
Pattern Recognition in FP Programs

John S. Givler

Department of Computer Science

State University of New York at Stony Brook

Stony Brook, Rew York 11794

March, 1983

O G C T e c h n i c a l R e p o r t N o . C S I E 8 3 - 0 0 3

Pattern Recognition in FP Programs

... Chapter 1 -Introduction

Chapter 2 -Our Dialect of FP ...
... 2.1 Expressions

.. 2.1.1 Objects
2.1.2 Primitive Functions ...
2.1.3 Functional Forms ..
2.1.3.1 Composition: ..
2.1.3.2 Construction: ...
2.1.3.3 Condition: ..

.. 2.1.3.4 Iteration
2.2 Computation Rules ..

Chapter 3 -- Program Transformations ..
3.1 A Very Brief Survey ...
3.2 The Rate-Determining Step
3.3 Transformation Systems ...

. Chapter 4 Schema Recognition ...

4.1 The Problem ..
... 4.2 Preliminaries

... 4.3 Unification
4.3.1 Meta-Unification ..

... 4.4 Pattern Matching
4.5 The Schema-Recogni tion Problem, Revisited

-- .. Chapter 5 An Equational Theory
5.1 Our Functional Algebra ..
5.1.1 Objects Considered Harmful

.. 5.1.2 The Axioms
... 5.1.3 Comments

Chapter 6 -- Term Rewrit ing Systems .. 20

6.1 Basics ... 20
6.2 Notation ... 20
6.3 Complete Sets of Reduction Rules 22

... 6.3.1 Noetherian Relations .-.... 22
6.3.2 Confluent Relations, 22
6.3.2.1 Occurrences ... 22

... 6.3.2.2 The Superposition Algorithm-. 23
6.3.3 The Knuth-Bendix Completion Algorithm 23

Chapter 7 -- Our Term Re-Writing System 25

7.1 Our Reduction Rules 25

7.2 Termination ... 25

7.3 Incompleteness .. 27

7.4 Two Complete Subsets .. 29

Chapter 8 -- Soundness and Completeness 30
8.1 Soundness ... 30
8.1.1 A Partially-Ordered Set of FP Machines 31

8.2 Completeness .. 34

.. Chapter 9 -- The Basic Algorithm
9.1 Partitioning the Problem ..
9.2 Composition & Construction
9.2.1 More Notation ..
9.2.2 The Algorithm @ ...
9.2.3 Comments on @ ...
9.2.4 Completeness vs Termination
9.3 Condition ...
9.3.1 Notation & Terminology ...
9.3.2 Least (and other) Upper Bounds of Hypercubes

............................. 9.3.3 Our Pattern-Matching Function 52
9.3.3.1 PUMP ...
9.3.3.2 FILTER ...
9.3.3.3 EXPAND ..
9.3.3.4 EMBED ...
9.3.3.5 MATCH ...

.. 9.3.4 Time Complexity 48

.. . Chapter 10 Enhancements 49
................................. 10.1 Eliminating Template Variables 49

........................... 10.2 Impossible Hypercube Embeddlngs 51

10.3 Careful Expansion of Hypercubes 52
10.4 Application-Specific Constraints- 52

... Chapter 11 . Summary 53

................... 11.1 H%at Has Been Accomplished 53
... 1 1.2 Hlat Will Be Attempted 53

.. 1 1.3 Acknowledgements 53

CHAPrER 1

Introduction

The primary purpose of a programming language is to provide a vehicle
for human communication. I t is judged on the ease with which algorithms
are expressed, read, and reasoned about. Since many of these languages
are also used to control computing machinery, the efficiency with whch
the (compiled) algorithms drive such machinery is of some interest.

Historically, the computing community has focussed most of its atten-
tion on imperative languages, (such as FORTRAY, Pascal, & Ada) which
encourage obscure solutions in the interests of conserving machine
resources. More recently, attention has shifted to applicative languages,
(such as FP, 'pure' LISP, SASL, & graph-reduction languages) because of
their superior mathematical basis.

I t is an unfortunate fact of life that we must attack arbitrarily large
problems with minds of distinctly limited ability. In this endeavor, the
"divide-and-conquer" strategy has proven to be our sharpest weapon.
Obviously, to effectively "divide" a problem, it is necessary to minimize the
amount of interaction amongst the parts. Each part must be understood,
in iso la t ion , in terms of its own input/output behavior relative to the
input/output behavior of its primitive functions. Thus, a well-divided solu-
tion exhibits referential transparency in all of its parts.

AppIicative languages embody referential transparency as a design
principle.

The model of an imperative language operates by manipulating a global
state, and so transparency must be compromised, a t some level. Indeed,
the 'efficiency' of an imperative program (vis-a-vis an applicative one)
derives from the history sensitivity provided by the state. On the other
hand, 'good programnling style' dictates that such non-transparent
interactions should take place a t the lowest levels only; a 'good' imperative
program is one which seems to be applicative at all but the lowest concep-
tual level of each module. (An equivalent statement would be that a 'good'
program admits a direc t (rather than c o n t i n u e t i o n) style of denotational
semantic description [Sto?7].)

When an applicative language is naively implemented on a conventional
machine, there are a t least two major sources of inefficiency: (1) the slow-
but-general memory management, and (2) the reliance upon recursion as
the only iteration mechanism.

(1) Updates-in-place of aggregate objects are not done, as an object might
have been shared. Therefore, to ensure consistency and freedom from
side-effects, large data structures are copied and the copy is modified.
In many such cases, of course, the original object is not shared, will no
longer be used, and an update-in-place would indeed be appropriate.

(2) Most implementations of recursion are more expensive than those of a
while statement. Typically, a stack is maintained, and the return
addresses and actual parameters are copied onto it. The amount of
space consumed at run-time is proportional to the depth of the r e c w
sion. A while loop, on the other hand, consumes a constant amount of
space, irrespective of the repetition count. The difference is funda-
mental; recursion is a more powerful mechanism than iteration.
Naturally, in those restricted cases where the while loop is appropri-
ate, it is more efficient. Many compilers do detect instances of "tail
recursion" [FodSO, Ste??], a commonly-occurring iterative pattern, in
order to eliminate the stack operations in such instances. However,
more general recursion removal is rarely attempted in practice,
although the subject has attracted lots of academic attention [Bir??,
Coo66, KiS81, PeB82, SMR751.

In this project [KiS81], we seek to perform recursion removal (and
other changes) by means of program transformations. We wish to program
in a high-level applicative language, and have the program mechanically
massaged into a faster form. Since some applicative languages (notably,
FP) were designed to be manipulated and reasoned about, it is not surpris
ing that their programs may be conveniently transformed. (Contrast this
with the difficulties of reliably transforming imperative programs, or even
proving the validity of the transformation rules.)

Some researchers [Ba181, Fea82, LoF81, MaN'Bl] start with a very-hgh-
level "specification" (programming) language, and semi-manually
trahsform "specifications" (programs) into procedures expressed in a
lower-level language. In contrast, this paper is concerned with aspects of
purely mechanical transformation processes, using no human intervention.
Also, we employ only "source-to-source" transformations; no hierarchy of
languages is involved. (I might also add that I dislike executable
"specifications", and feel that researchers who start with them are

sweeping the hardest specification problems under a rug and at the same
time introducing implementation bias.)

CHAPTER2

Our Dialect of FP

2.1. Expressions

We generally follow the notation and semantics of FP as given in
Backus's Turing Award Lecture [Bac78]; most of the changes are explicitly
noted. Familiarity with the Lecture (especidly 11 - 12.2) is useful but not
essential.

2.1.1. Objects

The se t of FP objects includes the domains of

t ruth values (true and false);
rational numbers;
sequences (lists) of objects, e.g. < I , 5, 3> and the empty list E ;

n-tuples of objects, e.g. [I , 5, 31;

and perhaps others.

The object 1 is the undefined element. Sequences and tuples are both
str ict ; if any element of a sequence (or n-tuple) is 1, then the sequence (or
n-tuple) is 1.

An alternative meta-notation for n-tuples is helpful, when the length
(and contents) of the object under discussion are not explicitly known. An
n-tuple [o 0 2 , ... o n] m a y be represented without ellipsis by n7=1 oi. If
for some subscript k , l s k s n , we know ok to be z, then we write oi
lok + z]I, rather than [O . .. , o ~ - ~ , z., ~ k + ~ , . . . , on].

2.1.2. Primitive Functions
The se t of FP primitive functions includes operators from various

object-level algebras:

Boolean logic (and, or , not, ...),
rational arithmetic (+, -, x , +, ...I,
sequences (head, tail, a m e n d , concat , ...),

and others. I t also includes relational predicates: =, #, r, r, and so on. All

functions take exactly one argument, which may be an n-tuple:
+:[1,3] = 4. (We are using the colon as the function application operator.)

The constant functions are also primitive. For any object z, the
expression Z denotes the function which maps any argument to the value
z. For instance, I is the everywhere-undefined function.

The identify function id maps any object to itself.

2.1.3. Functional Forms

The primary functional f o r m s of FP are composition, construction, and
condition. These are higher-level operators which map functions to func-
tions, and so form the backbone of the functional algebra of FP programs.
There are several other FP functional forms (mostly specialized forms of
iteration), but the functional algebra based on

(i) the primitive functions,

(ii) thefunctionals of composition, construction, & condition, with

(iii) recursive definitions

is complete in the sense of being able to describe any partial recursive
function.

2.1.3.1. Composition: f 0 g

Against our better judgement we conform to tradition, and define the
evaluation rule as proceeding from right to left:

2.1.2.2. Construction: fi f
*=I

Constructions produce tuples. Their evaluation rule is:

.An alternative notation for construction is available, based on that of
tuples. We let [f I , _ f 2 , ... f,] be synonymouswithnp=lfi.

Unlike Backus's FP, our dialect distinguishes between sequences (Lists)
and tuples. The operators defined on sequences do not apply to tuples, and
vice versa. Some related differences are found in the meanings of 0-tuples
and 1-tuples. We believe that our treatment corresponds to standard

mathematical usage, and in any event is more convenient for our purposes.

Axiom 1 states that there is no "empty tuple". Furthermore, the 1-
tuple [o] is identical to o , and not merely isomorphic to it, as is the case in
the sequence domain. These conventions may be surprising, until one
remembers that n-tuples are not an inductively-defined type.

The selector functions have been changed, too. Aside from distinguish-
ing between the sequence operators (such as head, tail) and tuple selec-
tors, we have added a crude form of typing, based on the length of the
tuple: the expression 4i n P denotes the function which selects the i" field
of an n-tuple object, viz., 41 3>:[5,6,?] = 5, but 41 2~:[5,6,?] = 1.

2.1.3.3. Condition: (p -, f ; g)

This is FP's if-then-else operator. Its evaluation rule is:

(p + f ; g) : x =
casep :z of

"true" =3 f :z
"false" * g:z
default * 1

esac

2.1.3.4. Iteration

We shall use the most elementary form of iteration, in some of our
sample transformations. Its evaluation rule is:

(whilep do f) : z = @ -, (whilep do f)o f ; id) :z

We shall also use a pair of more specialized iterators, known as the
'insert-left' (/) and 'insert-right' (\) functional forms, whlch encapsulate
one common style of recursive list traversal. Our definitions are exten-
sions of the standard FP 'insert' functional form, and in fact more closely
resemble the APL operator 'reduce'.

A s before, we use J and g to denote functions, while z and y represent
objects.

(\f Y) : < > = Y
(\f y): -0, - . . , q - 1 , +> = f : [(\ f y) : e 0 , ---, +-,>,q]

Thw, the functions (/ + 0) and (\ + 0) both compute the sum of a
sequence of integers. We shall not use this form of insertion; we mention i t
only because of its resemblance to forms occurring in the literature LIve62,
Bac781.

The next version, which we shall use in our later examples, generalizes
the 'inductive basis' from a object y to a function g .

The two types of insertion are of course related; the second kind is the
more general.

(/ f y) = (/ f id)oappendLo[g, id]

2.2. Computation Rules

An important property of FP functions is that they are strict;

(V f) f :l =I.

This implies, for example, that 6 : I and x : [0, 1] and 4 1 2~ : [O, I] are all
equal to 1 rather than to 0.

Backus [Bac?8] used the continuity of the functional forms, the strict-
ness property, and the (applicative-order) evaluation rules to justify a
least-fixed-point semantics for recursive definitions of FP programs.

c m 3

Program Transf omations

3.1. A Very Brief S w e y

There are many types of program transformations in the literature.
Among them we mention symbolic evaluation, strength reduction, and
recursion removal. There are also some lesser optimizations of a book-
keeping nature, such as dead-code removal and common-expression elimi-
nation.

Prominent among the systems which do symbolic evaluation (of expres
sions drawn from numeric algebras) are Moses's MACW-4 and Hearn's
REDUCE. MACSY~Y, for example, can calculate the derivatives and indefinite
integrals of arbitrary expressions [FaMBZ].

"Strength reduction" refers to the substitution of a weak-but-
inexpensive operator for a powerful-but-expensive one, in those special
cases where the full generality of the expensive operator is not needed.
Phrased ths way, the term covers a wide class of optimizations. Conven-
tionally, however, it only refers to two types of reductions: simple, static
optimizations, such as using a right-shift instead of a dixlsion by 2; and a
technique called h i t e differencing [PaKBZ], which may be used to improve
the efficiency of computations involving a loop induction variable.

Various types of recursion removal could perhaps be referred to as
strength reduction, in the general sense mentioned above. A popular
instance of this genre is t a i l ~ e c u r s i o n e l im ina t ion . An algorithm exhibits
tail recursion iff at least one of its recursive calls is followed immediately
by a RETURN; that is, no further processing is done (by the algorithm) on
the value returned by the call. Such recursions are equivalent to iterative
loops; the stack is unnecessary.

The removal of tail-recursion is demonstrated by the following transfop
mation. Given a (recursive) definition of a program f matching the tem-
plate

define f = (p -r g ; f ~ j) ,

an equivalent (non-recursive) definition of f is

define f = g 0 (while notop do j).

An instance of this transformation would be the recursive definition of the
list operator c o n c d :

define concat =

which may be re-written non-recursively:

define concat =

As a sample of a more complicated transformation schema, it has been
observed [Coo66, DaB76, fiS81] that any program definition of f matching
the template

define f = (p + g ; ho[i, f oj])

in which the function instantiating h is associative and commutative (actu-
ally, a weaker constraint is possible here) and where g is a constant func-
tion (ditto), may be transformed into this opaque but non-recursive
definition of f :

define f =

41 2> 0 (while notop042 2) do [h0[41 2&, i.42 2>], j.42 Zb]) 0 [g , id]

The canonical example of this transformation is the factorial function:

define ! = (eqO? -, i ; x o [id, ! 0 subl])
-

satisfies our constraints (g = 1 is a constant function, and h = x is both
associative and commutative), and so may be rewritten as

define ! =

which may, in turn, be simplified somewhat:

define ! =
4 1 2>o(while notoeqO?oU2 2b do [x, sub1042 2>])0[i,id]

3.2. The Rate-Determining Step

These transformations (and others) have been independently
discovered by several authors [as shown above], and proved correct in
[KiS81]. The derivation of such rules is a necessary and perhaps the most
elegant step in the creation of a transformation system, but -certainly the
easiest. The crucial problems lie in determining the applicability of a given
transformation to a given program. For imperative programs, these prob
lems are virtually hopeless once the program reaches modest complexity.
Much work has been done on theorem-provers, for both imperative- and
applicative- language programs, but schema recognition (including tem-
plate instantiation) is still quite dfficult for non-toy languages, and prob-
ably beyond hope for degenerate languages like Fomh; and C.

For applicative languages, there is optimism that these problems are
solvable in a large number of cases of practical interest. (Of course, the
general cases are often undecidable.) The property of referential tran-
sparency is of decisive importance in these applications, wherein the
representation of a function is being manipulated. On the other hand,
imperative languages (especially ones with global variables, call-by-
reference parameter passage, GOT0 statements, and arrays or pointer
variables) easily befuddle compile-time transformation algorithms.

This paper is primarily concerned with the problem of template instan-
tiation, and leaves the problems associated with the verification of con-
straints to (other people's) theorem-provers. Ke note (again) that even
the theorem-proving routines must depend on an instantiator.

3.3. Transformation Systems

The behavior of program transformation systems has attracted com-
paratively little attention. Much of the literature has focussed on ad h c
collections of individual transformations, with no attempt made to predict
or describe the properties of a collection zs a whole. Transformations may
be composed, several redexes may be available a t any given step, systems
may or may not have the Church-Rosser property. Kormal forms may or
may not exist, and if they exist, either they are unique or else their
equivalence classes should be characterized. Transformations might or
might not irr,,prove particular programs.

W e do not have much to say about these things at ths time, but wish to
draw attention to an area of future research.

c m 4

Schema Recognition

4.1- 'The Pnoblem
We need to recognize instances of transformable programs. For exam-

ple, if we are gitcTen the template

and the definition of the factorial function

! = (eqO? + 1 ; x 0 [id, ! 0 subl]) (4.1)

then it is obvious that the definition is an instance of the template. On the
other hand, if we were given

eval = (notonull? + +o[~~[~,evalctail],head] ; 8) (4.2)

then it would be less clear. (What corresponds to h? to i?) However, the
template can be instantiated by the substitution

f + e v d
p + null?
g + - b
h + +G[xo[KI, 42 291, 41 ZP]
i + head
3 + tail

to yield an expression representing the same function as that denoted by
4.2. We want our prospective pattern-matching algorithm to recognize
both examples as instances of the template.

4.2. Preliminaries
A t e r m is an element. of T,(V), the (freely-generated) initial Z-algebra

over a countable set of variables V and set of operators C. For all n 1 0 ,
En c I2 is the set ~f n-ary operators; Z = ukO En. In the subsequent
chapters, we shall be especially interested in the Z formed by the union of:

Zo = 1 all FP primitive functions j
Zo = 1-tuple construction j

Z2 = f composition, 2-tuple construction j
Z, = f condition, &tuple construction j
Z,, = n-tuple construction j for n24.

Occasionally, when we wish -to write a term with (root) operator 5 E C,
and children fi for lsisn, we shall find it convenient to use the meta-
notation

Expressions rooted by the nullary operators in Co, which of course have no
arguments, may be written as o(xfZl f i) , or as 00, or just plain o, as the
whim takes us.

The expression V(t) denotes the set of all variables v E V occurring in
the term t .

A subs t i tu t i on is a mapping p from V to TZ(V), in which for most v E V,
p(v) = v . The domain of p, written Dom (p), is the set of dl v E V such
that p(v) # v .

We denote the assignment of a term t to variable v by <v +- t >, and a
substitution is written as a set of assignments: f <vl + t 1>, <v2 + t2>, ... 1.
For convenience, all trivial (identity) assignments of the form <vi + vi>
are omitted whenever possible, so that only the assignments to variables in
the domain of the substitution are explicitly shown. The trivial (identity)
substitution is denoted by the empty-set symbol, $.

A ground t e r n is a term which contains no variables, and thus is an
element of Tz. A ground subs t i tu t ion is a mapping from V to TZ.

By a slight abuse of notation, we shall often refer to a "substitution p"
when we actually are referring to the natural extension (morphism) of p to
T'.(V) + Tz(V), wherein p is used to effect replacements of all variables in
the given term.

We define an infix operator fE3 which effects the composition of two sub-
stitutions:

We note that @ is associative but generally not commutative. Furthermore,
it is clear that

For pragmatic reasons, we shall only consider substitutions that are
idempotent:

4.3. Unification
VrtiPcation [Rob651 is a procedure for sohlng equations, using the

instantiation of variables as the only permitted operation. Given a pair of
expressions, containing (possibly shared) variables, the algorithm attempts
to 'unify' the expressions by finding a substitution that makes them identi-
cal. The symbols in the expressions are not interpreted or evaluated.
Thus, for any two terms t l and t2, the unification procedure attempts to
find the set U of substitutions p that satisfy p(t = p (t g) .

For example, " a x b " may be unified with " 13x(a+c)" by the substitu-
tion p = [<a + 13>, C b t 13+c > I . All substitutions in U are instances of
this most general unifier (m.g.u.); the less general ones are obtained by
non-trill-ial assignments for c . We verify that

The unification algorithm, which is due to Robinson, runs as follows.
There are three possible cases:

(1) both terms are variables;
(2) one term is a variable and the other is not;
(3) neither term is a variable.

In (I), i t suffices to set either variable equal to the other.

For case (2), there are two possibilities. If the non-variable term con-
tains the variable, then terminate with failure. Othe~xise, assign the term
to the variable.

When (3) applies, compare the operators a t the root nodes. If they
differ, then terminate with failure. Othemlse, iteratively unify the
corresponding children, ir, sequence, from left to right.

In all cases, it is assumed that each component of the substitution is
applied globally, to both terms, as soon as it is defined. This, and the serial
(rather than parallel) unification of the children ensures consistency. The
final substitution will be the most general unifier of the two terms.

The unification algorithm is complete in the sense that dl possible solu-
tions (i.e. unifying substitutions) may be obtained by instantiating the free
variables in the m.g.u. with arbitrary terms. Thus, the m.g.u serves as a
finite representation of a possibly infinite set of solutions.

4.3.1. Meta-Unification

Meta- unification is unification with respect to an equational theory E.
Replacement of "equals by equalsJf is a permitted operation. The goal, for
any pair of t e rns t l and t2, is to find the set U of all substitutions p that
satisfy p(f = E p (h) Ordinary unification is therefore equivalent to
meta-unification w.r.t. an empty set of axioms (=# and = are the same rela-
tion). With the empty theory, the terms

a x b and a+c

cannot be unified. However, if we add the axioms (universally quantified on
their free variables)

we can meta-unify the terms via the substitution I<a + 1>, <b + l+c >].
With the additional axioms

we can derive the additional solutions [< b + I>, <c +- 0>] and !<a 0>,
<c +- Oxb >]. Thus, there may be several m.g.u.@s in the solution set for a
meta-unification problem. .

Papers on meta-unification include [HuOBO, LaB77, LiS76, Mak??,
PeS81, StiSl]. These authors devise unification algorithms which handle
equivalences induced by sets of axioms that describe operators which are:

commutative;
associative & commutative;
associative, commutative, & idempotent;
associative & commutative, with an identity-element.

The associative axioms in particular cause difficulties; algorithms han-
dling them often suffer from incompleteness or non-termination. For
example, given just the associative axiom

and the terms

u+6 and 6+a

then there is an infinite set of dstinct soiutions

which cannot be generated by any finite set of m.g.u.'s with free variables.
Bowever, if we add the commutative axiom

then the unique m.g.u. is the identity substitution $.

4.4. Pattern Matching

Pattern matching is a special case of unification, in which one term
(the target) contains no variables. The term which might contain variables
is called the pattern.

Metapattern matching is pattern matching with respect to an equa-
tional theory. Many pathological cases which occur in meta-unification do
not occur in meta-pattern matching; pattern matching is a strictly simpler
problem. A s a consequence, it is possible to use more complicated aziom
sets, ones beyond the scope of today's meta-unifiers. We shall use such an
axiom set. In passing, we note that meta-pattern matching seems to be
ignored in the literature (as a problem in its oun right); this author has not
found any references to prevjous work.

Actually, i t appears that (meta-)unification and (meta-)pattern-
matching form two points of a spectrum, based on the distribution and
sharing of variables. In particular, an intermediate problem is of some
interest: (meta-)unification in which the sets of variables occurring in the
two terms are disjoint. Clearly, (meta-)pattern matching is an extreme
example of ths type, since the target has an empty set of variables. N-e
conjecture that this intermediate problem, too, is simpler than general
(meta-)unification. W e shall raise the point again, later.

4.5. The Schema-Recognition Problem, Revisited

It is clear that our problem is one of meta-pattern matching, with
respect to some set E of FP axioms. We desire a function

n : [Patterns x Targets] -, Sets3 f 3ubstitutions

which returns a set of m.g.u.'s such that

c- 5

An Equational Theory

5.1. O& Functional Algebra

H'e introduce those algebraic axioms of FP which we shall use to recog-
nize instances of templates. We are concerned only with the algebra of FP
functional forms, and not with the object-level algebras, such a s arithmetic
or lists. However, we do provide the standard interpretation for Boolean
algebra, when i t occurs in the predicate of a conditional form.

We note tha t our set does not form a complete axiornization of FP.
9

5.1.1. Objects Considered Harmful

Programs are functions, not objects. We are concerned with reasoning
about, and transformations of, programs. Denotations that are based upon
objects introduce needless and unhelpful clutter.

5.1.2. The Axioms

In the axioms involving n-tuples, the n quantifies over the positive
integers; theref ore, such equations are actually axiom schemes, each one
representing an infinite set of axioms. At this time, we shall be purposely
ambiguous as to whether we are dealing with a finite set of 2*-order
axioms or an infinite set of lSt -order axioms.

We remind the reader that the meta-notation nc, ei lek +f] denotes
the replacement of el; by f in the given n-tuple.

The "r", " E" and " 1" symbols may all be interpreted as "=" during
the first reading.

Al. (f 0 g) o h = f o (g 0 h)

A2. f 0 id = f

83. i d o f = f
. 84. l o f E E

n
45. U k n > o f l e i g ek

i= 1

A17. @+ h; (p+ f ; g)) f (p + h; g)

A18. (p + (q + f ; g) ; h) 1 (q + @ + f ; h) ; (p + g ; h))

Al9. @+ h; (q + f ; g)) 2 (q-r @+ h; f) ; (p+ h; g))

5.1.3. Comments

The axioms can be classified into several groups.

Al..A3 the set of FP function expressions under the operator of function
composition forms a monoid

A4..A5 partial evaluations of the given expressions by a demand-driven
evaluation rule

A6 valid as equality iff the argument is an n-tuple

A? the definition of a 1-tuple

AB..AlZ distributive laws

A1 3. .A15 interpretations of Boolean operators

A16. .A17 simplifications by subsumption

A18..A19 reshapings of decision trees; these are both special cases of the
axiom

(p + (Q + a ; b) ; (q + c ; d)) = (q + (p + a ; c) ; @ + b ; d))

which may be viewed as asserting the equivalence of rotations of a
decision table.

C m 6

Term Re-Wri ting Systems

6.1. Basics

A term (or tree) r e d i n g system is a set of directed equations and a
some%-hat restricted "equals for equals" substitution mechanism. The sys-
tem is applied t o a term t , and produces a new term u , which is "equal to"
t .

Given a set of equations E, we agree to limit the substitution mechan-
ism to replacing one occurrence (in t) of the left-hand side of some equa-
tion by the corresponding instantiation of the right-hand side. We call such
a substitution a reduction of f , and we say that f reduces (in one step) to
u. A term whlch is irreducible (with respect to E) is called an E-nomal
f o r n .

For example, if we have the reduction rules (equations)

O + z = Z

szlcc (z) + y = z + m c c (y)

then the computation 1+1=2 can be modelled by the reduction sequence

SLLCC (O)+SZLCC (0) I= O+SZLcc (SUCC (0)) I= SZLCC (SLCCC (0))

The final term, s w c (succ (O)), is a normal form.

Term re-writing systems are sufliciently powerful to model all comput-
able functions [Man?4]. Our interest lies in the sub-class of such systems
in which the reduction relation defines a partial order [KnB?O].

6.2. Notation

We need to introduce some standard notation. The following definitions
are adapted from Huet [HueBO].

t I= u means that t reduces to u in one step.

F O is the identity relation: (t e0u) O (t =u).

is relation composition: (t I=* e u) 3s: (t t= S) A (S t= u)

4 is the inverse relation of * : (t 4 u) e (u I= t) .

For any relation I= , we define the auxiliary relations

= l = U = = i symmetr ic c l o s m uf t= ;

i = t= , @ t-1 (Wi >O) i-fold compos i t ion of I= ;

t rans i t i ve closure of != ;

OD

* = "+* ref lez ive- transi t ive closure of I== ;

N - = I=* n =I* equivalence u n d e r @ ;

N = # * c o n g m e n c e u n d e r I=.

We also define the predicates

z r y = 3w: (w I = z) A (w b y)

Yire say that the relation t= is

(1) acyc l ic iff t= + is irreflexive (and then t= is a partial ordering);

(2) noe ther ian iff there is no infinite sequence t t= t 2 t= t . . . (then l= is
well founded);

(3) local ly confluent iff V z , y : (z r y) * (z r * y) . We call terms z and y
satisfying z t y a c r i t i c a l p a i r for the relation I= .

A normal form is canonical iff it is not congruent (-) to any other nor-
mal form.

The expression A(E, t) denotes the set of all normal forms for the E-
congruence class containing t . The expression d (E, t) is used to denote
one arbitrarily-chosen member of A (E, t) .

6.3. Complete Sets of Reduction Rules

A set of rules is c o m p l e t e iff it is confluent and noetherian. Complete-
ness is a sufficient condition to ensure that all normal forms are canonical.
Zf an equational theory admits a complete set of reduction rules, then the
congruence of ground terms is decidable: two terms are congruent iff their
canonical forms are identical.

6.3.1. Noetherian Relations

A relation is m e t h e r i a n if7 all reduction sequences terminate. Proving
that a relation has this property can be quite difficult. The normal
approach is to devise an auxiliary relation >, which is to be a well-founded
strict partial ordering with the property that

[V t l I t 2 E TEl (t 1 I= t 2) =$ (t 1 > t 2) -

A large amount of very interesting work has been done, cataloguing the
circumstances under which a partial ordering may be shown to be well-
founded [Der82, DeM79, JoL82, HuL78, Lan79, LSn??, Pla?8a, Pla78bI. An
example is shown in Chapter 7, when we prove a particular set of rules to
be noetherian.

6.3.2. Confluent Relations

Confluence may be regarded as a consistency criterion, asserting that
the operation of reduction does not fundamentally alter the nature of a
term. Confluence implies the following "Church-Rosser" property:

Any relation which is both locally confluent and noetherian is confluent.
For relations with a finite set of rules R, local confluence is decidable. The
test is known as the "Superposition Algorithm", and is credited to Knuth
and Bendix [KnB?O]. I t is essentially a constructive proof of the local
confluence.

Before we outline the algorithm, it is useful to introduce a formaliza-
tion [Hd80] of what it means for a subexpression to occur a t some point of
a given expression.

6.3.2.1. Occurrences
We map the operators and variables of a term into sequences of non-

negative integers, in such a way as to describe the "access path" traversed

from the root to any given subtree. We use c to represent the empty
sequence, and "-" to signify the operator which either appends an integer
to the left end of an integer sequence, or concatenates sequences, depend-
ing on context. For any term t , the set of occurrences Occ (t) is defined as
the smallest s e t satisfying:

(i) e E & c (t)

The set of occurrences of a term is partially-ordered by prefix extrac-
tion: for all 77, < E OCC (t) , 7 I ((319) q . 3 = (.

For every (E &c (t), we denote "the subterm of t at c" by t /(, and we
represent "the replacement of t / t by F" as t I(6 €1.

From the definitions, we see that for all q , (E Occ (t), 77 (t /77

is a subterm of t /(.

6.3.2.2. The Superposition Al'g ori thm

For all pairs a, t= p, and a2 p2 of (not necessarily dstinct) rules in
R, the algorithm attempts to unify a, with each subexpression a, /ci of a,.
For all (m.g.u.) substitutions pi obtained in this fashion, the term ,ui(al)
reduces in two ways: /*,(a,) != y (B l) , and pz(a,) I= p,(al I (i 6 &I) . Both
terms of this critical pair are then reduced to their respective R-normal
form(s); if they have any such in common, then the pair "passes" the test.
If all such critical pairs pass the test, then R is locally confluent.

6.3.3. The Knuth-Bendix Completion Algorithm

Very often a noetherian relation is non-confluent (and therefore incom-
plete), but the addition of certain new rules may make i t confluent without
enlarging the congruence class of any term. We say that the new rules
complete the relation.

Knuth and Bendix [KnB?O] devised an algorithm which produces a com-
pletion of any relation R for which a well-founded strict partial ordering (>)
can be given. Their algorithm is not guaranteed to terminate, since not all
axiom sets have finite completions.

The Completion Algorithm takes any non-confluent critical pair z and y
discovered by the Superposition Algorithm, and creates a new reduction
rule b(R, z) f= b(R, y) , such that b (R, z) > 6 (R y). The new reduction is
added to R, and the process repeats until the augmented rule set is

confluent, or until the end of time, whichever comes first. I t is possible
that some new reductions will subsume old ones; in these cases, the old
ones are eliminated.

It is also possible for the algorithm to fail: there may arise critical
pairs [z,y] such that no term in A(R, z) is related by > to any term in
A(Ry). In such cases, the relation > is shown to be insuflicient; i t is also
possible that one choice of > may yield a finite confluent set, while another
may lead to the generation of an infimte set.

CHAPrEx?

Our Term Re-Writing System

7.1. Our Reduction Rules

We take the axioms Al..A15 as our reduction rules. When referring to
the axioms in this role (i.e., as directed equations) we shall call them by
the names Rl..R15, and assign the name R to the set.

The presence of the distributive laws R8..R12 in R implies that all R-
normal forms are decision trees, with the condition operators (if any) near
the root, followed by construction operators, and then the compositions,
with the primitive functions (or variables-) at the leaves. For example, the
(unique) R-normal form of the term

(a o e -, [b o e , d o e 1; [c o e , dce 1)

A s noted previously, the n-tuple axioms A5, A6, A8, and A 1 1 are actu-
ally axioms schemes, producing one axiom apiece for every n r l . For any
set of axioms E, we shall %-rite IE], to signify the restriction of E to the
subset containing no axioms with n >m .

7.2. Termination

We prove that the set R is noetherian by devising a strict partial order-
ing relation (>) which displays the following properties.

[a] 3 is well-founded; that is, there is no infinite descending sequence of
ground t e rms t , > t z > t ,

The condition [b] is awlward because it quantifies over all ground
terms. We would prefer that the termination property be deducible from a
finite analysis of a finite set of re-write rules. Fortunately, the problem
may be re-phrased. To show that R is noetherian, i t is sufficient [HuOBO] to
show that the partial ordering (3) satisfies all three of the following

conditions:

(1) [Vtl, t2 E T,] ['do E ZA [V k , l s k s n]

We define such a relation by a slight variation on the recur s i ve path
ordering m e t h o d [DeM?9; independently re-discovered by this author].
First it is necessary to define an ordering on the operators of C :

a t o m i c f u n c t i o n s 32 compos i t i on 3~ c o n s h x t i o n 32 condi t ional

We leave all the atomic functions incomparable to each other, with the
exceptions that the selectors 4 i n P are less under Dc than all other
atomic operators, with the identity function id (a.k.a. 4 1 19) being the
smallest of all:

other f u n c t i o n s 2c 4i n P D c id.

The relation >c is extended to an ordering 2 on the (ground) terms of
Tc by the following rules:

For all o, E Em, and for all o, E Z,,

m
Ok,lf-n] g* 2 o,(X f ,)

i= 1

where X gi :, XTzl f denotes the lexicographic extension of 3 to tuples,
with the case m = n = 0 being (trivially) false.

This ordering may, in turn, be extended to possibly non-ground terms
in Tr(V) by augmenting the above disjunction with the fourth case

where, if m=O, we now permit o, to be chosen from Co u V.

If for all r u l e s a e p E R, we have that a 28, thenRisnoetherian. Our
rule set R = IRl..R15] is shown to be noetherian by applying this test.

7.3. Incompleteness The Knuth-Bendix completion algorithm will sup-
ply a large number (=) of extra rules, including

(oroh-, f ; g) I= (41 2 h h + f ; (42 2 ~ 0 h - , f ; g)) (R2-7)

The first new rule (R20) is the only one of independent interest. The
derivation of R20 may help to shed light on its relatjonship ~ l t h the compu-
tation rules implied by R4, R5, R10 and R11.

e2 @ , z ; z) (by R4, twice)

Or, more generally,

f = * @ + h ; h) .(by R5, twice)

One other point is worth mentioning here. I t seems that R20 may
require the ability to recognize the extensional equality of two function
expressions, which is of course undecidable. Fortunately, all that is really
necessary is that the intensional relation = E be decidable.

The new axioms R25 and R27 subsume R14 and R15, so we omit the
latter.

An exhaustive case analysis confirms that the rule set R* = [Rl..R13,
R20..R2?j is confluent modulo congruence classes induced by Boolean alge-
bra. That is, R* is not confluent, but the normal forms of any given term
differ only in the arrangement of the condi t ional operators; the non-
conditional sub-expressions are the same (although their order may be
permuted). For instance, the term

has two normal forms,

(~'(9 +If ilf 2 I ; t f 11921);(4 +[91jf 2I;[9 1,921))

and

(q-+(P '[f l s f 21;[9 l,f 21);b-'[f 11g21;[g 11921))

These R*-normal forms can be reduced to each other by the select ive
application of rules R16..R19 (which are n o t in R*). Of course, term rewrit-
ing systems are not permitted to be selective in their application of rules,
and so we are left with these as distinct normal forms (if we exclude
R16. .R19), or, with non-termination (if we include them). For the same rea-
sons, i t is not possible to sort the predicates into alphabetical order, or
otherwise choose a canonical representative of the set of all sernantically-
equivalent decision trees, without stepping outside of the framework of the
term-rewriting system.

This author has proven that, for any mr2, there does not exist a finite
complete rule set containing IR*],. The proof is a generalization of the
example given above. Reversing the associative grouping of composition

(Rl) does not change matters.

7.4. Two Complete Subsets

The rule se t R* - IRlO,Rl l] is complete. The confluence has been
checked mechanically, and the termination property is demonstrated by
the method given earlier.

The rule set R+ = lRi..RB, R21..R22{ is also complete. It is the largest
subset of R* that contains no axioms involving the conditional operator; w e
shall find i t useful in solving matching problems in the con&tion-free sub-
algebra of FP.

CHAPTER8

Soundness and Completeness

8.1. Soundness

All of the axioms are valid in the limited sense that for whatever argu-
ments both sides of an axiom are defmed (i.e., not 1), both sides give the
same answer. Thus, the left- and right-hand sides of each axiom are
weakly equivalent (-).

However, for some of the axioms, there exist arguments for which one
side is de f i ed , while the other is not. We define the relations of approzi-
m a t e s (E) , is a m o x i m a t e d by (2), and strong equivalence (=) in the stan-
dard way.

(f E g) e [W z] [(f : z = ~) V (f : z = g : z)]

For the FP computation rules, the &oms1 left- and right-hand sides
are related as shown in Chapter 5 [Bac?8]. We shall consider our prospec-
tive pattern-matching algorithm Cl : [Pa t t e rns x Targe t s] -, ~ S u b s t i t u -
tions j to be sound iff the algorithmically-produced function is at least as
well defmed as the original function:

We note that R*-normalization and R+-canonicalization are both sound:

[V e ~ E z p] [~ 6 f A (R * , e)] b 2 e

8.1.1. A Partially-Ordered Set of FP Machines
Let us denote by FP(e) the function computed by the expression e

under FP evaluation rules. The notation j f Fp g is used as a shorthand for
FPV) E FP(g), and analogously for 2 Fp and

We can extend the partial order E to abstract machines (computation
rules) which map function expressions to functions. If Ezp is the set aof all
valid FP function expressions, and M I and M2 are machines,

and similarly for 3 , =, and -.

I t is evident that by varying the computation rules of FP, a partially-
ordered set <MI E > of abstract machines may be created, satisfying the
(weak) equality

We wish to define an abstract machine under which the axioms are
equations; so that all the EFP and 2 FP relations are raised to =. The prob-
lem with using the axioms as they stand is that weak equality is not an
equivalence relation (because z is not transitive), and so substituting
"equals for equals" is not safe. For example, if we were permitted to freely
substitute "weakly equals for weakly equals," then the trivial-but-true
axiom

AO. E f

would permit us to substitute I for any function (say, f). Further, it would
allow us to continue by replacing the I with any function g , since 1 -- g , and
g may be completely unrelated to f .

We can effectively find two machines in M for which the axioms are all =
relations. The simpler is the less-ukflned FP machine (1dFP). This
machine's computation rule is derived by inspecting each EFP and gFF
relation, and regarding the less defined side of each axiom as the common
value for bo th sides. The (updated, modified) computation rule is then (re-
)applied to all of the axioms, and the process repeated until a fixed-point is
reached.

The less-defined side often contains (universally-quantified) function
variables not occurring in the better-defined side, and so it is necessary to
assume that all such variables are instantiated by 1. This has the effect of

reducing the domain of the better-defined side to a sub-domain of the
less-defined side, in this case the empty domain.

For example, axiom A5 gives us that

Since construction and composition are strict in FP, we have

and so we conclude that f 1 for all function expressions f .

Of greater interest is the more-ukpned FP machine (mdFP), which uses
the be t t e r defined side of each axiom as the value for both sides.

Any FP function expression, when 'run' on the FP machine, approxi-
mates the same expression run on the mdFP machine.

[V e E Ezp] 1 = IdFP(e) E FP(e) E mdFP(e)

In a machine with applicative-orcler computation rules, dl arguments
of a function are evaluated, even if the function does not need some of
them under some circumstances. In a normd-orcler machne, argurnents
are evaluated if and only if they are needed.

A s a first approximation to our "more defined" FP machine, let's look
at a normal-order (demand-driven) FP machine, which we temporarily call
N. (The underlying computation rules of FP are those of applicative-order
(data-driven) evaluation.) In such a machine, the axioms A4, A5, and A6
are -N. Regrettably, this machine is insufficient. We find that A10 and A 1 1
must become

That is, information is lost when going left-to-right. Also, the axioms A14,
A15, A18 and A19 remain E N or JN1 and A20isnow @ + f ; f) EN f . (The
relationships of axioms A4, A5, A1 0, and A 11 with A20 were discussed briefly
back in 5 7.3.) From these inadequacies one can deduce the need for an
"eager beaver" computation rule for conditions, namely, the parallel
evaluation of dl three subexpressions. One such rule for computing the

value of a conditional function, applied to an argument z , is

Simultaneously evaluate p :z , f 2, and g :z .

I f p : z terminates with value true, then return f :z and discard g :z.

If p :z terminates with value false, then return g :z and discard f :r.

3.f f :z and g:z both terminate with the same value, then return
that value and discard p :z .

In all other cases, return 1.

With this computation rule (C1), the demand-driven machine N
becomes mdFP.

Actually, we can do somewhat better; this can be best illuminated by
describing a new rule in the order-theoretic terms of denotationdl seman-
tics [Sto??]. Consider all values in the ranges of f and g to be elements of
a countably-based complete partial order <Dl s>. Assume further that the
computation of f :z (and g :z) might emit some basis elements of the
result as soon as they are available, rather than upon termination of the
entire computation. We denote by U f :z the least upper bound (1.u.b.) of
the basis elements emitted (so far) by the computation of f :z, and simi-
larly for U g:z . Then the conditional operator can emit intermediate
results according to the computation rule:

(r,)
if p :z = true;

Ug:z ... if p:x = false;

U f :z l l Ug:z ... otherwise.

This accounts for cases wherein it is unnecessary for any of p:z, f : z ,
or g :z to terminate. For instance, f m d g may return (potentially
infinite) sets as values, and subsequent operations upon these sets may
only ask whether the sets contain some specific subset. In such cir-
cumstances, if p : z has not yet terminated, it is unnecessary that the
entire sets f :z and g : ~ be computed, if the desired subset is contained in
the intersection of the partial results already returned by f :z and g :z . (In
this example, D is a powerset, the partial ordering relation (r) is E, the
basis elements are the finite sets in D, the least-upper-bound operation (U)
is u, and the greatest-lower-bound operation (TI) is n.)

In a series of papers [MaS?5, MaS?6], Manna and Sharnir investigate the
properties of the "optimal fixed-point" semantics of recursive function
definitions. The optimal fixed-point is often more defmed than the least
fixed-point (which is the popular choice in the semantics literature). The
relationship between their optimal fixed-point and our mdFP machine has
not been explored.

The mdFP machine is too slow to be used to execute programs. He
shall use it only to justify the intermediate steps of the pattern-matchng
process. The plan is to take an FP pattern-matchmg problem, regard i t as
an mdFP problem, solve it for the mdFP machine, and return as the FP
answer only that subset of the mdFP answer which is s o d ; for each sub-
stitution returned in the answer, the target must approximate (I T F p) the
instantiated template.

We observe that Hre don't need all of the power of the C2 rule; we can
justify the pattern-matching algorithm with the weakest machine subsum-
ing FP and satisfying our axioms.

8.2. Completeness

We may choose between several degrees of completeness for our pros-
pective pattern-matching algorithm. Yl'e may demand that i t find:

[11 one solution (if any exist);
[2] all solutions;
[3] all solutions, modulo an arbitrarily-chosen equivalence.

Clearly, option [I] demands the least effort to be expended. However,
for the intended application of the algorithm (program transformations),
some instantiations of the schema variables may be better than others;
that is, some may satisfy the transformation constraints, while others may
fail.

Option [2] offers the best chance to satisfy external constraints.
Unfortunately, our algebra admits cases wherein complete solutions must
contain infinite sets of m.g.u.'s. For example, if v l and v 2 are variables,
then the set of substituti:~ns calculated by R (vlov2, +) contains (amongst
other things) the infinite family of m.g.u.'s

etc.

We n&e that this difficulty was not caused by our infinite set of n-tuple
axioms; only axioms for 2-tuples were used. Of course, sirnilar infinite
series do arise for every nll.

Option [3] (which of course subsumes [I] and [Z]) may be viewed as
offering a compromise between completeness and termination. We shall
choose and characterize an equivalence relation (in which all partitions
contain a t least one finite member), after fist presenting the algorithm.

c3wPTm9

The Basic Algorithm

9.1. Partitioning the Problem
It i s both possible and useful t o separate the handling of the 'condition'

functional from that of the other functionals. I t is possible because all R*-
normal terms are decision trees with all non-condition functional forms
(and primitive functions) a t the leaves; i t is useful because the condition
functional form is difficult to handle. We note that whle the (condition-
free) rule set R+ is confluent, the rule set R* is not; and the rule set R* u
IR16..R19j, which has enough power to express the equivalence of two deci-
sion trees, is not even noetherian.

9.2. Composition & Construction

Re need a function 9 E (Pa t t e rns x Targe t s) -, 1 Subs t i tu t ions] whch
does the pattern-matching operation on non-conditional expressions,
returning the set of all substitutions which unify the pattern and the tar-
get.

We shall find i t convenient to use Tc(V) rather than Tc as the domain
for targets, with the understanding that any variables introduced into the
target a re unique, and so do not occur in the pattern.

9.2.1. More Notation

We extend the operator of set union, to encompass the union of two
set-producing functions:

f u g - h x . (f :x u g : x)

Thus, we are using the symbol "u" as both a function and a functional
form; the reader should bt. able to tell the diflerence from the context.

We define an infix operator @, which provides a convenient way to com-
pose functions. Let S denote a se t of widgets, and let f be a function that
maps widgets to se ts of doohickies:

The @ operator is sometimes more opaque than the notation that it dis-
places, but its use facilitates algebraic manipulations. The operator associ-
ates on the left:

(SQf Q g) = ((S Q f) @ g)
It follows immediately from the definitions that @ distributes over union:

W e extend the notation slightly, to express n-fold 8 composition.
0

W e now define the infix operator P , which uses substitutions (possibly
obtained from an earlier invocation of the pattern-match operator @) to
provide environments in which subsequent pattern-match operations take
place. For any S E !Substitutions j and ip , t] E Tz(V) x T,(V),

The 'conventions of (left-)associativity and n-fold composition of b are
analogous to those for @.

In general, for all p E (S D b,t]), p is a refinement of some substitu-
tion s € S (that is, there exists a substitution s ' such that p = s @ s'), and
of course p meta-unifies p and t : p(p) =, p(t). We also notice that if p
and t are R+-normal forms, then

9.2.2. The Algorithm Q,
We are almost ready to present a first draft of the algorithm a. First,

however, we need a couple more auxiliary definitions.

The predicate IsYariable?(f) returns true if f E V, and false other-
wise.

The predicate TsTuple?(n, f) returns true ii f is a function which
returns an n-tuple as its result, and false otherwise. We recall that n-
tuples may be generated by user-defined functions, as well as by construc-
tion operators.

The predicate IsConstFunction?V) returns true if f is a manifest
constant function 6 for some object D , and false othenlse.

The symbols u and v,,, represent new variables created by the algo-
rithm. They are assumed to be unique, and distinct from the new variables
u' and v;,, created by other (recursive) invocations of O, or by parallel
computations nithin the same invocation. (The Usf function gensym per-
forms a senice such as this.)

The numbers running dow-n the left-hand side of the algorithm just tag
certain lines, to bind them to the corresponding comments on the next
page.

letrec 9 [P, TJ =
if IsYariable?(T) then ff <T + P>jj else
if IsYariable?(P) then I [<P + T> j 1 else
case P of

1) dmic : if P = T then f $ j else 1 j fi,

case T of
n

atomic : if IsTuple?(n. T) then @[PI n Ulc n>oT] else j fi;
k=l

t , 0 t2 : if I d h p l e ? (n . T) then +[PI fI ~k n > o T] else [fi;
k = 1

esac;

P1°P2 :
9[p l , "id"] 0 [p 2 , TI u

2) 4(p1, TI 0 [Pz, "id"] u
if Id'ariable?(p

n
4) else ; @b2, f i ~ i . ~ l 0 u bll ~ k n ~ l D [v&,n, TI

n=2 i= 1 k=l

case T of

5) atomic : if IsConstFunction?(T) then 91p T] else 1 j fi

esac;
esac

fi fi
end GJ

9.2.3. Comments on 9

The following comments are keyed to particular lines of 4'. Subsequent
sections will give fuller treatments of some of the issues raised here.

1) U the atomic functions are identical, then return the identity substi-
tution #; othemise return nothing (i-e., fail).

3) The matching attempts made by this line are based on rule R5. The
n ranges from 2 to =; the lower bound excludes consideration of 1-
tuples, while the upper non-bound models the infinite set of (ld-
order) tuple axioms.

We observe that, if p2 is not a variable, the matching of p2 with
nTElvi,, will bind the (new) variables v,, to sub-structures of p2.
So, by the time that the pair [ucy, , , T] is matched, the variable vk,,
has already been bound to some piece of p2.

We also see the phenomenon known as "variable-splitting" [Sti81], as
exemplified by the new u variables. Compared with line 4, we see
that some of the "variableness" of p l has persisted past the assign-
ment of 4 k nb ; this provides extra flexibility in the matching of
U o V k S n with TI vis-a-vis the matching of vk,n with T. Variable-
splitting is required (for the sake of completeness) whenever an asso-
ciative operator (in this case, "0") is modelled. Further examples
may be found in lines 6 and 8.

Finally, we note that if bothp and p2 represent (unassigned) pattern
variables, then u and vk,, are both still (unassigned) variables at the
point where the final match of [u ovk ,, , TI occurs, and this causes an
infinite recursion. The i n f h t e solution set shown at the end of
Chapter 8 is generated here. (A similar loop arises i fp2 is of the form
v .anything .)

4) By contrast, this line is well-behaved. Either p or p2 will supply the
value of n , or the match will fail immediately.

5) This line is based on rule R4. In an actual implementation, this case
. would be merged ~ 9 t h line 2.

6) Since both P and T are in R+-normal form, p will match a tuple iff
pl is a variable. (See rule R8.) The varjablepl is "split" into n new
variables v , , (l ~ i ~ n) .

7) Due to the fact that P and T are R+-normalized, the lines 7 and 8 are
sufficient to give complete-but-finite matches of p with t lot *.

(See rule R1.)

8) Since both P and T are in R+-normal form, p can match a composi-
tion iff pl is a variable. (See rule Rl.) The variable p is "split" into
two new variables, u and vz.

9.2.4. Completeness vs Termination

The algorithm 9, as presented, fails to terminate for two reasons. The
first is evident from a casual inspection of the algorithm: the infinite
number of tuple axioms is reflected in those little "=" symbols in a couple
of the quantifiers. The second reason is more subtle; @ does in fact gen-
erate all of the solutions mentioned at the end of Chapter 8.

We claim that there is a finite subset of @ h , t] that contains all substi-
tutions in which we are truly interested. This subset contains only ground
substitutions of the template variables. (We note that both types of
unboundedness mentioned above introduce unbounded numbers of free
variables into the m.g.u.'s.) Furthermore, we are only interested in assign-
ments <v + f > where the term f is in R+-normal form; the terms t , idct,
idotoid, and so on, are not considered to be distinct. We say that @ is
sumciently complete iff it generates all possible distinct ground substitu-
tions.

We can modify @ so that it terminates, and is sufficiently complete. To
accomplish this, we shall use Znd-order terms to represent n-tuples, with
the idea that we can usually infer the correct value(s) of the free meta-
variable n from the context. That is, it is often the case that a 272d-order
tuple is matched against a 1"-order tuple occurring in the pattern (or the
target), and so the value of n is immediately determined.

Sometimes, however, when the pattern contains multiple occurrences
of a variable, the appropriate value for n cannot be determined by a local
analysis of the (current) pattern and (current) target; rather, a global
arbitration mechanism is needed. For example, to match the pattern
[v,ov, [v20v, v30v]] with the target [+,[-,XI], any one of these ground sub-
stitutions is sufficient:

'(i) v , +- +, v2 + -, vg 4- X , v +- id
(ii) v1+*r13P, ~2 ‘- 42 3P, v3 6 43 3>, V + [+,-,XI
(iii) v, + 42 3P, u2 ‘- 41 3P, v3 4- 43 3>, 21 +- 1-,+,XI

(iv) v l + +o4l 2b, v2 + 42 2P, v3 + Xo4l 2Pl v + [id,-]

as are many others. We see that, although neither the pattern nor the tar-
get contains a 3-tuple, some of these solutions require that v be instan-
tiated by a 3-tuple; but taken individuully the recursive pattern-matching
sub-problems of [V ~ Q V , +], @ [v20v. -1 and [v30v, X] have no way of
determining ths. In general, a variable which occurs in the pattern k
times might require instantiation by a k-tuple, to be able t o show k
"different faces" to the world. A size of less than k may also suffice, as
demonstrated in the last substitution above (iv). A size of greater than k
must inevitably leave free variables in the substitution.

W e propose a simple mechanism that determines a reasonable upper
bound on the value of the meta-variable n in a @-order tuple.

We return our attention to the line labelled "3)" in the algorithm 9.
Given that the union quantifiers have been replaced by the direct use of
2"d-order terms (i.e. n?=,vi, and 4 k n9) with the free meta-variables n
and k , i t is sufficient that whenever p2 is of the form "v' or 'v .anything ',
the pattern-matching sub-problem Q[uovk,,, T] be m ~ e n d e d , and the
(unevaluated) suspension returned in the answer.

We name the suspensions after the leading variable in p2 , by saying
that @ [uQv~, , , TI and 9 [uo(vk,,oanything). T] are vk,,-suspensions. Ke
define an operator #(vk,,, s) , which counts the number of vk.,-suspensions
in the substitution s .

When the entire (top-level) matching operation is done, then the func-
tion ARBJTER is invoked on the resulting set of substitutions (suspensions
and all) to return the desired answer: a finite sufficiently-complete set of
ground substitutions.

letrec ARBITER (S) =

then ARBITER (S - isj) u arbi ter (s)
else S

fi

dere arbi ter (s) =

The function RESTART(s) returns the set of all substitutions gen-
erated by resuming the evaluation of the vk,,-suspensions in s , with the n
and k now bound to the values indicated by the quantifiers. It is expected
(in fact, guaranteed) that after chugging on for a while the computation
will produce not only new ground substitutions but also substitutions con-
taining new suspensions. These new suspensions are not automatically res-
tarted, although they might be resumed later by recursive invocations of
ARBITER.

The function ARBITER does eventually terminate, when all of the vk ,-
suspensions in every s E S have #(vk ,n , s)= l . ARBITER splits variables
which have multiple occurrences, until all suspensions involve unique vari-
ables. A t t h s point we stop, because continuing would either introduce
free variables into the final substitutions, or generate substitutions that
contain 1-tuples [f] (a.k.a. f) and the selector 4 1 1b (a.k.a. id), which
immediately R+-reduce to already-discovered substitutions.

9.3. Condition

A s mentioned in the introduction to this chapter, the functional form
of condition is hard to deal with. To do i t justice, this author feels that we
must incorporate knowle2ge of Boolean algebra into our equational theory
(hence the axioms A1 3. .A15), and generally model, in decision-tree form,
the various Boolean axioms such as commutativity, associativity, idempo-
tence, and subsumption. Theories modelling such axioms cannot be both
noetherian and confluent; R* u IR16..R18] is not noetherian, essentially
because R l ? and R18 simulate the commutativity of logical conjunction.

We desire a pattern-matching algorithm that is conversant with these vari-
ous equivalences.

We have such an algorithm. I t always terminates, with a complete set
of solutions (assuming of course that i9 does also). However, the algorithm
was not designed to serve as the basis for an actual implementation; it was
intended that i t serve as a benchmark of the inherent dfliculties involved
in obtaining completeness. It is incredibly slow, partly because it adopts
an excessively low-level viewpoint on the problem, partly because it
returns solutions which are in some sense equivalent, and partly because
some matching problems actually have vast quantities of distinct solutions.

9.3.1. Notation & Terminology
In the subsequent sections, we shall assume that all terms are R*-

normalized; this means that each one may be viewed as a decision tree
with all of the condition operators near the root and all non-condition sub-
terms at the leaf positions. We model a decision tree (i.e., term) contain-
ing n distinct prehcates as an n-dimensional hypercube (decision table).
In such a cube, the each of the n axes is labelled by a predicate, and the
Zn points inside the hypercube are condition-free subterms.

The expression If 1 denotes the number of distinct predicates in the
term f ; or, alternatively, the number of dimensions in the hypercube f .

The expression c (f . n) represents the nth axis label for the hypercube
f , in some arbitrary enumeration of the I f I axes. Similarly, the expres
sion ((f ,n) denotes the nth point in the cube, in some arbitrary enumera-
tion of the 213 1 points.

9.3.2. Least (and other) Upper Bounds of Hypercubes

When matching a pair [po, t o] of hypercubes, we require that both have
the same dimensionality. In practice, the target is usually much larger
than the pattern. The first step, then, is to find some q o such that both the
pattern po and target t o may be converted into qo-dimensional hyper-
cubes. All else being equal, the smallest such go would be the preferred
one. However, in order to generate all solutions to the matching problem,
we 'must actually generate a (rather large) set of pairs b,, t i] of qi-
dimensional hypercubes.

Observation: For any term f with v E V(f) and v l , v2, v3 B V(f), the
term obtained from f by substituting (vl -, v2 ; v3) for all occurrences of
v has a t least one more predicate than does f . (If v occurs more than

once in f , or occurs in a predicate, then the new term may have several
more predicates than j .) Reducing the new term to any Rf-normal form
then converts it into a decision tree (hypercube).

For example, performing this substitution on the term [VOX, VO-]

results in the new term

whose R*-normal f o m are the decision trees

((~ 1 0 ~) -+

((v10+) -+

[v20x, v20+];
[v20x, v3cf 3) ;

((v l o +) +

[v30xI v20t];
[v30x, V30f I))

and

which contain the new predicates (vlox) and (v

Our strategy, then, will be to f i s t increase the size of the pattern,
through exhaustive instantiation of its variables (as above), yielding new
pairs [pi, ti], until each pattern pi has at least as many (distinct) predi-
cates as does its target ti. Since the size of a pattern may increase in an
irregular manner, it may not be possible to have all of the inflated patterns
pi possess exactly Iti! predicates. Therefore, the second phase of the pro-
cess will be to increase the size of each target to match the size of its pat-
tern. (The inflation of a target is a smooth process; it will always be possi-
ble to get an exact match.)

In the subsequent function definitions, it is assumed that the symbols
voI vl , v2, and v3 represent new variables every time the algorithm
encounters them; some mechanism like LISP's gensym is presumed.

9.3.3. Our Pattern-Matching Function R
A t this point, we introduce our function R E Patterns x Targets -t

{Substitutions j, and explain the nature of its constituent parts in the sub-
sequent sections.

' t ' ~ ' P ' [/ L p , t] I , g l ~ ~ ~ ~ O I-ILTER @ EXPAND B EMBED O MATCH
n = O 1

9.3.3.1. PUMP
The function P U M P inflates a pattern term p , by applying the instan-

tiation trick mentioned above, substituting (vl -.up; v3) for all
occurrences of some variable vk E V @) . Each resulting term pk is then
converted to a decision tree by reducing it to any one of its R*-normal
forms.

P U M P is only employed, of course, when It 1 - I > 0.
A s noted previously, instantiating one variable vk in p may cause the

creation of an arbitrary number of new predicates in pk, perhaps enough
that no further pumping instantiations are required: Ipk l 2 It 1. On the
other hand, it is possible that all but one of these new predicates may be
matched against "don't care" premcates of the target; for any instantia-
tion, we can only guarantee that one new predicate wil l be matched against
a "real" predicate of the target. (If e l l new predicates resulting from a
pumping instantiation are matched against "don't care" predicates, then
pumping on vk was superfluous.) Thus, the n-fold composition of PUMP,
applied to p , produces patterns which are guaranteed to match a t least
n+lp 1, but no more than It 1, of the "real" predicates in t .

let PUMPIp,t] =

U let r = I<v t (v l+ve ;v3)>1 in 1[6(R*.p@)) , t] j
vcV(P)

end

9.3.3.2. FILTER

The function FILTER weeds out undersized patterns, ones possessing
fewer predicates than their (target) mates.

let FlLTERb , t] =
i f lp lr It1 then lb,t]] else 1 1 fi

end

9.3.3.3. EXPAND
The function EXPmD maps pairs of hypercubes ip,, fi] where bi 1 r ik 1

to pairs Ipi, t i J] such that bil = Iti']- If lpil > Itil, then we demand that &'
exhibit the following behavior:

These goals are easily attained by letting ti' = (vO -, ti ; ti) for some new
variable vo. The new variable will eventually be matched against a
corresponding "don't care" predicate of the pattern. The expansion of the
target is repeated until the sizes of the terms are equal.

letrec EXPAND b, t] =
3 bI > It1

then EXPAND [p, (vo -, t ; t)]

else I [P I t 1 1
fi

end

9.3.3.4. EMBED

For every pair kilti] of pi-dimensional hypercubes, there are qi! x zqi
distinct ways to embed one into the other. The factor of qi! is the number
of ways to put the axes of pi in 1-1 correspondence with the axes of ti; and
the factor of 2qi is the number of ways to match the "minimal" element of
pi (i.e., the unique case that is selected when all predicates yield false)
with that of ti. Our algorithm will, of course, have to try d l of these possi-
ble permutations, for the sake of completeness. Things could have been
worse; if our terms were merely unstructured sets of 2% subterms rather
than decision tables, then there would be Z9'! embeddings of pi into ti.

W e let Perm @) denote the set of dJ ip 1 ! x 2 1 ~ I permutations of the
hypercube p .

9.3.3.5. MATCH
For each pair bi ,ti] of f ully-aligne d hypercubes, the procedure is sim-

ple. W e need only run through all b=l pairs of predicates, and all 2'"' pairs
of points (condition-free subterms), appl~lng the function @ t o each such
pair and accumulating the s e t of substitutions as we go.

2b'
HATCH , t] = igj 'El [n(p ,n).n(t .n)] D [tb ,n).F(t,n)l

n=l n=l

9.3.4. Time Complexity

The complexity of the algorithm R is so bad that in the next chapter we
suggest using AT-complete heuristics (!), to speed up the matching.

CHAPTER 10

Enhancements

10.1. ELiminating Template Variables

The effort expended by the algorithm Q, is proportional to the number
of hstinct variables occurring in the pattern; each variable gives 9 the
chance to find more solutions. Therefore, it is advantageous to formulate
the schemata carefully, avoiding unnecessary generalizations.

For example, we have already encountered the transformation schema

define f = (p + g ; h o [i , f o j])

with the enabling conditions:

If both constraints are satisfied, then the definition of f may be stated
non-recursively:

define f =

41 2~ 0 (while notcp.42 2b do [h1c[41 2P, i c Q 2 Zb], j ~ 4 2 2 ~ 1) o [g , id]

When this example was given earlier, instead of (1) we demanded that g
be a constant function [Coo66. DaB76, KiSBl], and in place of (2) we used
the simpler but more stringent constraint that h had to be associative and
commutative [DaB76]. In such cases h ' = h. Condition (2) is equivalent to
the following requirement:

(2') (3 h ' ~ E z p) (V a , b , c ~ E z p)
ho[a,hlo[b ,c]] h10[ho[a,b],c] A hc[a,g] = h8o[g,a]

This version (2') is due to Cooper [Coo66], but was re-discovered by
Kieburtz & Shultis [KiSBl]; in both cases it was motivated by the special
case wherein g is constant.

Hre call the functions h and h' a pair of associative d d s with respect
to g . Perhaps the most famous such functions (in which h # h') are the

list constructors over a domain D:

h = appendLfD x D'-, D'

h ' = appendR E D ' X D -, D'

g = F E D '

so that, for instance,

appendL:[4,c] = <4> = appendR:[c,4]

and

appendl: [3,appendR:[<4>,5]] = <3,4,5> = appendR: [appendL:[3, <4>],5]

I t is the case that the choice of i in the 'factorial template' does not
affect the satisfaction of the constraints. We note that the subterm

ho[iI f oj]

may be factored into

where i l o i 2 = i. From the point of view of satisfying schema constraint
(Z) , one factorization of i is as good as any other.

Proposition:

Proof:

(-..I
The terms ho[ilo4 1 2>, 42 2>] and h10[4 1 2>, il042 231 are shown to
be associative duals with respect to g by direct substitution into the
equalities of constraint 2', combined with the simplification of both
sides of each equation to R+-canonical form.

(ho[i1o4l 2P, 42 2b]) 0 [a , (h'o[4 1 Zb, il042 2P]) 0 [b ,c]]
= ho[iloa, h10[b, iloc]]
= h'o[ho[iloa, b], iloc]
= (h10[4 1 2P, i1042 2 ~ 1) 0 [(ho[ilo41 ZP, 42 2P])o[aIb], c]

and

(ho[ilo41 2b, 4 2 2~1) 0 [a, g]
= h o [i l ~ a , g]
= h 1 ~ [g , i l e a]

= (h80[q1 2b, ip42 2b]) 0 [g, a].

(* 1
Trivial; choose il = id Then

and similarly for h'.

Therefore, we may arbitrarily assign <i2 + id> when formulating the
transformation schema, eliminating the variable altogether. Xe conclude
that the schema templates should be:

and

define f = 4 1 29 0 (while notop042 2, do [h', j.42 2 ~ 1) 0 [g , id]

with the same constraints (1) and (2) as above.

10.2. Impossible Hypercube Embeddings

A t the stage where we are about to MATCH (i.e.. apply 9 to) a pair of
qi-predicate decision trees, we may first do some pre-processing to
attempt to invalidate the match (or rather, the chosen embedding) before
getting down to the nitty-gritty details. we have two suggestions:

(1) We have already noted that if all of the new predicates created by
a single pumping instantiation of a pattern variable v are paired against
don't-care predicates of the target, then pumping on v accomplished. noth-
ing. This suggests that we keep track of the genealogy of each predicate,
and decline to pair all members of any family against phantoms.

(2) It is clear that if there exist two (or more) identical points
(condition-free subterms) in the pattern hypercube, then in order that
there may be any chance a t all of matching the entire cubes, we must pair
these identical pattern subterms with target subterms that are likewise
identical (any substitution applied to identical terms ylelds identical

terms). We also note that our cube-inflation procedures do indeed some-
times introduce such identical twins into the pattern and (independently)
into the target. If the twins do not "line up", then the match can be
aborted immediately.

10.3. Careful Expansion of Hypercubes

I t is clearly evident that the most exorbitant expenditure of resources
occurs in the generation of myriad pairs of hypercubes. In some cases,
including those noted above, much of this effort is unnecessary and there-
fore wasted. W e would prefer to take advantage of various symmetries in
the normalization process, to predict in advance which expansions of
hypercubes would be fruitless to pursue.

10.4. Application-Specific Constraints

In the intended application of the pattern-matcher, namely the recog-
nition of instances of certain types of recursive definitions, we can impose
a useful restriction on the values that may be assigned to variables. If our
template is a function definition, say define f = Q(f) for some form
(hgher-level function) Q, then we prohibit the assignment of terms con-
taining f to any variables occurring in Q. l h s allows us to immediately
discard many hypercube embeddings, in which a target subterm contains
an occurrence of f , and the corresponding pattern subterm does not. The
justification of this restriction is that the presence or absence of the
parameter f is critical in distinguishing one recursive schema from
another, and the template instantiator is only permitted to fiddle with
"inessential" differences between the function intensions. This idea may
be generalized, to involve sets of distinguished parameter symbols.

CHAPTER 11

Summary

11.1. What Has Been Accomplished

The algorithm R pattern-matches FP templates with programs, return-
ing sufliciently-compl ete sets of unifying ground substitutions.

The pattern-matching function 9, modified as described, can serve as
the basis for an actual implementation. Consideration of the problems
introduced by the (rather ambitious) requirements for handling the condi-
tion operator have clarified some issues in the mind of this author.

11.2. What Will Be Attempted

I t will probably be useful t o further modify cP to use a "lazy evaluation"
paradigm [HeM?6], t o produce substitutions one-at-a-time rather than all-
or-nothing. That way, a program transformer can keep requesting the next
substitution until some transformation's constraints are satisfied, and then
stop.

The method of handling the condition functional form used in R , based
on inflations of decision trees/hypercubes, wi l l be retired, due t o its
profigate use of resources. Work on i ts successor R' is in progress; the
approach being developed now resembles AT goal-directed heuristic search-
ing.

The algorithm R' will be implemented, probably in USP. A rudimentary
program transformation system is planned, although we do not presently
have a theorem prover (constraint verifier) available t o us.

11.3. Acknowledgements
.The author is grateful LO Professor Richard B. Keburtz for sharing h s

advice, ideas, and perspectives.

References

[Bac?B]
BACKUS, J . Cen programming be liberated from the Von Newnunn
style? A functional style and i ts nlgebra o f programs. Communica-
tions of the ACM 21 8 (1978), pp 613-641.

[Bal8 11
BALZER, R. naris f ormationd implementation: an example. IEEE Tran-
sactions on Software Engineering SE 7 1 (1981)~ pp 3-14.

[Bir?7]
BIRD, R. S . Notes o n recursion elimination. Communications of the ACM
20 6 (197?), pp 434-439.

[BUD??]
BURSTALL, R.M. and DARLINGTO?; J . A tran,~fomation system for develop
ing recu~sive programs. Journal of the ACM 24 1 (1977). pp 44-67.

[Coo661
COOPER, D.C. The equivalence o f certain computations. Computer Jour-
nal 9 (May 1966), pp 45-52.

[Dar8 1]
D A R ~ S T ~ X , J . An ezperimental program transformation and synthesis
system. Artficial Intelhgence 16 (1981), pp 1-46.

[DaB?6]
DARLIKGTON, J. and BURSTALL R.M. A system which automatically improves
programs. Acta lnformatica 6 (1976), pp 41-60.

[Der82]
DERSHOHITZ, N. Orderings for termrewriting systems. Theoretical Com-
puter Science 17 (1982), 2'79-301.

[DeM79]
DERSHOKITZ, N. and MAWA, Z. R o v i n g termination with multiset order-
ings. Communications of the ACM 22 8 (1979). pp 465-476.

[FaM82]
FATEMAN, R.J. and MOSES, J. MACSYMA Primer for VAX/UNIX University
of California a t Berkeley (1982).

[FeaSZ]
FEATHER, M.S. A s y s t e m for assis t ing program t r a n s f o r n a t i o n . ACM
Transactions of Programming Languages and Systems 4 1 (1982), pp 1-
20.

[FodBO]
FODERARO, J.K. The F ~ W Z LISP Manual. University of California at Berke-
ley (1980), Chapter 12.

[HeM?6]
HENDERSON, P. and MORRIS, J.H. A lazy evaluator. Proceedings of the 3rd
ACM Symposium on the Principles of Programming Languages (1976)~
pp 95-1 03.

[Hue801
HUET, G. Confluent reduct ions: abstract properties and a;pyolications to
t e r m reuni t ing sys t ems . Journal of the ACM 27 4 (1980), pp 797-821.

[HA781
HUET, G. and LANKFORD, D.S. On the u n i f o r m halting problem fo r t e r m
yewriting sys t ems . Rapport Labori a 283, IRlA (1978).

[HuOBO]
HUET, G. and OPPEN, D.C. Equations and rewri te m l e s : a survey. Stan-
ford University TR STAK-CS-80-785 (1 980).

[Hd80]
HULLOT, J. b n o n i c d f o r m s and unification. Lecture Notes in Com-
puter Science. Springer-Verlag (1980)~ pp 319-334.

[Ive 621
IVERSON, K. APrograrnming Language. Wiley (1962).

[JoL82]
JOUANNAUD, J. and LESCA~W, P. On m u l t i s e t orclerings. Information Pro-
cessing Letters 15 2 (1982), pp 57-63.

[KiSB 11
W-EBUKTZ, R.B. and SHULTIS, J.C. ?+amformations of FP program
schemes . 1981 Conference on Functional Programming Languages and
Computer Architecture, A.C.M. (Oct 1981), pp 41-48.

[KnB?OI
KNUTH, D.E. and BE~TIIX, P. S imple word problems in universal algebras.
Computational Problems in Abstract Algebra, Pergamon Press (19?0),
pp 263-297.

1-91
LANKFORD, D.S. OIL proving t e r m reurriting s y s t e m s a r e noetherian.
Louisiana Tech. University, Report MTP-2 (1979).

[La3771
LA!WORD, D.S. and BAUATYNE, A.M. I k c i s w n p r o c e d u r e s f o r s imple eqwz-
tional theories with commufat ive-associat ive &oms: complete se t s of
commutative-associative reduct ions. University of Texas, Mathematics
Dept Techrucal Report (Aug 1977).

[LS n77]
Lipton, R.J. and S~YDER, L. On the hal t ing of tree replacement s y s t e m s .
Proceedings of the Waterloo Conference on Theoretical Computer Sci-
ence, University of Waterloo (1977), pp 43-46.

[Li S?6]
LNEsEY, M. and S I E K M ~ N , J. Unification of A+ C t e r m s (bags) a n d A+ C+I
terms (sets). Intern. Ber. Nr. 5/76, Institut fur lnformatik I, Universi-
ta t Karlsruhe, W. Germany (1976).

[LoFB 11
LO~-DON, P. and FEATHER, M.S. Implement ing specification freedoms.
USC /IS1 Research Report #81-100 (1 98 1).

[Mak??]
MAK~KIN, G.S. The problem of solvability of equat ions in a free semi-
group. Soviet Akad. Nauk SSSR 233 2 (1977).

[Man741
MA~YA, Z. Mathematical Theory of Computation. McGraw-Hill Jnc.
(1974).

[Mas751
MAWA, Z. and SHAMIR, A. The opt imal fizedpoint of recurs ive programs.

. Proc. S p p . on Theory of Computing, A.C.M. (1975).

[Mas761
M A ~ A , Z. and SHAMIR, A. The theoretical aspects of the opt imal fized-
poin t . SIAM Journal of Computing 5 3 (1976), pp 414-426.

[Maw813
WA, Z. and M'ALDINGER, R. Deductive synthesis of the uni f ica t ion &go-
rithm. Science of Computer Programming 1 (1981), pp 5-48.

[PaK82]
PAIGE, R. and KOENIG, S . m i t e di f lerencing o f computable ezpressions.
ACM Transactions on Programming Languages and Systems 4 3 (1982)~
pp 402-454.

[PeSBl]
PETERSON, G.E. and STICKEL, M.E. Complete se t s of reduct ions f o r some
equational theories. Journal of the ACM 28 2 (1981), pp 233-264.

[PeB82]
P~rro~ossr, A. and BURSTALL, R.M. Deriving v e r y e f i c i e n t algori thms for
evaluat ing l inear recurrence relat ions using the program trans f orma-
twn technique . Acta Informatics 18 (1982), pp 181-206.

[Pla?8aa]
PWSTED, D. Well-founcled orderings for proving t e rmina t ion of s y s t e m s
of rewri te m l e s . University of Illinois, Computer Science TR 78-932
(1978).

[Pla?8b]
PWSTED, D. A ~ecurs ive ly-de f ined orclering for proving t e r m i n a t i o n of
t e r m reun i t ing sys t ems . University of Illinois, Computer Science TR
78-943 (1978).

[Rob651
ROBINS~N, J.A. A m n c hine-o.lienfed logic based o n the resolut ion princi-
ple. Journal of the ACM 12 1 (1965), pp 32-41.

[Ste?8]
STEELE, G.L. RABBIT: A Compiler for SCHEME. Ph.D. Thesis, M.I.T.
(1977).

[StiBl]
STICKEL, M.E. A uni f ica t ion algori thm for associntive-commutative
func t ions . Journal of the ACM 28 3 (198 I), pp 423-434.

[ston]
STOY, J.E. Denotationdl Semantics: The Scott-Strachey Approach to
Programming Language Theory. M.I.T. Press (19'7'7).

@MI2751
STRONG, H.R. and MASGIDLD-SCHETII~Y, A. and ROSEN, B.K. R e c u d n s t m c -
ture simplification. SlAM Journal of Computing 4 3 (19?5), pp 307-320.

