The Formal Definition
of the Programming Language Applel

Richard B. Kieburtz
Oregon Graduate Center

Bengt Nordstrom
Chalmers Technical University
and
University of Gothenburg

Abstract

This report contains a complete, self-contained formal definition of the
experimental programming language Apple. The definition is given in the style
of denotational semantics. However, the language design allows a direct seman-
tics, that is, without the use of a domain of continuations. It also provides static
environments in which variables cannot have alias names, and the semantics
therefore can be stated without the use of a domain of locations.

Apple is a typed language, and allows the declaration of programmer-
defined type constructors called classes, which afford the means to define
abstract data types in the language. A type constructor may be parameterized
by types and constants, and therefore can define a set of polymorphic opera-
tors. The description of types and of the notion of type-correctness adds consid-
erably to the volume of text in the formal definition. However, typing helps to
make the definition more precise by making explicit the class of syntactically
well-formed sentences that are intended to be given meanings in the language.

Keywords: abstract data types, static environments, denotational semantics,
type polymorphism

Oregon Graduate Center Technical Report No. CS/E-B2-02, May, 1982
Revised September, 1983

'The research reported here hes been supported in part by the National Science Foundation, under
grant MCS 790417 and by Naturvetenskapliga Forskningsr8det under grant F 3768.

Copyright {C) 1882 R. B. Kieburtz and B. Nordstrom

1. Introduction

Apple has been designed to be a simple, yet powerful programming
language. 1t is basically an applicatitive language. Although its syntax allows
statements, its semantics allows a straightforward translation of every Apple
program that uses statements into an equivalent Apple program that is purely
applicative. Statements are provided in Apple as a syntactic alternative to
purely applicative programming.

A criterion for simplicity applied during the design of Apple is that its for-
mal semantic definition must be concise, direct, and understandable. This
definition, given in the notation pioneered by Scott and Strachey [SS], is
presented here. A companion paper [KNB1] presents the language informally
and gives some motivation for its design and use. The Apple Programmer’s
Manual has yet to be written.

Customarily, a programming language is designed before its formal seman-
tics is given. This practice has implied that the description of the semantics of a
traditional language such as Pascal, PL/1, Algol 68 or Ada has been understand-
able to only a few persons other than those who have taken an active part in pro-
ducing the description. The design of Apple has been guided by the requirement
that it should have a simply described semantics.

A first decision in the language design process was to do without semantic
“features’ that would require the use of locations and continuations for their
description. These domains are often used to explain programming language
concepts that derive from a machine-oriented view of computation. Locations
are needed when a language contains features such as explicit pointers and
parameters passed by reference. Continuations have been used to explain the
golo statement and its relatives, escape, exit, return etc.

Some other important design decisions were:

-—-- that the language should exhibit a high degree of orthogenality, as advo-
cated by van Wijngaarden [vW].

- that functions are first-class objects, as are numbers and characters. It is
possible to declare either a constant or a variable of a function type. The
application of a function to an argument cannot produce a "side effect".

-—- that types, as well as constants of a functicn type, may be declared recur-
sively. This means that it is possible to declare types whose values are lists
or trees.

—- Apple has assignable variables, however its scope rules do not allow global
variables. Since there are no global variables, assignment cannot cause a
side effect. Assignment to variables is allowed as a "safe”” convenience to a
programmer, yet the semantics of expression evaluation remains func-
tional.

— there is no restriction on the type of a value that can be assigned to a vari-
able or used for the range of a function.

-~ polymorphic operators can be defined, using the class declaration con-
struct. Polymorphism is explicitly resolved in Apple when a class is instan-
tiated to a type, by specifying its type parameters.

Apple is a typed language. Each constant or variable has associated with it,
by declaration, a denotation called a type signature. Type signatures are
intended to denote sets of objects, but they have not been given formal interpre-
tations. The use of types enables a type-checking algorithm to separate those
syntactically correct texts which may be meaningful from those that have no
meaning in Apple.

Type-correctness is determined by direct inspection of the type signatures
associated with named objects, and represented in an abstract syntax. It does
not depend upon an interpretation of types as sets of values or as algebras.
" Accordingly, we have not attempted to give any deeper meaning to types in the
formal definition of Apple. (For a different point of view concerning types, see
[Mi78, McSB2].)

Type signatures are constructed from:
— predefined types which include:

integer, denoting the integer numbers (without a maximal or a minimal
element);

rational, denoting the rational numbers;
ascii, denoting the ascii character set,;

bool, whose values are true and false.

-- enumeration types, which include any finitely enumerated set of literal con-
stants;

—- type constructors, which are templates for the synthesis of type expres-
sions.

There are constructors for:

-— restricted types, which denote a subset of the values of a containing type,
as specified by a characteristic predicate;

-~ recursive types, for defining structures such as lists and trees;
—- structured types, patterned after the record types of Pascal,
—- product types, denoting tuples of values;

-~ mapping types, whose values are functions and for which arrays may pro-
vide possible representations;

— powerset types, whose domain is restricted to the types integer, or an
enumeration type, or a restriction of one of these;

-~ discriminated unions of types, such as are found in Algol 68.

Another primary objective of Apple is to present a notation suitable for
composing large programs out of modular units. There are two ways to define
these units.

An environment is comprised of declarations of classes, types, constants,
and nested environments. It provides a semantic context for the interpretation
of constant definitions or of program statements. The contents of an environ-
ment may be explicitly imported into another environment.

A class, or abstract data type, abstracts a set of objects characterized by a
behavior, rather than by the programmed representation of these objects. Only
the constants (including functions) that define this behavior are exported from a
class definition. Classes are integrated into the language through the type
mechanism. A class becomes a new, programmer-defined type constructor. It
may have formal parameters that designate types or typed constants. A class
must be instantiated by providing actual parameters when it is used in a type
declaration to define a new type.

1.1. Abrief description of environments

An environment definition consists of declarations of constants, types,
classes and environments. An environment may be named in an environment
declaration,

env display
[const erase : ascii == *
class screen ==

]

A named environment is a self-contained unit. The declarations it contains
use only those definitions given within it, or which have been explicitly imported,
or which are contained in the universal environment. The universal environment
contains definitions of arithmetic, ascii, and boolean types and their operators.
Its contents are imlicitly imported into every declared environment.

An unnamed environment occurs in the body of a function definition, and in
the representation part of a class definition. An unnamed environment always
imports the entire environment that surrounds it.

In order to import some definitions from another environment, a reference
declaration can be given, referring to the name of an environment and to the
names of types, constants, classes or environments that are to be imported.

Ezample: ref foo (type t,, t; const ¢y, ¢, cgenvE, foo)

Names imported from other environments can be redefined, so that collisions
between imported names and those defined in a local environment can be
avoided.

1.2. A brief description of classes

An Apple program can be partitioned into modules called classes (following
the notation of Simula [Da]) which serve as programmer-defined constructors
for types. A class defines a family of constants, including functions. An instance
of this family will be defined for each type that is derived from the class.

A constant may have as its type (or as a component of its type signature)
the class-derived type itself. A function constant having the class-derived type
as its range type is called a constructor for the type. If the class-derived type
does not occur as a component of the type signature of the range, but does
occur in the domain type of the function, we call the function an extractor for
the type. There is no syntactic distinction between constructors and extractors,
however.

A class is seen as a template for constructing new types in Apple. A class
definition consists of the following parts:

--- a heading which names the class and lists its formal parameters. These
may be types and constants to be used in the class definition.

— a defines list which gives names and type signatures to the constants that
are to be exported by the class definition. For each type derived from the
class (by a type declaration) a set of these constants will be included in the
environment in which the class-derived type is defined.

— a representation part, which declares a local environment in which mean-
ings are given to the constants named in the defines list. This local environ-
ment must include:

declaration of a type named carrier, in terms of which each class-
derived type is represented;

declarations of the constants named and typed in the defines list.

The‘representation part may also include declarations of other constants and
types needed by its mandatory declarations.

There is a predefined class in Apple, called stream, whose values are
sequences., Input and output is achieved by binding stream-typed objects in
Apple to sequential files of the computer environment in which an Apple pro-
gram is to be run.

1.2.1. Function definitions

A value of a mapping type can be denoted by a function constructor, which
is an expression that has the following parts:

— a heading, beginning with the keyword function, and naming the formal
parameter. If the domain type of the mapping is a product type, then the
components of the formal parameter may be named individually.

— any declarations to be included in the local environment of the function
definition;

—- an optional statement part, which consists of a list of statements prefaced
by the declarations of program variables;

—- a return expression, which may contain occurrences of variables that have
been declared in the statement part, as well as constants and formal
parameters.

Only the heading and the return expression are required parts of a function con-
structor.

Variables declared in the statement part of a function constructor are not
imported into a nested environment, and therefore are not inherited by any
nested function definition. There is no concept of a global variable. On the
other hand, the formal parameter of a function constructor has the status of a
constant in its local environment, and will be imported into the local environ-
ments of functions whose declarations are nested within the declaration part of
the function constructor.

Since variables are not imported, a function defined by a constructor can
never produce a "side effect” when it is applied to an argument. The value of a
variable can be changed in no way other than by an explicit assignment state-
ment in which the variable appears on the left side. This is a profound
simplification over the uses made of variables in most statement-oriented

languages.

1.2.2. An example of a class declaration

class Stack of type T // Tis a parameter of the class
== def
Newstack : earrier,
Push : carrier * T -> carrier,
Pop : carrier -> carrier,
Top : carrier -> NonEmpty#T +
EmptyStack#Failure

rep
type carrier .record
Store : integer -> NonEmpty#T +

EmptyStack#Failure,
Index : integer
end
const
Newstack == [Store == function (i)
return EmptyStack# failure
end,
Index == -1],
Push == function (S,x)
return
let P : integer == succ S.Index in
[Index == P,
Store == S.Store |P: NonEmpty# x]
endlet
end,
Pop == function (S)
return
let P : integer == S.Index in
if P >=0then
[Store == S.Store, Index == pred P]
else
S
endif
endlet
end,
Top == function (S)
return S.Store(S.Index)
end
endclass

In an environment in which this class has its declaration, or into which its
declaration has been imported, new types may be declared to be instances of

this class, and variables of these types can be declared.

2. Notational conventions

— 1 denotes the undefined element (called "bottom") in any domain.

— "7" denotes a distinguished value (in any domain) called the error element.
This value differs from 1 , the undefined element, in that "?" is well defined
and may be tested by an equality predicate, for instance. Almost every one
of the semantic functions is strict with respect to "?". Exceptions are the
updating functions € and @ defined below.

— if b then e, else e fi will denote the biconditional which maps

(true, e, eg) to e, (false, e;, ex)toep (?,e,,ep)to?, and (L, e,, ez) to L
— if b, then e, elseif b; then e, else e fi will mean

if b, then e, else (if b, theneyelsee fi) fi
— ifb thene fiwill meanif d thene else? fi

—- An identifier having the initial letter in upper case will stand for a domain.
If the same identifier is used with the initial letter in lower case, then it will
stand for an element within that domain. For instance, val € Val, id € 1d

- Instead of writing f = Az.e we will write f{z) =e
Therefore g{z)(y) = z*% means g = Ax. A\y. z%

If Aand B are domains then

--- A - Bis the domain of all continuous functions from Ato B

~- A X Bis the cartesian product

— [a;b;.... a,:b,] is the element in A » Bwhich maps a; tob; 1<i<n.
All other elements of A are mapped to "?" in B.

~ If z is a tuple, for instance z € A X B, then zii will denote the ith projection
of z. Alternatively, we may use the names of component domains to denote
projections when the notation is unambiguous, i.e. z.4 and z.5 may be used
in place of i1 and z2
—- z &y will denote
ifz,y € A-» BthenAa. (if y(a) = ? thenz(a) else ? fi) fi

— z @ y will denote
ifz,y € A»Bthen

Aa. (if z{a) = ? theny(a) elseif y(z) = ? thenz (o) else ? fi) fi

-- x @,y will denote
ifzcAxFBandy c Athen(zA®y. z.B)fi

- z @ 4y will denote
ifrcAxPFandy cAthen(zA®y.z.F)fi

In giving the meaning functions we shall use an informal pattern-matching
mechanism in order to identify parameters. We use double brackets,
[.] . to enclose syntactical expressions. A syntactical expression consists of
terminal symbols and variables that denote syntactical expressions.

When an expression has a finite number of components, we shall often use
ellipses, "..."”, to denote the components not explicitly written.

We also adopt the let and where notations to factor components of
definitions. When an expression to be defined consists of a pair, we may write
“where (z,y) = - - " to give the names "z" to its first part and "y" to its second
part.

The reader familiar with denotational semantics will recognize the opera-
tors @ and @ as operators which extend a mapping. The @ operator extends the
mapping which is given as its first argument by the mapping which is its second
argument, .when the extended mapping is applied to any value on which one or
the other of the argument mappings was undefined (i.e. mapped an argument to
"?"). The <@ operator also extends its first argument by the second, but differs
from @ in that the second argument supersedes the first, on values on which
‘both are defined.

In the above definitions, and throughout the rest of this document we shall
ause summation notation,

Ewrm
to mean
["6)":m,18 [":ma] @ ... []

3. Description of the semantic definition

We use denotational semantics to define the meaning of a program. This
method uses a set of meaning functions to associate mathematical objects with
the syntactical expressions of the programming language. It is necessary to
give such a definition when the programming language is not itself a mathemati-
cal language. The meaning functions are defined on domains. We shall use the
following domains, where + is the separated sum and X is the coalesced product:

O=R+1d+(0x0) + (0~ 0)

An object (or value) is either a rational number, or an identifier, or an ordered
pair of values, or a function.

T = Id + Enumeration + Restriction + Set + Record + Product + Union + Map

where
Enumeration =I1d*
Restriction =T x Expr
Set =T
Record = (Id x T)*
Product =T*
Union = (Id x T)*
Map =T->T

The domain of types is composed from the primitive domains of identifiers and
expressions, where expressions is a class of syntactical objects. (We have made
use of the Kleene star to denote the repeated product of a domain. This should
cause no confusion.)

Env = Const x Type x Var x Op x E_name x Class
--- The domain of environments is composed of the domains:
Const =1d -» (T x 0)

-~ An element of Const maps identifiers to pairs consisting of a type and a
value.

Type =Id » (T x 0)

-— An element of Type maps identifiers to pairs consisting of a type and a
’ value. The value is the default initial value given to variables of that type.
Var=1d-» T
— An element of Var associates a type with each variable.

Op=1d-»T

— An element of Op maps identifiers which are the names of class-derived
types to elements of Const which define the meanings of the class constants
for these types.

E_name = Id » Env

— An element of E_name associates environments with environment names.

Class = Id » Env -+ {C x Const)

where C=P(1d) x (I1d » T)

— An element of Class maps class identifiers to their meanings. The class sig-
nature domain, C, contains characterizations of the parameters of classes.

Val=1d-+» O -
-~ An element of Val maps names of program variables to values, and
represents a state of a computation.

We shall use the following meaning functions:

eval : Stmt » Env » Val » Val

--- where Stmt is a primitive domain of syntactical objects. eval yields the
meaning of a program statement which changes the mapping that associ-
ates values with variables in a given environment.

value of : Expr + Env » Val » O
-—- yields the meaning of an expression.

e-type : Type.expr » Env » T
-—- where Type_expr is a primitive domain of syntactical objects. e_fype yields
the meaning of an expression denoting a type.

m.decl : Decl + Env » Env

— where Decl is a primitive domain of syntactical objects. m.decl yields the
meaning of a declaration of a constant, type, class, or environment.

m.var : Var_decl » Env -+ (Env x Val)

— where Var_decl is a primitive domain of syntactical objects. m.wvar yields
the meaning of a declaration that gives types and initial values to variables.

m_param : Param_decls » Env -+ Env

— where Param._decls is a declaration of actual parameters of a class
instance. m_param yields the meanings of the parameters.

4. Fnvironments

An environment is a collection of declarations of constants, types, classes,
and (either nested or imported) environments. These declarations provide a
semantic context in which to give meanings to variables, expressions, and state-
ments. Environment declarations may be nested within one another or within
the body of a function definition or the representation of a class. An environ-
ment may include definitions made in surrounding environments. When the
environment is that of a function body or a class representation, it imports the
immediately surrounding environment by default. The universal envircnment,
which contains definitions of the basic types and their constants is also imported
by default into every other environment. In all other cases, the names which are
to be imported into an environment from other known environments must be
explicitly declared in a reference list.

Syntax

—L env decls ——]

\—conat decls >

k’- type declis

class decls|

\.

Semantics

m.decl [<environment>] (env) =
Yo Ae.env ©m_decl [<class decl>]
(m_decl [<type decl>]
(m.decl [<const decl>]
(m_decl [<env decl>](e)))})

The significance of the fixed-point operator is that the meanings associated with
declared names can depend upon one another, regardless of the order in which
declarations are listed. In particular, constants of a mapping type (i.e. func-
tions) may have recursive or mutually recursive definitions.

4.1. Environment importation

Syntaz

import decl:

O~

(ret)—Yelidentitierts((alias list|

alias list:

—(idontlﬁer identifier
O

The notation id, | id, signifies that id, is to be an alias name in the local environ-
ment for the name id, from an imported environment. id, has all the same attri-
butes (type, value, etc.) associated with id, in the environment in which is
declared. When an alias is the same as the originally declared name, it need not
be denoted, i.e.

ref A (const C)
is an abbreviation for

ref A (const C|C)

Semantics
m.decl [ref id (envid,|a,,... constj,|b;....

type k[c,.... class I, |d,....)] (env) =
[1®£.name Z‘I ["a;":e'.Ename [id;]]

B comst 21) ["b;":e'.Const [j;]]

S ryp0 Zij ["e;": e Type [k;]]

Sop 21: ["ci":e’.0p [k:]]

Sqass E;“. ["di":e'.Class [4]]

where e’ = env.E_name [id]

10

4.2. Environment declarations
Syntazx

env)>iidentifier (»{[import decl environment -—@—»

Semantics:

m.decl [env id [<import decl><environment>]] (env) =
env g name [Yany Ae'. mdecl [<import decl>] (env)
@ m.decl [<environment>] (e')

e e[n‘i’dn : el]]
A named environment contains the meaning of its own name.

4.3. Constant declarations

The declaration of a constant defines a name which must be unique among
identifiers used for constants {or variables) in the current environment. The
declaration gives it a type and a value.

A small example:
const int 15 : integer == 32767,

complex_zero . float *float == (0,0)

Syntax

—»@on@——cummor . }»ltype exprl@ expression
(D

Semantics:

m._decl [constid: t == expr, <const decls>} (env) =

m.decl | const <const decls>]

(env oot ["id" : (etype [t |, value of [ezpr [(env)([]))])

11

4.4, Type declarations

A type declaration defines a name and associates with it a type and an ini-
tial value to be given to variables declared of the type. If the initial value
declaration is omitted, an initial value is supplied by a language-defined func-
tion, init, applied to the type expression, enumeration, or class instance that
appears as the right-hand side of the type declaration. The function init is
defined in Section 5.5.

In case a type is specified by explicit enumeration of its values, the names
that are listed to denote values are implicitly declared as constants of the type.
In case a type is specified to be an instance of a class, operators defined by the
class are implicitly declared for the type.

Enumerations and instances of classes may be used only to define types.
That is, these forms may appear only as the right side of a type declaration.
Type expressions other than these two forms may occur in any context in which
a type is to be specified. The reason that enumerations and class instances are
restricted to explicit type declarations is that they contribute new names to
components of the environment in which they occur.

A small example:
type complex : float* float,
color : {red,green, blue],

ascii_stream : stream [type T: ascii]

Syntaz

type decls:

class instance "ﬁ

——@ ~lidentifier T H type expr

enumeration

init expressionr—»

—0- —

class instance:

identitier}»{ [}»environment »{]

12

Semantics:
m.decl [type id : t ,<type decls>](env) =
m_decl [type <type decls>](m_decl [type id : t J{env))

m_decl [typeid : t J{env) =
cases ! is
"lid,,... idy}" ==> enu @y, [Mid" £]

Boonst ng [id;" (2, 5)]

where t' = enumeration("id,",... "id,")

"Cid [typeit,... constk,;s, ==e,..]" ==>
env @y ["id" : class]
@opl'id” : Cdef.Const]
where C_def = env.Class [Cid]
(m_param [type i :t,,. .. constk,s,==e,, . |J(env))

" <type expr>" ==> env @pp["id" : etype [t J(env)]
esac

where m_param is a function that defines the local environment contributed by
the actual parameters in a class instance:

m_param [typei,:t,,... constk;s,;==¢e, . J{env) =
[1®npe type_args
Boomst 2, ['k;": (etype [s;] (env’), valueof [e;] (env' }([]))]
j
where env' = env ©p,, type_orgs
and type_args =), ["i;":e_type [t;](env)]
J

Parameters to an instance of a class are evaluated in the environment in which
the class instance is declared.

13

5. Types

Types are used to partition the constants and variables of an Apple program
- into disjoint sets. Rules for checking type-correctness enable a language trans-
lator to reject a program that is patently without meaning.

Types occur in declarations of constants, variables, classes and named
types. A type can be specified by an explicit enumeration of values, by instan-
tiation of a class, or by a type expression. A type expression is composed from
the names of types and from applications of predefined functions yielding types
(so-called type constructors). The type constructors of Apple are: restrictions,
records, products, mappings, powersets, unions and recursive type construc-
tors. The classes that a programmer can declare are also analogous to type
constructors, in that existing types can be given as parameters to construct a
new type. Class instances and enumerations may not be used directly as types
in type expressions, however.

5.1. Type identifiers
Semantics:

e_type lid J(env) = env. Type ["id"]i 1
5.2. Enumeration types
A small example:

{red, green, blue}

Syntax

enumeration:

{ identifier }

Semanlics:
e_type [{id,....id,] J(env) = enumeration("id,",... "id, ")

There is a predefined enumeration type called ascii which consists of the
symbols defined by the international standard character set.

The predefined enumeration type BHool consists of two values, false, true,
and defines the operators and, or, not with their conventional meanings.

5.3. Arithmetic types

Semantics:
e-type [float J(env) = " float”

e_fype |integer J(env) = "integer"

Informally, the type corresponds to the set of integer numbers. Note that there
is no restriction on the size of an integer. The type corresponds to the rational
numbers, also without restriction as to size or precision of representation.

14

5.4. Predefined type constructors
type expr:

—1——>] identifier T
;—u restriction

powerset ——ii

——] record
N product |——s
;-u mapping |
R union >

K-—@)-—type expr)

Table 5.4.1 — Operator precedence in type expressions

The following table gives the precedence of the type-formation operators
that may occur in type expressions. Operators of lower precedence level bind
their arguments before those of higher precedence level. Left association
means that in an expressicn involving multiple occurrences cf the same opera-
tor, occurrences to the left bind their operands first.

Precedence of type operators
level operator name association
1 * cartesian product associative
2 -> mapping right
3 + discriminated union associative
4 rec recursive type

5.4.1. Restrictions

A new type may be defined by specifying a characteristic predicate which
restricts the set of values of some base type. The predicate is given as a
Boolean expression, functional upon a variable bound in the type specification.
Abbreviations of this syntax are allowed to specify intervals of values from
totally ordered base types.

An expression of the base type may be used in a context in which a value of
a restricted type is expected. In order to convert the type from that of the base
type to that of the restriction, a predefined function cnv is applied to the
expression. cnv evaluates the characteristic predicate of the restriction,

15

applied to the value of the expression, in order to determine whether the value
is allowed in the context of its use. This provides a powerful facility for checking
that the values generated during execution of a program satisfy the expecta-
tions of its author.

Some small examples:
§1..10 : integer]
{x:float | abs{x - sqrt 2) <= 0.5}
{x:vector | sorted x}

Syntaz

——@v identifier . type expr | expression }
——@—exproulon . }expressionts{ : type expr)

Semantics:
e_type [{id:t |expr] J{env) =
restriction(e_type [t J(env), (ground [Aid . expr |(env)))

The use of a A-expression in a type expression expresses only the fact that the
identifier is bound lecally. The only conversion rule of the A-calculus that is
used) in comparing types is the rule of a-conversion {renaming of a bound vari-
able).

The function ground : Expr + Env -+ Expr substitutes for all identifiers occurring
in the expression given as its first argument, their definitions in the environment
given as its second argument. Thus the term ground [expr J(env) contains no
occurrence of any identifier bound in env. This allows the definition of a res-
tricted type to be imported from a named environment intc a current environ-
ment without requiring additicnal constant identifiers to be imported.

To denote an interval of values of a totally ordered type, the type expression
te;.eg: t}

is allowed as an abbreviation for the type expression
{x:t | e, <=xandx <= eo)

where e, and e, are expressions.

16

5.4.2. Records

Syntazx
—»Gocord identifier) » J=type expr end
]
(D=
Semantics:

e_type [recordid;:t,,...id,:t, end }{env)
= record((id, ,e_fype [t, }(env)).... (id,_,e_type [t, (env)))

where 7 is a permutation of 1..n such that i<j = id;<id; in the lexical order
on identifiers that is induced by the collating sequence on ASCII characters.

5.4.3. Cartesian products

Syntax

Semantics:

e_type [t,*...*t, J(env) = product(e_type [t, J(env),... e_type [¢, [(env))

5.4.4. Mappings
A small example

type vector : {1..n: integer{ ~> float,
dictionary : string -> string

Syntazx

—>type axpr-ﬂ@- mapping '"’ED_‘

Semantics:
e_type [t, > t; J(env) = map(e_fype [t, J(env), e_type [t J(env))

The mapping constructor corresponds to the function space in mathematics.

17

Note that Apple imposes no restriction upon the domain of a mapping type.
- 5.4.5. Powersets

A small example

set of {0..maxval: integer}

Syntaz

Semantics:
e_type [set of t J(env) = set(e_type [t J(env))

Composition of powerset types is restricted in Apple. The base type of a power-
set must be or an enumeration type, or a restriction of one of these.

5.4.8. Discriminated unions
A small example

type sparse_matrix : integer*integer -> (defined#float + undefined#nulltype)

Syntiox

———(-identmer + type expr|
+

Semantics:

etype [id #t,+... idy #t, [(env) =
union((id,. e_type [, J(enw))... (idy, . e_type [tn Kenw)))

where is a permutation of 1..n such that i<j = id;<id; in the lexical order on
identifiers that is induced by the collating sequence on ASCH characters.

18

5.4.7. Recursive type expressions
A small ezample:
type nulltype : {null},
intlist : list ree empty#nulltype + cons#(integer*list),

inttree : tree rec empty#nulltype +
maketreef(integer*tree*tree)

Syntax

-—pdidentifier -—(roc)-—type OXDr f——=t

Semaontics:

e_type [id rec t_ezpr J(env) = recursive(e_type [t_ezpr J(env)[rec/id])
where e[£/z] denotes the expression gotten from e by replacing every free
occurrence of z by §£.

In order to simplify the semantics of recursive type expressions, the following
restrictions are imposed:

1) The type expression following the keyword rec must be a union whose first
term does not contain the identifier which precedes the keyword rec.

2) The identifier which precedes the keyword rec must not occur in the
domain type of a mapping in the type expression that follows it.

Mutually recursive definitions of types have no meanings in Apple.

19

6. Classes

A class is a program unit in which a programmer can characterize a set of
objects by their behaviors. This is done by defining a set of functions which pro-
duce values of these objects or which map these objects into values of other
types. In order to define these functions by program units, it is necessary to
give a specific representation for the values of objects in the class. This
representation is given as a type declared as the carrier of the class.

The carrier and the programmed definitions of the functions are not ger-
mane to the programs that use objects of the class. Therefore these representa-
tional details are not.exported into a surrounding environment.

A class can also be parameterized by types and constants. Parameters are
particularly useful when classes are used to generalize data structures, as in the
familiar example of a stack. Actual parameters are bound to the formal param-
eter names when an instance of the class is declared as a type.

Since a parameterized class may be instantiated in many different ways in
the same program, its operators {exported functions) may be polymorphic. In
order that polymorphism can be resolved, Apple requires each occurrence of
one of these operators in an expression to be annotated with the name of a
specific type which has been declared as an instance of the class. This is the
solution that has been adopted in the data abstraction language CLU [Lis]. For
example, if a class has been defined by

class Stack of type T ==
def Push : carrier*T -> carrier,

endclass
and if a type derived from this class has been declared by
type Intstack : Stack [type T : integer]
then a variable declared by
var S : Intstack
could be given a new value by execution of a statement such as

S := Intstack’s Push (S,3)

Because we have chosen to disambiguate the polymorphism of class-derived
operators in this way, class instances are not regarded as first-class types. A
class instance cannot be used in all contexts that require a type expression, but
can only occur as the right-hand side of a type declaration.

B8.1. Class declarations

Syntaz

——@la@-— identitier | of

s

id list|

const parm list

Legt

conct parm list
C’("D)-’ environment end class>—->

const parm list:

——Cdentifier . type expr
O~

The environment declared as the representation of a class must contain the
declaration of a type whose name is carrier, and must also contain declarations

of all constants named in the def list.

21

A small ezample

class Bounded_stack of type T const bound : integer ==
def Push : carrier*T -> carrier,
Pop : carrier -> carrier,
Top :carrier->T,
Is_empty: carrier -> Bool
rep
type carrier : record
Inx: {0..bound: integer],
Store : {1..bound: integer} -> T
end
const
Push == function (5,x) ...

endclass

Semantics:

m.decl [class C of type id,,...1d,,, const ¢;:s,,... ¢, S,
== def f,:t,,... fx:t; rep <environment> endclass] (env)

= env Bgess|'C" : N0 / / where p is in the domain Env
[Ject / / type signature

Doomst Sift [def £ty fete] (r)]
// meanings of exported constants

where sift ﬂdefflztl,...f,,:tk](r) =
j)’: ["f5": (etype It; 1(r), 7.Const | £;].0)]
and ¢ = ({"id,"....}, ["c,": e_type s, J(env')....])
where env' = env ®npe 3, ['idy": "id;"]

/=
and r = m.decl [<environment>](env & p)

Informal comments

Recall that the domain Class is a product of two domains, (C x Const). An
element of C describes the formal parameters of a class. An element of Const
gives the meanings of the constants defined by a class-derived type. These
meanings are obtained from the environment declaration that provides the class
representation. They are extracted from the meaning of the representation by
the function sift, defined above, which uses the defines list of the class declara-
tion.

7. Expressions

The various syntactic forms of expressions are strongly connected with
types. Semantics are given on the supposition that expressions are type-
correct, for otherwise an expression may have no meaning. Association of
binary infix operators is generally to the left, subject to the precedence rules

expressed in Table 7.1.
iogical expr 0®3— logica! expr |

Syntazx
Table 7.1 — Precedence of operators in Apple

—L expression |

Operators of lower precedence level bind their arguments before operators
of higher precedence. An operator is said to associate to the left (right) if it
binds its arguments before operators of equal precedence that occur to its right

(left) in the same expression.

Operator Precedence Rules

level operator name association
1 # injection right

3 type resolution right
2 @ function composition associative

! projection left

record field selection left
3 function application left
4 * / divmod product operators left
5 + - additive operators left
6 = <> < <=>>= relational operators
member set membership

7 not negation
B and conjunction associative
9 or disjunction associative
10 | : supercedes left

7.1. ldentifiers
Semuantics:
value of [id] (env)(val) =
if env.Const [] #?
then env.Const [id]2
else val [id]}

7.2. Expressions for type Bool

7.2.1. Conditional expressions
Syntax

—b@toxpreuion

expression|

expression ond@-——»

Semantics:
value_of |if b then e, else e endif | (env)(val) =
if value of | b] (env)(val)
then value of [e,] (env)(val)
else value of [ey | (env)(val)
fi
The expression
if b, then e, elseif e; - - - else e,,, endif
may be written as a more convenient notation for the nested conditional
if b; then e, else
if b, then e; else
...else
e, .+, endif - - - endif endif

7.2.2. Boolean expressions

Syntax

logical expr:

—-Cloglcal expr or logical conjunctf——>

fogical conjunct:

—Coglcal conjunct "“D}" fogical primary

fogical primary:

relational exprp———»-

Semantics:

value of [not e | (env)(val) =
if value_of [e] (env)(val) then false else true fi

value of [e, and e, | (env)(val) =
if value of [e, | (env)(val)
then value of e, | (env)(val)
else false
i

value of | e, ore, | (env)(val) =
if value of [e, | (env)(val)
then true
else value of [e,] (env)(val)
fi

7.3. Arithmetic expressions

Syntaz

- %.3.1. Denotation of values

algebraic expr:

L

algebrailc expr]

algebraic product

+
algebraic product:
algebraic product| *
/
div
mod

algebr

aic primary:

—'calgebraic primary|

select

or expr:

algebraic primary |

selector exprr—

—_

selector expr;

simple expr

unsigned decimal numeral

identifier

simple expr:

identlfier identitier |—p—>

quoted character >

N

A

4

unsigned decimal numeral

unsigned floating-pt. numeral -

function constructor ————————0

record constructor >

powerset constructor]——»

identifier » & expression >

f L4 {6 {{

expression)

¢

TN
L/

unioncase expression >

jet expression —

{ { {

conditional expression|

27

7.3.2. Unary operators

The unary minus "-" is defined on both float and integer types. The func-
tions pred and succ are defined on integer types and on enumeration types, for
which the meanings of constants are defined as natural numbers.
Semantics:

value_of | —e J(env)(val) = —valueof [e | (env)(val)
valueof [succ e](env)(val) = value of {e] (env)(val) + 1

value of [pred e] (env)(val) = valueof |e] (env)(val) — 1

7.3.3. Binary operators

"on_a

The operators "+", "-", "*" are defined for both float and integer types. The
operator "/" is defined only for type floaf, and the operators div and mod are
defined only for type integer.

Semantics:
valueof [e, op g, J(env)(val) =
M Jopl(value_of [e, |(env)(val), value of [e; | (env)(val))

where "op" is one of the binary arithmetic operators. For the operators "+", "-",
v v M Jop | gives the customary operations of addition, subtraction, multi-
plication, or division.

M |div) = Az. \y. max{z:integer |z <z/y]}
MImod] =iz \y. z —y*(HM][div](z)(y))

7.4. Relational expressions

The relational operators are a set of binary infix operators producing values
of type Bool. They include equality and disequality, which expect arguments of a
compatible type (but not of a mapping type, nor of a type derived from a class),
plus several inequalities which expect arguments of an arithmetic or an
enumeration type. Another relational operator, the test for membership in a
set, is defined in Section 7.9.

Syntax

—ﬁ-algebnic expr >

algebraic expr >

bisdog

7.4.1. Equality and disequality
Semantics:

value of [e, = ep | (env){val) =
(value_of [e,] (env)(val) = valueof [e; | (env)(val))

The expression e, <> e; is equivalent to not (e, = ep).
7.4.2. Inequalities
Semantics;

value of [e, <= ez J(env)(val) =
M| <=] (valueof e, | (env)(val), value of [ey | (env){val))
where M | <=] = Y M. Az. \y. if 2=y or r(succ z, y) then true
elseif 7 (succ y, z) then false else L
fi

Other relational operators are defined in terms of "=", "<=", and the Boolean
operators:

"e, < eg" is equivalent to "e, <= e; and not (e, = ep)"
"e, >= ep" is equivalent to "not (e, < ey
"e, > ep” is equivalent to "not (e, <= egy"

3

7.5. Expressions involving product types

- 7.5.1. Value constructor

Syntaz

simple expression:

Semantics:
If a;,... o, are expressions of types A;.... 4, then (a,.... a,) is an expression
of type A;%.. *A,.
valueof [(a,.... a;)|(env)(val) = (a,'.... a,")

where o;' = value of [o; J(env)(val) for 1<i<n

7.5.2. Operators

There is one operator on expressions of a product type, called projection.
It takes an argument of a product type and a second argument which is a
natural number.

Semantics:
The projection e!i, where e is an expression of type A;*.. *A4, andn>1 and1 is
a numeral satisfying 1<i=n, is defined by

value of [e'i] (env)(val) =(value of [e] (env)(val))ii

7.6. Expressions involving record types

7.6.1. Value constructor
Syntax

record constructor:

idommor\—cc}—typo oxpsj
== oxproooionT®—>
¥
Semantics:

valueof [[id,==e,,... id,==¢,] | (env)(val) =

i ["id;" :value_of [e;]| (env)(val)]

=

7.6.2. Operators

The operators defined on an expression of a record type are field selection,
which yields the value of a field named by an identifier, and supersedes, which
replaces the value of one of the fields.

Semantics:
value of [e.id](env)(val) = valueof [e] (env)(val) [id]

Syntax
expression:

[]
*
—expression ! logical expr . logical expr]
[]
[]

Semantics:
value of |7 |id:e] (env)(val) =

value of [7](env)(val)®["id" : value of [e }(env)(val)]

31

7.7. Expressions involving mapping types

- 7.7.1. Value constructor

Syntaz

function constructor:

~——— function (identifier

. F>type expr|)

Cbenvlronm»nt 1Vvar decls do statementc—)
Qb-(utu@-—expressicm end

var decls:

var » dentifier . type expr-h@-b-exproulon'

Semantics: {’)‘

value_of [function (i:t) e; v do stmt return expr end] (env){val) =

Az. value_of [expr | (env' @ponst (1" : (etype [t J(env), z)] Y val')
where (env',val') = mwar [v | (mdecl [e] (env))

7.7.1.1. The meaning of a declaration of variables
m_var [varid : t == ezpr, <var decls>] (env) =
(e O ["id" : etype [t J(env)],
v®["id" : value_of [ezpr | (erw)(()])
where (e, v) = if <var decls> is an empty string
then (env, [])
- else m_var [<var decls>] (env)
fi
The declaration
varid,,... id, : t == expr
is equivalent to
varid, .t == expr,...id, : 1 == expr

7.7.2. Operators

Function application, function composition, and supersedes are the opera-
tions defined for mapping types. Function application is the only operation of
the language that is not denoted by an explicit operator symbol. Although the
argument in a function application may be set off by parentheses if desired, it is
not necessary to do so.

Semantics:

Function application is defined by
valueof | f a](env)(val) =
value_of [f] (env)(val)(value_of |a] (env)(val))

It f and g are expressions typed as f: A-> B and g: B->C, then the composi-
tion of g with f is defined by

g @ f is equivalent to function (z:A4) return g (f (z)) end

If f,a and b are expressions typed as f : A->F,a: 4, and b: B, then the fol-
lowing defines the expression read as "f superseded at a by b",

J |a:b is equivalent to function (z:A) return if x =a then b else f z end

7.8. Expressions involving powerset types
7.8.1. Value constructor
Syntazx

powerset constructor:

nngoool:montj »@ —

identifier}—és»{ . type expr

Q>®->expreulcm
range element:
——pioxprossion .e oxprnslonlo

If e{z) is an expression of type Bool with only z free, then
tz:Ale(z)}
is an expression of type set of A.

Semantics:;
valueof | {z:A]e}] (env)(val) =

Ay. value of [e]| (env @ s ["z" : (etype [A](env), y)]) (val)

The meaning of a powerset expression is a function from values of the base type
to Boolean values.

Ife,,... e, are expressions of type A, then the expression
fe,.... e,} is equivalent to {z:A | z=e, or ... or x=e,}

7.8.2. Operators

if e, and e are expressions of type set of A, and a is an expression of type
A, then the following expressions are defined:

7.8.2.1. The operator min finds the least element in e which is not less than a.

Semantics:
value_of {min(e,a)](env)(val) =

(Y Am. Ae'. Aa'. if e’'(a') then a' else m(e'){a +1) fi)
(valueof {e)(env)(val))(valueof |a | (env)(val))

7.8.2.2. The operator maz, which finds the greatest element in e which is not
greater than a, is defined similarly.
'7.8.2.3. union, intersection, and set difference
value of (e, op ez J{env)(val) = Az. e,'(z) op’ ez'(z)
where ¢;’ = value_of [e;] (env)(val)
and where if op is "union” then op' is or,

if op is "intersection” then op' is and,
if op is "difference” then op' is and not

7.8.2.4. set mmembership
value_of [e, member e;] (env){val) =

value of [ez] (env){val)(value of {e, | (env)(val))

7.8.2.5. The set map function The set map applies a function to each member
of a set that satisfles a given predicate. The result is the set of values in the
range of the function.

valueof [{e(z) [z in S and b(z) |] (env)(val) =
{y | (3z) z € value of |S](env)(val) and
value of [b](env)(val)z = true and
y =value of e J{env)(val)z}

7.9. Expressions involving union types

7.9.1. Value constructor

If e is an expression of type {, then the injection id#e is an expression of a
union type id,#t, +... id, #t, such that id =id; and ¢t = {; for some i<n. The
injection is defined by

value_of [idfe J(env)(val) = ("id", value of [e] (env)(val))

7.9.2. The unioncase expression

Syntax

—t-@nlonclu)-—oxpronlon of

identifier»{# J»identifier . type expr

expression } @—>

W=
.,p,....a,.

There is no operator {other than the value constructor) which yields a new
value of a union type. Expressions of a union type can bve used in the unioncase
expression which discriminates on the case tag. The meaning of this expression
is defined by

value_of [unioncase e of

i)ffa,ine,

|| dzffazine;

|| inffonine,

|| othersine,,,

endcase | (env)(val) =
ife'sl =i;thene,’

elseif ¢'i1 = i; then ey

elseif e' i1 = i, thene,’
elsee, ' fi
where e’ = value of [e }(env)(val), and

e;' =value of [e; | (env){val) for 1<i<n.

7.10. Expressions involving locally defined constants
Synfax

fet expression:

let ldonmlor-@o type expr
C-b@*oxproulon
in

expression endleD—»
Semantics:

valueof [letid; t,==e,,... id,: t, ==¢e, in expr endlet] (env){val) =

value_of [expr | (Yen, Ae. env ®pns i ["id" : (8" v)]){val)

i=1

where t;' = e_type |{; J(env), and
v; = value of [e;] (e)(val)

a7

8. Statements
Syntax

I (D=

1
N %uslgnmentl

;-—*conditional statement

for statement

\- + unioncase ctnomer_n

y

L——‘.lﬁt statement

Y

N repeat ltuemontJ‘

B8.1. The empty statement
Syntax

Semantics:
eval | skip }(env)(val) = val

y

identifier]

B.2. Assignment

Syntaz
>ijdentifier = expression
identifier; 0 e expression ,—)

Examples:
a:=5%x;
(day, month, year) := (31,12,79);
(x.y) := (y.x)

Semantics:
eval [id := e J(env)(val) = val @["id" : value_of [e](env)(val)]

eval [(id,,... id,) := e] (env)(val) =
val ®§ ["id;" : value_of [e J(env){val))ii]

i=1

8.3. Sequential composition
Syntax

——»statement expression

Asmall example
a:=5 b:=a+b

Semantics:
eval [s;;s,] (env)(val) = eval [s; | (env)(eval |s, |(env)(val))

39

B.4. The conditional statement
Syntaz

—‘@—Cxprenlon

A small ezample

statomentl(cndib——-»

statement,

ifa>=banda>=cthenm:= a+b*
elseif b >=c then m := b+a*c

else m ;= c+a*b

endif

Semantics:
eval [if e then s, else s; endif] {env)(val) =
if value_of [e](env){val) then eval [s,] (env)(val)
else eval [s;](env)(val)

The repeated conditional statement
if e, then s, elseif e; then s; ... else s,,, endif
can be written as an abbreviation for the nested conditional statement

if e, then s, else
if e, then s; else

. Ise
Sp+; endif - - - endif endif

8.5. The unioncase statement

Syntiazx

—-@nloncno expression of

identifier] identifier

. type expr

ultomontI ;@,

otherwise do statement

A small ezample:
unioncase S_list of
Nullist#t do Found.it := false
| | Atom#t do Found.it:=t = key
| | List#t do if contains (key, front t)
then Found_it ;= true
else Found_it := contains (key, rest t)
endif
endcase
Semantics:
eval |unioncase e of
id,fa; do s,

| | idn#a, dosp
| | others do sg 4
endcase] (env){val) =
if e'41 = id; then eval [s, | (env ®gnst["21": (Bool, e' 4 2)]){val)

elseif ¢' in = id, then eval [s, |{env @pgns(["a,": (Bool, e'42)])(val)
else eval |s,,, | (env)(val)
fi

where e’ = value of [e](env)(val)

41

Note: the definition of eval does not depend upon the type associated with a con-
stant. Therefore the type Bool has arbitrarily been given to each constant o; in
_ providing an environment for evaluation of statement s;. .

8.6. The recursive statement

Syntaz

—plidentifier}s{ . J-istatementi»{ .. }»lidentifier

An example:

(x.y.z) := (AN, 1);
Exponent::
if y <= 0 then skip
else if even y then
(x,y) := (x*x, y div 2)
else
(y.2) := (y-1, x*2)
endif;
repeat Exponent
endif
::Exponent
Semanlics:
eval |id::stmt::id]| (env){val) =

Yim-vu As. eval [stmt](env)(val ®["id": s])

8.7. The repeat statement
Syntox

—{repeat >iidentitier|—e

Semantics:
eval |repeat id] (env)(val) = val [id] (val)

8.B. The let statement - local constant definition
Syntazx

identifier

. type expri expression

otntoment QndleD——>
An example:

let x: float == position.NS, y:float == position. EW
in range := x*x + y*y,
azimuth := arctan y/x
endlet
Semantics:
eval [letid,|t,==e,,... id, |t, ==e, in stmt endlet] (env)(val)

eval | stmt) (Yen, Ae. env @gng i: [(&', e;")]) (val)

where t;' = e_type [t;], and
e;' = value of [e;]{e)(val)

8.9. Bounded iteration
Syntar

for statement:

tor }»lidentitier}>{ : J>type expr H expression

do statement cndf@-’

Semantics:
The statement
for z : t incr setezpr from p in stmi endfor

is equivalent to

let sefconst : set of ¢t == sefexpr in
P =p;
Jor::
if fy:t | y >=p andy member setconst} = §{} then
skip
else
let z:t == min (setconst,p') in
stmt: p' := succ z; repeat for
endlet
endif
nfor
endlet

where p'is a new variable not previously declared in the environment.

The meaning of bounded iteration with the deecr verb is similarly defined,
using maz in place of min, and <= in place of >=.

9. Type checking

9.1. The notion of type-correctness in Apple

Types are used in Apple to distinguish potentially meaningful expressions
from those which can have no meaning. For each operator in the language there
are restrictions on the types of its operands. In Apple these restrictions have
been defined such that it is decidable, by static analysis of a program text,
whether or not the restrictions are met. This process is called type-checking.

Informally, a type A can be thought of as the set of all type A values. For a
variety of reasons, it is infeasible to use this interpretation to give the
mathematical meanings of types in Apple. The most important of these reasons
is that we wish type-correctness of a program to be property decidable by a
static analysis of the program text. Thus, we are willing to give a less precise
meaning to a type than that it characterises a set of values that might be
assumed by an expression having that type.

The function
e_type : T_expr » Env -+ T

which was defined in Sec. 5, takes a well-formed type expression (or an
enumeration, or a class instance) to its abstract syntactic representation, in an
environment.

Every well-formed expression in Apple can be given a type, relative to an
environment, provided that its component subexpressions (if any) are type-
consistent with its embedded operators. Otherwise, it will be given the type ?
which is a distinguished element in the domain T. That is, ? is the denotation for
an ambiguous type.

A very useful notion for the types of Apple is that of a partial order among
types, which we call subtype. This partial order is not absolute, but is relative to
an environment in which types can be named. When the element ? in T is added
to the partial order as a maximal element, it is possible to define a least upper
bound for any pair of types within T. To determine the types of expressions, the
partial order among types, and a least upper bound of a pair of types we shall
define three functions,

typeof : Expr » Env > T
subtype : T x T » Env » Bool

lubiype : TXT->FEnv~»T

where type.of (e)(env) checks whether an expression e is internally type-
consistent, and computes a type for it, with respect to a given environment;
subtype (t,, t2)(env) checks whether t; is a subtype of f; in the environment
env, and lub_fype (t, t;){env) computes a type which is a least upper bound of
t, and ¢, in the environment env.

A function constructor expression may contain declarations and state-
ments, in which expressions may occur. Declarations and statements will be
inspected for type-correctness by the functions

pcheck : Stmt -+ Env » 21! 5 Bool
dcheck : Decl » Env -» Bool

9.2. A partial ordering of types

The function subtype : T x T -» Env -+ Bool, which compares pairs of types,
induces a reflexive partial order upon the type domain T in any environment.
This function is defined by the following rules:

0) subtype (t,?)(env) = true

1) subtype(t,t)(env) = true

2) subtype (integer, float)(env) = true

3) subtype (restriction(t,p), t)(env) = true

4) subtype (id, t)(env) = subtype (env. Type {id |41, £)(env)

5) subtype (map(d;,), map{d;, rz))(env) =
subtype (7, 7;)(env) and subtype (d,, d,)(env)

8) subtype (record((i.ty),... (in, £)), record((i,, t,").... (in. t5")))(env) =
k/Sl subtype (1, t;')(env)

7) if . 1..m » 1..n is injective and monotonic (with respect to the natural
ordering of the natural numbers), then

subtype (union((iy,, t). (tn, .ty)}, union((iy. £,').... (in. £, M) (env) =
k/'Sl i, =1 and subtype (b, t;")

B) if op(t,.... t,) is an expression belonging to T, and op is "set" or "pro-
duct”, then

n
subtype (op(ty,... t,), op(ty'.... £,))(env) = ‘/=\1 subtype (t;, t;")(env)

9) if £, and ¢, are types and subtype (t,,f,)(env) is not defined by rules
(0..8) then subtype (t,, tp)(env) = false.

9.2.1. Least upper bounds of types

In order that type-determination shall be as precise as possible, we want
the domain T to contain a least upper bound of any two types, with respect to
the partial order induced by the subtype function. To guarantee that an upper
bound in T always exists, the element ? has been defined to be above any type in
the subtype relation.

The function which yields a least upper bound of two types is
b fype . TxT> Env->T

Here and in the following sections, we shall use the notation a <b to denote
subtype (a,b)(env), where a and b are types.

lub_type (a ,b)(env) =

ifa <b then?d
elseif b< a then o

elseif either of a or b is "integer", "float”, "bool", "ascii” or
enumeration(t;,... i,) then ?

elseif a is an identifier then lub_type (env. Type(a), b){env)
elseif b is an identifier then lub_type (env. Type (b), a){env)
elseif a is restriction(ty,p,) and b is restriction(t,, py)
then lub_type (t, .ty)(env)
elseif a is record({i;, t1).... (in.£,)) and b is record((i,, £1).... (in. ")

n
thenifk/_\l Sk #z?

then record((i;,s,),...(%, Sn)
else ?
fi
where s, = lub_type (¢, £,)(env)
elseif a is union({(i;.£,),... (im.tm)) and b is union{(j;.t,).... (4n.£.)
then if m<p and n<p
andg :1.m +1.pandh:1l.n-1.p areinjective and monotonic
and for each x<€1. p either
i) -1y = Kz ands; =t .y, andj, ., is undefined, or
ii) In-yg) = Kz BDA Sz = £,y and i ;. is undefined, or
iif) 41,y = ko 8D, 1) = Kz and
s, = lub_type (ty_,(z), th_l(z)')(em}) ands; # ?
then union{(k,.s,).... (kp.5p))
else ?
elseif o = product(¢,....t,) and b = product(t,’,...t,")

. n
thenif‘:/_\l S #7?

then product(s,,...s,)
else ?

47

fi
where s; = lub_type (t;,t;')(env)
elseif o = set(f,,...t,) and b = set(t,’,...1,,")

n
t.lclexlilfkl_\1 S #7?

then set(s,,...s,)
else ?
fi
where s, = lub_type (f,,t,")(env)
else ?
fi

The least upper bound determined by lub_{fype is used to define a type in
which a pair of values can be compared by a relational operator. Note that
lub_type does not define upper bounds other than "?" for all kinds of types. In
particular, if either a or b is a mapping or a class type, then lub_type(a,bd) is
"?". Relational operators are not defined for these kinds of types.

9.3. Type determination
The type of an expression is determined by the function

type of Exprx Env-» T
by structural analysis of its first argument.

In the definition of fype_of, it will be convenient to use a function which
obtains the type expression underlying the definition of a named type or a res-
triction. This function is

basetype : T+ Env~» T=
At. Aenv. cases!t is

"integer”, "float”, "bool”, "ascii” = {

identifier = basetype (env. Type (t)i1)(env)
restriction(a,p) => basetype (a)(env)

otherwise >t

esac

The type determination function is
type_of (ezpr)(env) =
cases ezpr is
numeral = "integer”
floating point numeral = "float”
guoted character = "ascii"
“true", "false’ = "bool"

identifier = if env.Const [expr | # ? then env.Const [expr }i1
else env. Var [expr 1 fi

aopb = letlub = lub_fype (typeof [a](env), typeof [b }(env))(env) in

cases op is

et o if lub < “integer" then “integer"
elszeif lub < "float” then "float”
elseif lub = set(t) then set(t)
else ?
fi

A = if lub < '"float" then "float"”
else ? fi

"div", "mod"” = if lub < "integer” then "integer”

else? fi

“and", "or" = if lub < "bool" then "bool”
else ? fi

“member" = if set{type_of |a](env)) < type.of [b](env)
then "bool" else ? fi

R e = if lub =7 then?
else "bool" fi
A L
if basetype (lub) = "integer" or
basetype (lub){env) = "ascii" or
basetype (lub)(env) = enumeration(i,,... i,)
then "bool"”
else? fi

"@" = if basetype (type.of [a](env))(env) = map(d, ;) and
basetype (type_of [b](env))(env) = map(d,,r;)
andr; < dj
then map(d,,rg)

else? fi

endlet

opa = casesop is
"pred”, "succ" = let b = basetype (typeof [a} (env))(mv) in
if b ="integer" then "integer”
elgeif b = "ascii" then "ascii"
elseif b = enumeration(i;,... i,) then b
else? fi
endlet

"t = if type_of | a }(env) < "integer" then "integer”
elseif type_of [a](env) < "float” then "float”
else? fi

“not” = if typeof [a](env) < "bool" then "bool"
else? fi

esac

e!m (where m is a numeral) =
if basetype (type_of [e | (env))(env) = product{t;.... t,) and0<m <n

then ¢, else? fi

eid (whereid is an identifier) =
if basetype (typeof [e] (env))(env) = record((i,.t,).... (ip.ty)) and
id = i, for somem in 1..n

then t,, else? fi

Ja => if basetype (type.of | f] (env))(env) = map(d.r)
and type of ja J(env) < d
thenr else? fi

Jlab => if basetype (typeof | f] (env))(env) = map(d,r)
and type_of fa](env) < d
and fype of [b](env) <7
hen type_of | f] (env)
Iseifl basetype (type_of [f | (env))(env) =
ecord((a;:t)).... (an:tn))
andJjinl.n (a=a; and type_of | b]} (env) < ;)
then type of [f J(env) else ? 6

if b then e, else e; endif =>
if type of [b] (env) < "bool"
then lub_type (type_of [e,] (env) .typeof [ez] (env)) (env)
else? fi

letz,:t,==¢e,,. z,:t,==¢e, ine endlet =>
if dcheck [const z,:t,==¢e,,... z,:t, = e,](env)
then fype_of (e)(m_decl [const z,:t,==e,,... Z,:t, = e, |(env))
else ? fi

z:tlp =>iftypeof [p |(env Sgnse[z:(etype]t }.7)]) < "bool”
then set{t) else? fi

(e1,... &) = ifi/:\l typeof [e,])(env) = ?
then product(typeof [e,](env),... type_of [e,] (env))

else? fi

[a,e;,...ane,] where a,,... a,, are identifiers =
if (a; # a; wheni # 7 fori,jin1.m)

andk/g1 typeof Je,] (env) # ?

then record((a, typeof [e,](env)).... (a, typeof [e,] {(env)))
else? fi

af#fb where a is an identifier =
if type_of [b]{env) # ? then union((a.typeof [b](env))) else ? fi

function (z:t) <env decl> <var decls> do <stmt> return e end =
if dcheck | const z==1initial(t) J(env) and
dcheck |<env decl> }(e,) and
dcheck [<var decls> | (e,) and
pcheck [<stmt>](e3)({]) and
type of [e Jenv) # ?
then map(e_type [t J(env), typeof |e }(e3))
else? fi
where e, = env Bg,[z: (e_type [t }env), ?)]
ez = modecl |<envdecl>](e;)
eg = m.var [<var decls>](ep)il

unioncasee of i,# a;:t;ine, || -+ || i#a,:{, ine, endcase =>

if type of [e] (env) <union((%,.t,).... (in. £,))

then ifjlsl dcheck | const a;:t; == initial(t;) | (env)
then Lub (type_of |e;1(env @aumat['a;" : (£5.2)])
else? fi

else? fi

where I;IEP () =ifn =1 thent,

n-1
else lub_type (]3.13}) (¢). tr) 6

9.4. The type-conversion function

The meaning of the type-conversion function cnv depends upon the type
expected in the context of its occurrence. It is defined by cases on the abstract
syntax of an expected type. Thus there is a conversion function defined for
every type; the function that attempts to convert it argument into a value of
type t is called £'s cnv. In practice, a programmer will be allowed to omit the
prefix I's whenever an expected type can be inferred from the context.

value of [t's env expr] (env)(val) =
convert (e_type [t])(env)(valueof [expr] (env){val))

where convert €« T>-Env-+>0-+0

= At. Aenv. Av. casest is
"float”, "integer", "'bool", "ascii"', enumeration(id, ,... id,) = v
identifier => convert (env. Type (t))(env)(v)

restriction(4,p) = if valueof [p v](e)[])
thenv else? fi

product(t,.... t;) = (convert (t,)(env)(vil),... convert (t,)(env)(vin))

record (("i;". ¢)).... ("in", t5)) =
[i,: convert(t,)(env)(v.i,),... i, : convert (L,)(env){v.i,)]

union((uilnl t 1),...(”1:-"“ , tn)) $
casesvil is
i, = i,#convert (t,)(env)(vi2)

i, = i fconvert (£,){env)(vil)

esac

map (d,7) = convert (r)(env) @ v @ (convert (d)(env))

set (£') = Az. if not predicate_of (t')(env)(z) then ? else v(z) fi

where predicate of (t)(env) =

cases! is
"integer”, "bool", "ascii" = Ar. z
enumeration(id,,... id,) = Az. z
restriction(s,p) = Aé.p
identifier => predicate_of (env.Type (t))(env)
otherwise = ?

esac

esac

8.5. Type checking an environment

Type-checking the text of an environment consists in type-checking the
declarations that constitute the environment. These declarations are checked
relative to the meaning of the environment itself.

dcheck |env id [<import decl><environment>] J{env) =
dcheck [<environment>]
(m_decl [env id [<import decl><environment>] J{env))

8.5.1. Type checking of declarations
dcheck [constc,:t;==¢,,.. ¢, (i, ==e, | (env) =

!31 dcheck [t;] (env) and
(typeof [e;J(env) < e_type [¢; |(env))

dcheck [varv,:t,==e,,... v, : {, ==¢, | (env) =

{\:1 (dcheck [t;](env) and type_of [e;] (env) < e_fype [¢; J(env))

dcheck [typet;:s,.... tp: s, | (env) =
”
{_\1 (dcheck [s; }(env)

dcheck [class C of type t,,... const ¢, :§,,... ==
def k,:7y,... k, : 7, rep <envircnment> endclass](env) =
dcheck |const c,:s,,...}(e,) and
dcheck [constk,:7,,... k,, : 7] (e2) and
dcheck | <environment>](e;) and

1,31 subtype (e3fk;], ey Const [k; J41)(e3)
where e, = enu®ppe 9, ["5" "t]
i .

ey = mdecl [constc,:s,=="¢c,",...}(e,)

eg = 2, [k : etype [7:](e2)]

1}

e, = m_decl | <environment>](ep)

In the definition above, e; represents the environment with respect to which
declarations in the body of the class are interpreted. For the purpose of type-
checking the declarations, values of the constant parameters ¢,,...c,, are taken
to be the identifiers "c,",..."c," themselves. ey gives the types of all exported
operators, as bound in the def list.

Declaration checking applies also to type expressions and instances of classes:
dcheck (t)(env) =
cases ! is
"set of " = is_scalar [s J(env)
"Cof [typei,:t,,... i :ty, cOnstc,:8,==€,,... €, S, ==e,|" =>
dcheck [typei;:t,,... im:lm

conslc,;:S;==€,,..Cp S, ==¢g, | (env) and

pL

i; € d.Ci1 and

-,
H
—

subtype (e_type [s;] (env’), (d.CiR) [c;])(env')

>

where d = env.Class | C](env'), and
env' = m_decl [typei, t,,..ip tn
constc,:s,==e,,.. S, ==¢g, | (env)

otherwise = frue

esac

where is_scalar (t)(env) = cases ! is
"id’ = is_scalar (env. Type [id]){env)
restriction(s,p) = is_scalar(s)(env)
enumeration('id,",... "id,") = true
"integer”, "bool”, "ascii" = lrue
otherwise = false
esac

B.6. Type checking of statements

Here we use the notation e' to stand for typeof (e)(env), where e is an
expression.

pcheck | skip] (env)(A) = true
pcheck |id := e] (env)(A) = €' <env.Var |id])
pcheck [(id,,... id,) ;= e } (env)(A) =
e' < product{env.Var [id,].... env. Var [id,])
poheck [sis2) (env)(A) = poheck |s,] (env)(A) and peheck [sz] (enw)(A)

pcheck |if e then s, else s, endif } (env)(A) =
e’ < Bool and
pcheck [|s,](env)(A) and pcheck]sz] (env){A)

pcheck |unioncase e of id,#c,:t,dos; | | ...
| | otherwise do s,, ,, endcase] (env)(A) =
e’ < union(("id,” e-type [¢,]).... ("id," . etype [,])) and

n
j,=\l pcheck [s; | (env @ ["c;" : etype [£,].7)]) (env)(A)
and pcheck |s,] (env){A)

pcheck [forid .t incr e, from e, dos endfor] (env)(A) =
typeof le,'}(env) < set(e_type |t }) and
typeof |ez'] (env) < e_fype [t] and
peheck [s](env @ana["id" : (etype [t].2)])(A)

pcheck [id,::s :1ida] (env)(A) = (id, = id,) and pcheck [s | (env)(A U {id,})
pcheck [repeatid] (env)(A) = "id" € A

pcheck |letid,:t,==e,,. .. id, :t, ==e, dos endlet](env)(A) =
dcheck |const id, t,==¢e,,... id, :t, ==e,] (env) and
pcheck |s] (env')(A)

where env' = m_decl [constid,:t,==e,,. .. id, :t, ==¢e,] (env)

Acknowledgements

We wish to thank Jon Shultis and John Givler for reading and commenting on
earlier versions of the formal definition. Particular thanks are due Gene Rollins
for his detailed criticism of the definition as he made use of it in the first imple-
mentation of Apple.

References

[KNB1]
Kieburtz, R.B. and Nordstrom, B., The design of a language for modular pro-
grams, Tech. Rept. CS/E-B2-01, Dept. of Computer Science and Engr., Ore-
gon Graduate Center, Beaverton, Oregon, March, 1982.

[McSB2]
MacQueen, D.B. and Sethi, R, A semantic model of types for applicative
languages, Proc. of 1982 ACM Conf. on LISP and Functional Programming,
ACM, New York, August, 1982, 243-252.

[Mi78]
Milner, R., A theory of type polymorphism in programming, Jour. Computer
and System Science 17, 3 (December, 1978), 248-375.

[SS71]
Scott, D.S. and Strachey, C., Toward a mathematical semantics for com-
puter languages, Proc. of Symposium on Compulers and Automalg,
Polytechnic Institute of Brooklyn Press, New York, 1971, 19-46.

[vW75]
van Wijngarten, A., et al., Revised report on the algorithmic language Algol
68, Acta Informatica 5, 1-3 (1975), 1-236.

57

