
A SYNTAX-ANALYZER CONSTRUCTOR

Oregon Graduate Center

OGC Technical Report No. CS/E-82-05

A Syntax-Analyzer Constructor

Oregon Graduate Center
Beaverton, Oregon

(Extended Abstract - 12 August 1982)

1. Introduction
Most programming languages (pure LISP excepted) are given a syntax intended to make
programs easy for the human reader to absorb, at least superficially. These syntactic
constructs alleviate the need to count parentheses, by adopting various conventions such
as infix operator notation and operator precedence rules, in order .to denote the
association of operand expressions with their operator symbols. In the internal
representation of programs for machlne translation or interpretation, one invariably
prefers a simpler, more uniform convention to bind operands to operators. Such a
convention is embedded in a very uniform notation called abstract syntaz trees (ASTs),
commonly used in a great many compilers, structure editors and related language-
knowledgeable software tools. Since the syntax of both a concrete programming language
and ASTs can be formally defined by deterministic, context-free grammars, it seems
reasonable to expect that a translation from one to the other could be derived
automatically.
I have extended the concept of a parser constructor to that of a syntaz-analyzer
constmctor. A syntaz analyzer, whch includes lexical analysis, parsing, and association of
operands to operators, translates source language programs to ASTs. The syntax-analyzer
constructor accepts a simple description of the translation from source programs to ASTs.
Fkom this input it automatically produces a syntax analyzer that implements thls
translation as well as provid~ng feed-back to the user. This feedback, given in the form of
a gramma-, describes the class of ASTs produced by the constructed syntax-analyzer.
Before we can discuss this constructor we need to define a few terms related to abstract
syntax.
The root of an AST is labeled by an operator whose operands are represented by the
subtrees. Leaves are operand terminal symbols such as identifiers or numbers. An AST
may be displayed linearly or graphically as shown below.

An abstract grammar describes a set of ASTs. Consider for example, the abstract
grammar given in Table 1. Jn this grammar Type and Expr are syntactic domains. A
syntactic domain, S, denotes a set of ASTs, As. If x E S then all ASTs having x-labeled roots
are members of &. In the example, kr includes any AST whose root is one of Identifier,
Add or Subtr. The productions describe the form of ASTs. An AST with a root labeled Add
has two subtrees both of which are members of b. Note that there is just one
production for any operator (nonterminal) of an abstract grammar.
Formally, every abstract grammar, A, gives rise to an initial S-sorted C-Algebm, I. Each
syntactic domain and nonterminal of A corresponds to a sort of I. The terms of the
algebra are ASTs defined by A. An in-depth discussion of abstract syntax is given in
[RolSZa], where this correspondence between abstract grammars and initial-algebras is
defined. See [Gog77a], for more information on initial-algebra semantics.

Syntactic Domains
Type = t Product, Identifier j
Expr = IIdentifier, Add, Subtrj

Productions
Constant -D Identifier Type Expr
Product 4 Type Type
Add + Expr Expr
Subtr + Expr Expr

Table 1

A syntax-analyzer constructor accepts as input a CFG and a specification of a translation
from parse trees to ASTs. Its output, of course, is a syntax-analyzer that translates a
source language program into an LIST. Input to t h ~ ~ syntax-analyzer constructor, Sac, is a
CFG whose productions and terminal symbols have been annotated to specify the
translation from parse trees to ASTs.
Each semantically significant terminal symbol is annotated. Every occurrence of an
annotated terminal in a parse tree is to be retained as a leaf node in the target AST.
Significant terminals typically include identifiers and numeric constants, but not
keywords, parentheses, commas or other punctuation.
A parse tree whose root is expanded by an annotated production is translated to an AST of
the class specified by the annotation.
For any annotated grammar, G, there is a conesponding abshact grammar, c, whch
describes the class of ASTs produced by the syntax-analyzer constructed from G. The
full-length paper will contain an algorithm for computing c given G. Ths abstract
describes an algorithm for producing a syntax-analyzer from an annotated parsing
grammar.
By examining one can check to see if an annotated grammar denotes the intended
translation from source programs to ASTs. Any software tool that uses ASTs as an internal
representation of programs can be driven by tables describing the abstract grammar. A
large part of a programming language environment can be synthesized from skeleton
software tools.
The semantics of annotated grammar is expressed in a variant of Backus's functional
language FP [Bac78a]. What makes FP an interesting language is that one can do
programming and mathematical reasoning in the same language. An FP system comes
with an algebra of programs that is no more difficult to use than high-school algebra.
Since the mealllngs of annotations are defined via FP, the AST-building function denoted by
G is easily cast in FP. Through algebraic manipulation of the resulting FP function, Tf can
also be derived.
A brief review of FP systems and the definition of the particular FP system used in this
paper appears in the appendix.

2 The relation between concrete and a-act syntax
The grammar annotations allow one to identify operators of an abstract grammar with
certain productions of a CFG that deflne the concrete syntax of a language. Since
operands may not be associated with operators in a uniform manner by the concrete
syntax, various syntactic operand-association rules must be applied to construct operand
Lists for operators. The annotations allow one to associate wth each terminal symbol and
each production of the CFG a function from lists of (operand) ASTs to lists of (operand)
ASTs.
There are two kinds of annotations: t m i n u l annotations and pr0d'l~cti.m annotations. A
terminal annotation declares a set of terminal symbols as semantically significant
operznds. Identifiers and numeric constants are typical examples of such terminals. A
terminal annotation has the form

$terminal tl, tz, . . . , t,
(where ti is a terminal symbol of the CFG)

A production annotation may be attached to a production P to identify particular operator
of the abstract grammar with each node of a parse tree expanded by P. Thls annotation
has the form

liboperator X
(where X is the name of an operator of the abstract grammar)

The syntax for annotated grammar is given in Table 2. The meanings of these annotations
are informally explained through an example. A formal defimtion soon follows. Figure 3
gives the annotated grammar for a small example language, and a sample source program
in that language with a parse tree and an AST.

Syntax of the Sac Input Language
SyntaxDescription + fTerminalAnnotation] AnnotatedProduction'
TerrninalAnnotation + $terminal Identifier+
AnnotatedProduc tion + CFGProduction [Annotation]
Annotation + goperator Identifier lPrefixOperandsj
Prefixoperands + (Number)
Note: CFGProduction is a context-free grammar production
and has the usual form [Hop79a].

$terminal Identifier
1 E + E + T $operator Add
2 E + E - T $operator Subtr
3 E + T
4 T + Identifier
5 T - . (E)

Annotated Grammar

E Add
/n

E + T A
a b

Source Program Parse Tree AST

The first annotation tells us that Identifier is the only semantically significant terminal
token; all others are either operator symbols or punctuation marks. The annotations
attached to productions 1 and 2 identify those productions as corresponding to the
occurrence of semantic operators. Names (Add and Subtr) are given to these operators.
Let us consider how an AST is built from the parse tree of Flgure 3.
ASTs can be built bottom-up. In a post-order traversal of t h s parse tree, an identifier, a.
is first encountered. Since identifiers are semantically significant, "a" is saved in a list of
operands. Productions 4 and 3 are found to expand the interior nodes visited next. But,
since these are unannotated the list of operands <a> is unrnodlfied. Since + is not
mentioned in the terminal annotation it is ignored. Translating the root's last subtree
yields the list . The operand lists derived from the subtrees are concatenated,
forming <a, b>. Production 1, whch expands the root, has associated with it the operator
symbol Add. An AST is built from the operand list whch has been gathered, uslng the
operator Add to label its root, to give the AST shown in Figure 3.

3. The semantics of aunotated grammars
Annotated grammars have a formal semantics. Let ASTlist be the set of ail sequences of
ASTs. For each annotated grammar, G, a function T :ParseTrees -, ASTlist + ASTlist is
defined. A parse tree is either a leaf representing a terminal symbol of G or a node
expanded by a production of G. T is deflned structura!ly over parse trees by associating a

- 4 -
function from ASTlist -, ASTlist with every terminal symbol and production of G. These
functions are presented below. Before proceeding with their d e h i i o n a comment on
notation is in order.
Cc is a set of functions indexed by productions of G, each of whch maps a tuple of parse
trees into a new parse tree. These are defiried such that

+a,. . .an(glt . . . gn)
denotes the parse tree whose root is expanded by the production A -, at - . - a, and whose
subtrees are ZP1, . . . ,$,.
In terms of FP objects, an AST is represented by a sequence

Ux,<t1, . . . ,L>B
where x is the label of the root and tl, . . . ,t, are objects representing the subtrees.
Typed brackets (4)) are used to distinguish ASTs from untyped sequences. To distinguish
functions thzt construct ASTs from untyped construction we shall replace the usual [] by
11. All functions and combining forms are polymorphc; they handle typed and untyped
ccnstruction ~niforrnly .~

Terminel Symbols
Let t be a terminal symbol of the CFG.

(1) annotation: $terminal t-
dedne ~ (t) = apndr o [id,t]
Any terminal listed as being a semantically significant operand is added to the
list of operands being constructed.

(2) no annotation for t
defhe ~ (t) = id
Any unannotated terminal is ignored.

(3) The symbol A indicates the (null) right-hand side of an empty production.
defbe ~ (h) = id
The operand list is left unchanged.

Productions
Let A -, al - . . a, be a production of the CFG.

(4) unannotated production
defhe T(CTA-.~, . . . 411 (gl, . . . ,zP,)) = T(%) 0 . . ~($1)
The subtrees are traversed from left to right. The operand list may be
augmented by the concatenation of additional operands, if any are produced by
the subtrees. The resulting list is simply returned.

(5) annotation: Soperator X
d e f h e ~ (q + ~ ~ . ..an ($1, . . . ,gn)) = apndr c [id, EX, T(Gn) o . . . 0 r(gl) o $511
An AST is created from the operator X and the operand list constructed by
travers~ng the subtrees of P from left to right. Ths AST is added to the operand
list.

Given T , syntax analysis proceeds as follows. The source program, P, is parsed giving the
parse tree, Tp. r(Tp) yields :ASTlist -, ASTlist. The application qp p gives the AST for P.

Ebmple
Below the function :ASTlist -, ASTlist is given for the parse tree of Figure 3 and is
simplified.

t hi defining the semantics of annotated gramrriars, only a few FP functions are used. For
+;he reader not intimateiy familiar with FP, it may be he1pF.d to think of an abstract data
type stack, and to read apndr as push, lr as top, and tlr as pop.

@a+b ~ (0 3 + E + T (~ E -. T(QT -. 1d(aa))t a+# UT * ~d(ab)))
= (by expanding defhtions)

apndr o [id, [Add, apndr o [id, 61 o apndr o [id, B] Q PI]
= (by two applications of Law 10)

apndr o [id, [Add, [B, b]]]
Applylng $a+b p gives the sequence that contains a single element: the AST in Figure 3.

@,+, p = <QAdd, <a, b>*>
This completes the example showing a parse tree to AST translation.

3.1. Extended annotations accommodate LL(1) parsing
Note that in definition (5) above the operand list constructed for operator X starts empty.
Th~s means that an AST is an operand of X if and only if it is constructed from the subtrees
of P. This restriction would prohibit the use of LL(1) parsing. Figure 4 contains a naively
annotated LL(1) grammar that recognizes the same language as the grammar shown in
Flgure 3.

$terminal Identifier
1 E + T mail
2 ETail +-TETail $operatorSubtr
3 ETail -, + T ETail $operator Add
4 ETail + h
5 T + Identifier
6 T + (E l

Annotated Grammar

A ETail

a F - T ETail

a - b

Input Parse Tree

Figure 4

Using the annotated grammar of Figure 4 we could attempt to produce an AST from "a-b".
In doing t h s we get unexpected results.

rn p <a,QSubtr, >>
m s list of two ASTs is not the desired result. We want

<QSubtr, <a, b>>>
Due to the 1-symbol lookahead of LL(1) parsing, infix operator symbols must be head-
symbols of productions. This causes the problem we encountered above. Let us examine
the translation of the parse tree of Figure 4. The first subtree produces the AST
comprising the leaf "a". The AST QSubtr, P is formed from translation of the second
subtree. Since the production expanding the root is unannotated these ASTs are
combined into a list of two ASTs. But, the leaf "a" should be attached as a subtree of the
second AST.
To solve this problem, the production annotation has been extended to handle prefix
operands of infix or postfix operators. The annotation

Soperator X (n)
indicates that there are n prefix operands. The formal definition of t h s annotation is given
below.

Extended Annotation of Productions
Let A -, a, . . . a, be a production of the CFG.

- 8 -
(0) annotation: $operator X (i)

&!he r(oA, a, . . . (. . . ,)) = p n d r 0 1 T) 0 - . . 0 r (d l) 0 [lr]]]
In both (5) and (6), an AST with X at its root is appended to the operand list being
constructed. A new operand list is built for X. In (5), this list starts empty. But
in (6) , the rightmost operand of the list being constructed is removed and is used
to head the new operand list for X.

(7) annotation: $operator X (m)
defhe T (U A + a,.. . %(*I, . . . ,%))

= apndr 0 [t lP , [x r(%) o . . o 7(Fgl) o [mr, m-lr, . . . , lr])]
With these new annotations, the grammar of Figure 4 can be corrected by appending "(1)"
to each production annotation. Now consider the translation of the parse tree of Figure 4
to an AST. The second subtree of t h s parse tree is expanded by production 2. The
simplified translation function corresponding to this subtree is

apndr o [tlr, [Subtr, apndr o [id,6] o [l r] I]
For the first subtree, we get

apndr o [id, 81
The production that expand the root is unannotated, therefore we compose the above
functions, simplify and get

apndr o [id, [Subtr, apndr 0 [id, 61 o [Zi] I]
The above function iliustrates that the prefix operand is integrated into the construction
of the Subtr AST. Applying the above function to gc yields QSubtr, <a, b>,.

4. Annotated grammars are adequate for description of syntax analyzers
Annotated grammars as defined by (1) - (7) is complete enough to describe translation
from source language programs to ASTs if we make the following assumptions:

1- Syntactically, the source language is a deterministic context-free language.
2- Semantically, the source language adheres to the principle of compositionality.

'This principle states that the meaning of a phrase is a function of the meanings
of its constituent phrases.

Consider the parse tree below produced by a CFG, G. Let P be an annotated production of
G that expands node, N, which is labeled in the diagram. We can partition subtrees of t h s
parse tree into three classes with respect to N; prefix, proper and postfix subtrees of N are
labeled in the diagram. Let X be the operator associated with P.

The above assumptions guarantee that we can write G in such a way that the operands for
X will be produced in the prefix and proper subtrees of N. The annotations define functions
that gather operands from these subtrees when applied to parse trees

Sac, the syntax-analyzer constructor defined here, has been implemented and has proven
to be a valuable software tool. We have been using Sac to bulld translators for
experimental programming languages for over a year. These languages tend to be moving
targets; their defhtions are usually adjusted before an implementation is completed.
After making the required changes to the annotated grammar, a new syntax analyzer is
reconstructed whenever need. Modfmblity is critical when developing prototype software.
By using ASTs as an intermediate language, we have separated syntax analysis and
semantic interpretation in such a way that minor changes in one phase do not force
changes in the other.
Sac has been used successfully by students in a compiler design course. This allowed
more time for studying previcusly underemphasized aspects of compiler design such as

- 7 -
type-checking, optimization and code generation
A production-quality implementation of t h s constructor has been developed in industry
based on our prototype. I t has been used in the development of production-quality
compilers and as the basis for a syntax-direc ted e&tor constructor , [Bar82a].
Sac produces a syntax analyzer that includes LL(1) parsing. Developing an annotated
LL(1) grarnmar can at first be a bit tricky. 'lks task becomes much easier with some
experience. It would be helpful if Sac would accept an arbitrary context-free grammar
and produce an LL(1) grammar for us. Unfortunately, it is undecidable whether or not an
arbitrary context-free grammar generates an LL(k) language, even for a fixed k [Ros70a].

References

Bac78a. J. Backus, "Can programming be liberated from the von Neumann style? A
functional style and its algebra of programs.," CACM 21(8)(August 1978).

Bar82a. W. Barabash and D. G. Frank, "Automatic Generation of a Language Oriented
Editor From an Annotated Context-Free Grammar, " Digital Equipment Corp., Nashua,
NH (Jan. 1982).

Gog77a. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, "Initial Algebra
Semantics and Continuous Algebras, " JACM 24(1) pp. 68-95 (Jan. 1977).

Hop79a. J. E. Hopcroft and J. D. Ullman, Introduct ion t o Au tomata Theoly , Languages, and
Computa t ion , Addison-Wesley, Reading, Mass. (1979).

Ro162a. E. J. Rollins, "Abstract Syntax in Theory and Practice," CS/E-82-04, Oregon
Graduate Center, Beaverton, Or (July 1982).

Ros70a. D. J. Rosenkrantz and R. E. Stearns, "Properties of Determinitic Top-down
Grammars, " Info. a n d Control 17 pp. 226-256 (1970).

Appendix

An FP System <0, P, r> comprises the following:
a set 0 of oqjects
a set P of p - h i c i v e functions that map objects to objects
a set r of functional f o m that are used to combine existing functions or objects to form new

functions
I' may also include the functional form constant. usually written as a bar over a single

argument. If x E 0, 3 is a function that returns x when applied to any argument.

For an FP system <O, P, r>, a set of functions F is defined by the followir4:
*F2P

if y E r, al, . . . , a, E F and 7 takes n arguments, then ?(al, . . . , ad E F
i f c o n s t a n t € r a n d x € O , t h e n ~ € F
8 if the function f is defined by

d e f f ~ r
(where r E F or r is a functional form applied to arguments)

then f E F.
The application of f E F to x E 0 is written f x.

2 AsmaUFPspstem
When using FP for reasoning, it is more convenient to use laws as equivalences. Since it is not used
here for computation, evaluation rules are immaterial. Therefore, the FP system defined below has
non-strict semantics.

21. o?Jj&s
Objects are defined with BNF using the meta-symbols -+ I + (. The meta-symbols + and are
Kleene plus and times respectively. Any expression within [j is optional.

object -, atom 1 sequence I 1
atom -, digit' I letter lletter I digit]'
sequence -+ < lobjectlistj >
objectlist -, object f , object].

The symbol 1, called "bottom", means undefined. The empty sequence, < >, is alsc written rp.
Examples of objects include

22. Primitive f unctiaim

right selectom

l r : sequence -, sequence
lr x = if x = <xl. . . . , %> then xn else1 end

and for any positive integer m
m r : sequence -, sequence

mr.x= i fx=<xl , . . . ,x,>and-m then^,-,+^ e!sel end

dher sequence functions
tlr : sequence -+ sequence

t l r .x= i fx=<xl> then9
elseif x = <xl, . . . , %> and e 2 then <xl, . . . , xn-1>
else 1 end

apndr : sequence x 0 -, sequence
apndr 8 x = if x = <q, z> then <z>

elseif x = <<xl, . . . , xn>, z> then <xl, . . . , 4, z>
else i end

identity
id:O-,O

idmxrx

23. Functional forms

mmpapitim
o : F x F + F

(f 0g)mx = f . (g.x)
I may abbreviate f o f o . . . o f as fn where r, is the number of times f appears.

construction

24. Some useful laws of the FP algebra
Law 1. f o (g oh) = (fog) oh
Law 2. = [I
Law3.Xof = i t
Law4. [fl, . . . ,f,J og = [fl c g, . . . ,f,og]
Law5. fo id=- idof=f
Law 6. tlr o apndr o [f, g] = f
Law 7. lr o apndr o [f, g] = g
Law 8. l r o If] = f
Law 9. apndr o [[fl, . . . , f,], g] = [fl , . . . , fn, g]
Law 10. apndr o [id, E] o [fl, . . . , fJ = [fl, . . . , f,, Z]

