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1. Introduction 
Most programming languages (pure LISP excepted) are given a syntax intended to  make 
programs easy for the human reader to absorb, at least superficially. These syntactic 
constructs alleviate the need to count parentheses, by adopting various conventions such 
as infix operator notation and operator precedence rules, in order .to denote the 
association of operand expressions with their operator symbols. In the internal 
representation of programs for machlne translation or interpretation, one invariably 
prefers a simpler, more uniform convention to  bind operands to operators. Such a 
convention is embedded in a very uniform notation called abstract syntaz trees (ASTs), 
commonly used in a great many compilers, structure editors and related language- 
knowledgeable software tools. Since the syntax of both a concrete programming language 
and ASTs can be formally defined by deterministic, context-free grammars, it seems 
reasonable to expect that a translation from one to the other could be derived 
automatically. 
I have extended the concept of a parser constructor to that of a syntaz-analyzer 
constmctor. A syntaz analyzer, whch includes lexical analysis, parsing, and association of 
operands to operators, translates source language programs to ASTs. The syntax-analyzer 
constructor accepts a simple description of the translation from source programs to ASTs. 
Fkom this input it automatically produces a syntax analyzer that implements thls 
translation as well as provid~ng feed-back to the user. This feedback, given in the form of 
a gramma-, describes the class of ASTs produced by the constructed syntax-analyzer. 
Before we can discuss this constructor we need to define a few terms related to abstract 
syntax. 
The root of an AST is labeled by an operator whose operands are represented by the 
subtrees. Leaves are operand terminal symbols such as identifiers or numbers. An AST 
may be displayed linearly or graphically as shown below. 

An abstract grammar describes a set of ASTs. Consider for example, the abstract 
grammar given in Table 1. Jn this grammar Type and Expr are syntactic domains. A 
syntactic domain, S, denotes a set of ASTs, As. If x E S then all ASTs having x-labeled roots 
are members of &. In the example, kr includes any AST whose root is one of Identifier, 
Add or Subtr. The productions describe the form of ASTs. An AST with a root labeled Add 
has two subtrees both of which are members of b. Note that there is just one 
production for any operator (nonterminal) of an abstract grammar. 
Formally, every abstract grammar, A, gives rise to an initial S-sorted C-Algebm, I. Each 
syntactic domain and nonterminal of A corresponds to  a sort of I. The terms of the 
algebra are ASTs defined by A. An in-depth discussion of abstract syntax is given in 
[RolSZa], where this correspondence between abstract grammars and initial-algebras is 
defined. See [Gog77a], for more information on initial-algebra semantics. 



Syntactic Domains 
Type = t Product, Identifier j 
Expr = IIdentifier, Add, Subtrj 

Productions 
Constant -D Identifier Type Expr 
Product 4 Type Type 
Add + Expr Expr 
Subtr + Expr Expr 

Table 1 

A syntax-analyzer constructor accepts as input a CFG and a specification of a translation 
from parse trees to ASTs. Its output, of course, is a syntax-analyzer that translates a 
source language program into an LIST. Input to t h ~ ~  syntax-analyzer constructor, Sac, is a 
CFG whose productions and terminal symbols have been annotated to specify the 
translation from parse trees to ASTs. 
Each semantically significant terminal symbol is annotated. Every occurrence of an 
annotated terminal in a parse tree is to be retained as a leaf node in the target AST. 
Significant terminals typically include identifiers and numeric constants, but not 
keywords, parentheses, commas or other punctuation. 
A parse tree whose root is expanded by an annotated production is translated to an AST of 
the class specified by the annotation. 
For any annotated grammar, G, there is a conesponding abshact grammar, c, whch 
describes the class of ASTs produced by the syntax-analyzer constructed from G. The 
full-length paper will contain an algorithm for computing c given G. Ths abstract 
describes an algorithm for producing a syntax-analyzer from an annotated parsing 
grammar. 
By examining one can check to see if an annotated grammar denotes the intended 
translation from source programs to ASTs. Any software tool that uses ASTs as an internal 
representation of programs can be driven by tables describing the abstract grammar. A 
large part of a programming language environment can be synthesized from skeleton 
software tools. 
The semantics of annotated grammar is expressed in a variant of Backus's functional 
language FP [Bac78a]. What makes FP an interesting language is that one can do 
programming and mathematical reasoning in the same language. An FP system comes 
with an algebra of programs that is no more difficult to use than high-school algebra. 
Since the mealllngs of annotations are defined via FP, the AST-building function denoted by 
G is easily cast in FP. Through algebraic manipulation of the resulting FP function, Tf can 
also be derived. 
A brief review of FP systems and the definition of the particular FP system used in this 
paper appears in the appendix. 

2 The relation between concrete and a-act syntax 
The grammar annotations allow one to identify operators of an abstract grammar with 
certain productions of a CFG that deflne the concrete syntax of a language. Since 
operands may not be associated with operators in a uniform manner by the concrete 
syntax, various syntactic operand-association rules must be applied to construct operand 
Lists for operators. The annotations allow one to associate wth each terminal symbol and 
each production of the CFG a function from lists of (operand) ASTs to lists of (operand) 
ASTs. 
There are two kinds of annotations: t m i n u l  annotations and pr0d'l~cti.m annotations. A 
terminal annotation declares a set of terminal symbols as semantically significant 
operznds. Identifiers and numeric constants are typical examples of such terminals. A 
terminal annotation has the form 

$terminal tl, tz, . . . , t, 
(where ti is a terminal symbol of the CFG) 



A production annotation may be attached to a production P to identify particular operator 
of the abstract grammar with each node of a parse tree expanded by P. Thls annotation 
has the form 

liboperator X 
(where X is the name of an operator of the abstract grammar) 

The syntax for annotated grammar is given in Table 2. The meanings of these annotations 
are informally explained through an example. A formal defimtion soon follows. Figure 3 
gives the annotated grammar for a small example language, and a sample source program 
in that language with a parse tree and an AST. 

Syntax of the Sac Input Language 
SyntaxDescription + fTerminalAnnotation] AnnotatedProduction' 
TerrninalAnnotation + $terminal Identifier+ 
AnnotatedProduc tion + CFGProduction [Annotation] 
Annotation + goperator Identifier lPrefixOperandsj 
Prefixoperands + ( Number ) 
Note: CFGProduction is a context-free grammar production 
and has the usual form [Hop79a]. 

$terminal Identifier 
1 E + E + T  $operator Add 
2 E + E - T  $operator Subtr 
3 E + T  
4 T + Identifier 
5 T - . ( E )  

Annotated Grammar 

E Add 
/n 

E + T A 
a b  

Source Program Parse Tree AST 

The first annotation tells us that Identifier is the only semantically significant terminal 
token; all others are either operator symbols or punctuation marks. The annotations 
attached to productions 1 and 2 identify those productions as corresponding to the 
occurrence of semantic operators. Names (Add and Subtr) are given to these operators. 
Let us consider how an AST is built from the parse tree of Flgure 3. 
ASTs can be built bottom-up. In a post-order traversal of t h s  parse tree, an identifier, a. 
is first encountered. Since identifiers are semantically significant, "a" is saved in a list of 
operands. Productions 4 and 3 are found to expand the interior nodes visited next. But, 
since these are unannotated the list of operands <a> is unrnodlfied. Since + is not 
mentioned in the terminal annotation it is ignored. Translating the root's last subtree 
yields the list <b>. The operand lists derived from the subtrees are concatenated, 
forming <a, b>. Production 1, whch expands the root, has associated with it the operator 
symbol Add. An AST is built from the operand list whch has been gathered, uslng the 
operator Add to label its root, to give the AST shown in Figure 3. 

3. The semantics of aunotated grammars 
Annotated grammars have a formal semantics. Let ASTlist be the set of ail sequences of 
ASTs. For each annotated grammar, G, a function T :ParseTrees -, ASTlist + ASTlist is 
defined. A parse tree is either a leaf representing a terminal symbol of G or a node 
expanded by a production of G. T is deflned structura!ly over parse trees by associating a 



- 4 -  
function from ASTlist -, ASTlist with every terminal symbol and production of G. These 
functions are presented below. Before proceeding with their d e h i i o n  a comment on 
notation is in order. 
Cc is a set of functions indexed by productions of G, each of whch maps a tuple of parse 
trees into a new parse tree. These are defiried such that 

+a,. . .an(glt . . . gn) 
denotes the parse tree whose root is expanded by the production A -, at - . - a, and whose 
subtrees are ZP1, . . . ,$,. 
In terms of FP objects, an AST is represented by a sequence 

Ux,<t1, . . . ,L>B 
where x is the label of the root and tl, . . . ,t, are objects representing the subtrees. 
Typed brackets ( 4 ) )  are used to distinguish ASTs from untyped sequences. To distinguish 
functions thzt construct ASTs from untyped construction we shall replace the usual [ ] by 
11. All functions and combining forms are polymorphc; they handle typed and untyped 
ccnstruction ~niforrnly .~ 

Terminel Symbols 
Let t be a terminal symbol of the CFG. 

( 1) annotation: $terminal t- 
dedne ~ ( t )  = apndr o [id,t] 
Any terminal listed as being a semantically significant operand is added to the 
list of operands being constructed. 

(2) no annotation for t 
defhe ~ ( t )  = id 
Any unannotated terminal is ignored. 

(3) The symbol A indicates the (null) right-hand side of an empty production. 
defbe ~ ( h )  = id 
The operand list is left unchanged. 

Productions 
Let A -, al - . . a, be a production of the CFG. 

(4) unannotated production 
defhe T(CTA-.~,  . . . 411 (gl, . . . ,zP,)) = T(%) 0 . . ~($1) 
The subtrees are traversed from left to right. The operand list may be 
augmented by the concatenation of additional operands, if any are produced by 
the subtrees. The resulting list is simply returned. 

(5) annotation: Soperator X 
d e f h e ~ ( q + ~ ~ .  ..an ($1, . . . ,gn)) = apndr c [id, EX, T(Gn) o . . . 0 r(gl)  o $511 
An AST is created from the operator X and the operand list constructed by 
travers~ng the subtrees of P from left to right. Ths AST is added to the operand 
list. 

Given T ,  syntax analysis proceeds as follows. The source program, P, is parsed giving the 
parse tree, Tp. r(Tp) yields :ASTlist -, ASTlist. The application qp p gives the AST for P. 

Ebmple  
Below the function :ASTlist -, ASTlist is given for the parse tree of Figure 3 and is 
simplified. 

t hi defining the semantics of annotated gramrriars, only a few FP functions are used. For 
+;he reader not intimateiy familiar with FP, it may be he1pF.d to  think of an abstract data 
type stack, and to read apndr as push, lr as top, and tlr as pop. 



@a+b ~ ( 0 3  + E + T ( ~ E  -. T(QT -. 1d(aa))t a+# UT * ~d(ab))) 
= (by expanding defhtions) 

apndr o [id, [Add, apndr o [id, 61 o apndr o [id, B] Q PI] 
= (by two applications of Law 10) 

apndr o [id, [Add, [B, b]]] 
Applylng $a+b p gives the sequence that contains a single element: the AST in Figure 3. 

@,+, p = <QAdd, <a, b>*> 
This completes the example showing a parse tree to AST translation. 

3.1. Extended annotations accommodate LL(1) parsing 
Note that in definition (5) above the operand list constructed for operator X starts empty. 
Th~s means that an AST is an operand of X if and only if it is constructed from the subtrees 
of P. This restriction would prohibit the use of LL(1) parsing. Figure 4 contains a naively 
annotated LL(1) grammar that recognizes the same language as the grammar shown in 
Flgure 3. 

$terminal Identifier 
1 E + T mail 
2 ETail +-TETail $operatorSubtr 
3 ETail -, + T ETail $operator Add 
4 ETail + h 
5 T + Identifier 
6 T + ( E l  

Annotated Grammar 

A ETail 

a F - T ETail 

a - b  

Input Parse Tree 

Figure 4 

Using the annotated grammar of Figure 4 we could attempt to produce an AST from "a-b". 
In doing t h s  we get unexpected results. 

rn p <a,QSubtr, <b>>> 
m s  list of two ASTs is not the desired result. We want 

<QSubtr, <a, b>>> 
Due to the 1-symbol lookahead of LL(1) parsing, infix operator symbols must be head- 
symbols of productions. This causes the problem we encountered above. Let us examine 
the translation of the parse tree of Figure 4. The first subtree produces the AST 
comprising the leaf "a". The AST QSubtr, <b>P is formed from translation of the second 
subtree. Since the production expanding the root is unannotated these ASTs are 
combined into a list of two ASTs. But, the leaf "a" should be attached as a subtree of the 
second AST. 
To solve this problem, the production annotation has been extended to handle prefix 
operands of infix or postfix operators. The annotation 

Soperator X (n) 
indicates that there are n prefix operands. The formal definition of t h s  annotation is given 
below. 

Extended Annotation of Productions 
Let A -, a, . . . a, be a production of the CFG. 
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(0) annotation: $operator X ( i) 

&!he r(oA, a, . . . ( . . . , ) )  = p n d r  0 1 T )  0 - . . 0 r ( d l )  0 [lr]]] 
In both (5) and (6), an AST with X at its root is appended to the operand list being 
constructed. A new operand list is built for X. In (5), this list starts empty. But 
in (6) ,  the rightmost operand of the list being constructed is removed and is used 
to head the new operand list for X. 

(7) annotation: $operator X (m) 
defhe T ( U A  + a,.. . %(*I, . . . ,%)) 

= apndr 0 [ t lP ,  [x r(%) o . . o 7(Fgl) o [mr, m-lr, . . . , lr])] 
With these new annotations, the grammar of Figure 4 can be corrected by appending "(1)" 
to each production annotation. Now consider the translation of the parse tree of Figure 4 
to an AST. The second subtree of t h s  parse tree is expanded by production 2. The 
simplified translation function corresponding to this subtree is 

apndr o [tlr, [Subtr, apndr o [id,6] o [ l r ]  I] 
For the first subtree, we get 

apndr o [id, 81 
The production that expand the root is unannotated, therefore we compose the above 
functions, simplify and get 

apndr o [id, [Subtr, apndr 0 [id, 61 o [Zi] I] 
The above function iliustrates that the prefix operand is integrated into the construction 
of the Subtr AST. Applying the above function to gc yields QSubtr, <a, b>,. 

4. Annotated grammars are adequate for description of syntax analyzers 
Annotated grammars as defined by (1) - (7)  is complete enough to describe translation 
from source language programs to ASTs if we make the following assumptions: 

1- Syntactically, the source language is a deterministic context-free language. 
2- Semantically, the source language adheres to the principle of compositionality. 

'This principle states that the meaning of a phrase is a function of the meanings 
of its constituent phrases. 

Consider the parse tree below produced by a CFG, G. Let P be an annotated production of 
G that expands node, N, which is labeled in the diagram. We can partition subtrees of t h s  
parse tree into three classes with respect to N; prefix, proper and postfix subtrees of N are 
labeled in the diagram. Let X be the operator associated with P. 

The above assumptions guarantee that we can write G in such a way that the operands for 
X will be produced in the prefix and proper subtrees of N. The annotations define functions 
that gather operands from these subtrees when applied to parse trees 

Sac, the syntax-analyzer constructor defined here, has been implemented and has proven 
to be a valuable software tool. We have been using Sac to bulld translators for 
experimental programming languages for over a year. These languages tend to be moving 
targets; their defhtions are usually adjusted before an implementation is completed. 
After making the required changes to the annotated grammar, a new syntax analyzer is 
reconstructed whenever need. Modfmblity is critical when developing prototype software. 
By using ASTs as an intermediate language, we have separated syntax analysis and 
semantic interpretation in such a way that minor changes in one phase do not force 
changes in the other. 
Sac has been used successfully by students in a compiler design course. This allowed 
more time for studying previcusly underemphasized aspects of compiler design such as 
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type-checking, optimization and code generation 
A production-quality implementation of t h s  constructor has been developed in industry 
based on our prototype. I t  has been used in the development of production-quality 
compilers and as the basis for a syntax-direc ted e&tor constructor , [Bar82a]. 
Sac produces a syntax analyzer that includes LL(1) parsing. Developing an annotated 
LL(1) grarnmar can at first be a bit tricky. 'lks task becomes much easier with some 
experience. It would be helpful if Sac would accept an arbitrary context-free grammar 
and produce an LL(1) grammar for us. Unfortunately, it is undecidable whether or not an 
arbitrary context-free grammar generates an LL(k) language, even for a fixed k [Ros70a]. 
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Appendix 

An FP System <0, P, r> comprises the following: 
a set 0 of oqjects 
a set P of p - h i c i v e  functions that map objects to objects 
a set r of functional f o m  that are used to combine existing functions or objects to form new 

functions 
I' may also include the functional form constant. usually written as a bar over a single 

argument. If x E 0, 3 is a function that returns x when applied to any argument. 

For an FP system <O, P, r>, a set of functions F is defined by the followir4: 
*F2P 

if y E r, al, . . . , a, E F and 7 takes n arguments, then ?(al, . . . , ad  E F 
i f c o n s t a n t € r a n d x € O , t h e n ~ € F  
8 if the function f is defined by 

d e f f ~ r  
(where r E F or r is a functional form applied to arguments) 

then f E F. 
The application of f E F to x E 0 is written f x. 

2 AsmaUFPspstem 
When using FP for reasoning, it is more convenient to use laws as equivalences. Since it is not used 
here for computation, evaluation rules are immaterial. Therefore, the FP system defined below has 
non-strict semantics. 

21. o?Jj&s 
Objects are defined with BNF using the meta-symbols -+ I + (. The meta-symbols + and are 
Kleene plus and times respectively. Any expression within [ j is optional. 

object -, atom 1 sequence I 1 
atom -, digit' I letter lletter I digit]' 
sequence -+ < lobjectlistj > 
objectlist -, object f ,  object]. 

The symbol 1, called "bottom", means undefined. The empty sequence, < >, is alsc written rp. 
Examples of objects include 



22. Primitive f unctiaim 

right selectom 

l r  : sequence -, sequence 
lr x = if x = <xl. . . . , %> then xn else1 end 

and for any positive integer m 
m r  : sequence -, sequence 

mr.x= i fx=<xl ,  . . . ,x,>and-m  then^,-,+^ e!sel end 

dher sequence functions 
tlr : sequence -+ sequence 

t l r .x= i fx=<xl>  then9 
elseif x = <xl, . . . , %> and e 2  then <xl, . . . , xn-1> 
else 1 end 

apndr : sequence x 0 -, sequence 
apndr 8 x = if x = <q, z> then <z> 

elseif x = <<xl, . . . , xn>, z> then <xl, . . . , 4, z> 
else i end 

identity 
id:O-,O 

idmxrx  

23. Functional forms 

mmpapitim 
o : F x F + F  

(f 0g)mx = f .  (g.x) 
I may abbreviate f o f o . . . o f as fn where r, is the number of times f appears. 

construction 

24. Some useful laws of the FP algebra 
Law 1. f o (g oh) = (fog) oh 
Law 2. = [I 
Law3.Xof = i t  
Law4. [fl, . . . ,f,J og = [fl c g,  . . . ,f,og] 
Law5. fo id=- idof=f  
Law 6. tlr o apndr o [f, g] = f 
Law 7. lr o apndr o [f, g] = g 
Law 8. l r  o If] = f 
Law 9. apndr o [[fl, . . . , f,], g] = [fl ,  . . . , fn, g] 
Law 10. apndr o [id, E] o [fl, . . . , fJ = [fl, . . . , f,, Z] 


