
Checking In Ehp: An Algebraic Approach 

Jon Shultis 
ck.sgon O u d u d e  Ccnter 

An algebraic approach to static analysis is introduced through an example: 
checking types in &p, a simple applicative language. The method extends an 
existing body of theory about static analysis for imperative languages to include 
functional languages, exploiting their natural algebraic structure. The method 
shows how results from a variety of theoretical areas - algebraic semantics, 
denotational semantics, and equational reasoning - can be used to develop a 
ikxible and conceptually simple solution to a practical problem. 

Oregon Graduate Center Technical Report No. E3/E-lB2-03, March 8, 1962 



Type Checking In l3q.x An Algebraic Approach 

Computer Science and Engineering Department 
Oregon Graduate Center 
19600 N. W. Walker Rd. 
Beaverton, OR 97006 

The st& ~ y s S s  of a program traditionally consists of carfro1 $ow 

d @ s  and M a  flow mdysis. The intormation gleaned from such anayses 

ia an estimate, or approximation, of some properties of the program. These 

estimates are used to reason about the program relative to its specilkation, 

wbich itself is understood statically if at all. Information about static proper 

U s  is also important for translators and code improvers. 

The theory of abstract infapretatCon [ c o u ? ~ ~ ]  U e s  classical data 

flow analysis for languages that have a flxed, sequential flow of control. 

Sequential control flow is characteristic of imperative languages like Pascal. 

Applicative languages have been getting increased attention recently. 

One feature of such languages is their inherent logical parallelism, which 

makes them attractive candidates for programming loosely coupled mul- 
~ f "  

tiprocessors [Blal. Until recently, however, these languages have been 

implemented on conventional von Neumann computers using evaluators that 

employ safe sequential computation rules. Although abstract interpretation 

can be used to analyze the data flow of applicative languages with respect to 

such sequential evaluators [JonSla], it is neither conceptually appropriate 

mr practically beneficial to make unnecessary assumptions about control 

do# tor such languages. In fact, Eric Hehner has recently suggested that 



such assumptions are often inappropriate even for imperative Languages, in 

that natural opportunities for parallel evaluation are overlookedt. 

Thla paper presents a new way of loolung at static analysis problems, 

one that is naturally suited to the analysis of applicative languages. It 

exploits results tram algebraic semantics [Gog77a] and work on equational 

reasoning [HueSOa] to compute program properties algebraically. 

The method is introduced through an example taken from Miher's 1978 

paper on polymorphic type checking based on his experience with ML 

[Hil7Ba]. This new approach provides some useful insights into the nature of 

the problem and its solution, while leading to the same results. Algebraic 

static analysis provides a d e d  and natural way to express and solve many 

similar problems. 

A n  d g a b r a  A is a system (S,X, C, I) where 

S is a set of symbols called the swfs of A 

I: is an Sex§-indexed family of sets of syrnbds called the s@dwe of A. 

That is, C is a i d y  of sets C, , , , where w€S' and sES. E denotes the 

empty string. 

Cia an Sindexed family of sets called the c d r s  of A. 

I b a correspondence that assigns to each a€&,, ,, a function 

J,:C;,xC;,x . X k - r  C;, where 'U I=S~SZ . - s,,. When w e ,  a is assigned 

an element c,: t; and is ordinarily called a cons tud .  1 is called the 

~ e t f z t h  of A. 



When necessary to distinguish among algebras, symbols will  b super 

ecripted with the name of the algebra; e.g., ~4 ,, is the set C, ,, ot algebra A. 

In an attempt to amid truly rococo notation, I wi l l  gradually slip into the cus- 

tomary practice of glossing over the distinction between an algebra and its 

carrier, writmg the name of the algebra where the carrier is intended. Simi- 

larly, the function symbol u w i l l  be used ambiiuously to demte the 

corresponding function 1,. One 5nal convention is that f i  and f &) both sig- 

nify the application of the tunc tionJ to argument z. 

As an example at an algebra, let G= ( s ~ , c ~ , c ~ , I ~ )  as shown i u a u r e  1. 

G is a familiar algebra, namely the cyclic group of order two. The reader 

may readily penfy that e is the group identity, inv is the group inverse, and 

is associative. 

As a second, somewhat more abstract, example let Tc be defined f o r  any 

S-sorted signature C as follows. The carrier of sort s, C;, is defined recur- 

sively. As a basis, C,,, C c. For the recursive step, let u a . , .  where 

w=sl . s,, . Then each tree with u as root and c ,, . . . , c, as children, 

where each cf E$, as illustrated below, is also a member of c. 

Under I the operation corresponding to UE&, , . simply gathers trees of 

the appropriate sorts together with u as the root; e.g., the tree above is the 

result of f ,(cl,c2, . . . , c,). This algebra can always be constructed, and is 

called the algebra of C-trees. For a more formal development of Tc, see 

ko"7al. 
Consider next classes of algebras where the set of sorts Sand the signa- 

ture C are held fixed. That is, consider classes of S-swted C~~ or, 



(In this exatnple the functions correspondmg to mu and e are 
presented as sets of <domainrange> pairs.) 

mure 1. Parity Algebra 

more simply, E d g e  bras. 

Lt C be the class of %algebras, and let A and B belong to d. A mapping 

q:A+B is a homo- (of algebras) if 

.rl(d(ar,, . . . ,%.)) = QB(vu1,. . S T % )  

where UEZ,, . . .% ,, and ~ E C Z  (lssn). 

Notice that every homomorphism q:A+B induces an equivalence relation 

-,, on Ain the obvious way, namely: 

71 am a m m i q  here tbat a D-algebra haa a 'hall'' carrier; i.e., that Cb thc cl- of the 
bmges d the canstant symbols under the operatima. An immediate consequence of this as- 
mmption is that dl homomorpfiirrns oi algebras in C are epimorphisms. This asnrmption can 
dm be a ~ n  as an insietence on referential transparency. 



F'urthermore, B is isomorphic to the quotient of A by this equivalence 

relation: 

B Z A / - ,  

where, of course, two algebras are isomorphic if they are mutually 

homornorphic, and quotients are taken in the usual way. 

Now, the class C of C-algebras always has one rather curious member, 

called (the) inifiaL Z-algebra, with the property that there is a (unique) 

homomorphism from the initial algebra to every algebra in C. Thus every 

algebra in C is, effectively, a quotient of the initial algebra. The initial alge- 

bra is unique, up to isomorphism, and it is not difficult to  construct. In fact, 

TE is always an initial C-algebra! 

The class C of C-algebras also has a t7ivial algebra, whtch is a quotient of 

every algebra in C. 

Let C be the relation of being homomorphic; i.e., AsB if and only if 

there is a homomorphism from B to A The reader may readily verlty that s 

is a partial order, and that C is a complete lattice under 5, wlth TE as TC and 

the trivial algebra as LC. 

Let us begin by looking at the abstract syntax of Milner's toy language, 

m. We describe the abstract syntax of Ecp in the usual algebraic way; i.e., 

abstract syntax is an initial algebra. has a single sort: 

The signature of Elzp, Cm, is: 



- - ~ z , z ' , d ~ ' ~ ~ ~ ~ = l d  X'. q - 
(Note: c is the ernpty string) 

cz,., =  la^&.^^&. . . . .j(c..li+,. . + + l 
The concrete syntax for hmb&(e) and t%(e) is h . e  and @ z.e,  

respectively. 

4p Cwq.lq, = ( q p 1 v , l e t , ~ e b . .  . . j 
The concrete syntax for'- (e ,e') is ee '. 

The concrete syntax for let,(e ,e') is kt z = Q in e'. 

np x,,,,., = t c d ]  

The conorete syntax for cond(e ,e' ,sU) h if e thsn e '  else 8': 

The abstract syntax of Eqp is just the initial x--algebra, Tz*. 

4. T h e m  s e ~ t i c s  or Exp 

The primary semantics of a programming language is intended to c a p  

ture all of the behavioura that any implementation ot the language is 

expected to exbibit. It may be the case that an implementation will have 

properties that are not covered by the primary semantics. Indeed, unless 

the primary semantic algebra is pnal in the sense of [KamBOa], there wi l l  

always be some degree of choice among possible implementations. The 

important thing for portability is that the programmer never write a pro- 

gram that exploits the peculiarities of an Implementation. Knowing program- 

mers, this probably means that only proved programs w i l l  ever be portable. 

&I any event, semantic ambiguity is probably here to stay; the problem fac  

ing designers of programming environments is to make it possible to live 

with it. 



In [Mil78a], the semantics of Ezp is given in the dsnotrttiod style 

developed by Scott and Strachey [Sco'lla]. In that style, the meankg of a 

syntactic phrase is given by an equation whose left-hand side is the syntactic 

phrase being defined and whose right-hand side is an expression in a seman- 

tic model. The semantic model is itself an algebra, and the equations define 

a homomorphism from the abstract syntax of the language to the semantic 

model. The main point of their work, however, which has not been 

puff~dently appreciated wen by ttzeoretically inclined computer scientists, is 

that w i t h  a modicum of care the right-hand sides of these equations are 

guaranteed to make sense; that is to say, they describe no-trivial ntodels. 

Perhaps a small Qression will be allowed me here to clariIy this idea 

with an example. In the early 1960's John McCarthy designed the famous 

symbolic language LISP [McCGOa]. Pure LISP was based on the A-catculus of 

Alonzo Church [ChuSla]. At the time, the A-calculus had a well H o p e d  

proof theory, thanks to the fact that Curry and Feys had Anally managed to 

give a correct proof of the famous Church-Rosser theorem [C-a]. This 

theorem guarantees that the reduction rules for the A-calcdus are well- 

behaved. This in turn justitied McCarthy's confidence that he could write a 

well-behaved computer program to perform the symbolic manipulations 

called for by the kcalculus. 

The fact that the system is well behaved, however, does not of itself jus- 

bfy the desired interpretation of h-expressions as &notlng functions. For 

that, one must show that there is a function space that models the A- 

calculus. This is precisely what Scott has done, and it is no mean t-. Ever 

since the paradoxes of seU-reference in classical mathematics drove Ber- 

trand Russell to introduce his theory of types in the early part of this cen- 



tury [RusOBa], logicians and mathematicians had believed that function 

spaces of the kind required to model the type-free A-calcdus simply did not 

exist. The significance of this for computer science is that the assumption 

that A-expressions denote functions, so central to the theoretical foundations 

of computing, was in danger of being utterly specious. 

Thanks to the work of Scott and Strachey and their followers, though, we 

now know that some of what had been taken for granted does in fact make 

sense. Also, we have been shown how to tell when we are or are not m&mg 

sense. Finally, we have been shown a way to compose thmgs that are known 

to make sense in such a way that It is comparatively easy to show that their 

synthesis also makes sense. In my opinion we all owe them a great deal. 

Returning now to the semantics of E ' ,  the constructions allowed for 

dehmg semantic algebras are the same in principle as those used in the 

denotational approach, but there is a difference in the style of presentation. 

In the denotational style, the meaning of a syntactic fragment is defhed by 

displaying the result of applying that meaning to its arguments, in a manner 

akin to the way we were all taught to define functions in grammar school, 

viz.: 

y (x)=zt 

Aa an example, take the followiq deanition of the meaning of a variable 

reference: 

6 b 171=1?1)  

Here, E 1 u ] corresponds to fi it signlfles the meixnhg 01 v ,  which is 

the function being defined. 7 is the argument of this function, and 

corresponds to the z in the &=st equation. (Remember that application of a 

function to its argument is sometimes indicated by Juxtaposition (i.e., jk 



instead of f (z) )). Finally, the expression on the right, qv , conveys the result 

of applying the meaning of v to 7.  

The algebraic atyle is more direct. Instead of deBnmg the function in 

tern  of its effect, its meaning is stated outright, using an expression on the 

right-hand side that denotes the appropriate function. Of course, this neces- 

sitates some way of building lugher-order functions. Since A-abstraction is a 

familiar means of indicating hrgher-order functions. 1 shall use it here. This 

notation is not really algebraic; however, a development of an algebraic 

metalanguage is beyond the scope of this paper, so 1 must make some 

compromises. Readers mshQ to see such a development should see 

[Shua]. h the algebraic style, then, the two equations above would be ren- 

dered as: 

j = hz.z8 

and 

E [ Y  ] = h q . ~  

respectively. To be complete, note that the A above is a typed A, and I ought 

to subscript it wi th  Etrv, but for the purposes of this paper, a t  l e d ,  it should 

be clear from context what the subscripts (if any) should be. 

Having taken care of these preliminaries, we shall now build a primary 

semantic model for Ezp. Begin by de- the domain Y of d u e s  to be the 

eolution to the domain equation 

V = B D e B l e . . . e F e  W 

where F = V -r V (the continuous hc t ions  from Vto fl and K = W (error). 

We assume that Bo is the flat domain of truth values. Bw = Id + V is the 

domain of e-s. X Y denotes the disjoint union (sum) of the 

domains X and Y. The semantic model, M- , has as its carrier M the space 



of continuous functions from environments to values; i.e., M = hrv + V. 

Included among the operators in the algebra M- are the following: 

For each identifier z €Id, there is a function 

assdgT4:Kh.v + v+,?hJ 
:<7),2> I-+ v 
:<7),'1/> b for g#z 

(r1,v) is written q j w h ]  

If U is the disjoint union of domains 4, icI, then 

is the .tnjecl.ion of U, into U, for each i E l .  Similarly, 

is the ejectinn of Ui trom U, and is deflned for all UE U such that 

for some q~Uf and is undefined otherwise. Finally, d e k e  the c a m p m i l %  

false otherwise. 

Thia notation follons closely that of [Mil?Ba]. Given these basic func 

tiom. make P- into a Xm-algebra via th.  homomorphism E:TEs+M. as 

deflned by the equations in figure 2. In these equations, q ranges over Ehu, v 



f 
ranges over b and p, p', poB range over Y I write P as "wrong", to hint at the 

intuitive content of this expression A s  an aid to readmg the equations, bear 

in mind that CLEM is the meaning of some expression, and the vdue mEVis 

the meaning of that expression in the environment 9. 

Technically, these equations do not defbe the homomorphism E itself, 

only a correspondence between the operator symbols in X- and suitable 

operations in M-; however, it is well known that such a correspandence 

uniquely extends to a homomorphism from the in i td  algebra Txm to the 

target algebra M*, thus justdying our abuse of notation (see, e.g., 

ImQaIl .  

5. The Algebra of Types 

So far, all I have done is to rephrase the syntax and sernaniics of in 

algebraic terms. In this section I & h e  an algebra of "types", or "functional- 

ities", *, and make this algebra into an alternative semantics far Txm. 

These two semantic algebras are related in an important way: F- 

Figure 2. Primary Semantics of Exp 



"abstracts" M-. Intuitively, one semantic model abstracts another ii the 

meaning of a program in the former is consistent with that in the latter. This 

idea will be made precise Ln section 7. 

The net result of all this is that to determine the type ot an expression, 

simply e u a l d e  it .in ths model F*!, Hence this example illustrates a gem 

erd paradigm for analyzing static properties of programs. First, build an 

algebraic model of the property of interest (here, F-). Next, make the 

model into a X-algebra, and show that it is consistent with the primary 

semantics. A standard term reducer and unifkation perform the evaluation, 

and provide a nicely parametrized flow analyzer. 

Without further fanfare, let TIi be the flat domain containhg a single 

proper element, nt, and suppose there is one of these prim4tivs types for 

each basic domain &. Deflne me to be the soiutlon to the domain equation: 

q p  = h e n , -  - . .  ~ T F ~ T W  

where TF = 7 @ ~  w, and TW = f V 1. Injection, ejection, compatibility, 

replacement (on + environments T m  = Id -, 3lype), and cond are 

nsa 
deflned for 7&a in the obvious way. We write ? V as "bad". 

Tl 

In addition, d e b  the operation W U Z ~ E C ~  , ,, so that it satisfies 

the equation mqpft, t ')t = t ', for all t,t ' E m .  Notice that for this equation to 

make sense the range of mop must be TF. For the simple example of typing 

in &p, this is suilicient. More complicated languages with richer operations 

would requlre further operations on m, such as "cartesian product", "dis- 

joint sum", and "list", with equations describing their behaviour, as well. Thts 

process is straightforward and presents no real difXiculties. 

Notice that I have not actually given a proper deflnition of the function 

map; rather, 1 have given a purely syntactic equation serving to induce an 



equivalence relation on the "raw version" of (proto--?). The algebra 

?&w is thus the quotient of proto-- by this equivalence relation. It is 

partly an equdiollal themy. In an equational theory, the basic tool for rea- 

soning about equality of terms (satisfiability ot equations) is z m @ c d i m  

[Rob65a]. When the equations are given a direction, they become rewrite 

d e s  and can be used to drive simplifying interpreters. An example, men- 

tioned earlier, is the A-calculus, where the rewrite rules a m  the rules of k 

conversion; two A-expressions are considered equd if they reduce to the 

same normal form. There is a vaat literature on such syntactic, proof- 

theoretic manipulation of terms; an excellent survey of the area is [HueBOa]. 

The semantic model F* , then, h, as its carrier F = Tenv + 'Pype , and F 

becomes a Cm-algebra via the homrrmomorphisrn Ip: T-+F as sbwn in Fig- 

ure 3, where $ ranges over T a v ,  s, 9, and T" range over F, and t  ranges over 

m. 33ear in mind that T iS the meaning of some expression in th mdel 

F-, and qb is the type of that expression in the type environment 9. 

Notice that in the equation for "cond" the test for equality in Z & p  

requires reasoning with the equations f o r  type operators - in this case the 

3.1 #z = A9.9~ 
* r e  , o p p u ( ~ . ~ y  = A ~ . ~ ~ ~ E T F + ( T Y E T U - . ~ ~ , { ~ { ~ ) ) ( T ~ ) ) , ~ ~ ~  

33 9 c ~ ~ ( T , T : T ~  = A+.* E &, -, (iV=r'v + r y .  bad), bad 

nv 
3.4 i l m n b ~ ( s )  = A*. , T f i t . ~ ( t . * . l l t / ~ j ) )  

%P a s  rpjiz,(~) = w. &, @fit.m"pP.3Lfhl).)) 

3.6 iP1et,(r1r~ = A@.rJIB T W +  bad, r ~ ~ ~ / z j  
I 

Q u r e  3. Type Semantics of Exp 



one for mup. Without going into details, sudice it to say that has a 

decidable unification problem, and hence the evaluation of an program 

in the model me is guaranteed to terminate. 

As an illustration of how the evaluation of an Ecp expression in the 

model proceeds, consider the expression: 

kc.~y.ijy(z) them z eLse 3 (*I 
Its abstract s y n h  is: 

M u a t i o n  proceeds in a purely bottom-up, synthetic way. The equa- 

tions detlmq @ directly evaluate the leaves of such an abstract syntax tree. 

The values obtained at each level are combined at successive levels accord- 

ing to the equations. Proceeding in this way leads to the sequence of evalua- 

tion steps shown in Bgure 4. The evaluation steps are presented as rewritings 

of the form a * b, meaning that @a is evaluated to give b. 

Now formula 4.6, the meaning of (*) in F-, is not very illuminating as it 

stands. This is partly the fault of the notation and partly the fault ot the way 

in which the language J&p itself constructs h igbr  order functions, both of 

which are due to A, the annihilator of orthogonality. One way of getting some 

insight into the meaning of a A-expression is to close it. The result of closing 

formula 4.8 with 



-D (f + f ', bad), bud))))) 

Flg ure 4. Evaluation in F- 

where b o o L = ~ .  is simply: 

or, with a bit of "syntactic sugar", 

16Lf + ((W + bool) + id)) 



which, as anyone with access to an MI., implementation can readily ver~fy, is 

the desired type of (*). 

7. An Algebraic Theory of Static Anal* 

What is the connection between M- and F-? Recall that C, the class 

of C-algebras, is a complete lattice under the homomorphism partial order- 

ing s. The abstract syntax of a language A is identified with the initial C- 

algebra TE. Every algebra in C is a possible model for Te. In other words, 

every algebra in C is a possible semantic model for A, and semantics is the 

corresponding homomorphism. Hence E and # give two alternate semantics 

tor m. 
Since a homomorphism is a structure-preserving mapping, k B  means 

that A is consistent with B. In general, A Is said to be an c r b s t ~ c r c h  of 8, 

and the study of algebraic abstractions is called abstract algebra The alge- 

bra of types is consistent with the primary semantics of l5hp via an obvious 

homomorphism from the algebra M* to  F-. (We leave the details of this 

to the reader, as they are easy but (by now) tediou.) 

The primary sernantic algebra M for A is itself initial in a sublattice of C, 

the lattice of algebraic abstractions of M. If M belongs to the class of "deter 

ministic discrete dynamic systems", then it is initial in the lattice of trbshact 

M~pretdims [Cou77a, CouBia] . 

One main pint of this paper is that the techniques of fhed point approx- 

imation are not restricted to "deterministic discrete dynamic systems", but 

apply equally well to &ny continuous algebra. In fact, the determination of 

necessary constraints on sequencing (i.e., the choice of control flow) is a 

data flow problem which, as I indicated in the introduction, is especially 

important for applicative programming languages. For example, Insg( 



eu- Is an approximation that reflects the semantics of n a s f d c t  

jbct&ms - two very different ideas! 

A second main point d this paper is the connection between model- 

theoretic and proof-theoretic definitions. A constructive, model-theore tic 

approach to programming language definition synthesizes a new model from 

known models and constructors, and then makes it a semantic model for the 

language via an eqlicit homomorphism, which can be interpreted mechani- 

cally in terms of the base models and constructors. A proof-theoretic 

approach analyzes an initial algebra with syntactic formulae (equations, 

axioms, proof rules). Then, the issues of soundness, completeness, and the 

existence of nontrivial models arise, because one does not know u h z f  the 

language is t a u  about. The benefit is that one h o r n  how to reason a b d  

the language and its utterances. If decidable, thia proof theory can be 

automated with well-est ablished and uniform methods. 

So to show that one semantic modal is consistent wi th  another, either 

exhibit an explicit homomorphism or show that the one is (isomorphic to) a 

quotient of the other. The latter approach is illustrated in [Don?9a]. 'IQCpe is 

a mixed theory, and requires a mixed approach. That prote- * M is 

easily shown; one must also show, e.g.. that the equation f o r  mqp does not 

make me trivial. Another possibility (hint) is to construct an explicit model 

that satisfies the equation; i.e., defSne a function on types euch that 

mrrp(t,t ')t = t * holds. 

Returning to the abstract algebra of types, note that Milner's real con- 

tribution is an algorithm "...to rfkcwer a legal type assignment, given a pro- 

gram with incomplete type information" rather than "...just ve- that a 



given type assignment is legal" [Mi178a. p.3591. The development so far 

shows how to do the latter. How does the discovery of type assignments fit 

into the algebraic framework? 

The design of an algorithm to discover legal type assignments is guided. 

in a very transparent way, by a t  w-e intend by "legality". A legal type 

assignment for an expression e is supposed to ensure that e never takes the 

value u r o n g .  What does this mean in terms of the algebra of types? 

The astute reader will have noticed that the algebra of types departs 

from Milner's notion of "type" in that every expression has a type in F*, 

includmg tvrong, whose type is bad. Hence a legal type assignment ensures 

that (9eN does not have the type bad in its range, for all $~Tenv .  

Evaluation of an expression e in F- is purely synthetic (i.e., bottom- 

up). The result is a mapping from type environments to types. A natural 

approach is to attempt to generate, during the synthesis, a set of equations 

constrahiq the values that the type variables introduced can assume. The 

choice of these constraints is governed by the need to avoid, in the equations 

for a, the arms of the conditionals that lead to " b a d '  places. These considera- 

tions lead to an inductive analysis of the equations d e w  iP,  as follows. 

The synthesis always begins with the leaves of the abstract syntax tree, 

and these are always variable references or constants. Equation 3.1 

therefore provides the bash d the induction. In particular, there must 

be no constant or variable having type bad in the initial type environ- 

ment. 

, The inductive hypothesis is that the arguments of an operator cannot be 

bad. The inductive step is to derive constraints for each operator that 

preserve the inductive hypothesis. That is, equations whose satisfaction 



guarantees that the result of applying each operator cannot be bad, assurn- 

ing that the arguments cannot be bad. These constraints are derived by 

inspection of the remaining equations deflnlnP @: 

Equation 3.2 requires that: 

Equation 3.3 requires that: 

* = no 
r'*=f8+ 

Equations a4 and 3.5 q u i r e  that the constraints on 7 be duplicated 

with $ft/zj eubstituted for $; this guarantees that t is constrained so as 

not to interfere with the hypothesis that T cannot be bad 

Similarly, equation 8 8  requires that the constraints on r be duplicated 

with 91 re+ /x )  substituted for +. 
Type assignment for an expression e occurs during the evaluation of e in 

F-. Initially, the types of all constants must be known At each step of the 

evaluation, the constratninP equations corresponding to the operation being 

performed are generated, and the resulting system of equations is unified, ii 

possible. The types assigned to identifiers and type variables are simply 

their uniilers. 

Notice that for iumb* and Jiz,, the constraints on r must be unified 

with t as a h e  variable, whereas for Let, the constraints on r' must be 

unified in conjunction with those on q b .  Consequently. the constraining equg 

tiona for 

let I = A2.z in I(?) 



are satisfiable, whereas those for 

N. W))C- .4 
are not. 

Why should this be so? Aren't these two expressions semantically 

equivalent? The problem is that A-abstraction is an operation that acts on 

the plresdafions of values, instead of the values themselves. This makes it 

oblique to the rest d the purely functianalt operations of the metalanguage, 

resultiog! in the usual bizarre and subtle interactions. 

Figure 5 show the constraining equations that are generated during the 

evaluatlon of (+). The numbers in flgure 5 are the step numbers from figure 

4: the equations shown beside each number are those generated for the 

corresponding step of the evaluation. Notice that the Anal type assignment 

seta 

$3=inf 

t = mup(inl,bool) 

t '=  d?li  

which gives (*) its expected type as shorn in section 8. 

Does this method work? Yes. The type assignment algorithm sketched 

here is a bottom-up version of Milner's "Algorithm J". Semantic soundness is 

proved by formalizing the reasoning used to derive the algorithm. I am omit- 

ting the formal proof here because the result is already known and the proof 

technique ie well-known and not germane. The system of equations 

t An implementation of these operators may act an presentations but this must be tran- 
rparent. 



4.5 93 = id 
(Recall that the types of all constants are known.) 

4.7 &fy = map ( t  z) which implies t = w q ( i n t ,  bool) 

4.8 +It '/zk = t which implies t * = ht 

FYgure 5. Type Assignment 

generated during the synthesis of a typing are suPlicient to guarantee that 

the type assignment is legal, but they are not necessary. In fact, many 

ditIerent type algebras are possible. Some are more restrictive, some lees. 

The type assignment algorithm developed here provides a static approxima- 

tion of the "most general" typing conjectured by Milner. As is clear from the 

algebraic theory presented in this paper, however, many models of "type" 

are possible, and whether or not a particular typing is "most general" 

depends on the model chosen. 



hkncdedgemenb 

I would like to thank my colleagues - Richard Kieburtz, Gene Rollins, and 

John Givler - for their insights and criticism which helped me to clarify this 

material and for their endurance through several conceptual revisions. I 

would also like to thank the Oregon Graduate Center for providing an excel- 

lent working environment and for funding this research. 

References 
ACMBla. 

R o c .  ACM Cwr.. an -t.irmaL R o p m m i h g  h r n p q g c s  mzd Cbmpufm 
h c h i t e c h - e .  Oct. 1981. 

Bur69a. 
Burstall, R. M. and P. J. Landin, "Programs and their Proofs: an ALge- 
braic Approach," Mach4ne hfelligence 4 pp. 1743 (1960). 

ChuSl a 
Church, A, "The Calculi of Lambda-Conversion," Annals of M a t h n d k d  
Studies 6Princeton University Press, (1951). 

CouWa. 
Cousot, P. and R. Cousot, "Abstract Interpretation: A UnLfied Lattice 
Model for Static Analysis of Programs by Construction or Approximation 
of F'lxpoints," POPL I)! pp. 238-252 (Jan.. 1977). 

Cou8la. 
Cousot, P., "Semantic Foundations d Program Analysis," pp. 303-342 in 
R o g m m  Flow Ana2ysis: T;heot-y aLd &lkatwns, ed. N. D. Jones and S. 
S. Muchnick,PFentice-Hall, Englewood Cliffs (198 1). 

CurGBa. 
Curry, H. B. and R. Feys, Cbmbinrrtory Logic, North-Holland, Amsterdam 
(1968). 

Donma. 
Doneeau-Gouge, V., "Denotational Defhition of Pro erties of Program 
Computations," IRIA Rl?#348. Le Chesnay (Avril 1979f. 

GogVa. 
Goguen, J. A+, J. W. Thatcher, E. G. Wagner, and J. B. Wr' ht, "Initial Alge- 
bra Semantics and Continuous Algebras." JACM 24-(gpp. 88-95 (Jan. 
1877). 

Hue80a.. 
Huet, G. and D. C. Oppen, "Equations and Rewrite Rules: A Survey," 
STAN-CS-8@7BS, Stanford Computer Science Dept. (Jan. 1980). 

Jon8la. 
Jones, N. D., "Flow Analysis of Lambda Expressions," pp. 3 7 W 6  in Roc .  
Syn-postwn on lbt~tiaal L a n p g e s  and Cbrnputer A r c ~ o c h ~ w ,  , 



Goteborg (April 1981). 
KamBoa 

Kamin, S., "Ffnal Data Type Specifications," POPL WI, pp. 131-138 (Jan. 
i 880). 

McCGOa 
McCarthy, J. ,  "Recursive Functions of Symbolic Expressions and Their 
Computation by Machlne, Part I," CACm $4) pp. 184- 195 (April, 1960). 

Mil78a. 
Milner, R , "A Theory of e Polymorphism in Programming," I. C b q .  
& w. Sci. 17 pp. 

Rob65a. 
Robinson, J. A, "A Machine-Oriented bgic Based on the Resolution Prin- 
ciple," JACM 12(1) pp. 23-41 (Jan., 1865). 

Iiusl)Ba. 
Rumell, B., "Mathematical ic as Based on the Theory of Types." Am. 
J .  Madh. 30 pp. 222-262 (1908 

Sco71a. 
9. 

Scott, D. S. and C. Strachey, "Toward a Mathematical Semantics for 
Computer Languages," pp. 1946 in A o c .  .9pposiwn o n  -em and 
Automata,  ed. J.  Fox,Polytechnic Institute of New York, New York 
(lQ71). 

Shua. 
Shultis, J., "Hierarchical Semantics, Reasoning, and Translation," Ph.D. 
Thesis (in preparation) (). 


