Type Checkmg In Ezp: An Algebraic Approach

Jon Shultis
Oregon Graduate Center

Abstract

An algebraic approach to static analysis is introduced through an example:
checking types in Exp, a simple applicative language. The method extends an
existing body of theory about static analysis for imperative languages to include
functional languages, exploiting their natural algebraic structure. The method
shows how results from a variety of theoretical areas - algebraic semantics,
denotational semantics, and eguational reasoning - can be used to develop a
flexible and conceptually simple solution to a practical problem.

Dregon Graduate Center Technical Report No. CS/E-82-03, March 8, 1982

Type Checking In Exp: An Algebraic Approach
Jon Shultis
Computer Science and Engineering Department
Oregon Graduate Center

18600 N. W. Walker Rd.
Beaverton, OR 87006

1. Introduction

The static analysis of a program traditionally consists of conirol flow
enalysis and data flow enalysis. The information gleaned from such anayses
is an estimate, or approximation, of some properties of the program. These
estimates are used to reason about the program relative to its specification,
which itself is understood statically if at all. Information about static proper-

ties is also important for translators and code improvers.

The theory of abstract interpretation [Cou77a) unifies classical data
flow analysis for languages that have a fixed, sequential flow of control.
Sequential control flow is characteristic of imperative languages like Pascal.

Applicative languages have been getting increased attention recently.
One feature of such languages is their inherent logical parallelism, which
makes them attractive candidates for programming loosely coupled mul-
tiprocessors [Etl/:]. Until recently, however, these languages have been
implemented on conventional von Neumann computers using evaluators that
employ safe sequential computation rules. Although abstract interpretation
can be used to analyze the data flow of applicative languages with respect to
such sequential evaluators [JonBla], it is neither conceptually appropriate
nor practically beneficial to make unnecessary assumptions about control

flow for such languages. In fact, Eric Hehner has recently suggested that

such assumptions are often inappropriate even for imperative languages, in

that natural opportunities for parallel evaluation are overlooked!.

This paper presents a new way of looking at static analysis problems,
one that is naturally suited to the analysis of applicative languages. It
exploits results from algebraic semantics [Gog77a)] and work on equational
reasoning [HueB80a] to compute program properties algebraically.

The method is introduced through an example taken from Milner's 1978
paper on polymorphic type checking based on his experience with ML
[Mil78a]. This new approach provides some useful insights into the nature of
the problem and its solution, while leading to the same results. Algebraic
static analysis provides a unified and natural way to express and solve many
similar problems.

2. Some Algebraic Preliminaries
An algebra A is a system (S.Z,C.J) where
e Sisa set of symbols called the sortsof A

e T is an S*xS-indexed family of sets of symbols called the signature of A.
That is, I is a family of sets &, ,, where w€S* and s€S. & denotes the
empty string. -

* Cis an S-indexed family of sets called the carriers of A

¢ [is a correspondence that assigns to each o€, , a function
f,:C,‘xC,.x “+ - XCq G, Where w=s,S; - - - Sp. Whenw=¢, 0 is assigned
an element ¢,:0;, and is ordinarily called a constant. [is called the
interpretation of A

TRersanal communication.

When necessary to distinguish among algebras, symbols will be super-
scripted with the name of the algebra; e.g., tA ,s isthe set I, , of algebra A
In an attempt to avoid truly rococo notation, I will gradually slip into the cus-
tomary practice of glossing over the distinction between an algebra and its
carrier, writing the name of the algebra where the carrier is intended. Simi-
larly, the function symbol o will be used ambiguously to denote the
corresponding function f, One final convention is that fz and f(x) both sig-
nify the application of the function f to argument z.

As an example of an algebra, let G= (S%2¢ €S, I¢) as shown in figure 1.
G is a familiar algebra, namely the cyclic group of order two. The reader
may readily verify that e is the group identity, ¢nv is the group inverse, and »
is associative.

As a second, somewhat more abstract, example let Ty be defined for any
S-sorted signature ¥ as follows. The carrier of sort s, §, is defined recur-
sively. As a basis, £, , € §. For the recursive step, let g€X,, ,, where
w=s; ' ‘S, . Then each tree with o as root and c,;,...,c, as children,

where each ¢;€G,, as illustrated below, is also a member of G;.
o
// ™~
(-2 cz et Cp

Under I the operation corresponding to o€k, , simply gathers trees of
the appropriate sorts together with o as the root; e.g., the tree above is the
result of f,{¢,.cpc,). This algebra can always be constructed, and is
called the algebra of I-trees. For a more formal development of Ty, see
[Gog77a].

Consider next classes of algebras where the set of sorts S and the signa-
ture £ are held fixed. That is, consider classes of S-soried Z-algebrus or,

S56= {par}
= | Lfpa= {eo}
Lo par = linv]
Eﬁ,.,...,.= to}
!
C¢= 1,0}
I°= o041
et— 0
invl—-o{<0.1>,§1,0>§

(In this example the functions corresponding to tnv and » are
presented as sets of <domain,range> pairs.)

s + § <<0,0>,0>, <<0,1>,1>, <<1,0>,1>, <<1,1>,0> }

Figure 1. Parity Algebra

more simply, £-algebras,

Let IC be the class of T-algebras, and let A and B belong to d. A mapping
7:A+B is a hamomorphism (of algebras) if
(ot (ay, . .. &) =P (na,, ma,)
where 0€X,, ..., ., and & €0 (1<i<n).

Notice that every homomorphism 7:4+ 8 induces an equivalence relation
~y On 4in the obvious way, namely:

a~,a < na=na

Nam assuming here that a D-algebra has a "small” carrier; i.e., that Cis the closure of the
images of the constant gymbols under the operations. An immediate consequence of this as-
sumption is that all haomomorphisms of algebras in C are epimorphisms. This assumption can
also be seen as an insistence on referential transparency.

Furthermore, B is isomorphic to the quotient of A by this equivalence
relation:
B2A/~,
where, of course, two algebras are isomorphic if they are mutually

homomorphic, and quotients are taken in the usual way.

Now, the class C of I-algebras always has one rather curious member,
called (the) initial Z-algebra, with the property that there is a (unique)
homomorphism from the initial algebra to every algebra in C. Thus every
algebra in Cis, effectively, a quotient of the initial algebra. The initial alge-
bra is unique, up to isomorphism, and it is not difficult to construct. In fact,
Ty is always an initial Z-algebra!

The class C of Z-algebras also has a trivial algebra, which is a quotient of
every algebra in C.

Let < be the relation of being homomorphic; i.e., A<F if and only if
there is a homomorphism from B to A The reader may readily verily that <
is a partial order, and that Cis a complete lattice under <, with Ty as T ¢ and
the trivial algebra as ! ¢.

3. Syntax of Exp

Let us begin by looking at the abstract syntax of Milner's toy language,
Exp. We describe the abstract syntax of Exp in the usual algebraic way; i.e.,
abstract syntax is an initial algebra. Exp has a single sort:

S = fexp)

The signature of Exp, T¥? js:

2:’.,,= fzz 2, - -{=1d

(Note: ¢ is the empty string)

S oop = llambda, lambday, - - - fiz, fizy. -} |
The concrete syntax for lambda;(e) and fizg(e) is Ar.e and fiz z.¢,

respectively.

Z:;“, .ezp = lapply lety lety, - - -}
The concrete syntax for apply(e.e') is ee".

The concrete syntax for let,(e.e')isletz=ein e’

E;.,pq,'.,, = f{cond)

The conorete syntax for cond(e,e',e") isif e then e’ else e

The abstract syntax of Ezp is just the initial ®P-algebra, Tyne-

4. The primary semantics of Exp

The primary semantics of a programming language is intended to cap-
ture all of the behaviours that any implementation of the language is
expected to exhibit. It may be the case that an implementation will have
properties that are not covered by the primary semantics. Indeed, unless
the primary semantic algebra is final in the sense of [KamB0a], there will
always be some degree of choice among possible implementations. The
important thing for portability is that the programmer never write a pro-
gram that exploits the peculiarities of an implementation. Knowing program-
mers, this probably means that only proved programs will ever be portable.
In any event, semantic ambiguity is probably here to stay; the problem fac-
ing designers of programming environments is to make it possible to live
with it.

In [Mil78a), the semantics of Ezp is given in the denolational style
developed by Scott and Strachey [Sco71a]. In that style, the meaning of a
syntactic phrase is given by an equation whose left-hand side is the syntactic
phrase being defined and whose right-hand side is an expression in a seman-
tic model. The semantic model is itself an algebra, and the equations define
& homomorphism from the abstract syntax of the language to the semantic
model. The main point of their work, however, which has not been
sufficiently appreciated even by theoretically inclined computer scientists, is
that with a modicum of care the right-hand sides of these equations are
guaranteed to make sense; that is to say, they describe non-trivial models.

Perhaps a small digression will be allowed me here to clarify this idea
with an example. In the early 1960's John McCarthy designed the famous
symbolic language LISP [McC60a]. Pure LISP was based on the A-calculus of
Alonzo Church [ChuSia]. At the time, the A-calculus had a well developed
proof theory, thanks to the fact that Curry and Feys had finally managed to
give a correct proof of the famous Church-Rosser theorem [Cur68a]. This
theorem guarantees that the reduction rules for the A-calculus are well-
behaved. This in turn justified McCarthy's confidence that he could write a
well-behaved computer program to perform the symbolic manipulations
called for by the A-calculus.

The fact that the system is well behaved, however, does not of itself jus-
tify the desired interpretation of A-expressions as denoting functions. For
that, one must show that there is a function space that models the A-
calculus. This is precisely what Scott has done, and it is no mean thing. Ever
gince the paradoxes of self-reference in classical mathematics drove Ber-

trand Russell to introduce his theory of types in the early part of this cen-

tury [Rus08a], logicians and mathematicians had believed that function
spaces of the kind required to model the type-free A-calculus simply did not
exist. The significance of this for computer science is that the assumption
that A-expressions denote functions, so central to the theoretical foundations

of computing, was in danger of being utterly specious.

Thanks to the work of Scott and Strachey and their followers, though, we
now know that some of what had been taken for granted does in fact make
sense. Also, we have been shown how to tell when we are or are not making
sense. Finally, we have been shown a way to compose things that are known
to make sense in such a way that it is comparatively easy to show that thetr

synthesis also makes sense. In my opinion we all owe them a great deal.

Returning now to the semantics of Fxp, the constructions allowed for
defining semantic algebras are the same in principle as those used in the
denotational approach, but there is a difference in the style of presentation.
In the denotational style, the meaning of a syntactic fragment is defined by
displaying the result of applying that meaning to its arguments, in a manner
akin to the way we were all tayght to deflne functions in grammar school,
viz.:

I (z)=z*

As an example, take the following definition of the meaning of a variable
reference:

Elu]ln=nv

Here, E [v] corresponds to [it signifies the meaning of v, which is
the function being defined. 7 is the argument of this function, and
c;m'esponds to the z In the first equation. (Remember that application of a

function to its argument is sometimes indicated by juxtaposition (i.e., fr

* instead of f(z))). Finally, the expression on the right, nv, conveys the result
of applying the meaning of v to 7.

The algebraic style is more direct. Instead of defining the function in
terms of its effect, its meaning is stated outright, using an expression on the
right-hand side that denotes the appropriate function. Of course, this neces-
sitates some way of building higher-order functions. Since A-abstraction is a
familiar means of indicating higher-order functions, 1 shall use it here. This
notation is not really algebraic; however, a development of an algebraic
metalanguage is beyond the scope ol this paper, so 1 must make some
compromises. Readers wishing to see such a dewvelopment should see
[Shua). In the algebraic style, then, the two equations above would be ren-
dered as:

J =Azxt®
and
Elv])=mmn |
respectively. To be complete, note that the x above is a typed A, and | ought
to subscript it with Fnv, but for the purposes of this paper, at least, it should
be clear from context what the subscripts (if any) should be.

Having taken care of these preliminaries, we shall now build a primary
semantic model for Exp. Begin by defining the domain Y of values to be the
solution to the domain equation

V=B B @ --©eFeW
where F" = V » V (the continuous functions from Vto ¥) and ¥ = {s] (error).
We assume that By is the flat domain of truth values. £nv =Id -+ V is the
domain of environments. X € Y denotes the disjoint union (sum) of the

domains X and Y. The semantic model, M®™P, has as its carrier M the space

10

of continuous functions from environments to values; i.e., ¥ = Fnv » V.
Included among the operators in the algebra #™® are the following:

cond:T+»V->V->V
<true,v,v> F— v
Kfalsev,u™> o'
<l YYD — _Ly

cond(tv,v’) is written £-v,v".

For each identifier z €ld, there is a function

assign;:Fnv » V » Enu
ENI> v
Kn.y> > ny for y#zx
assign, (n,v) is written nfv /).
If Uis the disjoint union of domains U; i€/, then

g

%
%

is the injection of U into U, for each i€/. Similarly,

g

4

is the gjection of U; from U, and is defined for all ue U such that

/4
u.--’}‘u‘

for some y€l; and is undefined otherwise. Finally, define the compatibility
of v with U to be

g
ul U = trueif i‘u. is defined,
lritu=ly
false otherwise.

~ This notation follows closely that of [Mil?7Ba]. Given these>basic func-
tions, make M™? into a £8P_algebra via the homomorphism E:Tyng~M, as

defined by the equations in figure 2. In these equations, 1 ranges over Env, v

11

| 4
" ranges over V, and u, u', u'' range over M. 1 write {» as "wrong", to hint at the
ang M ;‘

intuitive content of this expression. As an aid to reading the equations, bear
in mind that u€M is the meaning of some expression, and the value uneVis
the meaning of that expression in the environment 7.

Technically, these equations do not define the homomorphism £ itself,
only a correspondence between the operator symbols in L®P and suitable
operations in M5P; hoirever. it is well kmown that such a correspondence
uniquely extends to 2 homomorphism from the initial algebra Tgm, to the
target algebra M®™P, thus justifying our abuse of notation (see, e.g.,
[Burs9a]).

5. The Algebra of Types

So far, all I have done is to rephrase the syntax and semantics of Ezp in
algebraic terms. In this section I define an algebra of "types", or "functional-
ities”, F®P, and make this algebra into an alternative semantics for Tyay

These two semantic algebras are related in an important way: FE=p

21 FE=x

am.onz

MunEF -+ (un EF -+ wrong, (;(un))(u n)). wrong

22 Eapply(u.p’)

v
23 FEcond(uu'n) = MpunEB -+ (;n(m) - p'm, pu'n)wrong

24 Elambday(p) = An.i()w.m!v/z;)
26 Efin() = Mni(0wuntvsz))

28 Elet,(Lu’) M.um B W - wrong, u'niun /z}

Figure 2. Primary Semantics of Exp

12

"abstracts” M™P. Intuitively, one semantic model abstracts another if the
meaning of a program in the former is consistent with that in the latter. This

idea will be made precise in section 7.

The net result of all this is that to determine the type of an expression,
aimply evaluate it in the model F®P), Hence this example illustrates a gen-
eral paradigm for analyzing static properties of programs. First, bulld an
algebraic model of the property of interest {here, F™P). Next, make the
mode] into a Z-algebra, and show that it is consistent with the primary
semantics. A standard term reducer and unification perform the evaluation,

and provide a nicely parametrized flow analyzer.

Without further fanfare, let II; be the flat domaip containing a single
proper element, m;, and suppose there is one of these primitive types for
each basic domain B;. Define Tiype to be the solution to the domain equation:

Type = @ll,® - - ©TFSTW
where 7F = Type -+ Type, and TW = { V }. Injection, ejection, compatibility,
replacement (on type environments Tenv =1d » Type), and cond are

Tign
defined for Type in the obvious way. We write ;'V as "bad”,

In addition, define the operation mapezf,:.' tups , type SO that it satisfies
the equation map(t,t))t = t', tor all £,t'’cType. Notice that for this equation to
make sense the range of map must be TF. For the simple example of typing
in Exp, this is sufficient. More complicated languages with richer operations
would require further operations on 7Type, such as "cartesian product”, "dis-
joint sum”, and "list”, with equations describing their behaviour, as well. This

process is straightforward and presents no real difficulties.

Notice that | have not actually given a proper definition of the function

map; rather, 1 have given a purely syntactic equation serving to induce an

13

~ equivalence relation on the "raw version" of Type (proto-Type?). The algebra
TPype is thus the quotient of proto-Type by this equivalence relation. 1t is
partly an equational theory. In an equational theory, the basic tool for rea-
soning about equality of terms (satisfiability ol equations) is unification
[RobB5a). When the equations are given a direction, they become rewrite
rules and can be used to drive simplifying interpreters. An example, men-
tioned earlier, is the A-calculus, where the rewrite rules are the rules of A-
conversion; two A-expressions are considered equal if they reduce to the
same normal form. There is a vast literature on such syntactic, proof-

theoretic manipulation of terms; an excellent survey of the area is [HueB0Oa)].

The semantic model F®P, then, has as its carrier #'=Tenv +Type, and F
becomes a E¥-algebra via the homomorphism &: Tyee-+F as shown in Fig-
ure 3, where ¥ ranges over Tenv, T, 7, and 7" range over F, and ¢ ranges over
Type. Bear in mind that 7 is the meaning of some expression in the model
FEP_ and Ty is the type of that expression in the type environment .

Notice that in the equation for “cond’ the test for equality in Type

requires reasoning with the equations for type operators - in this case the

31 o= = Myz

82 ®applyfrr) = M.TYETF- (rYETW - bad, (';'g(w))(w)). bad
33 &cond(r.T\7") = M.TYElg -~ Y=1"y » 1Y, bad), bad

34 &lombda,(r) = w.’};'mm(t, it /z})

85 Srir,(r) = M. g (Y(mapleryit/c))

368 dlet . (r,7) AY.TY E TW » bad, TY{TY /2]

Figure 3. Type Semantics of Exp

14

one for map. Without going into details, suffice it to say that Tiype has a
decidable unification problem, and hence the evaluation of an Ezp program

in the model Type is guaranteed to terminate.

6. Evaluation in F5¥
As an illustration of how the evaluation of an Exp expression in the
model F®P proceeds, consider the expression:
Az \y.if y{z) then z else 3 (4]
Its abstract syntax is:

larnllzda,
tambday
cond
Y z 3

Evaluation proceeds jn a purely bottom-up, synthetic way. The equa~
tions defining $ directly evaluate the leaves of such an abstract syntax tree.
The values obtained at each level are combined at successive levels accord-
ing to the equations. Proceeding in this way leads to the sequence of evalua-
tion steps shown in figure 4. The evaluation steps are presented as rewritings

of the form a = b, meaning that %a is evaluated to give .

Now formula 4.8, the meaning of {*) in FB*P, is not very illuminating as it
stands. This is partly the fault of the notation and partly the fault of the way
in which the language Fzp itself constructs higher order functions, both of
which are due to A, the annihilator of orthogonality. One way of getting some
insight into the meaning of a A-expression is to close it. The result of closing
formula 4.8 with

15

4.1
4.2

4.3

4.4
4.5
48

4.7

4.8

vV =Ny
z > \Y.yz
apply(4.1,4.2) => AY.Yy E TF » (y= E TH - bad, (;(W))Wz)). bad
z > M.yz
3 =>M\.93
cond(4.3,44,45) = M.
(YyETF -+ (Yyz E TH - bad, (,;M))(WZ)). bad] ETl,

+ (Yz=y3 » Yz, bad), bad

. lambda, (4.6) =>)\'¢.;r;()‘t.map(t.

[t ETF~+ (yz E TW - bad, (1;; £)tvz)), bad] ETl,
+ (¥yx=y3 - Yz, bad), bad)))

tambda, (47) > Xy. 3 (M map(t’, 1\t map(
[£ B TF~ (¢'E TW - bad, (;t)(t')). bad] ETI,

= (t'=y3 - t', bad), bud)))))

Fgure 4. Evaluation in FF?

¥ = Lrom lint /3]
t = map(int,bool)
t'=int

where bool=my, is simply:

map (int map(rmap(int,bool),int))

or, with a bit of "syntactic sugar”,

© @nt » ((int + bool) + int))

16

which, as anyone with access to an ML implementation can readily verily, is

the desired type of (*).

7. An Algebraic Theory of Static Analysis

What is the connection between #*? and FE?? ﬁecall that C, the class
of L-algebras, is a complete lattice under the homomorphism partial order-
ing <. The abstract syntax of a language A is identified with the initial E-
algebra Ty Every algebra in C is a possible model for Tz. In other words,
every algebra in C is a possible semantic model for A, and semantics is the
corresponding homomorphism. Hence £ and & give two alternate semantics
for Exp.

Since a homomorphism is a structure-preserving mapping, A<B means
that A is consistent with B. In general, A is said to be an abstraction of B,
and the study of algebraic abstractions is called abstract algebra. The alge-
bra of types is consistent with the primary semantics of Ezp via an obvious
homomorphism from the algebra ME? to F®®. (We leave the details of this

to the reader, as they are easy but (by now) tedious.)

The primary semantic algebra M for A is itself initial in a sublattice of C,
the lattice of algebraic abstractions of M, If M belongs to the class of "deter-
ministic discrete dynamic systems", then it is initial in the lattice of abstract
interpretations [Cou77a, CouBla).

One main point of this paper is that the techniques of fixed point approx-
imation are not restricted to "deterministic discrete dynamic systems”, but
apply equally well to any continuous algebra. In fact, the determination of
necessary constraints on sequencing (i.e., the choice of control flow) is a
data flow problem which, as I indicated In the introduction, is especially
important for applicative programming languages. For example, laay

17

evaluation is an approximation that reflects the semantics of non-=strict

Junctions - two very different ideas!

A second main point of this paper is the connection between model-
theoretic and proof-theoretic definitions. A constructive, model-theoretic
approach to programming language definition synthesizes a new model from
known meodels and constructors, and then makes it a semantic model for the
language via an explicit homomorphism, which can be interpreted mechani-
cally in terms of the base models and constructors. A proof-theoretic
approach analyzes an initlal algebra with syntactic formulae (equations,
axioms, proo? rules). Then, the issues of soundness, completeness, and the
existence of nontrivial models arise, because one does not know what the
language is talking about. The benefit is that one knows how to reason about
the language and its utterances. If decidable, this proof theory can be

automated with well-established and uniform metheods.

So to show that one semantic model is consistent with another, either
exhibit an explicit homomorphism or show that the one is {iscmorphic to) a
quotient of the other. The latter approach is illustrated in {Don79a]. Tipe is
a mixed theory, and requires a mixed approach. That proto-Type < M is
easily shown; one must algo show, e.g., that the equation for map does not
make Type trivial. Another possibility (hint) is to construct an explicit model
that satisfies the equation; i.e., define a function on types such that

map(t,t’)t = ' holds.

8. Type Assignment

Returning to the abstract algebra of types, note that Milner's real con-
tribution is an algorithm “...to discover a legal type assignment, given a pro-
gram with incomplete type information,” rather than .. just verilying that a

18

given type assignment is legal" [Mil7Ba, p.359]. The development so far
shows how to do the latter. How does the discovery of type assignments fit

into the algebraic framework?

The design of an algorithm to discover legal type assignmehts is guided,
in a very transparent way, by what we intend by "legality”. A legal type
assignment for an expression @ is supposed to ensure that e never takes the

value wrong. What does this mean in terms of the algebra of types?

The astute reader will have noticed that the algebra of types departs
from Milner's notion of "type" in that every expression has a type in FEP,
including wrong, whose type is bad. Hence a legal type assignment ensures

that (®e)y does not have the type bad in its range, for all Y€ Tenv.

Evaluation of an expression e in FBP ig purely synthetic (i.e., bottom-
up). The result is a mapping from type environments to types. A natural
approach is to attempt to generate, during the synthesis, a set of equations
constraining the values that the type variables introduced can assume. The
choice of these constraints is governed by the need to avoid, in the equations
for §, the arms of the conditionals that lead to "bad" places. These considera-

tions lead to an inductive analysis of the equations defining §, as follows.

» The synthesis always begins with the leaves of the abstract syntax tree,
and these are always variable references or constants. Equation 3.1
therefore provides the basis of the induction. In particular, there must
be no constant or variable having type bad in the initial type environ-

ment.

The inductive hypothesis is that the arguments of an cperator cannot be
bad. The inductive step is to derive constraints for each operator that

preserve the inductive hypothesis. That is, equations whose satisfaction

18

. guarantees that the result of applying each operator cannot be bad, assum-
ing that the arguments cannot be bad. These constraints are derived by
inspection of the remaining equations defining $:

» Equation 3.2 requires that:

T (ry) = map(t.t)
TY=t
e« Equation 3.3 requires that:
Y =M
TY=T'Y
¢ Equations 34 and 3.5 require that the constraints on T be duplicated
with 9§t /z] substituted for ¥; this guarantees that £ is constrained so as
not to interfere with the hypothesis that r cannot be bad.

s Similarly, equation 3.8 requires that the constraints on 7 be duplicated
with ¥{7'¥/x} substituted for ¥.

Type assighment for an expression e occurs during the evaluation of e in
FEP_ Initially, the types of all constants must be known. At each step of the
evaluation, the constraining equations corresponding to the operation being
performed are generated, and the resulting system of equations is unified, if
possible. The types assigned to identifiers and type variables are simply
their unifiers. -

Notice that for lgmbda, and fir;, the constraints on 7 must be unified
with £ as a free variable, whereas for lef; the constraints on 7 must be
unified in conjunction with those on 7y. Consequently, the constraining equa-
tions for

let I = Az.z in I(I)

are satisflable, whereas those for

(NLI(1))(Az.z)

are not.

Why should this be so? Aren't these two expressioné semantically
equivalent? The problem is that A-abstraction is an operation that acts on
the preseniations of values, instead of the values themselves. This makes it
oblique to the rest of the purely tunctional® operations of the metalanguage,

resulting in the usual bizarre and subtle interactions.

9. An Example of Type Assignment
Figure 5 shows the constraining equations that are generated during the

evaluation of (*). The numbers in figure 5 are the step numbers from figure
4; the equations shown beside each number are those generated for the
corresponding step of the evaluation. Notice that the final type assignment
sets

¥3=int

t = map(int,bool)

t'=1int

which gives (*) its expected type as shown in section 8. _

10. Conclusions

Does this method work? Yes. The type assignment algorithm sketched
here is a bottom-up version of Milner's "Algorithm J". Semantic soundness is
proved by formalizing the reasoning used to derive the algorithm. Iam omit-
ting the formal proof here because the result is already known and the proot

te'chnique is well-known and not germane. The system of equations

tan implementation of these operators may act on presentations but this must be tran-
sparent.

21

41

4.2

43 Yy =map(t,.ty)
yz=t,

4.4

45 y3=int
(Recall that the types of all constants are known.)

468 iz = bool
t,=y3=int

4.7 Yit Ay = map(t,tz) which implies ¢t = map(int, bool)
48 yit'/ziz = t, which implies ¢’ = int

Figure 5. Type Assignment
generated during the synthesis of a typing are sufficient to guarantee that
the type assignment is legal, but they are not necessary. In fact, many
different type algebras are possible. Some are more restrictive, some less.
The type assignment algorithm developed here provides a static approxima-
tion of the "most general” typing conjectured by Milner. As is clear from the
algebraic theory presented in this paper, however, many models of "type"
are possible, and whether or not a particular typing is "most general”

depends on the model chosen.

pLULD

Acknowledgements

1 would like to thank my colleagues - Richard Kieburtz, Gene Rollins, and
John Givler - for their insights and criticism which helped me to clarify this
material and for their endurance through several conceptual revisions. 1
would also like to thank the Oregon Graduate Center for providing an excel-

lent working environment and for funding this research.

References

ACMB1la.
Proc. ACM Corf on Functional Programming Langunges and Compuler
Architecture. Oct. 1981.

Buré9a.
Burstall, R. M. and P. J. Landin, ""Programs and their Proofs: an Alge-
braic Approach,” Machine ntelligence 4 pp. 17-43 (1960).

ChuSla
Church, A., ""The Calculi of Lambda-Conversion,'' Annals of Maothematical
Studies 8Princeton University Press, (1951).

Cou77a.
Cousoct, P. and R. Cousot, "Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints," POPL IV, pp. 238-252 (Jan. 1977).

CouBla.
Cousot, P., "Semantic Foundations of Program Analysis,' pp. 303-342 in
Program Flow Analysis: Theory and Applications, ed. N. D. Jones and S.
S. Muchnick,Prentice-Hall, Englewood Cliffs (1981).

CuréBa.
(Cu.rry). H. B. and R. Feys, Combinatory Logic, North-Holland, Amsterdam
1968).

Don79a.

Dongeau-Gouge, V., "Denotational Definition of Properties of Program
Computations,’ IRIA RR#349, Le Chesnay (Avril 1979{

Gog'77a.
Goguen, J. A, J. W. Thatcher, E. G. Wagner, and J. B. Wright, "Initial Alge-
bra)Semnntics and Continuous Algebras,” JACM 24(1) pp. 88-95 (Jan.
1977). .

HueBOa.
Huet, G. and D. C. Oppen, "Equations and Rewrite Rules: A Survey,”
STAN-CS-80-785, Stanford Computer Science Dept. {(Jan. 1980).

JonB1la.
Jones, N. D., ""Flow Analysis of Lambda Expressions,’* pp. 376~408 in Proc.
Symposium on Punctional Languages and Computer Architecture, ,

Goteborg (April 1981).

'KamB0a.
Kami)n. S., “'Final Data Type Specifications,”” POPL VII, pp. 131-138 (Jan.
1980).

McC80a.
McCarthy, J., "'Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part 1, CACM 3(4) pp. 184-195 (April, 1860).
Mil78a.
Milner, R, 'A Theory of e Polymorphism in Programming,”’ J. Comp.
& Sys. Sci. 17 pp. 348-375 (1978).
Rob65a.
Robinson, J. A., *'A Machine-Oriented Logic Based on the Resolution Prin-
ciple,” JACH 12(1) pp. 23-41 (Jan., 1965).

Rus08a.
Russell, B., "Mathematical ic as Based on the Theory of Types,"” Am.
J. Math. 30 pp. 222-262 (1908).

Sco7la.
Scott, D. S. and C. Strachey, ''Toward a Mathematical Semantics for
Computer Languages,’ pp. 18-46 in Proc. Symposium on Computers and
Automaia, ed. J. Fox,Polytechnic Institute of New York, New York
(1871).
Shua. ‘
Shultis, J., “‘Hierarchical Semantics, Reasoning, and Translation,” Ph.D.
Thesis {in preparation) ().

