
ABSTRACT SYNTAX I N THEORY AND PRACTICE

Oregon Graduate Center
OGC ~ e c h n i c a l Report No. CS/E-82-04

Abstract Syntax in Theory and Practice

&gene J . RoU.ins

Oregon Graduate Center

ABSTRACT

The use of abstract syntax in the theory and practice of language

translation is explored. A formal definition of abstract grammar is

provided that shows how every abstract grammar gives rise to an

initial algebra. The polymorphic operators typically found in

practical abstract grammars are handled in a str2~lghtfomard

manner in this semantic deht ion .

Categories and Subject Descriptors: D. 3.1 [m Ig

languages]: Formal Deftnitions and Theory - semant ics; syttaz;

F.3.2 [Logics and Meanings d Programs]: Semantics of

Programming Languages - Algebrdc approaches to semant i c s ;

D.3.4 [Programming languages]: Processors - Compders

General Terms: Languages, Formal Definitions, Compilers

Additional Key Words and Phrases: Abstract syntax trees, initial

algebras, polymorphism

1. -tax and Semantics

The relationshp between syntax and semantics has never been precisely defined. Some

draw the distinction between syntax and semantics arbitrarily based on "what can be done

at compile time" [Pag8la, pg. 761. Those working on mathematically based semantic

definition have generally ignored syntax and its relationshp to semantics. They simply

state that they give semantics to abstract syntax, reference McCarthy [McC63a] and leave

it at that. The need for a well-defined relationship between syntax and semantics increases

as theory filters into practice. Here t h s relationshp is explored.

Author's address: Oregon Graduate Center, 19600 NW Walker Road, Beaverton, OR 87006

- 2 -
A good decomposition of a problem includes a precise deflnition of its subproblems and a

description of how their solutions are composed to solve the original problem. I have

decomposed language translation into two phases: syntax analysis and semantic

interpretation, as shown in Figure 1.1. Tlus section discusses the decomposition of

language translation informally and pragmatically and shows how abstract syntax is used

as an interface between these phases. The next section relates those ideas to approaches

to formal semantic dewtion and gives a formal definition of abstract syntax trees

through initial-algebra semantics. Th~s formulation extends and refines sections 3.1 and

3.2 of [Gog77a]. In particular, this formulation handles the polymorphic operators

typically found in practical abstract syntax.

Although this paper provides formal definitions, ideas will be presented informally through

a common example. The example consists of a programming language fragment that

comprises constant declarations, type expressions and (value) expressions. Figure 1.1

contains a context-free grammar (CFG) that defhes the syntax of t h s fragment. Also

given are two sample programs recognized by the CFG.

murce
3

language

QmmMr

ConstDecl + conat Identifier : Type == Ekpr

m e - CartesianProduct I SimpleType

CartesianProduct + Type * SimpleType

SimpleType + Identiner I (Type)

wr + Expr + Term I - Term I Term

Term * Term Factor 1 Factor

Factor + Identifier I Numeral 1 <Expr, Expr>] (Erpr) -
const A ; integer == C 4 + 3

const B : integer boolean == <4, true>

F'gure 1.1

A source language features one of many different concrete notations that may be chosen

to manifest the same semantics. For example, as McCarthy [McC63a] points out, integer

addition can be cast into several notations: "a+b", "+ab", "(PLUS A B)", "7allb", and

Syntax

Analysis

intermediate
3

language
L

Semantic

Interpretation

target
7

language

- 3 -
others. An intermediate language notation should abstract only semantically significant

details from programs.

The abstract syhtm [McC63a] of a program specifies the operators that are used to

express the semantics as well as the operands to which these operators are applied. It

provides all the information that is required for semantic interpretation of that program.

Abstract syntax may be represented through abstract s'yztnz trees (ASTs).

Representation of programs as ASTs has been found convenient for use as an interme&ate

representation in translators because it abstracts only semantically significant details of

concrete notation. Informally, the root of an AST represents an operator whose operands

are represented as the subtrees of that AST. ASTs for the sample programs of Figures 1.1

are provided in Figure 1.2.

Constant Constant

A-Add B -Tuple

M u l f ' 3
f i A

integer boolean 4 true
A

Figure 1.2

Let us examine how ASTs differ from concrete notations such as the one given in Figure

1.1. To compare them, let us first linearize the ASTs. A linear form can be given for any

AST by listing a pre-order traversal of the AST. Fgure 1.3 shows linear forms for the ASTs

of Figure 1.2.

Constant (A, integer, Add (Mult (C, r l) , 3))

Constant (B, Product (integer, boolean), Tuple (4, true))

The linear abstract syntax is a fully parenthesized notation and has uniform operand

association rules. That is, the operator always appears in the prefix position, and its

operands are elements of a parenthesized list to the right of the operator.

Association rules and redundant symbols are introduced into a concrete notation to make

programs easier to read. Programs need not be fully-parenthesized; operator precedence

rules disambiguate operand association. The choice of a concrete notation to express a
,

particular meaning is guided by its familiarity to human readers. It need not have uniform

association rules; inAx, postfix, and prefix operator notations are commonly mixed in the

same concrete notation. Different operators within the same concrete notation may

associate to the left or right.

- 4 -
An intermediate language intended for semantic interpretation should be uniform in its

rules for associating operands to operators. The description of operand association rules

has no proper place in the semantic description of a language.

One might argue for the use of parse trees of the source language grammar as an

intermediate language. However, parse trees are not only dependent upon the concrete

notation selected, but on the chosen parsing method as well. There are several CFGs that

recognize a context-free language, each with its own set of parse trees. Different parsing

methods may require different grammars. Should the presentation of the language

semantics demand alteration if the parsing method changes? I think not. A standard

semantic dewtion that assumes a particular parsing method is of little use to a compiler

designer interested in using a &Berent parsing method.

ASTs are a natural starting point for semantic interpretation because they are

independent of syntactic considerations such as parsing method, operator precedence and

other association rdes. Sptm mdysis is a mapping from source language programs

presented in linear concrete notation to abstract syntax trees. TIUS transformation

includes lexical analysis, recognition of well-formed source language programs, and

association of operators and operands. Semantic interpretation then maps abstract

syntax trees to target language programs. Semantic interpretation includes name space

control (scope rules), type checking, formal transformations (optimizations), and code

generation.

An rrbstmct grammr denotes a class of ASTs. The next section shows that every abstract

grammar gives rise to an i n W algebra, the starting point for semantic interpretation.

2. Abstract Syntax and Formal Semantics

This section illustrates how abstract syntax fits into approaches to formal semantics. I

discuss how abstract syntax provides a better interface between syntactic and semantic

definitions than does concrete (parsing) syntax. The remainder of the section comprises a

formal definition of the syntax and semantics of abstract grammar.

-
2.1. Context-Pke -tax and the Principle of Compositiondity

Gottlob Frege's Hnciple of Compodionality states that the meaning of a phrase should

be a function of the meanings of its constituent phrases [Dow'lOa, pg. 81. The denotational

approach to semantic definition requires that the language semantics be consistent with

this principle [Sco?la]. The initial-algebra method [Gog7?a] requires this as well, since a

-5-
semantics is given by a homomorphism from an algebra of terms to a representation

algebra whose mathematical properties are well known.

Scott and Strachey do not demand context-free syntax of a programming language. The

ADJ group [Gog??a, pg. 761 complain that denotational semantics does depend on context-

free syntax. This confusion arises because ADJ is working with a poor interface between

the syntax and semantics of languages; they give semantics to parse trees. Scott and

Strachey were right; a syntax analyzer need not parse a context-free language to produce

an intermediate form, such as ASTs, that allows a homomorphic semantic map. For

example, it is well known that a language with a construct such as the following constant

declaration is not context-free [Hop?9a , pp. 127-1281.

const (identifier)", (<type-expi'>)", (<expre~sion>)~

However, a syntax analyzer could produce an AST such as

for the phrase "const (a)(b), (t)(tl), (e)(el)". Semantics consistent with the principle of

compositionality can be given for t h s AST. The meaning of an Idlist, denoted by M HldList 1,
is simply a list of Ids. Similar semantics is given to TypeList and ExprList. The meaning of

a const phrase is obtained by transposing the triple

<M[IdList], MiTypeList], M[ExprList]>

to obtain a list of triples <Id, Type, ~xpr> ' .

Context-free syntax and semantics that adhere to the principle of compositionality are

both desirable, but orthogonal, language features.

2.2. A Formal Definition of Abstract Grammar

Following ADJ's example that gives initial-algebra semantics to context-free (concrete)

grammars [Gog??a], this paper gives initial-algebra semantics to abstract grammars. For

that we must have a formal description of the syntax of abstract grammar.

Z3. The Syntax

Our example language features various kinds of expressions, among which are addition,

subtraction, numeric constants, identifiers and others. These expressions form a

synfactic domain. Any of the expressions may be used in programs wherever an

- 6 -
expression is required. Types form another syntactic domain comprising identifiers and

products. An abstract grammar includes the definition of one or more syntactic domains.

Productions of an abstract grammar describe the form of ASTs. An example of such a

production is Add + Expr Expr. This declares that an AST with an Add operator at its root

will always have two subtrees, each representing an expression.

The syntax of abstract grammar is defhed in a manner similar to that used in formal

language theory to define the syntax of context-free grammar [Hop79a, pp. 77-84].

IMMtion:

An abstract g r u w is denoted by G = <SDsymb, NonTerm, Term, SynDom, Prad>.

Let Var = NonTerm u Term.

SDSymb is the set of syntactic domain symbols.

NonTerm is the set of nonterminal symbols.

Term is the set of terminal symbols. (NonTerm n Term = #J)

spn~om : SDSymb + 2'-

Prod : NonTerrn + 9)3Jrmb+

X+ is the set of sequences xl Q ... x,, with xi E X, for 1 S i 5 n, where n r 1. Note

that the above mentioned sets may be finite or infhite.

Definition:

A tree is an abstract syltaz tree (AST) for G if all of the following are true:

(1) Every vertex has a label, which is a symbol of Var.

(2) If a vertex is interior and has label A, then A E NonTerm.

(3) If a vertex is a leaf and has label A, then A E Term.

(4) If n has a label A and vertices nl, 4, . . . , Q are the children of vertex n, in

order from left to right, with labels XI, &, . . . , & respectively, then

Prod (A) = Y1 Yz ... Yk
where Xi E SynDom (Yi).

The abstract grammar for our example language is given in Flgure 2.1. This grammar

describes the ASTs for the sample programs of Figure 1.1, which are displayed in Figure

1.2. -

let Var = NanTenn u Term

-b = I k e , Ekpr, Id, Num] u Var

RcaTenn = [Constant, Product, Minus, Add, MultJ

T a m = Identifier u Number

&dhn (Constant) = fbnstant]

gnDrm (Product) = [Productf

lEgnDam (Minus) = I Minus]

@nDom (Add) = [A G ~ j

syJlDam (Mult) = [Mdt]

SpDan (Type) = IProduct] u S p b m (Id)

(Expr) = !Minus, Add, Mult] u @nDom (Id) u 3ynlkun (Num)

gnDrm (Id) = Identifier

Bgnlkm (Num) = Numeral

Rod (Constant) = Id Type Expr

Rud (Product) = Type Type

Rod (Minus) = Expr

Rod (Add) = Expr Expr

(Mult) = Expr Expr

Figure 2.1

Some notational conventions are outlined that simplify the presentation of abstract

grammar. This shows the correspondence between the formal notation developed here

and the informal notation used in practice. The formal notation, which I will continue to

use throughout the paper, allows us to refer to individual components of abstract

grammars. The informal notation provides for a h t e description of some infmte abstract

grammars that would be useful in practice.

Consider, for example, the variable declaration of Pascal. Part of the concrete syntax for

this construct is given below. Notice that an arbitrary number of identifiers may be

declared withln a single declaration. The notational conventions given below will be used in

describing the abstract syntax of t h s construct.

- 8 -
VarDecl -, var Identifier IdList : Type

IdList + , Identifier IdList

Notational conventions tor presenting abettract grammars

The following abbreviations are defined.

Abbreviate Prod (N) = w as N + w.

Abbreviate SgnDom (A) = S as A = S.

The following conventions allow one to omit redundant notation.

For any abstract grammar, it is assumed that SDSymb 1 Var and SynDom (X) =
!XI for all X E V.. (where Var = NonTerm u Term).

Notation such as fal , . . . ,a,] u SynDom (Id) can be written as lal, . . . ,q,
Identifier{ where mom (Id) = Identifier.

Explicit definitions for SDSymb, NonTerm, and Term may be omitted.

The following conventions allow one to Anitely present some inAnite grammars.

Let a, @ E ~DSymb*. The notation A + a B* @ represents:

- An inAnite sequence of productions:

A o - . a @ , A 1 + a B B , & + a B B @ , . . . , A i + a ~ ' @ ,

- A new syntactic domain SA = !A, for i 01

- For all X E 91Symb, if A E SynDom (X) then for all i r 0, 4 E SynDom (X)

A -. a B+ @ is an abbreviation for A -, a B B' @.

The abstract syntax of a Pascal variable declaration is now simple to describe as shown

below.

VarDecl + Identifier' Type

L

The abstract grammar of our example language given in Figure 2.1 can be more consisely

expressed as displayed below.

- 9 -
Type = iProduct, Identifier]

Expr = !Minus, Add, Mult, Identifier, Numeral]

Constant + Identifier Type Expr

Product -r Type Type

Minus -, Expr

Add -, Expr Expr

Mult + Expr Expr

2.4. The Semantics

2.4.1. Initial Algebra Semantics

Before divlng into this presentation of semantics, J shall explain some notation and the

definitional method used.

A linear notation is used to express trees. Let x () indicate the tree consisting of the

singleton (leaf) node labeled x. Let x (tl . . . t.,-,) signify the tree whose root is labeled x and

which has proper subtrees t, , . . . , t,, as immediate descendents of the root.

An initid algebra semant i c s is given for abstract grammar [Gog77a]. In this method,

source ASTs are given meaning by transformation into target ASTs. Some algebraic

preliminaries will ease understanding of this defmtional method.

An S-sorted C-algebra, A, comprises

S, a set of symbols called the sor t s of A

C, an S'XS-indexed family of disjoint sets of operator symbols, called the operator

domain or ~ a t u r e of A. C,,, in C is the set of operator symbols of type <w,s>,

where w E S* and s E S. A E S* denotes the empty string

an S-indexed family of sets called the camiers of A. A, is the carrier of sort s E

S.

an interpre ta t ion defined as follows. For each <w,s> E S'XS and for each u E C,,s,

there is an operation u~ of type <w,s>, ie: UA A: &, x LZ x . . . xAWn + 4, where

w=w, . . . w, and wi E S for lsign. An operation UA of type <A,s> is a constant of

sort s ie: u~ E Ag.

By varying S and C we get the class of many-sorted algebras. By fixing S and C we get Algz,

the class of C d g e b T a s .

- 10-
A n algebra, A, is hitid in a particular class C of algebras iff for all B in C there is a unique

homomorphism hB:A -, B. In any class of algebras there is a unique (up to isomorphism)

initial algebra. Later in the paper it is shown that from an abstract grammar, G, for a

programming language, L, an operator domain C' can be constructed. With zC, an initial

algebra, A, in the class % can be defined. The semantics of L can be given by specifying

a target algebra T in Since A is initial, there exists a unique semantic map b : A + T,

which assigns "meanings" in T to all ASTs of L.

Ehmple of an algebra

Let us def3ne a C'-algebra, B. Let the set of sorts be IType, Expr, ConstDecl, Idj. Assume

for simplicity that the identifiers used for types, expressions and constants do not overlap.

Let TypeId, ExprId, Constld be pairwise disjoint subsets of Identifier. I will be able to

remove this restriction later. Let C' include

C'L w r = ExprId u Numeral

C'-. ~.p r = [Minus j

-. Erpr = f Add, M ~ l t j

Ex. = TypeId

XITypc ~ p p a , ~ ~ ~ ~ = [Product{

XIA, = Constld

CtM ~ g p e ~rpr , = tC0nstant.j

Define the carrier B- as the smallest set of trees such that

(1) i () E Bnpr for all i E ExprId u Numeral

(2) if to, tl E Bbr then

Minus (to) E Bnpr

Add (to* tl) E h p r

Mult (to, tl) E Bnpr

Defhe the carrier as the smallest set of trees such that

(I) i () E b, for all i E Typeld

(2) if to, tl E B'IPp4 then

Product (to, tl) E be,

Define the carrier & as the smallest set of trees such that

i () E E)ld, for alli E ConstId

- 1 1 -
Define the carrier Bhdcl as the smallest set of trees such that

if to E Bid, tl E Blppe and t2 E hr then

Constant (b, tl, t ~) E B ~ ~ l l p t ~ e ~ l ,

Typical members of BhdC1 are displayed in Fxgure 1.2.

Define the operations

ig = i () for all i E 'I'ype3d u Exprld u ConstId u Numeral

if b, t1 E E& and t2, E b, t, E ElId then

 minus^ (to) = Minus (to)

 add^ (to, tl) = Add (to, tl)

b f ~ l t ~ (to, tl) = M ~ l t (to, ti)

ProductB (tz, ts) = Product (tz, t3)

ConstantB (b, t2, b) = Constant (t4, t2, to)

The definition of the C'-algebra, B, is now complete.

2.4.2. Construccting an Initial Cdgebra

One can define an initial C-algebra by the following construction [Gog77a]. Let A be an S-

sorted C-algebra. For each SES, the carrier $ is defined as the smallest set of trees such

that

(1) if U E C ~ . then o () E A,

(2) for all WES' (w=w, w2 , , - wn where W~ES), if UEC,,, and ti€AWi I l i l n ,

then o (tl . . a t,) E A,

There is an operation a~ for each o€C as follows:

(1) if O E C ~ , then o~ = o (),

(2) for each <w, s>€S+xS if UEC,,~, then oA(tl, . . . , k) = o (t, . . . t,.,) with l s i sn

The proof that a C-algebra constructed in this way is initial in AlgE is found in [Bir7Oa].

One can see that the algebra, B, defined in the example is initial in l&s.

- 12-
2.4.3. The Initial-Algebra Semantics for Abetract Grammar

Using the initial-algebra construction given above, I show that any abstract grammar gives

rise to an initial algebra. If we are to give semantics for practical abstract grammars, we

must be able to deal with polymorphic operators. Consider the abstract grammar given

below that describes a fragment of the Pascal type system.

Type = tldentifier, SubRange, Array]

SimpleType = [Identifier, SubRang e j

SubRange -r Expr Expr

Array -r SimpleType Type

SubRange is polymorphc; SubRange E SgnDom (Type) and SubRange E SgnDom

(Simplevpe). We can distinguish between two flavors of this operator by afIixing

superscripts such as

subRange- Sim~leTY~e

! 3 u b ~ a n ~ e m 'he

l h s techruque is used in the construction of an initial-algebra given below. There, each

flavor of an abstract grammar operator is considered to be a distinct operator of the

algebra.

The treatment of polymorphic operators is an extension of section 3.1 of [Gog77a].

'heorem:

Any abstract grammar gives rise to an initial algebra.

Let G = <S)Sgmb, NonTerm, Term, SynDom, Prod> be an abstract grammar. We can

construct an SDSymbsorted CG-algebra. First define the signature CG as follows

For each <w,s> E q b + x SDSymb

c?, = {Aw.@ (A E (s) and Ptod (A) = wj
Also, Ct, = tAA.@ I A E (Term n SpDom (s))j for all s E S)Sgmb --

The superscripts are added to the above symbols only to guarantee that the sets C,,, in C

are disjoint.

G, is the carrier of sort s E SDSymb. Define the carriers as follows:

- 13-
(1) if A".~ E Cf,, then AAea () E G, for all s E SDSymb

(2) for each <w,s> E S3-b' x SDSymb

if Awss E x:,, and ti E G,, 1l;iSn where w=wl . . . w,

then A"*' (tl . . . &) € GG,

There is an operation uc for each u E CG as follows:

(1) A&, = AAJ ()for all s E S-b

(2) for each <w,s> E SDSymb+ x SDSymb

if w=wl . . . w, and ti E G,, IlsiSn

then bGm, (t,, . . . , &) = AWaS (t
a . L)

Vertex labels within ASTs of G can be decorated with the superscripts that decorate

operators of CG (ie: A",?; such information is available in the AST. Then, G, comprises ASTs

of G having A-labeled roots for A E SgnDom (s). G is initial in

Thus, any abstract grammar, G, is a description of an initial SDSymb-sorted CG-algebra, G.

For any chosen target algebra, T E Alkc, there exists a unique homomorphsm hT: G -, T,

which assigns "meanings" in T to all ASTs of G.

We have put some of the ideas developed here to practical use. A syntax-analyzer

constructor, Sac, has been designed and implemented [RolB2a]. Tlus software tool accepts

as input a context-free grammar augmented with simple annotations that describe a parse

tree to AST translation. From this input, it produces a compiler component that translates

a source language program into an AST.

Experience in maintaining translators built with Sac indicates that changes made to the

concrete syntax of the language that do not affect the abstract syntax have no impact

upon the semantic interpretation phase.

4. Conclusions

The ADJ group shows how to give semantics to context-free grammars (CFGs). However,

nonterminals of a CFG may not be the operators to whch one wants to give semantics. A

parse tree of a CFG does not necessarily associate operands to operators in a uniform

manner. Abstract syntax trees (ASTs) are a better intermediate form for semantic

translation.

- 14-
This paper shows that one can give semantics to abstract grammars. It demonstrates that

any abstract grammar gives rise to an initial algebra where ASTs are terms of that

algebra. The abstract grammars considered here may include polymorphic operators,

which are used in practical abstract syntax.

Bir70a. G. Birkhoff and J. D. Lipson, "Heterogeneous Algebras," J. ~ b V L b i ~ t & a i Theory,

(8) pp. 115-133 (1970).

Dow7Oa. Dowty, Wall, and Peters, InCrodwtion to Montague Semant ics , Dordrecht, Boston

(1970).

Gog77a. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, "Initial Algebra

Semantics and Continuous Algebras," JACM 24(1) pp. 68-95 (Jan. 1977).

Hop79a. J. E. Hopcroft and J. D. Ullman, Ihh.odwtion to h f o n a t a Theory, Innguages, and

Computation, Addison-Wesley, Reading, Mass. (1979).

McC63a. J. McCarthy, "Towards a Mathematical Science of Computation," Congress. Proc.

IFIPS Congress 1962, pp. 21-28 North Holland, (1963).

Pagala. F. G. Pagan, F m n d Specification of Programming Languages: A Bnonzmic

A iw, Prentice-Hall, Englewood Cliffs, NJ (1981).

Rol82a. Eugene J. Rollins, "A Syntax Analyzer Constructor, " CS/E-82-06, Oregon Graduate

Center, Beaverton, Or (August 1982).

Sco7la. D. Scott and C. Strachey, "Towards a Mathematical Semantics for Computer

Languages," pp. 1446 in Computers and Automata, ed. J. Fox,Wiley, New York (1971).

