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CHAPrER 1 

Introduction 

The primary purpose of a programming language is to provide a vehicle 
for human communication. I t  is judged on the ease with which algorithms 
are expressed, read, and reasoned about. Since many of these languages 
are also used to  control computing machinery, the efficiency with whch 
the (compiled) algorithms drive such machinery is of some interest. 

Historically, the computing community has focussed most of its atten- 
tion on imperative languages, (such as  FORTRAY, Pascal, & Ada) which 
encourage obscure solutions in the interests of conserving machine 
resources. More recently, attention has shifted to  applicative languages, 
(such as  FP, 'pure' LISP, SASL, & graph-reduction languages) because of 
their superior mathematical basis. 

I t  is an unfortunate fact of life that we must attack arbitrarily large 
problems with minds of distinctly limited ability. In this endeavor, the 
"divide-and-conquer" strategy has proven to be our sharpest weapon. 
Obviously, to  effectively "divide" a problem, it is necessary to  minimize the 
amount of interaction amongst the parts. Each part must be understood, 
in iso la t ion ,  in terms of its own input/output behavior relative to the 
input/output behavior of its primitive functions. Thus, a well-divided solu- 
tion exhibits referential transparency in all of its parts. 

AppIicative languages embody referential transparency as  a design 
principle. 

The model of an imperative language operates by manipulating a global 
state, and so transparency must be compromised, a t  some level. Indeed, 
the 'efficiency' of an imperative program (vis-a-vis an applicative one) 
derives from the history sensitivity provided by the state. On the other 
hand, 'good programnling style' dictates that such non-transparent 
interactions should take place a t  the lowest levels only; a 'good' imperative 
program is one which seems to be applicative at  all but the lowest concep- 
tual level of each module. (An equivalent statement would be that a 'good' 
program admits a direc t  (rather than c o n t i n u e t i o n )  style of denotational 
semantic description [Sto?7].) 



When an applicative language is naively implemented on a conventional 
machine, there are a t  least two major sources of inefficiency: (1) the slow- 
but-general memory management, and (2) the reliance upon recursion as 
the only iteration mechanism. 

(1) Updates-in-place of aggregate objects are not done, as an object might 
have been shared. Therefore, to ensure consistency and freedom from 
side-effects, large data structures are copied and the copy is modified. 
In many such cases, of course, the original object is not shared, will no 
longer be used, and an update-in-place would indeed be appropriate. 

(2) Most implementations of recursion are more expensive than those of a 
while statement. Typically, a stack is maintained, and the return 
addresses and actual parameters are copied onto it. The amount of 
space consumed at run-time is proportional to the depth of the r e c w  
sion. A while loop, on the other hand, consumes a constant amount of 
space, irrespective of the repetition count. The difference is funda- 
mental; recursion is a more powerful mechanism than iteration. 
Naturally, in those restricted cases where the while loop is appropri- 
ate, it is more efficient. Many compilers do detect instances of "tail 
recursion" [FodSO, Ste??], a commonly-occurring iterative pattern, in 
order to eliminate the stack operations in such instances. However, 
more general recursion removal is rarely attempted in practice, 
although the subject has attracted lots of academic attention [Bir??, 
Coo66, KiS81, PeB82, SMR751. 

In this project [KiS81], we seek to perform recursion removal (and 
other changes) by means of program transformations. We wish to program 
in a high-level applicative language, and have the program mechanically 
massaged into a faster form. Since some applicative languages (notably, 
FP) were designed to be manipulated and reasoned about, it is not surpris 
ing that their programs may be conveniently transformed. (Contrast this 
with the difficulties of reliably transforming imperative programs, or even 
proving the validity of the transformation rules.) 

Some researchers [Ba181, Fea82, LoF81, MaN'Bl] start with a very-hgh- 
level "specification" (programming) language, and semi-manually 
trahsform "specifications" (programs) into procedures expressed in a 
lower-level language. In contrast, this paper is concerned with aspects of 
purely mechanical transformation processes, using no human intervention. 
Also, we employ only "source-to-source" transformations; no hierarchy of 
languages is involved. (I might also add that I dislike executable 
"specifications", and feel that researchers who start with them are 



sweeping the hardest specification problems under a rug and at the same 
time introducing implementation bias.) 



CHAPTER2 

Our Dialect of FP 

2.1. Expressions 

We generally follow the  notation and semantics of FP as given in 
Backus's Turing Award Lecture [Bac78]; most of the changes are explicitly 
noted. Familiarity with the Lecture (especidly 11 - 12.2) is useful but not 
essential. 

2.1.1. Objects 

The se t  of FP objects includes the domains of 

t ruth values (true and false); 
rational numbers; 
sequences (lists) of objects, e.g. < I ,  5, 3> and the empty list E ;  

n-tuples of objects, e.g. [ I ,  5, 31; 

and perhaps others. 

The object 1 is the undefined element. Sequences and tuples are  both 
str ict ;  if any element of a sequence (or n-tuple) is 1, then the sequence (or 
n-tuple) is  1. 

An alternative meta-notation for n-tuples is helpful, when the length 
(and contents) of the object under discussion are  not explicitly known. An 
n-tuple [ o  0 2 ,  ... o n ]  m a y  be represented without ellipsis by n7=1 oi. If 
for some subscript k ,  l s k s n ,  we know ok to  be z,  then we write oi 
lok + z ]I, rather  than [ O  . .. , o ~ - ~ ,  z., ~ k + ~ ,  . . . , on]. 

2.1.2. Primitive Functions 
The se t  of FP primitive functions includes operators from various 

object-level algebras: 

Boolean logic (and, or ,  not, ...), 
rational arithmetic (+, -, x ,  +, ...I, 
sequences (head, tail, a m e n d ,  concat ,  ...), 

and others. I t  also includes relational predicates: =, #, r, r, and so on. All 



functions take exactly one argument, which may be an n-tuple: 
+:[1,3] = 4. (We are using the colon as the function application operator.) 

The constant functions are also primitive. For any object z, the 
expression Z denotes the function which maps any argument to  the value 
z. For instance, I is the everywhere-undefined function. 

The identify function id maps any object to itself. 

2.1.3. Functional Forms 

The primary functional f o r m s  of FP are composition, construction, and 
condition. These are higher-level operators which map functions to func- 
tions, and so form the backbone of the functional algebra of FP programs. 
There are several other FP functional forms (mostly specialized forms of 
iteration), but the functional algebra based on 

(i) the primitive functions, 

(ii) thefunctionals of composition, construction, & condition, with 

(iii) recursive definitions 

is complete in the sense of being able to describe any partial recursive 
function. 

2.1.3.1. Composition: f 0 g 

Against our better judgement we conform to tradition, and define the 
evaluation rule as proceeding from right to left: 

2.1.2.2. Construction: fi f 
*=I 

Constructions produce tuples. Their evaluation rule is: 

.An alternative notation for construction is available, based on that of 
tuples. We let [f I , _ f 2 ,  ... f,] be synonymouswithnp=lfi. 

Unlike Backus's FP, our dialect distinguishes between sequences (Lists) 
and tuples. The operators defined on sequences do not apply to tuples, and 
vice versa. Some related differences are found in the meanings of 0-tuples 
and 1-tuples. We believe that our treatment corresponds to standard 



mathematical usage, and in any event is more convenient for our purposes. 

Axiom 1 states that there is no "empty tuple". Furthermore, the 1- 
tuple [o ] is identical to  o , and not merely isomorphic to  it, as is the case in 
the sequence domain. These conventions may be surprising, until one 
remembers that n-tuples are not an inductively-defined type. 

The selector functions have been changed, too. Aside from distinguish- 
ing between the sequence operators (such as head,  tail) and tuple selec- 
tors, we have added a crude form of typing, based on the length of the 
tuple: the expression 4i n P  denotes the function which selects the i" field 
of an n-tuple object, viz., 41 3>:[5,6,?] = 5, but 41 2~:[5,6,?]  = 1. 

2.1.3.3. Condition: (p -, f ; g )  

This is FP's if-then-else operator. Its evaluation rule is: 

( p + f ; g ) : x  = 
casep :z  of 

"true" =3 f :z 
"false" * g:z  
default * 1 

esac 

2.1.3.4. Iteration 

We shall use the most elementary form of iteration, in some of our 
sample transformations. Its evaluation rule is: 

(whilep do f ) : z  = @ -, (whilep do f )o f ;  id ) :z  

We shall also use a pair of more specialized iterators, known as the 
'insert-left' ( / )  and 'insert-right' (\) functional forms, whlch encapsulate 
one common style of recursive list traversal. Our definitions are exten- 
sions of the standard FP 'insert' functional form, and in fact more closely 
resemble the APL operator 'reduce'. 

A s  before, we use J and g to denote functions, while z and y represent 
objects. 



(\f Y ) :  < >  = Y 
(\f y): -0,  - . . , q - 1 ,  +> = f : [ ( \ f  y ) : e 0 ,  ---, +-,>,q] 

Thw, the functions (/ + 0) and (\ + 0) both compute the sum of a 
sequence of integers. We shall not use this form of insertion; we mention i t  
only because of its resemblance to forms occurring in the literature LIve62, 
Bac781. 

The next version, which we shall use in our later examples, generalizes 
the 'inductive basis' from a object y to a function g . 

The two types of insertion are of course related; the second kind is the 
more general. 

(/ f y) = (/ f id)oappendLo[g, id] 

2.2. Computation Rules 

An important property of FP functions is that they are strict; 

( V f )  f :l =I. 

This implies, for example, that 6 : I and x : [0, 1 ] and 4 1 2~ : [O, I] are all 
equal to 1 rather than to 0. 

Backus [Bac?8] used the continuity of the functional forms, the strict- 
ness property, and the (applicative-order) evaluation rules to justify a 
least-fixed-point semantics for recursive definitions of FP programs. 



c m  3 

Program Transf omations 

3.1. A Very Brief S w e y  

There are many types of program transformations in the literature. 
Among them we mention symbolic evaluation, strength reduction, and 
recursion removal. There are also some lesser optimizations of a book- 
keeping nature, such as dead-code removal and common-expression elimi- 
nation. 

Prominent among the systems which do symbolic evaluation (of expres  
sions drawn from numeric algebras) are Moses's MACW-4 and Hearn's 
REDUCE. MACSY~Y, for example, can calculate the derivatives and indefinite 
integrals of arbitrary expressions [FaMBZ]. 

"Strength reduction" refers to the substitution of a weak-but- 
inexpensive operator for a powerful-but-expensive one, in those special 
cases where the full generality of the expensive operator is not needed. 
Phrased ths way, the term covers a wide class of optimizations. Conven- 
tionally, however, it only refers to two types of reductions: simple, static 
optimizations, such as using a right-shift instead of a dixlsion by 2; and a 
technique called h i t e  differencing [PaKBZ], which may be used to improve 
the efficiency of computations involving a loop induction variable. 

Various types of recursion removal could perhaps be referred to as 
strength reduction, in the general sense mentioned above. A popular 
instance of this genre is t a i l ~ e c u r s i o n  e l im ina t ion .  An algorithm exhibits 
tail recursion iff at least one of its recursive calls is followed immediately 
by a RETURN; that is, no further processing is done (by the algorithm) on 
the value returned by the call. Such recursions are equivalent to iterative 
loops; the stack is unnecessary. 

The removal of tail-recursion is demonstrated by the following transfop 
mation. Given a (recursive) definition of a program f matching the tem- 
plate 

define f = (p -r g ; f ~ j ) ,  

an equivalent (non-recursive) definition of f is 



define f = g 0 (while notop do j ). 

An instance of this transformation would be the recursive definition of the 
list operator c o n c d  : 

define concat = 

which may be re-written non-recursively: 

define concat = 

As a sample of a more complicated transformation schema, it has been 
observed [Coo66, DaB76, fiS81] that any program definition of f matching 
the template 

define f = (p + g  ; ho[i, f oj]) 

in which the function instantiating h is associative and commutative (actu- 
ally, a weaker constraint is possible here) and where g is a constant func- 
tion (ditto), may be transformed into this opaque but non-recursive 
definition of f : 

define f = 

41 2> 0 (while notop042 2) do [h0[41 2&, i.42 2>], j.42 Zb]) 0 [ g ,  id] 

The canonical example of this transformation is the factorial function: 

define ! = (eqO? -, i ; x o  [id, ! 0 subl]) 
- 

satisfies our constraints (g = 1 is a constant function, and h = x is both 
associative and commutative), and so may be rewritten as 

define ! = 

which may, in turn, be simplified somewhat: 

define ! = 
4 1 2>o(while notoeqO?oU2 2b do [x,  sub1042 2>])0[i,id] 



3.2. The Rate-Determining Step 

These transformations (and others) have been independently 
discovered by several authors [as shown above], and proved correct in 
[KiS81]. The derivation of such rules is a necessary and perhaps the most 
elegant step in the creation of a transformation system, but -certainly the 
easiest. The crucial problems lie in determining the applicability of a given 
transformation to  a given program. For imperative programs, these prob 
lems are virtually hopeless once the program reaches modest complexity. 
Much work has been done on theorem-provers, for both imperative- and 
applicative- language programs, but schema recognition (including tem- 
plate instantiation) is still quite dfficult for non-toy languages, and prob- 
ably beyond hope for degenerate languages like Fomh;  and C. 

For applicative languages, there is optimism that these problems are 
solvable in a large number of cases of practical interest. (Of course, the 
general cases are often undecidable.) The property of referential tran- 
sparency is of decisive importance in these applications, wherein the 
representation of a function is being manipulated. On the other hand, 
imperative languages (especially ones with global variables, call-by- 
reference parameter passage, GOT0 statements, and arrays or pointer 
variables) easily befuddle compile-time transformation algorithms. 

This paper is primarily concerned with the problem of template instan- 
tiation, and leaves the problems associated with the verification of con- 
straints to (other people's) theorem-provers. Ke note (again) that even 
the theorem-proving routines must depend on an instantiator. 

3.3. Transformation Systems 

The behavior of program transformation systems has attracted com- 
paratively little attention. Much of the literature has focussed on ad h c  
collections of individual transformations, with no attempt made to predict 
or describe the properties of a collection zs a whole. Transformations may 
be composed, several redexes may be available a t  any given step, systems 
may or may not have the Church-Rosser property. Kormal forms may or 
may not exist, and if they exist, either they are unique or else their 
equivalence classes should be characterized. Transformations might or 
might not irr,,prove particular programs. 

W e  do not have much to  say about these things at ths time, but wish to 
draw attention to  an area of future research. 



c m  4 

Schema Recognition 

4.1- 'The Pnoblem 
We need to  recognize instances of transformable programs. For exam- 

ple, if we are gitcTen the template 

and the definition of the factorial function 

! = (eqO? + 1 ; x 0 [id, ! 0 subl]) (4.1) 

then it is obvious that the definition is an instance of the template. On the 
other hand, if  we were given 

eval = (notonull? + +o[~~[~,evalctail],head] ; 8) (4.2) 

then it would be less clear. (What corresponds to  h? to i?) However, the 
template can be instantiated by the substitution 

f + e v d  
p + null? 
g + -  b 
h + +G[xo[KI, 42 291, 41  ZP] 
i + head 
3 + tail 

to  yield an expression representing the same function as that denoted by 
4.2. We want our prospective pattern-matching algorithm to recognize 
both examples as instances of the template. 

4.2. Preliminaries 
A t e r m  is an element. of T,(V), the (freely-generated) initial Z-algebra 

over a countable set of variables V and set of operators C. For all n 1 0 ,  
En c I2 is the set ~f n-ary operators; Z = ukO En. In the subsequent 
chapters, we shall be especially interested in the Z formed by the union of: 

Zo = 1 all FP primitive functions j 
Zo = 1-tuple construction j 



Z2 = f composition, 2-tuple construction j 
Z, = f condition, &tuple construction j 
Z,, = n-tuple construction j for n24. 

Occasionally, when we wish -to write a term with (root) operator 5 E C, 
and children fi for lsisn, we shall find it convenient to use the meta- 
notation 

Expressions rooted by the nullary operators in Co, which of course have no 
arguments, may be written as o(xfZl f i ) ,  or as 00, or just plain o, as the 
whim takes us. 

The expression V(t) denotes the set of all variables v E V occurring in 
the term t . 

A subs t i tu t i on  is a mapping p from V to TZ(V), in which for most v E V, 
p(v) = v . The domain of p, written Dom (p), is the set of dl v E V such 
that p(v) # v . 

We denote the assignment of a term t to variable v by <v +- t >, and a 
substitution is written as a set of assignments: f <vl + t 1>, <v2 + t2>, ... 1. 
For convenience, all trivial (identity) assignments of the form <vi + vi> 
are omitted whenever possible, so that only the assignments to variables in 
the domain of the substitution are explicitly shown. The trivial (identity) 
substitution is denoted by the empty-set symbol, $. 

A ground t e r n  is a term which contains no variables, and thus is an 
element of Tz. A ground subs t i tu t ion  is a mapping from V to TZ. 

By a slight abuse of notation, we shall often refer to a "substitution p" 
when we actually are referring to the natural extension (morphism) of p to 
T'.(V) + Tz(V), wherein p is used to effect replacements of all variables in 
the given term. 

We define an infix operator fE3 which effects the composition of two sub- 
stitutions: 

We note that @ is associative but generally not commutative. Furthermore, 
it is clear that 



For pragmatic reasons, we shall only consider substitutions that are 
idempotent: 

4.3. Unification 
VrtiPcation [Rob651 is a procedure for sohlng equations, using the 

instantiation of variables as the only permitted operation. Given a pair of 
expressions, containing (possibly shared) variables, the algorithm attempts 
to  'unify' the expressions by finding a substitution that makes them identi- 
cal. The symbols in the expressions are not interpreted or evaluated. 
Thus, for any two terms t l  and t2, the unification procedure attempts to 
find the set U of substitutions p that satisfy p(t = p ( t g ) .  

For example, " a x b  " may be unified with " 13x(a+c )" by the substitu- 
tion p = [<a + 13>, C b  t 13+c > I .  All substitutions in U are instances of 
this most general unifier (m.g.u.); the less general ones are obtained by 
non-trill-ial assignments for c . We verify that 

The unification algorithm, which is due to Robinson, runs as follows. 
There are three possible cases: 

(1 )  both terms are variables; 
(2) one term is a variable and the other is not; 
(3) neither term is a variable. 

In (I), i t  suffices to set either variable equal to the other. 

For case (2), there are two possibilities. If the non-variable term con- 
tains the variable, then terminate with failure. Othe~xise, assign the term 
to  the variable. 

When (3) applies, compare the operators a t  the root nodes. If they 
differ, then terminate with failure. Othemlse, iteratively unify the 
corresponding children, ir, sequence, from left to  right. 

In all cases, it is assumed that each component of the substitution is 
applied globally, to both terms, as soon as it is defined. This, and the serial 
(rather than parallel) unification of the children ensures consistency. The 
final substitution will be the most general unifier of the two terms. 



The unification algorithm is complete in the sense that dl possible solu- 
tions (i.e. unifying substitutions) may be obtained by instantiating the free 
variables in the m.g.u. with arbitrary terms. Thus, the m.g.u serves as a 
finite representation of a possibly infinite set of solutions. 

4.3.1. Meta-Unification 

Meta- unification is unification with respect to an equational theory E. 
Replacement of "equals by equalsJf is a permitted operation. The goal, for 
any pair of t e rns  t l  and t2, is to find the set U of all substitutions p that 
satisfy p(f  = E  p ( h )  Ordinary unification is therefore equivalent to 
meta-unification w.r.t. an empty set of axioms (=# and = are the same rela- 
tion). With the empty theory, the terms 

a x b  and a+c  

cannot be unified. However, if we add the axioms (universally quantified on 
their free variables) 

we can meta-unify the terms via the substitution I<a + 1>, <b + l+c >]. 
With the additional axioms 

we can derive the additional solutions [ < b  + I>,  <c +- 0>] and !<a 0>, 
<c +- Oxb >]. Thus, there may be several m.g.u.@s in the solution set for a 
meta-unification problem. . 

Papers on meta-unification include [HuOBO, LaB77, LiS76, Mak??, 
PeS81, StiSl]. These authors devise unification algorithms which handle 
equivalences induced by sets of axioms that describe operators which are: 

commutative; 
associative & commutative; 
associative, commutative, & idempotent; 
associative & commutative, with an identity-element. 

The associative axioms in particular cause difficulties; algorithms han- 
dling them often suffer from incompleteness or non-termination. For 
example, given just the associative axiom 



and the terms 

u+6 and 6+a 

then there is an infinite set of dstinct soiutions 

which cannot be generated by any finite set of m.g.u.'s with free variables. 
Bowever, if we add the commutative axiom 

then the unique m.g.u. is the identity substitution $. 

4.4. Pattern Matching 

Pattern matching is a special case of unification, in which one term 
(the target) contains no variables. The term which might contain variables 
is called the pattern. 

Metapattern matching is pattern matching with respect to an equa- 
tional theory. Many pathological cases which occur in meta-unification do 
not occur in meta-pattern matching; pattern matching is a strictly simpler 
problem. A s  a consequence, it is possible to use more complicated aziom 
sets, ones beyond the scope of today's meta-unifiers. We shall use such an 
axiom set. In passing, we note that meta-pattern matching seems to be 
ignored in the literature (as a problem in its oun right); this author has not 
found any references to prevjous work. 

Actually, i t  appears that (meta-)unification and (meta-)pattern- 
matching form two points of a spectrum, based on the distribution and 
sharing of variables. In particular, an intermediate problem is of some 
interest: (meta-)unification in which the sets of variables occurring in the 
two terms are disjoint. Clearly, (meta-)pattern matching is an extreme 
example of ths type, since the target has an empty set of variables. N-e 
conjecture that this intermediate problem, too, is simpler than general 
(meta-)unification. W e  shall raise the point again, later. 

4.5. The Schema-Recognition Problem, Revisited 

It  is clear that our problem is one of meta-pattern matching, with 
respect to  some set E of FP axioms. We desire a function 

n : [Patterns x Targets ] -, Sets3  f 3ubstitutions 

which returns a set  of m.g.u.'s such that 





c- 5 

An Equational Theory 

5.1. O& Functional Algebra 

H'e introduce those algebraic axioms of FP which we shall use to  recog- 
nize instances of templates. We are  concerned only with the algebra of FP 
functional forms, and not with the object-level algebras, such a s  arithmetic 
or lists. However, we do provide the standard interpretation for Boolean 
algebra, when i t  occurs in the predicate of a conditional form. 

We note tha t  our set  does not form a complete axiornization of FP. 
9 

5.1.1. Objects Considered Harmful 

Programs are  functions, not objects. We are  concerned with reasoning 
about, and transformations of, programs. Denotations that are  based upon 
objects introduce needless and unhelpful clutter. 

5.1.2. The Axioms 

In the axioms involving n-tuples, the n quantifies over the positive 
integers; theref ore, such equations are  actually axiom schemes, each one 
representing an infinite set of axioms. At this time, we shall be purposely 
ambiguous as to  whether we are  dealing with a finite set  of 2*-order 
axioms or an infinite set  of lSt -order axioms. 

We remind the reader that  the meta-notation nc, ei lek +f ] denotes 
the replacement of el; by f in the given n-tuple. 

The "r", " E"  and " 1" symbols may all be interpreted as  "=" during 
the first reading. 



Al. ( f 0 g ) o h  = f o ( g 0 h )  

A2. f 0 id = f  

83. i d o f  = f 
. 84. l o f  E E 

n 
45. U k n > o f l e i  g ek 

i= 1 

A17. @+ h;  (p+ f ;  g ) )  f ( p +  h; g )  

A18. ( p + ( q + f ; g ) ; h )  1 ( q + @ + f ; h ) ; ( p + g ; h ) )  

Al9. @+ h; ( q +  f  ; g ) )  2 (q-r @+ h; f )  ; (p+ h; g)) 

5.1.3. Comments 

The axioms can be classified into several groups. 

Al..A3 the set of FP function expressions under the operator of function 
composition forms a monoid 

A4..A5 partial evaluations of the given expressions by a demand-driven 
evaluation rule 



A6 valid as  equality iff the argument is an n-tuple 

A? the definition of a 1-tuple 

AB..AlZ distributive laws 

A1 3. .A15 interpretations of Boolean operators 

A16. .A17 simplifications by subsumption 

A18..A19 reshapings of decision trees; these are both special cases of the 
axiom 

( p +  ( Q +  a ;  b )  ; (q  + c ; d ) )  = ( q + ( p + a ; c ) ; @ + b ; d ) )  

which may be viewed as asserting the equivalence of rotations of a 
decision table. 



C m  6 

Term Re-Wri ting Systems 

6.1. Basics 

A term (or tree) r e d i n g  system is a set  of directed equations and a 
some%-hat restricted "equals for equals" substitution mechanism. The sys- 
tem is applied t o  a term t ,  and produces a new term u ,  which is "equal to" 
t .  

Given a set  of equations E, we agree to limit the substitution mechan- 
ism to  replacing one occurrence (in t )  of the left-hand side of some equa- 
tion by the corresponding instantiation of the right-hand side. We call such 
a substitution a reduction of f ,  and we say that f  reduces (in one step) to  
u. A term whlch is irreducible (with respect to  E) is called an E-nomal 
f o r n .  

For example, if we have the reduction rules (equations) 

O + z  = Z 

szlcc (z) + y = z + m c c  (y) 

then the computation 1+1=2 can be modelled by the reduction sequence 

SLLCC (O)+SZLCC (0) I= O+SZLcc (SUCC (0)) I= SZLCC (SLCCC (0)) 

The final term,  s w c  (succ (O)), is a normal form. 

Term re-writing systems are sufliciently powerful to  model all comput- 
able functions [Man?4]. Our interest lies in the sub-class of such systems 
in which the reduction relation defines a partial order [KnB?O]. 

6.2. Notation 

We need to  introduce some standard notation. The following definitions 
are adapted from Huet [HueBO]. 

t I= u means that  t reduces to  u in one step. 

F O  is the identity relation: ( t  e0u) O ( t  =u). 

is relation composition: (t  I=* e u )  3s:  ( t  t= S )  A (S t= u )  



4 is the inverse relation of * : (t  4 u) e (u I= t ) .  

For any relation I= , we define the auxiliary relations 

= l = U = = i  symmetr ic  c l o s m  uf t= ; 

i = t= , @ t-1 (Wi >O) i-fold compos i t ion  of I= ; 

t rans i t i ve  closure of != ; 

OD 

* = "+* ref lez ive- transi t ive  closure of  I== ; 

N - = I=* n =I* equivalence u n d e r  @ ; 

N = # *  c o n g m e n c e  u n d e r  I=. 

We also define the predicates 

z r y  = 3w:  ( w I = z ) A ( w b y )  

Yire say that the relation t= is 

( 1 )  acyc l ic  iff t= + is irreflexive (and then t= is a partial ordering); 

( 2 )  noe ther ian  iff there is no infinite sequence t t= t 2  t= t . . . (then l= is 
well founded); 

( 3 )  local ly  confluent  iff V z , y :  ( z r y )  * (z r *  y ) .  We call terms z and y 
satisfying z t y a c r i t i c a l p a i r  for the relation I= . 

A normal form is canonical iff it is not congruent (-) to any other nor- 
mal form. 

The expression A(E, t )  denotes the set of all normal forms for the E- 
congruence class containing t .  The expression d (E, t )  is used to denote 
one arbitrarily-chosen member of A (E, t ) . 



6.3. Complete Sets of Reduction Rules 

A set of rules is c o m p l e t e  iff it is confluent and noetherian. Complete- 
ness is a sufficient condition to  ensure that all normal forms are canonical. 
Zf an equational theory admits a complete set of reduction rules, then the 
congruence of ground terms is decidable: two terms are congruent iff their 
canonical forms are identical. 

6.3.1. Noetherian Relations 

A relation is m e t h e r i a n  if7 all reduction sequences terminate. Proving 
that a relation has this property can be quite difficult. The normal 
approach is to devise an auxiliary relation >, which is to be a well-founded 
strict partial ordering with the property that 

[ V t l I t 2  E TEl ( t  1 I= t 2 )  =$ ( t  1 > t 2 ) -  

A large amount of very interesting work has been done, cataloguing the 
circumstances under which a partial ordering may be shown to be well- 
founded [Der82, DeM79, JoL82, HuL78, Lan79, LSn??, Pla?8a, Pla78bI. An 
example is shown in Chapter 7, when we prove a particular set of rules to 
be noetherian. 

6.3.2. Confluent Relations 

Confluence may be regarded as a consistency criterion, asserting that 
the operation of reduction does not fundamentally alter the nature of a 
term. Confluence implies the following "Church-Rosser" property: 

Any relation which is both locally confluent and noetherian is confluent. 
For relations with a finite set of rules R, local confluence is decidable. The 
test is known as the "Superposition Algorithm", and is credited to Knuth 
and Bendix [KnB?O]. I t  is essentially a constructive proof of the local 
confluence. 

Before we outline the algorithm, it is useful to introduce a formaliza- 
tion [Hd80] of what it means for a subexpression to occur a t  some point of 
a given expression. 

6.3.2.1. Occurrences 
We map the operators and variables of a term into sequences of non- 

negative integers, in such a way as to describe the "access path" traversed 



from the root to any given subtree. We use c to represent the empty 
sequence, and "-" to  signify the operator which either appends an integer 
to the left end of an integer sequence, or concatenates sequences, depend- 
ing on context. For any term t , the set of occurrences Occ (t ) is defined as 
the smallest s e t  satisfying: 

(i) e E & c ( t )  

The set of occurrences of a term is partially-ordered by prefix extrac- 
tion: for all 77, < E OCC ( t ) ,  7 I ( (319) q . 3  = (. 

For every ( E &c (t ), we denote "the subterm of t at c" by t /(, and we 
represent "the replacement of t / t  by F" as t I( 6 €1. 

From the definitions, we see that for all q ,  ( E Occ (t ), 77 ( t /77 

is a subterm of t /(. 

6.3.2.2. The Superposition Al'g ori thm 

For all pairs a, t= p, and a2 p2 of (not necessarily dstinct) rules in 
R, the algorithm attempts to unify a, with each subexpression a, /ci of a,. 
For all (m.g.u.) substitutions pi obtained in this fashion, the term ,ui(al) 
reduces in two ways: /*,(a,) != y ( B l ) ,  and pz(a,) I= p,(al I ( i  6 &I) .  Both 
terms of this critical pair are then reduced to their respective R-normal 
form(s); if they have any such in common, then the pair "passes" the test. 
If all such critical pairs pass the test, then R is locally confluent. 

6.3.3. The Knuth-Bendix Completion Algorithm 

Very often a noetherian relation is non-confluent (and therefore incom- 
plete), but the addition of certain new rules may make i t  confluent without 
enlarging the congruence class of any term. We say that the new rules 
complete the relation. 

Knuth and Bendix [KnB?O] devised an algorithm which produces a com- 
pletion of any relation R for which a well-founded strict partial ordering (>) 
can be given. Their algorithm is not guaranteed to terminate, since not all 
axiom sets have finite completions. 

The Completion Algorithm takes any non-confluent critical pair z and y 
discovered by the Superposition Algorithm, and creates a new reduction 
rule b(R, z )  f= b(R, y) ,  such that b (R, z )  > 6 (R y). The new reduction is 
added to  R, and the process repeats until the augmented rule set is 



confluent, or until the end of time, whichever comes first. I t  is possible 
that some new reductions will subsume old ones; in these cases, the old 
ones are eliminated. 

It is also possible for the algorithm to  fail: there may arise critical 
pairs [z,y] such that no term in A(R, z) is related by > to any term in 
A(Ry). In such cases, the relation > is shown to be insuflicient; i t  is also 
possible that one choice of > may yield a finite confluent set, while another 
may lead to the generation of an infimte set. 



CHAPrEx? 

Our Term Re-Writing System 

7.1. Our Reduction Rules 

We take the axioms Al..A15 as our reduction rules. When referring to 
the axioms in this role (i.e., as  directed equations) we shall call them by 
the names Rl..R15, and assign the name R to the set. 

The presence of the distributive laws R8..R12 in R implies that all R- 
normal forms are decision trees, with the condition operators (if any) near 
the root, followed by construction operators, and then the compositions, 
with the primitive functions (or variables-) at the leaves. For example, the 
(unique) R-normal form of the term 

( a o e  -, [b o e  , d o e  1; [ c  o e  , dce 1) 

A s  noted previously, the n-tuple axioms A5, A6, A8, and A 1  1 are actu- 
ally axioms schemes, producing one axiom apiece for every n r l .  For any 
set of axioms E, we shall %-rite IE], to signify the restriction of E to the 
subset containing no axioms with n >m . 

7.2. Termination 

We prove that the set R is noetherian by devising a strict partial order- 
ing relation (>) which displays the following properties. 

[a] 3 is well-founded; that is, there is no infinite descending sequence of 
ground t e rms t ,  > t z > t ,  .... 

The condition [b] is awlward because it quantifies over all ground 
terms. We would prefer that the termination property be deducible from a 
finite analysis of a finite set of re-write rules. Fortunately, the problem 
may be re-phrased. To show that R is noetherian, i t  is sufficient [HuOBO] to 
show that the partial ordering (3) satisfies all three of the following 



conditions: 

(1) [Vtl, t2  E T,] [ 'do E ZA [ V k ,  l s k s n ]  

We define such a relation by a slight variation on the recur s i ve  path 
ordering m e t h o d  [DeM?9; independently re-discovered by this author]. 
First it is necessary to define an ordering on the operators of C :  

a t o m i c  f u n c t i o n s  32  compos i t i on  3~ c o n s h x t i o n  32  condi t ional  

We leave all the atomic functions incomparable to each other, with the 
exceptions that the selectors 4 i n P  are less under Dc than all other 
atomic operators, with the identity function id (a.k.a. 4 1 19)  being the 
smallest of all: 

other f u n c t i o n s  2c 4i n P D c  id. 

The relation >c is extended to an ordering 2 on the (ground) terms of 
Tc by the following rules: 

For all o, E Em, and for all o, E Z,, 

m 
Ok,lf-n] g* 2 o,(X f , )  

i= 1 



where X gi :, XTzl f denotes the lexicographic extension of 3 to tuples, 
with the case m = n = 0 being (trivially) false. 

This ordering may, in turn, be  extended to  possibly non-ground terms 
in Tr(V) by augmenting the above disjunction with the fourth case 

where, if m=O, we now permit o, to be chosen from Co u V. 

If for all r u l e s a e p  E R, we have that a 28, thenRisnoetherian. Our 
rule set R = IRl..R15] is shown to be noetherian by applying this test. 

7.3. Incompleteness The Knuth-Bendix completion algorithm will sup- 
ply a large number (=) of extra rules, including 

(oroh-, f ; g )  I= (41 2 h h +  f ;  (42 2 ~ 0 h - ,  f ; g) )  (R2-7) 

The first new rule (R20) is the only one of independent interest. The 
derivation of R20 may help to shed light on its relatjonship ~ l t h  the compu- 
tation rules implied by R4, R5, R10 and R11. 

e2 @ , z ; z )  (by R4, twice) 



Or, more generally, 

f = *  @ + h ; h )  .(by R5, twice) 

One other point is worth mentioning here. I t  seems that R20 may 
require the ability to recognize the extensional equality of two function 
expressions, which is of course undecidable. Fortunately, all that is really 
necessary is that the intensional relation = E  be decidable. 

The new axioms R25 and R27 subsume R14 and R15, so we omit the 
latter. 

An exhaustive case analysis confirms that the rule set R* = [Rl..R13, 
R20..R2?j is confluent modulo congruence classes induced by Boolean alge- 
bra. That is, R* is not confluent, but the normal forms of any given term 
differ only in the arrangement of the condi t ional  operators;  the non- 
conditional sub-expressions are the same (although their order may be 
permuted). For instance, the term 

has two normal forms, 

(~'(9 +If ilf 2 I ; t f  11921);(4 +[91jf 2I;[9 1,921)) 

and 

(q-+(P '[f l s f  21;[9 l,f 21);b-'[f 11g21;[g 11921)) 

These R*-normal forms can be reduced to each other by the select ive  
application of rules R16..R19 (which are n o t  in R*). Of course, term rewrit- 
ing systems are not permitted to be selective in their application of rules, 
and so we are left with these as distinct normal forms (if we exclude 
R16. .R19), or, with non-termination (if we include them). For the same rea- 
sons, i t  is not possible to sort the predicates into alphabetical order, or 
otherwise choose a canonical representative of the set of all sernantically- 
equivalent decision trees, without stepping outside of the framework of the 
term-rewriting system. 

This author has proven that, for any mr2, there does not exist a finite 
complete rule set containing IR*],. The proof is a generalization of the 
example given above. Reversing the associative grouping of composition 



(Rl)  does not change matters. 

7.4. Two Complete Subsets 

The rule se t  R* - IRlO,Rl l ]  is complete. The confluence has been 
checked mechanically, and the termination property is demonstrated by 
the  method given earlier. 

The rule set  R+ = lRi..RB, R21..R22{ is also complete. It is the largest 
subset of R* that contains no axioms involving the conditional operator; w e  
shall find i t  useful in solving matching problems in the con&tion-free sub- 
algebra of FP. 



CHAPTER8 

Soundness and Completeness 

8.1. Soundness 

All of the axioms are  valid in the limited sense that  for whatever argu- 
ments both sides of an axiom are defmed (i.e., not 1 ), both sides give the 
same answer. Thus, the left- and right-hand sides of each axiom are 
weakly equivalent  (-). 

However, for some of the axioms, there exist arguments for which one 
side is de f i ed ,  while the other is not. We define the relations of approzi-  
m a t e s  (E) ,  is a m o x i m a t e d  by  ( 2 ), and strong equivalence (=) in the stan- 
dard way. 

(f E g )  e [ W z ]  [ ( f : z = ~ ) V ( f : z = g : z ) ]  

For the FP computation rules, the &oms1 left- and right-hand sides 
are related as shown in Chapter 5 [Bac?8]. We shall consider our prospec- 
tive pattern-matching algorithm Cl : [Pa t t e rns  x Targe t s ]  -, ~ S u b s t i t u -  
tions j to  be sound iff the algorithmically-produced function is at least as 
well defmed as the original function: 

We note that  R*-normalization and R+-canonicalization are  both sound: 

[ V e ~ E z p ] [ ~ 6 f A ( R * , e ) ]  b 2 e  



8.1.1. A Partially-Ordered Set of FP Machines 
Let us denote by FP(e) the function computed by the expression e 

under FP evaluation rules. The notation j f Fp g is used as a shorthand for 
FPV ) E FP(g ), and analogously for 2 Fp and 

We can extend the partial order E to abstract machines (computation 
rules) which map function expressions to functions. If Ezp is the set aof all 
valid FP function expressions, and M I  and M2 are machines, 

and similarly for 3 , =, and -. 

I t  is evident that by varying the computation rules of FP, a partially- 
ordered set <MI E >  of abstract machines may be created, satisfying the 
(weak) equality 

We wish to define an abstract machine under which the axioms are 
equations; so that all the EFP and 2 FP relations are raised to =. The prob- 
lem with using the axioms as they stand is that weak equality is not an 
equivalence relation (because z is not transitive), and so substituting 
"equals for equals" is not safe. For example, if we were permitted to freely 
substitute "weakly equals for weakly equals," then the trivial-but-true 
axiom 

AO. E f 

would permit us to substitute I for any function (say, f ). Further, it would 
allow us to continue by replacing the I with any function g , since 1 -- g , and 
g may be completely unrelated to f . 

We can effectively find two machines in M for which the axioms are all = 
relations. The simpler is the less-ukflned FP machine (1dFP). This 
machine's computation rule is derived by inspecting each EFP and gFF 
relation, and regarding the less defined side of each axiom as the common 
value for bo th  sides. The (updated, modified) computation rule is then (re- 
)applied to all of the axioms, and the process repeated until a fixed-point is 
reached. 

The less-defined side often contains (universally-quantified) function 
variables not occurring in the better-defined side, and so it is necessary to 
assume that all such variables are instantiated by 1. This has the effect of 



reducing the domain of the better-defined side to  a sub-domain of the 
less-defined side, in this case the empty domain. 

For example, axiom A5 gives us that 

Since construction and composition are strict in FP, we have 

and so we conclude that f 1 for all function expressions f . 

Of greater interest is the more-ukpned FP machine (mdFP), which uses 
the be t t e r  defined side of each axiom as the value for both sides. 

Any FP function expression, when 'run' on the FP machine, approxi- 
mates the same expression run on the mdFP machine. 

[V e E Ezp ] 1 = IdFP(e ) E FP(e ) E mdFP(e ) 

In a machine with applicative-orcler computation rules, dl arguments 
of a function are evaluated, even if the function does not need some of 
them under some circumstances. In a normd-orcler machne, argurnents 
are evaluated if and only if they are needed. 

A s  a first approximation to our "more defined" FP machine, let's look 
at a normal-order (demand-driven) FP machine, which we temporarily call 
N. (The underlying computation rules of FP are those of applicative-order 
(data-driven) evaluation.) In such a machine, the axioms A4, A5, and A6 
are -N. Regrettably, this machine is insufficient. We find that A10 and  A 1  1 
must become 

That is, information is lost when going left-to-right. Also, the axioms A14, 
A15, A18 and A19 remain E N  or JN1 and A20isnow @ + f ;  f )  EN f .  (The 
relationships of axioms A4, A5, A1 0, and A 11 with A20 were discussed briefly 
back in 5 7.3.) From these inadequacies one can deduce the need for an 
"eager beaver" computation rule for conditions, namely, the parallel 
evaluation of dl three subexpressions. One such rule for computing the 



value of a conditional function, applied to an argument z ,  is 

Simultaneously evaluate p :z , f 2, and g :z . 

I f p : z  terminates with value true, then return f :z and discard g :z. 

If p :z terminates with value false, then return g :z and discard f :r. 

3.f f :z and g:z both terminate with the same value, then return 
that value and discard p :z . 

In all other cases, return 1. 

With this computation rule (C1), the demand-driven machine N 
becomes mdFP. 

Actually, we can do somewhat better; this can be best illuminated by 
describing a new rule in the order-theoretic terms of denotationdl seman- 
tics [Sto??]. Consider all values in the ranges of f and g to be elements of 
a countably-based complete partial order <Dl s>. Assume further that the 
computation of f :z (and g :z)  might emit some basis elements of the 
result as soon as they are available, rather than upon termination of the 
entire computation. We denote by U f :z the least upper bound (1.u.b.) of 
the basis elements emitted (so far) by the computation of f :z, and simi- 
larly for U g:z .  Then the conditional operator can emit intermediate 
results according to the computation rule: 

( r,) 
if p :z = true; 

Ug:z ... if p:x = false; 

U f :z l l  Ug:z ... otherwise. 

This accounts for cases wherein it is unnecessary for any of p:z, f : z ,  
or g :z  to terminate. For instance, f m d  g may return (potentially 
infinite) sets as values, and subsequent operations upon these sets may 
only ask whether the sets contain some specific subset. In such cir- 
cumstances, if p : z  has not yet terminated, it is unnecessary that the 
entire sets f :z and g : ~  be computed, if the desired subset is contained in 
the intersection of the partial results already returned by f :z and g :z .  (In 
this example, D is a powerset, the partial ordering relation (r) is E, the 
basis elements are the finite sets in D, the least-upper-bound operation (U) 
is u, and the greatest-lower-bound operation (TI) is n.) 



In a series of papers [MaS?5, MaS?6], Manna and Sharnir investigate the 
properties of the "optimal fixed-point" semantics of recursive function 
definitions. The optimal fixed-point is often more defmed than the least 
fixed-point (which is the popular choice in the semantics literature). The 
relationship between their optimal fixed-point and our mdFP machine has 
not been explored. 

The mdFP machine is too slow to  be used to execute programs. He 
shall use it  only to justify the intermediate steps of the pattern-matchng 
process. The plan is to  take an FP pattern-matchmg problem, regard i t  as 
an mdFP problem, solve it for the mdFP machine, and return as  the FP 
answer only that subset of the mdFP answer which is s o d ;  for each sub- 
stitution returned in the answer, the target must approximate ( I T F p )  the 
instantiated template. 

We observe that Hre don't need all of the power of the C2 rule; we can 
justify the pattern-matching algorithm with the weakest machine subsum- 
ing FP and satisfying our axioms. 

8.2. Completeness 

We may choose between several degrees of completeness for our pros- 
pective pattern-matching algorithm. Yl'e may demand that i t  find: 

[ 11 one solution (if any exist); 
[2] all solutions; 
[3] all solutions, modulo an arbitrarily-chosen equivalence. 

Clearly, option [ I ]  demands the least effort to be expended. However, 
for the intended application of the algorithm (program transformations), 
some instantiations of the schema variables may be better than others; 
that is, some may satisfy the transformation constraints, while others may 
fail. 

Option [2] offers the best chance to satisfy external constraints. 
Unfortunately, our algebra admits cases wherein complete solutions must 
contain infinite sets of m.g.u.'s. For example, if v l  and v 2  are variables, 
then the set of substituti:~ns calculated by R (vlov2,  +) contains (amongst 
other things) the infinite family of m.g.u.'s 



etc. 

We n&e that this difficulty was not caused by our infinite set of n-tuple 
axioms; only axioms for 2-tuples were used. Of course, sirnilar infinite 
series do arise for every nll. 

Option [3] (which of course subsumes [I] and [Z]) may be viewed as 
offering a compromise between completeness and termination. We shall 
choose and characterize an equivalence relation (in which all partitions 
contain a t  least one finite member), after fist  presenting the algorithm. 



c3wPTm9 

The Basic Algorithm 

9.1. Partitioning the Problem 
It i s  both possible and useful t o  separate the handling of the  'condition' 

functional from that  of the other functionals. I t  is possible because all R*- 
normal terms are  decision trees with all non-condition functional forms 
(and primitive functions) a t  the leaves; i t  is useful because the condition 
functional form is difficult to  handle. We note that  whle the (condition- 
free) rule set  R+ is confluent, the rule set  R* is not; and the rule set  R* u 
IR16..R19j, which has enough power to  express the equivalence of two deci- 
sion trees, is not even noetherian. 

9.2. Composition & Construction 

Re need a function 9 E (Pa t t e rns  x Targe t s )  -, 1 Subs t i tu t ions  ] whch  
does the pattern-matching operation on non-conditional expressions, 
returning the set  of all substitutions which unify the pattern and the tar- 
get. 

We shall find i t  convenient to  use Tc(V) rather than Tc as the domain 
for targets, with the understanding that any variables introduced into the 
target a re  unique, and so do not occur in the pattern. 

9.2.1. More Notation 

We extend the operator of set  union, to  encompass the union of two 
set-producing functions: 

f u g  - h x . ( f  :x  u g : x )  

Thus, we are using the symbol "u" as both a function and a functional 
form; the reader should bt. able to  tell the diflerence from the context. 

We define an infix operator @, which provides a convenient way to  com- 
pose functions. Let S denote a se t  of widgets, and let f be a function that 
maps widgets to  se ts  of doohickies: 



The @ operator is sometimes more opaque than the notation that it dis- 
places, but its use facilitates algebraic manipulations. The operator associ- 
ates on the left: 

(SQf Q g )  = ( ( S Q f ) @ g )  
It follows immediately from the definitions that @ distributes over union: 

W e  extend the notation slightly, to express n-fold 8 composition. 
0 

W e  now define the infix operator P , which uses substitutions (possibly 
obtained from an earlier invocation of the pattern-match operator @) to 
provide environments in which subsequent pattern-match operations take 
place. For any S E !Substitutions j and ip , t  ] E Tz( V) x T,(V), 

The 'conventions of (left-)associativity and n-fold composition of b are 
analogous to those for @. 

In general, for all p E (S D b,t]), p is a refinement of some substitu- 
tion s € S (that is, there exists a substitution s '  such that p = s @ s'), and 
of course p meta-unifies p and t : p(p)  =, p(t ). We also notice that if p 
and t are R+-normal forms, then 

9.2.2. The Algorithm Q, 
We are almost ready to present a first draft of the algorithm a. First, 

however, we need a couple more auxiliary definitions. 

The predicate IsYariable?(f) returns true if f E V, and false other- 
wise. 



The predicate TsTuple?(n, f ) returns true ii f is a function which 
returns an n-tuple as its result, and false otherwise. We recall that n- 
tuples may be generated by user-defined functions, as well as by construc- 
tion operators. 

The predicate IsConstFunction?V) returns true if  f is a manifest 
constant function 6 for some object D ,  and false othenlse. 

The symbols u and v,,, represent new variables created by the algo- 
rithm. They are assumed to be unique, and distinct from the new variables 
u' and v;,, created by other (recursive) invocations of O, or by parallel 
computations nithin the same invocation. (The Usf function gensym per- 
forms a senice such as this.) 

The numbers running dow-n the left-hand side of the algorithm just tag 
certain lines, to bind them to the corresponding comments on the next 
page. 



letrec 9 [P, TJ = 
if IsYariable?(T) then ff <T + P>jj else 
if IsYariable?(P) then I [  <P + T> j 1 else 
case P of 

1) dmic : if P = T then f $ j  else 1 j fi, 

case T of 
n 

atomic : if IsTuple?(n. T )  then @[PI n Ulc n>oT] else j fi; 
k=l 

t ,  0 t2 : if I d h p l e ? ( n .  T )  then +[PI fI ~k n > o T ]  else [ fi; 
k = 1 

esac; 

P1°P2 : 
9[p l ,  "id"] 0 [ p 2 ,  TI u 

2) 4(p1, TI 0 [Pz,  "id"] u 
if Id'ariable?(p 

n 
4) else ; @b2, f i ~ i . ~ l  0 u bll ~ k n ~ l  D [v&,n, TI 

n=2 i= 1 k=l  

case T of 

5) atomic : if IsConstFunction?(T) then 91p T ]  else 1 j fi 

esac; 
esac 

fi fi  
end GJ 



9.2.3. Comments on 9 

The following comments are keyed to particular lines of 4'. Subsequent 
sections will give fuller treatments of some of the issues raised here. 

1) U the atomic functions are identical, then return the identity substi- 
tution #; othemise return nothing (i-e., fail). 

3) The matching attempts made by this line are based on rule R5. The 
n ranges from 2 to  =; the lower bound excludes consideration of 1- 
tuples, while the upper non-bound models the infinite set  of (ld- 
order) tuple axioms. 

We observe that, if p2 is not a variable, the matching of p2 with 
nTElvi,, will bind the (new) variables v,, to sub-structures of p2.  
So, by the time that the pair [ucy, ,  , T] is matched, the variable vk,, 
has already been bound to some piece of p2. 

We also see the phenomenon known as  "variable-splitting" [Sti81], as 
exemplified by the new u variables. Compared with line 4, we see 
that some of the "variableness" of p l  has persisted past the assign- 
ment of 4 k nb ; this provides extra flexibility in the matching of 
U o V k S n  with TI vis-a-vis the matching of vk,n with T. Variable- 
splitting is required (for the sake of completeness) whenever an asso- 
ciative operator (in this case, "0") is modelled. Further examples 
may be found in lines 6 and 8. 

Finally, we note that if bothp and p2 represent (unassigned) pattern 
variables, then u and vk,, are both still (unassigned) variables at  the 
point where the final match of [u ovk ,, , TI occurs, and this causes an 
infinite recursion. The i n f h t e  solution set shown at the end of 
Chapter 8 is generated here. (A similar loop arises i fp2  is of the form 
v .anything .) 

4) By contrast, this line is well-behaved. Either p or p2 will supply the 
value of n ,  or the match will fail immediately. 

5) This line is based on rule R4. In an actual implementation, this case 
. would be merged ~ 9 t h  line 2. 

6) Since both P and T are in R+-normal form, p will match a tuple iff 
pl is  a variable. (See rule R8.) The varjablepl is "split" into n new 
variables v , ,  ( l ~ i ~ n ) .  

7 )  Due to the fact that P and T are R+-normalized, the lines 7 and 8 are 
sufficient to give complete-but-finite matches of p with t lot *. 



(See rule R1.) 

8) Since both P and T are in R+-normal form, p can match a composi- 
tion iff pl is a variable. (See rule Rl.) The variable p is "split" into 
two new variables, u and vz. 

9.2.4. Completeness vs Termination 

The algorithm 9, as presented, fails to terminate for two reasons. The 
first is evident from a casual inspection of the algorithm: the infinite 
number of tuple axioms is reflected in those little "=" symbols in a couple 
of the quantifiers. The second reason is more subtle; @ does in fact gen- 
erate all of the solutions mentioned at the end of Chapter 8. 

We claim that there is a finite subset of @ h , t ]  that contains all substi- 
tutions in which we are truly interested. This subset contains only ground 
substitutions of the template variables. (We note that both types of 
unboundedness mentioned above introduce unbounded numbers of free 
variables into the m.g.u.'s.) Furthermore, we are only interested in assign- 
ments <v + f > where the term f is in R+-normal form; the terms t , idct, 
idotoid, and so on, are not considered to be distinct. We say that @ is 
sumciently complete iff it  generates all possible distinct ground substitu- 
tions. 

We can modify @ so that it terminates, and is sufficiently complete. To 
accomplish this, we shall use Znd-order terms to represent n-tuples, with 
the idea that we can usually infer the correct value(s) of the free meta- 
variable n from the context. That is, it is often the case that a 272d-order 
tuple is matched against a 1"-order tuple occurring in the pattern (or the 
target), and so the value of n is immediately determined. 

Sometimes, however, when the pattern contains multiple occurrences 
of a variable, the appropriate value for n cannot be determined by a local 
analysis of the (current) pattern and (current) target; rather, a global 
arbitration mechanism is needed. For example, to match the pattern 
[v,ov, [v20v, v30v]] with the target [+,[-,XI], any one of these ground sub- 
stitutions is sufficient: 

'(i) v ,  +- +, v2 + -, vg 4- X ,  v +- id 
(ii) v1+*r13P,  ~2 ‘- 42 3P, v3 6 43 3>, V + [+,-,XI 
(iii) v,  + 42 3P, u2 ‘- 41 3P, v3 4- 43 3>, 21 +- 1-,+,XI 

(iv) v l  + +o4l 2b, v2 + 42 2P, v3 + Xo4l 2Pl v + [id,-] 



as are many others. We see that, although neither the pattern nor the tar- 
get contains a 3-tuple, some of these solutions require that v be instan- 
tiated by a 3-tuple; but taken individuully the recursive pattern-matching 
sub-problems of [ V ~ Q V ,  +], @ [v20v. -1 and [v30v, X] have no way of 
determining ths. In general, a variable which occurs in the pattern k 
times might require instantiation by a k-tuple, to be able t o  show k 
"different faces" to  the world. A size of less than k may also suffice, as 
demonstrated in the last substitution above (iv). A size of greater than k 
must inevitably leave free variables in the substitution. 

W e  propose a simple mechanism that determines a reasonable upper 
bound on the value of the meta-variable n in a @-order tuple. 

We return our attention to the line labelled "3)" in the algorithm 9. 
Given that the union quantifiers have been replaced by the direct use of 
2"d-order terms (i.e. n?=,vi, and 4 k  n9) with the free meta-variables n 
and k ,  i t  is sufficient that whenever p2 is of the form "v' or 'v .anything ', 
the pattern-matching sub-problem Q[uovk,,, T] be m ~ e n d e d ,  and the 
(unevaluated) suspension returned in the answer. 

We name the suspensions after the leading variable in p2 ,  by saying 
that @ [uQv~, ,  , TI and 9 [uo(vk,,oanything). T] are vk,,-suspensions. Ke 
define an operator #(vk,,, s) ,  which counts the number of vk.,-suspensions 
in the substitution s . 

When the entire (top-level) matching operation is done, then the func- 
tion ARBJTER is invoked on the resulting set of substitutions (suspensions 
and all) to return the desired answer: a finite sufficiently-complete set of 
ground substitutions. 



letrec ARBITER (S)  = 

then ARBITER (S - isj) u arbi ter  (s) 
else S 

fi 

dere  arbi ter  (s ) = 

The function RESTART(s) returns the set of all substitutions gen- 
erated by resuming the evaluation of the vk,,-suspensions in s ,  with the n 
and k now bound to  the values indicated by the quantifiers. It is expected 
(in fact, guaranteed) that after chugging on for a while the computation 
will produce not only new ground substitutions but also substitutions con- 
taining new suspensions. These new suspensions are not automatically res- 
tarted, although they might be resumed later by recursive invocations of 
ARBITER. 

The function ARBITER does eventually terminate, when all of the vk ,- 
suspensions in every s E S have #(vk ,n , s )= l .  ARBITER splits variables 
which have multiple occurrences, until all suspensions involve unique vari- 
ables. A t  t h s  point we stop, because continuing would either introduce 
free variables into the final substitutions, or generate substitutions that 
contain 1-tuples [f ] (a.k.a. f ) and the selector 4 1 1b (a.k.a. id), which 
immediately R+-reduce to already-discovered substitutions. 

9.3. Condition 

A s  mentioned in the introduction to  this chapter, the functional form 
of condition is hard to deal with. To do i t  justice, this author feels that we 
must incorporate knowle2ge of Boolean algebra into our equational theory 
(hence the axioms A1 3. .A15), and generally model, in decision-tree form, 
the various Boolean axioms such as commutativity, associativity, idempo- 
tence, and subsumption. Theories modelling such axioms cannot be both 
noetherian and confluent; R* u IR16..R18] is not noetherian, essentially 
because R l ?  and R18 simulate the commutativity of logical conjunction. 



We desire a pattern-matching algorithm that is conversant with these vari- 
ous equivalences. 

We have such an algorithm. I t  always terminates, with a complete set 
of solutions (assuming of course that i9 does also). However, the algorithm 
was not designed to serve as the basis for an actual implementation; it was 
intended that i t  serve as a benchmark of the inherent dfliculties involved 
in obtaining completeness. It is incredibly slow, partly because it adopts 
an excessively low-level viewpoint on the problem, partly because it  
returns solutions which are in some sense equivalent, and partly because 
some matching problems actually have vast quantities of distinct solutions. 

9.3.1. Notation & Terminology 
In the subsequent sections, we shall assume that all terms are R*- 

normalized; this means that each one may be viewed as a decision tree 
with all of the condition operators near the root and all non-condition sub- 
terms at  the leaf positions. We model a decision tree (i.e., term) contain- 
ing n distinct prehcates as an n-dimensional hypercube (decision table). 
In such a cube, the each of the n axes is labelled by a predicate, and the 
Zn points inside the hypercube are condition-free subterms. 

The expression If 1 denotes the number of distinct predicates in the 
term f ; or, alternatively, the number of dimensions in the hypercube f . 

The expression c ( f  . n )  represents the nth axis label for the hypercube 
f , in some arbitrary enumeration of the I f  I axes. Similarly, the expres 
sion ((f ,n) denotes the nth point in the cube, in some arbitrary enumera- 
tion of the 213 1 points. 

9.3.2. Least (and other) Upper Bounds of Hypercubes 

When matching a pair [po, t o ]  of hypercubes, we require that both have 
the same dimensionality. In practice, the target is usually much larger 
than the pattern. The first step, then, is to find some q o  such that both the 
pattern po and target t o  may be converted into qo-dimensional hyper- 
cubes. All else being equal, the smallest such go would be the preferred 
one. However, in order to  generate all solutions to the matching problem, 
we 'must actually generate a (rather large) set of pairs b,, t i ]  of qi- 
dimensional hypercubes. 

Observation: For any term f with v E V(f) and v l ,  v2, v3  B V(f ), the 
term obtained from f by substituting (vl  -, v2 ; v3) for all occurrences of 
v has a t  least one more predicate than does f .  (If v occurs more than 



once in f ,  or occurs in a predicate, then the new term may have several  
more predicates than j .) Reducing the new term to any Rf-normal form 
then converts it into a decision tree (hypercube). 

For example, performing this substitution on the term [VOX, VO-] 

results in the new term 

whose R*-normal f o m  are the decision trees 

( ( ~ 1 0 ~ )  -+ 

((v10+) -+ 

[v20x, v20+]; 
[v20x, v3cf 3) ; 

((v l o + )  + 

[v30xI v20t]; 
[v30x, V30f I) ) 

and 

which contain the new predicates (vlox) and (v 

Our strategy, then, will be to f i s t  increase the size of the pattern, 
through exhaustive instantiation of its variables (as above), yielding new 
pairs [pi, ti], until each pattern pi has at least as many (distinct) predi- 
cates as does its target ti. Since the size of a pattern may increase in an 
irregular manner, it may not be possible to have all of the inflated patterns 
pi possess exactly Iti! predicates. Therefore, the second phase of the pro- 
cess will be to increase the size of each target to match the size of its pat- 
tern. (The inflation of a target is a smooth process; it will always be possi- 
ble to get an exact match.) 

In the subsequent function definitions, it is assumed that the symbols 
voI vl ,  v2, and v3 represent new variables every time the algorithm 
encounters them; some mechanism like LISP's gensym is presumed. 



9.3.3. Our Pattern-Matching Function R 
A t  this point, we introduce our function R E Patterns x Targets -t 

{Substitutions j, and explain the nature of its constituent parts in the sub- 
sequent sections. 

' t ' ~ ' P ' [ / L p , t ] I  , g l ~ ~ ~ ~  O I-ILTER @ EXPAND B EMBED O MATCH 
n = O  1 

9.3.3.1. PUMP 
The function P U M P  inflates a pattern term p ,  by applying the instan- 

tiation trick mentioned above, substituting (vl -.up; v3) for all 
occurrences of some variable vk E V @ ) .  Each resulting term pk is then 
converted to  a decision tree by reducing it to any one of its R*-normal 
forms. 

P U M P  is only employed, of course, when It 1 - I > 0. 
A s  noted previously, instantiating one variable vk in p may cause the 

creation of an arbitrary number of new predicates in pk,  perhaps enough 
that no further pumping instantiations are required: Ipk l  2 It 1. On the 
other hand, it is possible that all but one of these new predicates may be 
matched against "don't care" premcates of the target; for any instantia- 
tion, we can only guarantee that one  new predicate wil l  be matched against 
a "real" predicate of the target. (If e l l  new predicates resulting from a 
pumping instantiation are matched against "don't care" predicates, then 
pumping on vk was superfluous.) Thus, the n-fold composition of PUMP, 
applied to p ,  produces patterns which are guaranteed to match a t  least 
n+lp 1, but no more than It 1, of the "real" predicates in t . 

let PUMPIp,t] = 

U let r =  I<v t (v l+ve ;v3)>1  in 1[6(R*.p@)) , t ] j  
vcV(P) 

end 

9.3.3.2. FILTER 

The function FILTER weeds out undersized patterns, ones possessing 
fewer predicates than their (target) mates. 



let FlLTERb , t]  = 
i f lp lr  It1 then lb,t]] else 1 1  fi 

end 

9.3.3.3. EXPAND 
The function EXPmD maps pairs of hypercubes ip,, fi] where bi 1 r ik 1 

to pairs Ipi, t i J ]  such that bil = Iti']- If lpil > Itil, then we demand that &' 
exhibit the following behavior: 

These goals are easily attained by letting ti' = (vO -, ti ; ti) for some new 
variable vo. The new variable will eventually be matched against a 
corresponding "don't care" predicate of the pattern. The expansion of the 
target is repeated until the sizes of the terms are equal. 

letrec EXPAND b, t  ] = 
3 bI > It1 

then EXPAND [p, (vo -, t ; t ) ]  

else I [P I t 1  1 
fi 

end 

9.3.3.4. EMBED 

For every pair kilti] of pi-dimensional hypercubes, there are qi! x zqi 
distinct ways to embed one into the other. The factor of qi! is the number 
of ways to  put the axes of pi in 1-1 correspondence with the axes of ti; and 
the factor of 2qi is the number of ways to match the "minimal" element of 
pi (i.e., the unique case that is selected when all predicates yield false) 
with that of ti. Our algorithm will, of course, have to try d l  of these possi- 
ble permutations, for the sake of completeness. Things could have been 
worse; if our terms were merely unstructured sets of 2% subterms rather 
than decision tables, then there would be Z9'! embeddings of pi into ti. 

W e  let Perm @) denote the set of dJ ip 1 ! x 2 1 ~  I permutations of the 
hypercube p . 



9.3.3.5. MATCH 
For each pair bi ,ti] of f ully-aligne d hypercubes, the procedure is sim- 

ple. W e  need only run through all b=l pairs of predicates, and all 2'"' pairs 
of points (condition-free subterms), appl~lng the function @ t o  each such 
pair and accumulating the s e t  of substitutions as we go. 

2b' 
HATCH , t ]  = igj 'El [n(p ,n).n(t .n)]  D [tb ,n).F(t,n)l 

n=l  n=l 

9.3.4. Time Complexity 

The complexity of the algorithm R is so bad that in the next chapter we 
suggest using AT-complete heuristics (!), to speed up the matching. 



CHAPTER 10 

Enhancements 

10.1. ELiminating Template Variables 

The effort expended by the algorithm Q, is proportional to  the number 
of hstinct variables occurring in the pattern; each variable gives 9 the 
chance to  find more solutions. Therefore, it is advantageous to  formulate 
the schemata carefully, avoiding unnecessary generalizations. 

For example, we have already encountered the transformation schema 

define f = (p + g  ; h o [ i , f o j ] )  

with the enabling conditions: 

If both constraints are satisfied, then the definition of f may be stated 
non-recursively: 

define f = 

41 2~ 0 (while notcp.42 2b do [h1c[41 2P, i c Q 2  Zb], j ~ 4 2  2 ~ 1 )  o [ g ,  id] 

When this example was given earlier, instead of (1) we demanded that g 
be a constant function [Coo66. DaB76, KiSBl], and in place of (2) we used 
the simpler but more stringent constraint that h had to be associative and 
commutative [DaB76]. In such cases h '  = h.  Condition (2) is equivalent to 
the following requirement: 

(2')  ( 3 h ' ~ E z p )  ( V a , b , c  ~ E z p )  
ho[a,hlo[b ,c]] h10[ho[a,b],c] A hc[a,g] = h8o[g,a] 

This version (2') is due to  Cooper [Coo66], but was re-discovered by 
Kieburtz & Shultis [KiSBl]; in both cases it  was motivated by the special 
case wherein g is constant. 

Hre call the functions h and h' a pair of associative d d s  with respect 
to  g .  Perhaps the most famous such functions (in which h # h') are the 



list constructors over a domain D: 

h = appendLfD x D'-, D' 

h ' =  appendR E D ' X  D -, D' 

g = F E D '  

so that, for instance, 

appendL:[4,c] = <4> = appendR:[c,4] 

and 

appendl: [3,appendR:[<4>,5]] = <3,4,5> = appendR: [appendL:[3, <4>],5] 

I t  is the case that the choice of i in the 'factorial template' does not 
affect the satisfaction of the constraints. We note that the subterm 

ho[iI f oj] 

may be factored into 

where i l o i 2  = i. From the point of view of satisfying schema constraint 
( Z ) ,  one factorization of i is as good as any other. 

Proposition: 

Proof: 

(-..I 
The terms ho[ilo4 1 2>, 42 2>] and h10[4 1 2>, il042 231 are shown to 
be associative duals with respect to g by direct substitution into the 
equalities of constraint 2', combined with the simplification of both 
sides of each equation to R+-canonical form. 

(ho[i1o4l 2P, 42 2b]) 0 [ a ,  (h'o[4 1 Zb, il042 2P]) 0 [ b  ,c]] 
= ho[iloa, h10[b, iloc]] 
= h'o[ho[iloa, b], iloc] 
= (h10[4 1 2P, i1042 2 ~ 1 )  0 [(ho[ilo41 ZP, 42  2P])o[aIb], c ]  



and 

(ho[ilo41 2b, 4 2  2~1) 0 [a, g ]  
= h o [ i l ~ a ,  g ]  
= h 1 ~ [ g ,  i l e a ]  

= (h80[q1 2b, ip42 2b]) 0 [g, a]. 

(* 1 
Trivial; choose il = id Then 

and similarly for h'. 

Therefore, we may arbitrarily assign <i2 + id> when formulating the 
transformation schema, eliminating the variable altogether. Xe conclude 
that the schema templates should be: 

and 

define f = 4 1 29 0 (while notop042 2, do [h', j.42 2 ~ 1 )  0 [g ,  id] 

with the same constraints (1) and (2) as above. 

10.2. Impossible Hypercube Embeddings 

A t  the stage where we are about to  MATCH (i.e.. apply 9 to) a pair of 
qi-predicate decision trees, we may first do some pre-processing to 
attempt to  invalidate the match (or rather, the chosen embedding) before 
getting down to the nitty-gritty details. we have two suggestions: 

(1) We have already noted that if all of the new predicates created by 
a single pumping instantiation of a pattern variable v are paired against 
don't-care predicates of the target, then pumping on v accomplished. noth- 
ing. This suggests that we keep track of the genealogy of each predicate, 
and decline to pair all members of any family against phantoms. 

(2) It is clear that if there exist two (or more) identical points 
(condition-free subterms) in the pattern hypercube, then in order that 
there may be any chance a t  all of matching the entire cubes, we must pair 
these identical pattern subterms with target subterms that are likewise 
identical (any substitution applied to  identical terms ylelds identical 



terms). We also note that our cube-inflation procedures do indeed some- 
times introduce such identical twins into the pattern and (independently) 
into the target. If the twins do not "line up", then the match can be 
aborted immediately. 

10.3. Careful Expansion of Hypercubes 

I t  is clearly evident that the most exorbitant expenditure of resources 
occurs in the generation of myriad pairs of hypercubes. In some cases, 
including those noted above, much of this effort is unnecessary and there- 
fore wasted. W e  would prefer to take advantage of various symmetries in 
the normalization process, to predict in advance which expansions of 
hypercubes would be fruitless to pursue. 

10.4. Application-Specific Constraints 

In the intended application of the pattern-matcher, namely the recog- 
nition of instances of certain types of recursive definitions, we can impose 
a useful restriction on the values that may be assigned to variables. If our 
template is a function definition, say define f = Q(f ) for some form 
(hgher-level function) Q,  then we prohibit the assignment of terms con- 
taining f to any variables occurring in Q. l h s  allows us to immediately 
discard many hypercube embeddings, in which a target subterm contains 
an occurrence of f , and the corresponding pattern subterm does not. The 
justification of this restriction is that the presence or absence of the 
parameter f is critical in distinguishing one recursive schema from 
another, and the template instantiator is only permitted to fiddle with 
"inessential" differences between the function intensions. This idea may 
be generalized, to involve sets of distinguished parameter symbols. 



CHAPTER 11 

Summary 

11.1. What Has Been Accomplished 

The algorithm R pattern-matches FP templates with programs, return- 
ing sufliciently-compl ete sets of unifying ground substitutions. 

The pattern-matching function 9, modified as described, can serve as 
the  basis for an actual implementation. Consideration of the  problems 
introduced by the (rather ambitious) requirements for handling the condi- 
tion operator have clarified some issues in the  mind of this author. 

11.2. What Will Be Attempted 

I t  will probably be useful t o  further modify cP to  use a "lazy evaluation" 
paradigm [HeM?6], t o  produce substitutions one-at-a-time rather  than all- 
or-nothing. That way, a program transformer can keep requesting the next 
substitution until some transformation's constraints are  satisfied, and then 
stop. 

The method of handling the condition functional form used in R ,  based 
on inflations of decision trees/hypercubes, wi l l  be retired, due t o  its 
profigate use of resources. Work on i ts  successor R' is in progress; the 
approach being developed now resembles AT goal-directed heuristic search- 
ing. 

The algorithm R'  will be implemented, probably in USP. A rudimentary 
program transformation system is planned, although we do not presently 
have a theorem prover (constraint verifier) available t o  us. 

11.3. Acknowledgements 
.The author is  grateful LO Professor Richard B. Keburtz for sharing h s  
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