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Abstract 
This report contains a complete, self-contained formal definition of the 

experimental programming language -4pple. The d e h t i o n  is given in the style 
of denotational semantics. However, the language design allows a direct seman- 
tics, that is, without the use of a domain of continuations. It also provides static 
environments in whch variables cannot have alias names, and the semantics 
therefore can be stated without the use of a domain of locations. 

Apple is a typed language, and allows the declaration of programmer- 
defined type constructors called classes, whch afford the means to define 
abstract data types in the language. A type constructor may be parameterized 
by types and constants, and therefore can define a set of polymorphic opera- 
tors. The description of types and of the notion of type-correctness adds consid- 
erably to the volume of text in the formal definition. However, typing helps to 
make the defimtion more precise by making explicit the class of syntactically 
well-formed sentences that are intended to be given meanings in the language. 
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1. Introduction 
Apple has been designed to be a simple, yet powerful programming 

language. It is basically an applicatitive language. Although its syntax allows 
statements, its semantics allows a straightforward translation of every Apple 
program that uses statements into an equivalent Apple program that is purely 
applicative. Statements are provided in Apple as a syntactic alternative to  
purely applicative programming. 

A criterion for simplicity applied during the design of Apple is that its for- 
mal semantic definition must be concise, &rect, and understandable. This 
definition, given in the notation pioneered by Scott and Strachey [SS], is 
presented here. A companion paper [KNBl] presents the language informally 
and gives some motivation for its design and use. The Apple Programmer's 
M u n d  has yet to be written. 

Customarily, a programming language is designed before its formal seman- 
tics is given. This practice has implied that the description of the semantics of a 
traditional language such as Pascal, PL/l , Algol 68 or Ada has been understand- 
able to only a few persons other than those who have taken an active part in pro- 
ducing the description. The design of Apple has been guided by the requirement 
that it should have a simply described semantics. 

A first decision in the language design process was to do without semantic 
"features" that would require the use of locations and continuations for their 
description. These domains are often used to explain programming language 
concepts that derive from a machine-oriented view of computation. Locations 
are needed when a language contains features such as explicit pointers and 
parameters passed by reference. Continuations have been used to explain the 
goto statement and its relatives, escape, e N ,  return etc. 

Some other important design decisions were: 
-- that the language should exhibit a hgh  degree of orthogonality, as advo- 

cated by van Wijngaarden [vW]. 
-- that functions are first-class objects, as are numbers and characters. It is 

possible to declare either a constant or a variable of a function type. The 
application of a function to an argument cannot produce a "side effect". 

-- that types, as well as constants of a function type, may be declared recur- 
sively. Ths means that it is possible to declare types whose values are lists 
or trees. 

-- Apple has assignable variables, however its scope rules do not allow global 
variables. Since there are no global variables, assignment cannot cause a 
side effect. Assignment to variables is allowed as a "safe" convenience to a 
programmer, yet the semantics of expression evaluation remains func- 
tional. 

- there is no restriction on the type of a value that can be assigned to a vari- 
able or used for the range of a function. 

-- polymorphic operators can be defined, using the class declaration con- 
struct. Polymorphism is explicitly resolved in Apple when a class is instan- 
tiated to a type, by specifying its type parameters. 
Apple is a typed language. Each constant or variable has associated with it, 

by declaration, a denotation called a type signature. Type signatures are 
intended to denote sets of objects, but they have not been given formal interpre- 
tations. The use of types enables a type-chechng algorithm to separate those 
syntactically correct texts whch may be meaningful from those that have no 
meaning in Apple. 



Type-correctness is determined by direct inspection of the type signatures 
associated with named objects, and represented in an abstract syntax. It does 
not depend upon an interpretation of types as sets of values or as algebras. 
Accordingly, we have not attempted to give any deeper meaning to types in the 
formal definition of Apple. (For a &fferent point of view concerning types, see 
[Mi'lB, McSB21.) 

Type signatures are constructed from: 
- predefined types which include: 

integer, denoting the integer numbers (without a maximal or a minimal 
element); 

rafional, denoting the rational numbers; 

ascii, denoting the ascii character set; 

bool, whose values are h e  and false. 
-- enumeration types, which include any Anitely enumerated set of literal con- 

stants; 
-- type constructors, which are templates for the synthesis of type expres- 

sions. 
There are constructors for: 
-- restricted types, whch denote a subset of the values of a containing type, 

as specified by a characteristic predicate; 
--- recursive types, for defmmg structures such as lists and trees; 
-- structured types, patterned after the record types of Pascal; 
-- product types, denoting tuples of values; 
-- mapping types, whose values are functions and for which arrays may pro- 

vide possible representations; 
- powerset types, whose domain is restricted to the types integer, or an 

enumeration type, or a restriction of one of these; 
--- &~criminated unions of types, such as are found in Algol 68. 

Another primary objective of Apple is to present a notation suitable for 
composing large programs out of modular units. There are two ways to define 
these units. 

An environment is comprised of declarations of classes, types, constants, 
and nested environments. It provides a semantic context for the interpretation 
of constant definitions or of program statements. The contents of an environ- 
ment may be explicitIy imported into another environment. 

A class. or abstract data type, abstracts a set of objects characterized by a 
behavior, rather than by the programmed representation of these objects. Only 
the constants (includmg functions) that define this behavior are exported from a 
class definition. Classes are integrated into the language through the type 
mechanism. A class becomes a new, programmer-defined type constructor. It 
may have formal parameters that designate types or typed constants. A class 
must be instantiated by proviang actual parameters when it is used in a type 
declaration to define a new type. 



1.1. A brief description of environments 
An environment defhtion consists of declarations of constants, types, 

classes and environments. An environment may be named in an environment 
declaration, 

env display 
[const erase : ascii == ' 
class screen ==, 

A named environment is a self-contained unit. The declarations it contains 
use only those definitions given within it, or which have been explicitly imported, 
or which are contained in the universal environment. The universal environment 
contains deb t ions  of arithmetic, ascii, and boolean types and their operators. 
Its contents are imlicitly imported into every declared environment. 

An unnamed environment occurs in the body of a function definition, and in 
the representation part of a class definition. An unnamed environment always 
imports the entire environment that surrounds it. 

In order to import some dellrutions from another environment, a reference 
declaration can be given, referring to the name of an environment and to the 
names of types, constants, classes or environments that are to be imported. 
Example: ref foo ( type t l ,  t2 const c l ,  c2, cg env E,  foo) 
Names imported from other environments can be redefined, so that collisions 
between imported names and those defined in a local environment can be 
avoided. 

1.2. A brief description of classes 
An Apple program can be partitioned into modules called classes (following 

the notation of Sirnula [Da]) whch serve as programmer-defined constructors 
for types. A class defines a family of constants, including functions. An instance 
of t h s  family will be defined for each type that is derived from the class. 

A constant may have as its type (or as a component of its type signature) 
the class-derived type itself. A function constant having the class-derived type 
as its range type is called a constmctor for the type. If the class-derived type 
does not occur as a component of the type signature of the range, but does 
occur in the domain type of the function, we call the function an e z t ~ a c t o r  for 
the type. There is no syntactic distinction between constructors and extractors, 
however. 

A class is seen as a template for constructing new types in Apple. A class 
definition consists of the following parts: 
--- a heading whch names the class and lists its formal parameters. These 

may be types and constants to be used in the class deh t ion .  
- a defines list which gives names and type signatures to the constants that 

are to be exported by the class definition. For each type derived from the 
class (by a type declaration) a set of these constants will be included in the 
environment in which the class-derived type is defined. 

-- a representation part, which declares a local environment in which mean- 
ings are given to the constants named in the defines list. Thls local environ- 
ment must include : 



.. declaration of a type named c a r r i e r ,  in terms of which each class- 
derived type is represented; 

.. declarations of the constants named and typed in the defines list. 
The representation part may also include declarations of other constants and 
types needed by its mandatory declarations. 

There is a predefined class in Apple, called stream, whose values are 
sequences, Input and output is achieved by bin&% stream-typed objects in 
Apple to sequential files of the computer environment in whlch an Apple pro- 
gram is to be run. 

1.2.1. hnction definitions 
A value of a mapping type can be denoted by a function constructor, which 

is an expression that has the following parts: 
-- a heading, beginning with the keyword function. and naming the formal 

parameter. If the domain type of the mapping is a product type, then the 
components of the formal parameter may be named indwidually. 

- any declarations to be included in the local environment of the function 
de fimtion; 

-- an optional statement part, which consists of a list of statements prefaced 
by the declarations of program variables; 

-- a return expression, which may contain occurrences of variables that have 
been declared in the statement part, as well as constants and formal 
parameters. 

Only the heading and the return expression are required parts of a function con- 
structor. 

Variables declared in the statement part of a function constructor are not 
imported into a nested environment, and therefore are not inherited by any 
nested function definition. There is no concept of a global variable. On the 
other hand, the formal parameter of a function constructor has the status of a 
constant in its local environment, and will be imported into the local environ- 
ments of functions whose declarations are nested within the declaration part of 
the function constructor. 

Since variables are not imported, a function defined by a constructor can 
never produce a "side effect" when it is applied to an argument. The value of a 
variable can be changed in no way other than by an explicit assignment state- 
ment in which the variable appears on the left side. This is a profound 
simplification over the uses made of variables in most statement-oriented 
languages. 



1.2.2. An example of a class declaration 

class Stack of type T / /  T is a parameter of the class 
== def 

Newstack : carrier, 
Push : carrier + T -> canier, 
Pop : carrier -> carrier, 
Top : carrier -> NonEmpty#T + 

EmptyStack#Failure 

rep 
type carrier : record 

Store : integer -> NonEmpty#T + 
EmptyStack#Failur e, 

Index : integer 
end 

const 
Newstack == [Store == function (i) 

return Emptystack# failure 
end, 

Index == -11, 

Push == function ( S , x )  
return 

let P : integer == succ S.1ndex in 
[Index == P, 
Store == S.Store 1 P : NonEmpty# x] 

endlet 
end, 

Pop == function IS) 
return 

let P : integer == S.lndex in 
if P >= 0 then 

[Store == S.Store, Index == pred P] 
else 

s 
endif 

endlet 
end. 

Top == function (S) 
return S.Store(S.lndex) 
end 

endclass 

In an environment in which this class has its declaration, or into which its 
declaration has been imported, new types may be declared to be instances of 
this class, and variables of these types can be declared. 



2. Notational conventions 

- I denotes the undefined element (called "bottom") in any domain. 
- "?" denotes a distinguished value (in any domain) called the emw element. 

This value differs from I , the undefined element, in that "?" is well defined 
and may be tested by an equality predicate, for instance. Almost every one 
of the semantic functions is strict with respect to  'I?". Exceptions are the 
updating functions and @3 defined below. 

- if b then e I else ez fi will denote the biconditional which maps 
(true, e l ,  e2 ) toe , .  ( f a l s e , e l , e z ) t oe2 ,  ( ? , e 1 , e z ) t o ? , a n d ( l , e l ,  ez) t o 1  

- if b , then e elseif b then e else e fi will mean 
if b l  t h e n e l  else(if b2 thene2e l s ee  fi) fi 

- if b then e fi  will mean if b then e else ? fi 
- An identifier having the initial letter in upper case will stand for a domain. 

If the same identifier is used with the initial letter in lower case, then it will 
stand for an element within that domain. For instance, val E Val, id E Id 

- Instead of writlng f = b . e  we will write f (z )  = e 
Therefore g (z)(y) = 2% means g = Ax. hy. 2% 

If A and B are domains then 
--- A -D B is the domain of all continuous functions from A to B 
-- A x  B is the cartesian product 
-- [a,:b ,,... a,:b,] is the element in A -, Bwhich maps q to b,, 1 ( i  c: n .  

All other elements of A are mapped to "?" in B. 
-- If z is a tuple, for instance z E A x  B, then Z J ~  will denote the i th  projection 

of z. Alternatively, we may use the names of component domains to denote 
projections when the notation is unambiguous, i.e, z . A  and z.3 may be used 
in place of zJ1 and z & 2  -- z e y will denote 
ifz,y € A +  BthenAa.(if y ( a )  = ? t h e n z ( a )  else? fi) fi 

-- x @ y will denote 
if z,y E A-DBthen 

ha. (if x (a) = ? then y ( a )  elseif y ( a )  = ? then z (a )  else ? fi) fi 

--- x y willdenote 
ifz E A x B andy E A then (z.A e y ,  2.3) fl 

--- z $ A y will denote 
if z E A x B andy E A then (z.A @ y ,  2.3) fi 

In giving the meaning functions we shall use an informal pattern-matchng 
mechanism in order to identify parameters. We use double brackets, 
[ , , to  enclose syntactical expressions. A syntactical expression consists of 
terminal symbols and variables that denote syntactical expressions. 

When an expression has a finite number of components, we shall often use 
ellipses, "...", to denote the components not explicitly written. 

We also adopt the let  and where notations to factor components of 
definitions. When an expression to  be defined consists of a pair, we may write 
"where (z ,y)  = . . . " to give the names "z" to its first part and "y" to its second 
part. 



The reader familiar with denotational semantics will recognize the opera- 
tors e0 and $ as operators which extend a mapping. The @ operator extends the 
mapping which is given as its &st argument by the mapping which is its second 
argument, ,when the extended mapping is applied to any value on whch one or 
.the other of the argument mappings was undefined (i.e. mapped an argument to 
"?"). The operator also extends its *st argument by the second, but differs 
from $ in that the second argument supersedes the first, on values on whch 
:both are defined. 

In the above definitions, and throughout the rest of this document we shall 
.use summation notation, 

t o  mean 
['V,":m,]$ ["i2":rnz] $ ,... ["i,,": m,] 

3. Description of the semantic definition 
We use denotational semantics to define the meaning of a program. This 

method uses a set of meaning functions to associate mathematical objects with 
the syntactical expressions of the programming language. It is necessary to 
give such a definition when the programming language is not itself a mathemati- 
cal language. The meaning functions are defined on domains. We shall use the 
following domains, where + is the separated sum and x is the coalesced product: 

An object (or value) is either a rational number, or an identifier, or an ordered 
pair of values, or a function. 

T = Id + Enumeration + Restriction + Set + Record + Product + Union + Map 
where 

Enumeration = Id* 
Restriction = T x Expr 
Set = T 
Record = (Id x T)* 
Product = T* 
Union = (Id x T)* 
Map = T + T  

The domain of types is composed from the primitive domains of identifiers and 
expressions, where expressions is a class of syntactical objects. (We have made 
use of the Kleene star to denote the repeated product of a domain. This should 
cause no confusion.) 

Env = Const x Type x Var x Op x Ename x Class 
--- The domain of environments is composed of the domains: 

-- An element of Const maps identifiers to pairs consisting of a type and a 
value. 



Type =1d+ (Tx 0) 
- An element of TPpe maps identifiers to pairs consisting of a type and a 

value. The value is the default initial value given to variables of that type. 

Var = Id -, T 
- An element of Var associates a type with each variable. 

Op=ld+T 
-- An element of Op i a p s  identifiers which are the names of class-derived 

types to elements of Const whch defhe the meanings of the class constants 
for these types. 

R e = I d + E n v  
- An element of Ename associates environments with environment names. 

where C = P(1d) x (Id -+ T) 
- An element of Class maps class identifiers to their meanings. The class sig- 

nature domain, C, contains characterizations of the parameters of classes. 

Val = Id -r 0 . 

--- An element of Val maps names of program variables to values, and 
represents a state of a computation. 

We shall use the following meaning functions: 

eval : Stmt -, Ehv -, Val -, Val 
--- where Stmt is a primitive domain of syntactical objects, eval yields the 

meaning of a program statement which changes the mapping that associ- 
ates values with variables in a given environment. 

v d u e ~ f  : Egpr + Ehv -r Val -, 0 
-- yields the meaning of an expression. 

e-@e:Typesqr-,Env-,T 
-- where W x p r  is a primitive domain of syntactical objects. eAype yields 

the meaning of an expression denoting a type. 

m d e c l  : Decl-+ Env -. Env 
- where Decl is a primitive domain of syntactical objects. m d e c l  yields the 

meaning of a declaration of a constant, type, class, or environment. 

w a r  : VmAecl + Env + (Env x Val) 
- where VarAecl is a primitive domain of syntactical objects, w a r  yields 

the meaning of a declaration that gives types and initial values to variables. 

nLparam : Paramlecls -+ Ehv + Env 
- where P a r d e c l s  is a declaration of actual parameters of a class 

instance. mpurum yields the meanings of the parameters. 



4. Environments 
An environment is a collection of declarations of constants, types, classes, 

and (either nested or imported) environments. These declarations provide a 
semantic context in which to give meanings to variables, expressions, and state- 
ments. Environment declarations may be nested within one another or withn 
the body of a function d e h t i o n  or the representation of a class. An environ- 
ment may include defhitions made in surrounding environments. When the 
environment is that of a function body or a class representation, it imports the 
immediately surrounding environment by default. The universal environment, 
whlch contains deb t ions  of the basic types and their constants is also imported 
by default into every other environment. In all other cases, the names whch are 
to be imported into an environment from other known environments must be 
explicitly declared in a reference list. 

e n v  declr  

conat declr  

type declr  

c l r  r 8 declr  

L 

Semantics 

r r t d e c l  [<environment> ] (env) = 

YEhv Ae.env e n d e c l  ncclass decl>]l 

( d e c l  [<type decl>] 

( M e c l  n<const decl>]l 

( O c l  [<env decI>] ( e  )) ) ) 

The significance of the fixed-point operator is that the meanings associated with 
declared names can depend upon one another, regardless of the order in whch 
declarations are listed. In particular, constants of a mapping type (i.e. func- 
tions) may have recursive or mutually recursive deht ions .  



4.1. Environment importation 

sSntaz  
import deck 

\ 
f 

d e n t i f i e r w  a l i r r  l l r t  

The notation id, 1 id, signifies that zd, is to be an alias name in the local environ- 
ment for the name id, from an imported environment. id, has all the same attri- 
butes (type, value, etc.) associated with id, in the environment in whch is 
declared. When an alias is the same as the originally declared name, it need not 
be denoted, i.e. 

ref A (const C) 
is an abbreviation for 

ref A (const CJC) 

Semantics 

type k1 lcl ,... classIl[dl ,...) 1 ( e n v )  = 

[ ] @we ["a, : e'. E s a m e  [id, 1 ] 
i 

C [ Id i"  : e'. Uass [l i  I ]  
1 

where e' = env. E-name lid I 



4.2. Environment declarations 
Syntax 

import decl 

Semantics: 

d e c l  1 env id [(import decl><environment>] 1 ( e n v )  = 

m u  ["idP : YEhv Ae'. m d e c l  [<import decl> (env  ) 

63 m d e c l  [<environment> 1 (e' ) 

63- ["id" : e' ] ] 
A named environment contains the meaning of its own name. 

4.3. Constant declarations 
The declaration of a constant defines a name which must be unique among 

identifiers used for constants (or variables) in the current environment. The 
declaration gives it a type and a value. 

A small example: 

const int  15 : integer == 32767, 
complexzero : f loat  *float == (0,O) 

Semantics: 

d e c l  1 const id : t = = ezpr, <const decls>] (env) = 

(env @a-t ["id" : (e_type 1 t 1, values f [ e z p r  1 ( e n v ) ( [ ] ) )  1) 



4.4. Type declarations 
A type declaration defines a name and associates with it a type and an ini- 

tial value to be given to variables declared of the type. If the initial value 
declaration is omitted, an initial value is supplied by a language-defined func- 
tion, init, applied to the type expression, enumeration, or class instance that 
appears as the right-hand side of the type declaration. The function init is 
defined in Section 5.5. 

In case a type is specified by explicit enumeration of its values, the names 
that are listed to denote values are implicitly declared as constants of the type. 
In case a type is specified to be an instance of a class, operators defined by the 
class are implicitly declared for the type. 

Enumerations and instances of classes may be used only to define types. 
That is, these forms may appear only as the right side of a type declaration. 
Type expressions other than these two forms may occur in any context in which 
a type is to be specified. The reason that enumerations and class instances are 
restricted to explicit type declarations is that they contribute new names to 
components of the environment in whch they occur. 

A mLaU ezample :  

type complez  : f loat  f l o a t ,  

color : [ r e d ,  g r e e n ,  blue I ,  
asciistream : stream [type T : mciz] 

typo doclr: 
- 

clarr Inrtrnco 

clarr Inrtance : 



Semant ics:  

r n d e c l  1 type id : t , <type decls>] ( e n v )  = 
m d e c l  [type <type decls> ( m d e c l  [ t y p e  id : t 1 ( e n v ) )  

nzdec.? [type id : t J(env) = 
cases t is 
I 1 t i d l ,  ... id,]" ==> e n v  G 3 ~ e [ ' 1 i d ) '  : t' ] 

where t' = enumeration("id,", . . . "id, " ) 

"CLid [type i , : t  ,,... const k l : s ,  = = e  ,,... 1" ==> 
env €Bmo ["id" : class] 

CBqp["id" : 5 k f  .Const ]  

where C d e  f = env .  Class U d  1 
( m p a r a m  1 typei,:t ,,... const k,:s,==e ,,... ] ( e n v ) )  

" <type expr>" ==> e n v  ["id" : eAype  1 t ] ( e n v ) ]  

esac 

where wqaram is a function that defines the local environment contributed by 
the actual parameters in a class instance: 

where env' = enu %e t y p e ~ r g s  

and W e s r g s  = ["ij" : e l  ype itj ] ( e n v )  ] 
i 

Parameters to an instance of a class are evaluated in the environment in which 
the class instance is declared. 



5. lppes 
Types are used to partition the constants and variables of an Apple program 

into disjoint sets. Rules for checking type-correctness enable a language trans- 
lator to  reject a program that is patently without meaning. 

Types occur in declarations of constants, variables, classes and named 
types. A type can be specified by an explicit enumeration of values, by instan- 
tiation of a class, or by a type expression. A type expression is composed from 
the names of types and from applications of predefined functions yielhng types 
(so-called type constructors). The type constructors of Apple are: restrictions, 
records, products, mappings, powersets, unions and recursive type construc- 
tors. The classes that a programmer can declare are also analogous to type 
constructors, in that existmg types can be given as parameters to construct a 
new type. Class instances and enumerations may not be used directly as types 
in type expressions, however. 

5.1. Type identifiers 
Semantics: 

e-e lid ](env) = env. Type ["id"] & 1 

5.2. Enumeration types 

A m a l l  example: 

(red, green, bluej 

onumarr tlon: 

Semantics: 

e-type [)id, ,...id,] ](env) = enumeration("idl" ,..."i&,") 

There is a predefined enumeration type called ascii whch consists of the 
symbols defmed by the international standard character set. 

The predefined enumeration type Boo1 consists of two values, false, true, 
and defines the operators and, o r ,  not with their conventional meanings. 

5.3. Arithmetic types 

Semantics: 

e f  ype float ](env) = "float" 

e-type 1 integer ](env) = " integer" 

Informally, the type corresponds to  the set of integer numbers. Note that there 
is no restriction on the size of an  integer. The type corresponds to the rational 
numbers, also without restriction as to size or precision of representation. 



5.4. Predebned type constructors 
type oxpr: 

Table 5.4.1 -Operator precedence in type expressions 
The following table gives the precedence of the type-formation operators 

that may occur in type expressions. Operators of lower precedence level bind 
their arguments before those of hgher precedence level. Left association 
means that in an expression involving multiple occurrences cf the same opera- 
tor, occurrences to the left bind their operands first. 

Precedence of type operators 
1 

level operator name association 
1 * cartesian product associative 

2 -> mapping right 

3 + discriminated union associative 

4 rec recursive type 

5.4.1. Restrictions 
A new type may be defined by specifying a characteristic predicate whch 

restricts the set of values of some base type. The predicate is given as a 
Boolean expression, functional upon a variable bound in the type specification. 
Abbreviations of this syntax are allowed to  specify intervals of values from 
totally ordered base types. 

An expression of the base type may be used in a context in whch a value of 
a restricted type is expected. In order to convert the type from that of the base 
type to that of the restriction, a predefined function cnv is applied to the 
expression, cnv evaluates the characteristic predcate of the restriction, 



applied to the value of the expression, in order to determine whether the value 
is allowed in the context of its use. m s  provides a powerful facility for checking 
that the values generated during execution of a program satisfy the expecta- 
tions of its author. 

Some small examples: 
i1..10 : integerj 
1x:float I abs(x - sqrt 2) <= 0.51 
fx:vector I sorted x] 

identifier a type  axpr m e x p r e a a i o n w  

~ e x p r o a a i o n ~ e x p r a a a i o n ~  type axpr 

Semantics: 

e l ype  1id:t 1 ezpr j I(env) = 
restriction(e2ype [ t ]I(env), (ground !A id  . expr ](env))) 

The use of a A-expression in a type expression expresses only the fact that the 
identifier is bound locally. The only conversion rule of the A-calculus that is 
used in comparing types is the rule of a-conversion (renammg of a bound vari- 
able). 
The function ground : Ekpr -, Env -, Expr substitutes for all identifiers occurring 
in the expression given as its first argument, their d e h t i o n s  in the environment 
given as its second argument. Thus the term ground [ e q r  ](env) contains no 
occurrence of any identifier bound in env. llus allows the d e h t i o n  of a res- 
tricted type to be imported from a named environment into a current environ- 
ment without requiring additional constant identifiers to be imported. 
To denote an interval of values of a totally ordered type, the type expression 

fei..e2 : t ]  

is allowed as an abbreviation for the type expression 
tx:t I e l  <= x and x <= e2j 

where el  and e2 are expressions. 



5.4.2. Records 

ldentlfler 
h 

Semantics: 

where TF is a permutation of 1 ..n such that i < j 3 id, <idj in the lexical order 
on identifiers that is induced by the collating sequence on ASCII characters. 

5.4.3. Cartesian products 

syntax 

type expr -=a- 
Semantics: 

eAype [ t , *  ...+ t, ](env) = product(edype i t l ] (env)  ,... efype It, ](env)) 

5.4.4. Mappings 

A small ezample 

type vector : { 1. .n: integer] -> float, 
dictionary : string -> string 

type expr mapping type 

Semantics: 

edype 1 t -> t 2  jl(env) = map(ef ype [ t ](env), eAype t 2  ](env)) 

The mapping constructor corresponds to the function space in mathematics. 



Note that Apple imposes no restriction upon the domain of a mapping type. 

A small ezample 

set of lO..maxval: integer] 

Semantics: 

eAwe [ set of t j(env) = set(eAwe [ t ](env)) 

Composition of powerset types is restricted in Apple. The base type of a power- 
set must be or an enumeration type, or a restriction of one of these. 

5.4.6. Discriminated unions 

A small example 

type sparsematrix : integer*integer -> (defined#float + undefined#nulltype) 

Semantics: 

e d w e  [id,#t,+ ... &#tn p(env) = 
union((idnl, elype i t ,  ](env)) ,... (idn,, eAwe I tn ](env))) 

where zr is a permutation of l..n such that icj * id, <idj in the lexical order on 
identifiers that is induced by the collating sequence on ASCII characters. 



5.4.7. Recursive type expressions 

A small ezample : 

type nulltype : I null], 
intlist : list rec empty#nulltype + cons#(integer*list), 
inttree : t ree rec empty#nulltype + 

maketree#(integer*tree*tree) 

Semantics : 

e-e (id rec txqm ](env)  = recursive(elype [ txzpr  ](enu) [rec/ id]) 

where e[.$/z] denotes the expression gotten from e by replacing every free 
occurrence ot z by [. 
In order to simplify the semantics of recursive type expressions, the following 
restrictions are imposed: 

1) The type expression following the keyword rec must be a union whose first 
term does not contain the identifier whch precedes the keyword rec. 

2) The identifier which precedes the keyword rec must not occur in the 
domain type of a mapping in the type expression that follo~+~s it. 

Mutually recursive d e b t i o n s  of types have no meanings in Apple. 



6. Classes 
A class is a program unit in which a programmer can characterize a set of 

objects by their behaviors. This is done by d e h n g  a set of functions whch pro- 
duce values of these objects or which map these objects into values of other 
types. In order to define these functions by program units, it is necessary to 
give a specific representation for the values of objects in the class. Thls 
representation is given as a type declared as the carrier of the class. 

The carrier and the programmed definitions of the functions are not ger- 
mane to  the programs that use objects of the class. Therefore these representa- 
tional details are n~t~expor ted  into a surrounding environment. 

A class can also be parameterized by types and constants. Parameters are 
particularly useful when classes are used to generalize data structures, as in the 
familiar example of a stack. Actual parameters are bound to the formal param- 
eter names when an instance of the class is declared as a type. 

Since a parameterized class may be instantiated in many different ways in 
the same program, its operators (exported functions) may be polymorphc. In 
order that polymorphism can be resolved, Apple requires each occurrence of 
one of these operators in an expression to be annotated with the name of a 
specific type which has been declared as an instance of the class. Th~s is the 
solution that has been adopted in the data abstraction language CLU [Lis]. For 
example, if a class has been defined by 

class Stack of type T = = 
def Push : carrier*T -> carrier, 

and if a type derived from t h s  class has been declared by 

type Intstack : Stack [type T : integer] 

then a variable declared by 

var S : Intstack 

could be given a new value by execution of a statement such as 

S := Intstack's Push (S,3) 

Because we have chosen to disambiguate the polymorphism of class-derived 
operators in t h s  way, class instances are not regarded as fist-class types. A 
class instance cannot be used in all contexts that require a type expression, but 
can only occur as the right-hand side of a type declaration. 



6.1. Class declarations 

synt= 

conrt parm l i r t  

const perm l i l t :  

The environment declared as the representation of a class must contain the 
declaration of a type whose narne is carrier, and must also contain declarations 
of all constants named in the def list. 



A small example 

class Boundedstack of type T const bound : integer == 
def Push : carrier*T -> carrier, 

Pop : carrier -> carrier, 
Top : carrier -> T, 
Isempty: carrier -> Boo1 

rep 
type carrier : record 

Inx : to.. bound: integer], 
Store : [l..bound: integer] -> T 

end 
const 

Push == function (S,x) ... 

endclass 

Semantics: 

d e c l  Iclass C of type id l , .  . . id,, const c : s  , ,  . . . c, :s, 

== def f l:t l , . . .  f l: :tk rep <environment> endclass ] (env) 

= $aw[OtC" : hp. / / where p is in the domain &v 

[led / / type signature 
e t b m t  Sif t  [def f l : t l , . . .  f k : t k  1 ( r ) ]  

/ /  meanings of exported constants 

and t = ( tWid1" ,... j ,  ["c ," : e f  ype I s ,  ] ( env t )  ,... 1 )  

and T = n u k c 1  [<environment>] (env  d3 p) 

Infonnal comments 
Recall that the domain Class is a product of two domains, (C x Const). An 

element of C describes the formal parameters of a class. An element of Const 
gives the meanings of the constants defined by a class-derived type. These 
meanings are obtained from the environment declaration that provides the class 
representation. They are extracted from the meaning of the representation by 
the function s i f t ,  defined above, whch uses the defines list of the class declara- 
tion. 



7. Expressions 
The various syntactic forms of expressions are strongly connected with 

types. Semantics are given on the supposition that expressions are type- 
correct, for otherwise an expression may have no meaning. Association of 
binary infix operators is generally to the left, subject to the precedence rules 
expressed in Table 7.1. 

Table 7.1 - Precedence of operators in Apple 
Operators of lower precedence level bind their arguments before operators 

of higher precedence. An operator is said to associate to the left (right) if it 
binds its arguments before operators of equal precedence that occur to its right 
(left) in the same expression. 

P 

Operator Precedence Rules 

level operator name association 

1 # injection right 
L type resolution right 

2 @ function composition associative 
! projection left 

record field selection left 

3 function application left 

4 + / div mod product operators left 

5 + - additive operators left 

6 = <> < <= > >= relational operators 
member set mernbershlp 

7 not negation 

B and conjunction associative 

9 or disjunction associative 

10 I : supercedes left 



7.1. Identifiers 
Semantics:  

v a l u e s f  [id] (env)(vd) = 
if env. Const 1 ] # ? 

then env .  Const I id ] J2 

else val  lid ] 
fl 

7.2. Expressions for type Boo1 

7.2.1. Conditional expressions 

Syntm 

Semant ics:  

valzLe_o f [ if b then e else e 2 endif I ( e n v  ) (vd ) = 
if valued f I b I) ( e n v ) ( v a l )  

thenvaluesf i e , ] ( e n v ) ( v a l )  

else  value^ f [ e2  1 ( env  )(vd ) 

fi 

The expression 

if b then e elseif e2 . . . else endif 

may be written as a more convenient notation for the nested conditional 

i f  b l  thene, else 

if b z  then e 2  else 

. . .else 

endif . . . endif endif 



7.2.2. Boolean expressions 

w= 
loglcrl expr: 

loglcrl conjunct: 

logical conjunct 

loglcal prlmary: 

relational expr IC 

S e m a n t i c s :  

v a l u e s  f  not e ] ( e n v )  ( v a l )  = 
if v a l u e d  f  1 e ] ( e n v  ) ( v a l )  then f a l s e  else t r u e  fi 

v a l u e s f  l e ,  a n d e z  ] ( e n v ) ( v a l )  = 
if  value^ f  / e j ( e n v  ) (va l  ) 

then  value^ f  1 e 2  ( e n v  ) ( v a l  ) 
else f a l se  

v a l u e s f  Be, or e 2  1 ( e n v ) ( v a l )  = 
if v a l u e s f  Be, ] ( e n v ) ( v a l )  

then t m e  

else v a l u e d  f  1 e ] ( e n v  ) ( v a l  ) 

fi 



7.3. Arithmetic expressions 

7.3.1. Denotation of values 
S@L~ az 

algebraic expr: 

algebraic product 

algebraic product: 

algebraic product algebraic primary 

algebraic primary: 

algebraic primary 

r e l e c t o r  expr: 

unaigned declmal numeral 



olmple expr: 

- identifier 

naigned decimal numeral 

unrigned floati 

record constructor B 

exprerrion I 



7.3.2. Unary operators 
The unary minus "-" is defined on both float and in t eger  types. The func- 

bans pred and succ are defined on integer types and on enumeration types, for 
which the meanings of constants are defmed as natural numbers. 

Semant i c s :  

u d u e a  f [ -e ] ( e n v  ) (val  ) = - v a l u e s  f e  ( e n v  ) ( v a l )  

v a l u e s  f 1 pred e  ] ( e n v ) ( v a l )  = v a l u e s  f 1 e  ] ( e n v  )(val  ) - 1 

7.3.3. Binary operators 
The operators "+", "-", "*" are defined for bothfloat and in teger  types. The 

operator "/" is defined only for type float, and the operators &v and mod are 
defined only for type in teger .  
Semant ics:  

vduwf [ e l  op e , ] ( e n v ) ( v d )  = 
M lop]  ( v a l u e ~ f  Be, ] ( e n v ) ( v a l ) ,  v a l u e s j  [ e 2  ] ( e n v ) ( v a l ) )  

where "op" is one of the binary arithmetic operators. For the operators "+", "-", 
"*'I, "/", M op ] gives the customary operations of addition, subtraction, multi- 
plication, or division. 

M I mod = Xz. Ay. z - y * ( M  1 div  (x)(y)) 



7.4. Relational expressions 
The relational operators are a set of binary infix operators producing values 

of type Bool. They include equality and &sequality, which expect arguments of a 
compatible type (but not of a mapping type, nor of a type derived from a class), 
plus several inequalities which expect arguments of an arithmetic or  an 
enumeration type. Another relational operator, the test for membership in a 
set ,  is defined in Section 7.9. 

@ member 

7.4.1. Equality and disequality 

Semantics: 

va lues f  [ e l  = e 2  ](env)<val) = 
(va luesf  1 e ] (env)(val) = v a l u e s  f E e2 0 (env)(vd))  

The expression e l  <> ez is equivalent to no t  (e = e2). 

7.4.2. Inequalities 

Semantics: 

v a l u e d  f [ e ,  <= e2  1 (env)(val) = 
M 1 <= 1 (va luesf  nel 0 (env)(val),  va lues f  [e2 1 (env)(val)) 

where M 1 <= ] = Y AT. kc. Ay. if z=y o r r ( m c c  x ,  y) t hen  t m e  

elseif T (SLLC c y , x ) then  f a k e  else 1 

fi 

Other relational operators are defined in terms of "=", "<=", and the Boolean 
operators: 

"e < e$ is equivalent to "el <= ez and no t  (e ,  = e2)" 
"e >= ez" is equivalent to "not (e < ezIg1 
"e > e$ is equivalent to "not (e l  <= e z)" 



7.5. ?kpressions involving product types 

7.5.1, Value constructor 

Semantics : 
If a ,,... a,, are expressions of types Al ,... 4 then (al  ,... a,,) is an expression 

of type A l * . .  *A,,. 

values f 1 (a  ,,... a,)](env)(val) = (al' ,... a,') 

where q' =  value^ f q ](env)(val) for lsign 

7.5.2. Operators 
There is one operator on expressions of a product type, called projection. 

I t  takes an argument of a product type and a second argument whch is a 
natural number. 

Semantics: 
The projection e ! i ,  where e is an expression of type A,  *. . . *& and n>l  and i is 
a numeral satisfying l s i sn ,  is defined by 

v a l u e ~ f  1 e !i 1 (env)(vnl) =(value_of e 1 (env)(val)) ~i 



7.6. Expressions involving record types 

7.6.1. Value constructor 
SyLt= 
record  c o n ~ t r u c t o r :  

identifier 

Semant ics:  

7.6.2. Operators 
The operators defined on an expression of a record type are Peld  selection, 

wbch yields the value of a field named by an identifier, and supersedes,  whch 
replaces the value of one of the fields. 

Semant ics:  

v d u e a f  6 e . i d ]  ( e n v ) ( v a l )  = v a l u e s  f 1 e ( e n v ) ( v a l )  ! i d  

Semant ics:  

valzLe_of [ r  lid:e ] ( e n v ) ( v a l )  = 



7.7. Expressions involving mapping types 

7.7.1. Value constructor 
a@'= 
function conrtructor: 

b 

vr r  declr: 

valzLea j 1 function ( i : t )  e  ; v do s tmt  return ezpr end I ( e n v ) ( v a l )  = 

hz.  value^ f  1 ezpr (env' eanst ["i" : ( edype  (j t ] (env ), z )] )(val' ) 

where (env' , vd' ) = w a r  I[ v 1 ( m d e c l  [ e  1 (env )) 

7.7.1.1. The meaning of a declaration of variables 
w a r  [varid : t == e z p r ,  <var deck> ( e n v )  = 

(e : d g p e  1 t ] ( e n v ) ] ,  

v @ ["id" : v a l u e s f  [ ezpr ] ( e n u ) ( [ ] ) ] )  

where ( e  , v )  = if <var decls> is an empty string 

then (env , [ 1 )  
else w a r  1 <var decls>] (enu)  

fi 

The declaration 
varidl, ... id,, : t == expr 

is equivalent to 
raridl : t == e z p r ,  ... id, : t == ezpr  



7.7.2. Operators 
Function application, function composition, and supersedes are the opera- 

tions defined for mapping types. Function application is the only operation of 
the language that is not denoted by an explicit operator symbol. Although the 
argument in a function application may be set off by parentheses if desired, it is 
not necessary to do so. 

Semantics: 

Function application is defined by 

values f 1 f a ]I (env)(val) = 
 value^ f f 1 (env)(val)(value-o f [ a 1 (env )(val)) 

If f and g are expressions typed as f : A -> B and g : B -> C, then the composi- 
tion of g with f is defined by 

g @ f is equivalent to function (z :A) return g (f (z)) end 

If f , a and b are expressions typed as f : A -> 3, a : A,  and b : B, then the fol- 
lowing defines the expression read as " f superseded at a by b ", 

f 1 a : b  is equivalent to function (z :A) return if z = a then b else f z end 



7.8. Espressions involving powerset types 

7.8.1. Value constructor 

w= 

powerre t  conrtructor:  

range element: 

expression ' * 

If e ( z )  is an expression of type Bool with only z free, then 

1z:A le (4 
is an expression of type set of A.  

Semantics: 

v a h e s l  I t z : ~  le I ]  (env)(val) = 

Ay, v a l u e s  f I e (env ["z" : (edype A ](env), y )] ) (vd  ) 
The meaning of a powerset expression is a function from values of the base type 
to Boolean values. 
If e ,,... en are expressions of type A ,  then the expression 

{e en{ is equivalent to f z : A  I z =e or ... orz=enj  



7.8.2. Operators 
if e and ez are expressions of type set of A ,  and a is an expression of type 

A,  then the following expressions are defined: 

7.8.2.1. The operator min finds the least element in e which is not less than a 

Semantics: 

v a l u e s  f 1 m i n ( e  , a )  ] ( e n v ) ( v a l )  = 

( Y  Am. Ae'. Xu'. if e' ( a ' )  then a' else n (e l ) (a '  + 1) fi) 

( v a l u e s  f 1 e 1 ( e n v  ) (val  )) ( v a l u e s  f a ( e n v  ) (val  )) 

7.8.2.2. The operator mazr, which Ands the greatest element in e which is not 
greater than a, is defined similarly. 

7.6.2.3. union. intersection, and set Merence 

v d u e s j  [ e l  op e z  1 ( e n v ) ( v d )  = kc. e l t ( x )  op' e z l ( x )  

where ei' = v d u e s f  1 ei ] ( e n u ) ( u a l )  

and where if op .is " union" then op' is or, 
if op is "intersection" then op' is and, 
if op is " difference" then op' is and not 

7.8.2.4. set membership 

v a l u e s  f [ e I member e z  ] ( e n v ) ( v a l )  = 

v a l u e s  f e 1 ( e n v ) ( v a l ) ( v d u e _ o  j [ e ] ( e n v  )(vd )) 

7.8.2.5. The set map function The set map applies a function to each member 
of a set that satisfies a given predicate. The result is the set of values in the 
range of the function. 

v d u e ~ f  [ f e ( x )  1x ins a n d b ( z )  j ] ( e n v ) ( v d )  = 
I y 1 (32) x r v a l u e ~ f  1s ( e n v ) ( v a l )  and 

v a l u e s  f 0 b ] ( e n v )  (val  ) x = t m e  and 

y = v a l u e s f  [e  ( e n u )  (vd ) z j 

7.9. Expressions involving union types 

7.9.1. Value constructor 
If e is an expression of type t , then the injection idjYe is an expression of a 

union type id,#t +... &#t, such that id  = id, and t = ti for some i s n .  The 
injection is defined by 

v a l u e s  j 1 id#e ) ( e n v  )(vd ) = ("id",  value^ f e ] ( e n v )  (val  )) 



7.9.2. The unioncase expression 

sSnt= 

There is no operator (other than the value constructor) which yields a new 
value of a union type. Expressions of a union type can bve used in the unioncase 
expression whch discriminates on the case tag. The meaning of t h s  expression 
is defined by 

valued f ( unioncase e of 

I I &#%Line, 
1 1  othersinen+, 

endcase I (env)(val) = 
if e'J1 = i, then e ,' 

elseif e' d l  = iz then e; 

elseif e' 4 1 = i,, then en ' 

else e, + l' fi 

where e' = values f [I e J (env ) (val ), and 

ei' =valuesf  Bei ](enu)(val) for l g i s n .  



7.10. Ekpressions involving locally defined constants 

b 

Semantics : 

v a l u e s  f [ ezpr  ] (Yhv Ae. env 2 ["id" : ( t i1+ vi ) ]  ) ( ~ d )  
i = l  

where ti' = e-type 1 ti ](enu ), and 

v i  = va lued  f 1 ei ] ( e  ) (val ) 



8. Statements 

8.1. The empty statement 

w= 

a88lgnment 

Semantics: 

evd  0 skip ] (env ) ( v d  ) = v d  

b 

* 

for r tatoment  - -- 

w 

repeat  r tatement  



8.2. Assignment 

sSnt= 

Ezampl es: 
a := 5*x; 
(day,  month, year) := (31,12,79); 

( x J )  : = (y ,x )  

Semantics: 

eval [ i d  := e ] ( e n v ) ( v a l )  = va le [" id"  : v a l u e ~ f  [ e  ] ( e n v ) ( v a l ) ]  

val 2 ['*7&" : v a l u e s  f  1 e ] ( e n v ) ( v d ) ) ~ i ]  
i= 1 

8.3. Sequential composition 
Syntrzl: 

A small example 
a := 5; b := a+b 

Semantics: 

eval [ s , ; s z  ( e n v ) ( v d )  = eval i s 2  ] ( env ) ( eva l  i s ,  ] ( e n v ) ( u a l ) )  



8.4. The conditional statement 

A smal l  ezample  

if a >= b anda>= c thenm:= a+b+c 
elseif b >= c then m := b+aec 
else m := c+a*b 
endif 

Semant ics:  

eval  1 if e then s , else s endif 1 ( env ) (val  ) = 
if v a l u e s  f 1 e ] ( e n v ) ( v a l )  then eval is ] ( e n v ) ( v a l )  

else eval I( sz ] ( e n v ) ( v a l )  

The repeated conditional statement 

if e l  thens l  elseif e z  &ens2 . . .   else^,,^ endif 

can be written as an abbreviation for the nested conditional statement 

if e then s , else 
if e then s else 



8.5. The unioncase statement 

A m a l l  ezample: 
unioncase SJis t of 

Nullist#t do Found-lt : = false 

I I Atom#t do Found-lt : = t = key 

I I List#t do if contains (key, front t) 
then Found-lt := true 
else FounLt  := contains (key, rest t) 

endif 
endcase 

Semantics: 

eval 1 unioncase e of 

idl#al dosl 

I I 

I I GI #an dosn 

( ( others do s, , 
endcase ] (env) ( v d  ) = 

if e ' i l  = id, then e v d  Isl ] (env bowl ["al": (Bool, e ' rZ)])(vd) 

elseif e' i n  = & then eval s, 1 (env @ [ ' I4  " : (Baal, e' r 2)] ) ( v d  ) 

else eval [ sn + l  1 (env)(val) 

fi 



Note: the definition of eval does not depend upon the type associated with a con- 
stant. Therefore the type Boo1 has arbitrarily been given to each constant a, in 
providing an environment for evaluation of statement si . 

8.6. The recursive statement 

hn example: 

(x,y,z) := (A,N, 1); 
Exponent: : 

if y <= 0 then skip 
else if even y then 

(x,y) := (x*x, y div 2) 
else 

(y.2) := (y-1, x'z) 
endif; 
repeat Exponent 

endif 
::Exponent 

Semantics: 

eval 1id::stmt::id ] (enu)(ud) = 

Y W + ~  As. eval (stmtl(env)(val @["id": s]) 

8.7. The repeat statement 

synfu 

Semantics: 

evnl nrepeatid](env)(val) = val Iid](val) 



8.0. The let statement - local constant definition 

An ezample: 
let x : float == position.NS, y : float == position.EW 
in range := x*x + y*y; 

azimuth : = arctan y /x 
endlet 

Semt i c s :  

eval jlletid,Itl==el, ... id , l t ,==e,  instmt endlet](env)(val) 

evd 1 stmt ] (Y&,, he. enu eamr 2 ["@" : ( t i1 ,  e i t ) ] ) ( v d )  
i = l  

where ti' = edype 1 ti 1, and 

e i l  =  value^ f 1 ei 1 ( e ) ( v a l )  



8.9. Bounded iteration 

tor rtrtement: 

S e m a n t i c s :  
The statement 

for z : t incr s e t  e zpr  from p  in stmt endf or 
is equivalent to  

let se tcons t  : set of t == s e t e z p r  in 
p' : = p ;  
~ o T : :  

if f y  : t I y >= p' and y member se tcons t  = j then 
*P 

else 
let z : t = = min ( s e t c o n s t ,  p' ) in 

s t m t  : p' : = succ  z ; repeat for 

where p'is a new variable not previously declared in the environment. 
The meaning of bounded iteration with the decr verb is similarly defined, 

using mux in place of min, and <= in place of >=. 



0. Type checking 

9.1. The notion of typecorrectness in Apple 
Vpes  are used in Apple to distinguish potentially meaningful expressions 

from those whlch can have no meaning. For each operator in the language there 
are  restrictions on the types of its operands. In Apple these restrictions have 
been defined such that it is decidable, by static analysis of a program text, 
whether or not the restrictions are met. This process is called type-checking. 

Informally, a type A can be thought of as the set of all type Avalues. For a 
variety of reasons, it is infeasible to use t h s  interpretation to  give the 
mathematical meanings of types in Apple. The most important of these reasons 
is that we wish type-correctness of a program to  be property decidable by a 
static analysis of the program text. Thus, we are willing to  give a less precise 
meaning to a type than that it characterises a set of values that might be 
assumed by an expression having that type. 

The function 

whch was defined in Sec. 5, takes a well-formed type expression (or an 
enumeration, or a class instance) to  its abstract syntactic representation, in an 
environment. 

Every well-formed expression in Apple can be given a type, relative to an 
environment, provided that its component subexpressions (if any) are type- 
consistent with its embedded operators. Otherwise, it will be given the type ? 
which is a distinguished element in the domain T. That is, ? is the denotation for 
an ambiguous type. 

A very useful notion for the types of Apple is that of a partial order among 
types, which we call subtype .  This partial order is not absolute, but is relative to 
an environment in whch types can be named. When the element ? in T is added 
to the partial order as a maximal element, it is possible to  defme a least upper 
bound for any pair of types withn T. To determine the types of expressions, the 
partial order among types, and a least upper bound of a pair of types we shall 
define three functions, 

t y p e 2  f : Fqr -, Env -, T 

subtype  : T x T -, Env -, Bool 

IubAype : T x T -, Env + T 

where t y p e s f  ( e ) ( e n v )  checks whether an expression e  is internally type- 
consistent, and computes a type for it, with respect to  a given environment; 
s u b t y p e ( t , ,  t 2 ) ( e n v )  checks whether t l  is a subtype of t z  in the environment 
enu,  and 1ubAype ( t l ,  t z ) ( e n v )  computes a type which is a least upper bound of 
t and t  in the environment e n v .  

A function constructor expression may contain declarations and state- 
ments, in which expressions may occur. Declarations and statements will be 
inspected for type-correctness by the functions 

pcheck : Stmt -+ Env -+ 211dl -+ Bool 

dcheck : Decl -, Env -, Bool 



9.2. A partial ordering of types 
The function s u b w e  : T x T + Euv + Bool, which compares pairs of types, 

induces a reflexive partial order upon the type domain T in any environment. 
This function is defined by the following rules: 

0) subtype ( t  , ? )(env) = true 
1) subtype ( t ,  t)(env) = true 
2) subtype (integer, float)(env) = true 
3) subtype (restriction(t , p ) ,  t )(env) = true 
4) subtype (id, t )(env ) = subtype (env. m e  [ id  14 1, t )(env ) 
5) subtype (map(dl, r l ) ,  map(&, rz))(env) = 

subtype (r,, ~ ~ ) ( e n v )  andsubtype ( d 2 ,  dl)(env) 
6) subtype (record((il, t l)  ,... (i,, t,)), record((il, tl') ,... (i,, tnl)))(env) = 

n 
A subtype (tk , tk ' ) (mu) 
k=1 

7) if h : l..m -r l..n is injective and monotonic (with respect to  the natural 
ordering of the natural numbers), then 

subtype (union((kl, thl) ,... (&, tk)), union((il, t ,') ,... (i, , tnl)))(env) = 
m 
A ih = ik and subtype (t,, , tk') 

k =1 

0 )  if op(t *,... tn) is an expression belonging to  T, and op is "set" or "pro- 
duct", then 

n 
subtype (op  (t  ,,. . . t,), op ( t  ,',. . . t, '))(env ) = /\ subtype (ti ,  til)(env) 

r =l 

9) if t and t 2  are types and subtype ( t , ,  t2)(enz;) is not defined by rules 
(0. .8) then subtype (t ,, tz)(env) = false. 



0.2.1. kast upper bounds of types 
In order that type-determination shall be as precise as possible, we want 

the domain T to contain a least upper bound of any two types, with respect to  
the partial order induced by the subtype function. To guarantee that an upper 
bound in T always exists, the element ? has been defined to be above any type in 
the subtype relation. 

The function which ylelds a least upper bound of two types is 

ZubAee : T x T-, IEnv -, T 

Here and in the following sections, we shall use the notation a < b to  denote 
subtype (a,b)(env), where a and b are types. 

elseif b < a then a 
elseif either of a or b is "integer", "float", "bool", "ascii" or 

enumeration(il,. . . &) then ? 
elseif a is an identifier then ZubAype (env. Type (a) ,  b)(env) 
elseif b is an identifier then IubAype (env. Type (b), a)(env) 
elseif a is restriction(t, ,pa) and b is restriction(tb , p b )  

then IubAype (t, , tb ) (env ) 
elseif a is record((il, t 1) ,... (i,, t , ) )  and b is record((i,, tl'),... (i,, tn')) 

n 
then if A sk # ? 

k = l  

then record((i,, s , ) , . . . ( in,  s,)) 
else ? 

fi 
where sk = ZubAype (tk ,tk ')(env) 

elseif a is union((il,tl) ,... (i,,t,)) and b is union((j1,tl'),... (jn,tn')) 
then if rnsp and n g p  
andg : l . .m -* 1. .p and h : l..n -, l . .p are injective and monotonic 
and for each z ~ l . . p  either 

i) i o -1 (2) = k, and s, = t,-,(,) and j,-l(,) is undefined, or 

ii) j,-l(,) = k, a n d &  = t,,-l(Z) a n d i  B - l(z) is undefined, or 

iii) i -, = k, and j,-l(,) = k, and 
B (2) 

s. = l ~ b f y p e ( t ~ . ~ ( , ) ,  t,,-l,,,')(env) ands, # ? 

then union((k ,s ,), . . . (k, s,)) 
else ? 

elseif a = product(t, ,... tn) and b = product(t *' , . . . t , ' )  

then if A sk # ? 
k= l  

then product(s I , . . .  s,) 
else ? 



fi 
where sk = i u b & p e  ( tk  , tk ') (env ) 

elseif a = set(t, ,... t,,) and b = set(tll  ,... t,') 
n 

then if A sk # ?  
k=1 

then set(s, ,... s,) 
else ? 

fi 
mere Sk = IubJype ( tk , tk ') (env ) 

The least upper bound determined by Iubfype is used to define a type in 
which a pair of values can be compared by a relational operator. Note that 
tub* does not define upper bounds other than "?" for all kinds of types. In 
particular, if either a or b is a mapping or a class type, then IubAype (a, b )  is 
"?". Relational operators are not defined for these kinds of types. 

0.5. Type determination 
The type of an expression is determined by the function 

by structural analysis of its first argument. 
In the definition of t y p e a f ,  it will be convenient to use a function whch 

obtains the type expression underlying the definition of a named type or a res- 
triction. This function is 

base twe  : T -+ Env -+ T = 
At .  henv.  cases t is 

"integer", "float", "bool", "ascii" 3 t 
tdent i f ier  * basetype (env.  m e  ( t ) ~ - l ) ( e n u )  

otherwise * t 

The type determination function is 

t y p e s  f (ezpr  ) ( env )  = 
cases expr is 

numeral 3 "integer" 

f loa t ing  point numeral 3 " float" 

quoted character 3 "ascii" 

"true", "false" 3 " bool" 



id en ti fie^ * if env.Const [ e z p r  1 # ? thenenv.COnst [ ezpr  141 

else env .  Vzr ezpr  141 fi 

a op b 3 let 1ub = lubJ3lpe ( t y p e d  f 1 a ] ( e n v ) ,  t y p e d  j [ b ( e n v ) ) ( e n v )  in 

cases op is 
I 1  + I 1  -11 I 1  * I  * if lub  < "integer" then "integer" 

elseif lub  < "float" then "float" 

elseif lub  = s e t ( t )  then s e t ( t )  

else ? 

ti 

" / ' I  3 if lub  < "float" then "float" 

else ? fi 

"div", "mod" * if lub  < "integer" then "integer" 

else ? fi 

llan&l , * if Zub < "booll' then "bool" 

else ? fi 

"member"  if  set(type_o f 1 a ( e n v ) )  < t y p e 2  f b ] ( e n v )  

then "bool" else ? fi 

, I  - I 1  - ,"ow 3 i f l u b  = ?  then? 

else "bool" fi 
I ,  <I? , <=<I  , ,I >,I , 0 ,  > = V ?  3 

if base type (Zub ) = "integer" or 

basetype ( l u b ) ( e n v )  = "ascii" or 

b a s e t w e  ( l u b ) ( e n v )  = enumerat ion( i l , .  . . i,,) 

then "bool" 

else ? fi 

'I@" 3 if basetype ( t y p e d  f 1 a ( e n v ) ) ( e n v )  = m a p ( d 2 , r 2 )  and 

basetype ( t y p e d  f ( b ] ( e n v ) )  ( e n v  ) = m a p ( d  

and r1 < d Z  

then m a p ( d l , ~ z )  

e lse  ? fi 
esac 

endlet 



op a  3 cases op is 

" pred" , " suc c" * let b = bare type ( t yped  f I a 1 (env )) (env ) in 

if b = "integer" then "integer" 

elseif b = " ascii" then " ascii" 

elseif b = enumeration(i,, . . . a) then b 

else ? fi 

endle t 

3 if t y p e d  f  I a ) (env) < "integer" then "integer" 

elseif t y p e s  f 0 a ] (env ) < " float" then "float" 

else ? fi 

"not" + if t y p e s  f  1 a ] ( e n v )  < " bool" then " bool" 

else ? fi 

esac 

e ! n (where m is  a numeral) 3 

if basetype ( t y p e 2  f 1 e ] ( e n v ) ) ( e n v )  = product(t . t,) and 0 < m  en 

then t ,  else ? fi 

e.id (where id is a n  identifier) 3 

if basetype ( t y p e ~ f  1 e ] ( enu) ) ( env )  = record((il , t  ,),... (i,,t,)) and 

id = i,,, for some m in  l..n 

then t, else ? fi 

f a  =3 if basetype ( t y p e s f  [ f ] ( e n v ) ) ( e n v )  = map(d ,T )  

and t y p w f  [ a  ] ( env )  < d 

then T else ? fi 

f J a : b  =3 if basetype ( t y p e s  f I f  ] ( e n v ) ) ( e n v )  = m a p ( d , r )  

and type-of In  J(env) < d 

and t yped  f 1 b I (env ) < T 

hen t y p e s  f f ] (env ) 
Iseif basetype ( t w e s  f 1 f 1 (env  ))(env ) = 

ecord((a,:t .. . (a, : t,)) 

and3 j in 1..n (,=aj a n d t y p e d f  Ib)(env) <tf) 
then t w e s f  I f  1 ( e n v )  else ? fi 



if b then e  else ez endif 3 

if t y p e s  f b ] (env) < " bool" 
then lubdype ( t yped  f  [ e  l ]  ( e n v )  . t y p e s  f  1 e z ]  ( e m ) )  ( env )  

else ? fi 

l e t z l : t l = =  e l .  ... zn:tn==e, in e  endlet 

if dcheck (const z l : t l==e , ,  ... z , : tn=e,  ) ( e n v )  

t h e n  t y p e ~ f  ( e ) ( m A e c &  [ c o n s t z , : t l = = e l ,  ... xn:tn= en ) ( e n v ) )  

else ? fi 

z:t fp 3 if t y p e ~ f  gp ] (env @amt [z : (eAype  n t  1 ,? ) I )  < " bool" 

then set ( t  ) else ? f i  

then product(typed f  e  I ( e n v ) ,  . .. t y p e d f  [I en ] (env 1) 

else ? fi 

[ a l : e l  ,... %:en] where a l  ,... a, are identifiers 3 

if (a, # aj when i  # j for i , j  in  l..n) 
n 

and A t yped  f jT el: ]I (env ) z ? 
k = 1  

t h e n  r e c o r d ( ( a , , t y p e ~ f  [ e  ,I ( e n v ) )  ,... (u,,,type_of [ en  1 ( e n v ) ) )  

else ? fi 

u#b where a is an identifier =$. 

if t y p e 2  f [ b ] ( e n v )  # ? then union((a , t ,e~ f 1 b ] ( e n v ) ) )  else ? fi 

function ( x : t )  <env decl> <var deck> do  <stmt> return e  end 3 

if dcheck 1 const z==initial ( t )  ( e n v )  and 

dcheck i<env decl> ] ( e  ,) and 

dcheck i<var deck> j ( e 2 )  and 

pcheck i<stmt> 1 (e3) ( j  j) and 
t y p e d  f Ie ] ( e m )  # ? 

thenmap(edype  IIt B(env), t w e ~ f  Oe Il(e3)) 
else ? 6 

where e ,  = env [Z : ( e f  ype h t J [ e n v ) ,  ? )] 

ez  = d e c l  1 <env decl> ( e  ,) 

eg  = w a r  I<var decls> ] (e2)r 1 



n 
then if A dcheck 1 const aj : ti = = initial ( t i )  J (env ) 

j=l 
n 

then Lub (typed f I ej ] (enu etbTISt [''a,j'' : (tjl ?)I)  
j = 1  

else ? fi 

else? fi 
n 

where Lub ( t i )  = if n = 1 then t 1  
j = 1  

else l ~ b - e  (c ik  (ti), f )  fi 
]=1 



9.4. The type-conversion function 
The meaning of the type-conversion function cnv depends upon the type 

expected in the context of its occurrence. It is defined by cases on the abstract 
syntax of an expected type. Thus there is a conversion function defined for 
every type; the function that attempts to convert it argument into a value of 
type t is called t's cnv. In practice, a programmer will be allowed to omit the 
prefix t's whenever an expected type can be inferred from the context. 

va lue s  f 1 t's cnv ezpr ] (env)(ual) = 
convert (e-e 1[ t ] ) (env )(valued f [ ezpr (env ) (vd )) 

where convert E T -, Env -, 0 -, 0 

= At. Xenv. Xu, cases t is 

" float", " integer" , " bool" , " ascii" , enurneration(id , . . . &) 3 v 

identifier 3 convert (env. 1Spe ( t  ))(env)(v) 

restriction(A,p) 3 if v d u e ~  f [ p  v I) (e)([ I) 
then v else ? fi 

product ( t  ,,... t,) 3 (convert ( t  l)(env)(vJ.l),.. . convert (t,)(env)(v&n)) 

record(("il",tl) ,... ("i,",t,)) 3 

[ i l  : convert ( t  l)(env)(v.il), .. . i, : convert (t,)(env)(v.%)] 

union (("ill' , t I) ,  . . . ("i,.," , t,)) 3 

cases v a 1  is 

il 3 il#convert ( t  l)(env)(v ~ 2 )  

i, S i,#convert ( tn)(env)(v~2) 

esac 

map (d ,  T)  3 convert (r)(env) @ v @ (convert (d)(env)) 



set (t') 3 hz. if not p r e d i c d e ~  f ( t t ) ( e n v ) ( z )  t h e n  ? else v  (z) fi 

where predicate2 f  ( t  ) (env  ) = 
cases t  is 

"integer", " bool" , " ascii" =3 Az. z 

enurneration(irl,, . . . i&) hz. z 

restriction ( s  , p )  XC.p 

iden t i f i er  * p r e d i c a t e ~ f  (env.  m e  ( t  ) ) ( e n v )  

otherwise 3 ? 

esac 

esac 

9.5. 'Qpe checking an environment 
Type-checking the text of an environment consists in type-checking the 

declarations that constitute the environment. These declarations are checked 
relative to the meaning of the environment itself. 

&heck [ env id [<import decl><environment>] ] ( e n v )  = 

( d e c l  1 env  i d  [<import decl><environment>] ] ( e m ) )  

9.5.1. Type checking of declarations 
&heck [ c o n s t c l : t , = = e  ,,... c n : t , = = e n ] ( e n v )  = 

n 
A dcheck H t i ]  ( e n v )  and 
I =  1 

( t y p e s  f 1 ei jl ( env  ) < e-type ti 1 (env  )) 

dcheck [ v a r v , : t , = = e ,  ,... vn :tn ==en ] ( e n v )  = 
n 
A (dcheck ti ] ( e n v )  and t y p e d  f I ei ( e n v )  < edype  [ ti ] ( e n v ) )  
i=l  

dcheck [ t y p e  t l : s l ,  ... tn :sn ] ( e n v )  = 
A 

A (dcheck 1 si J ( env  ) 
t=l  

dcheck class C of t ype  t  ,,. .. const c  , : s l ,  .. . == 
def k, : r l ,  . . . kn : rn rep <environment> endclass] (env  ) = 
&heck [const c l : s , ,  . . . I (  e l )  and 

dcheck I c o n s t k 1 : r  ,,... k,, : r n ]  ( e2 )  and 

dcheck I <environment> 1 ( e  2) and 



n 
A subtype (e31 ki ]I, e4. CORS~ [ ki ] & l ) ( e z )  
i =1 

where e l  = env CBbB ["ti1' : "ti1'] 
i 

In the definition above, e2 represents the environment with respect to which 
declarations in the body of the class are interpreted. For the purpose of type- 
checking the declarations, values of the constant parameters c  l , .  .. c ,  are taken 
to be the identifiers "cl" ,..." c," themselves. eg gives the types of all exported 
operators, as bound in the def list. 
Declaration checking applies also to type expressions and instances of classes: 

dcheck ( t  )(env ) = 
cases t i s  

" s e t  o f  s" 3 i s scalar  [ s  1 ( e n v )  

"Cof [ t y p e i l : t  ,,... & : t ,  c o n s t c l : s l = = e l  , . . .  cn:sn==en]"  3 

dcheck 1 type il : t  ,... i, : t ,  

c o n s 1 c 1 : s 1  = = e l  ,... cn : sn  = = e n ] ( e n v )  and 

A $. E d .C&l  and 
j = 1  
n 
A subtype (eAype 1 sj ] ( env ' ) ,  ( d .  Cd2) 1 c j  ] ) ( e n v 1 )  
j=l 

where d = env. O m s  1 C] (env' ), and 

env' = n z d e c l  n t y p e i l : t  , , . . .  i , : t ,  

otherwise * t m e  

esac 

where isscalar ( t  ) (env  ) = cases t  i s  
"id' ' i s scalar  (env. me lj id ] ) ( e n u )  

restriction(s , p  ) * i s scalar  ( s ) ( e n v  ) 

enumeration("id , . . . "id,.," ) true 

"integer", " bool" , " ascii" t m e  

otherwise * jalse 

esac 



8.6. 'Ippe checking of statements 
Here we use the notation e' to stand for w e s f  (e)(env), where e is an 

expression. 

pcheck [ skip] (env)(A) = t r u e  

pcheck l id  := e](env)(A) = ee < env .k r  l i d ] )  

pcheck [ ( id ,  ,... id,,) := e ] (av)(A) = 
e' < product(env.W [id,] ,... env. W I d , , ] )  

pcheck [ s l ; s p ]  (env)(A) = pcheck Isl] (env)(A) andpcheck Isz] (env)(A) 

pcheck 1 if e then s, else s2 endif] (env)(A) = 
e' < Bool and 

pcheck 1s , )  (env)(A) andpcheck ]so] (mv)(A) 

pcheck [unioncasee of id,#cl:tl  dosl I 1 ... 
1 I otherwise do sn +, endcase] (env )(A) = 

8' < union(("id,",edype I t , ] )  ,... ("%",e-Qpe it,])) and 
n 
A pcheck Isi ] (env $- ["cj" : e d w e  I t, 1 ,  ? )I )(env)(A) 
j=l  

andpcheck [ s ~ + ~ ]  (env)(A) 

pcheck I for id .: t incr e from e do s end€orfl (env )(A) = 
@ e s  f 1 e ,' ] (env ) < se t(eAype I t ] ) and 

tarpesf l e i ]  (env) < efype ( t  ] and 

pcheck 1s 1 (env s ~ b n s r  ["id" : (e-e i t  1, ?)])(A) 

pcheck [idl:: s ::ide] (env)(A) = (idl = id2) mdpcheck  Is ]I (env)(A u [id1{) 

pcheck I repeat id ] (env )(A) = 'Wid" E A 

pcheck lletid, : t ,  == el,  ... i4 : tn ==en  & s  endlet](env)(A) = 
&heck Icollgtid, : t ,==e ,,... i& :tn ==en](env) and 

pcheck 1s ] (mv')(A) 

rhereenv'  = d c l  I cans t id l : t l==e  ,,... id, :t,, ==en](env) 
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