey, M., and Wadsworth, C., "A
meta-language for interactive proof in LCF Proc. 5th ACM POPL, Tucson,
A ~ ~ Z O M (1978), 119-130,

[?3] Geschke, C. M., Morris, J. H. Jr. and Satterhwaite, E. H. "Early experience
wi th Mesa." Comm. MX 20, 8 (August 1977), 540-552.

[7] Gries, D. "The multiple assignment statement." EEZ Traas. on Software
Bhgr. 'ISE-4, 2 (19?8), 89-93.

[S] Hehaer, E. C. R. "On removing the machine from the language". Acta
Infcumatica lo, 3 (1978), 229-243.

[9] Hehner, E. C. R. "do considered od: A contribution to the programming
calculus". kcta Informatics 11. 4 (1979), 287-304.

[lo] Haare, C. A. R. "Recursive data structures." Inter. J. d Ccmputer and
Iafor. 3ci 4, 2 (1975), 105-132.

[11] Kieburtz, R. 3. "Programming without pointer variables." ACM Sgplan
Notices 8, 2, hoceedings of A W Conference on Data, (1 9761, 95-1 07.

[12] Mitchell, J.G., Popek, G. J. "Revised report on the programming language
Euclid. Tech. Rept. CSL 76-2, Xerox PARC, 1978.

(131 Uskov, B. H., et. al. "Abstraction mechanisms in CLU." Comm. ACM 20, 0
(August 19~), 564-576.

[14] Milner, R. "A theory of Type Polymorphism in Programming", SCSS 17 3
(Dec . 1 9781, 348-375.

1151 Nordstrijm, B. "Programming with Abstract Data Types, Some Examples."
ACM'78 Proceedings, Dec. 4-6, Washington, D.C. pp. 646-654.

[l6] van Wijngarten, A., et. d. "Revised report on the algorithmic language
Algol 68." Acta Informatics 5, 1-3 (1B75), 1-236.

[I?] Wirth, N. "The programming language Pascal." A d a Inforrnatica 1, 1
(1071). 36-63.

[la] Henderson, P. and Morris, J.H., Jr., "A lazy evaluator", Proc. 3rd ACM POPL,
Atlanta, Ga., (1976), 95103.

1191 Wulf, W. A, London, R. L. and Shaw, M. "An introduction to the constructon
and verificaton of Alphard programs." Ig&E lhm. on Soft- Bngr. SE-2,
4 (December 1976), 253-365.

[20] Landin, P. J., "The next 700 programming languages", CACM 9 3 (March,
19661, 157-166.

[21] Burstall, R.M., MacQueen, D.B., and Sannella, D.T., "HOPE: an experimental
applicative language", Roc. 1980 LISP Conf., Stanford, Calif. (Aug. 1980),
136-143.

