AN EXPERIMENTAL MULTICOMPUTER WITH A
REAL-TIME EVENT MONITOR

by
Richard B. Kieburtz

and
J. Mukerji, P. Sadayappan, & D. R. Smith

OGC Technical Report No. CS/E-83-004




An Experimental Multicomputer with a
Real-Time Event Monitor

by
Richard B. Kieburtz
Oregon Graduate Center

Jishnu Mukerp P. Sadayappan, and David R. Smith
State Univ. of New York
at Stony Brook

Abstract

The Stony Bt;ook Multicomputer was conceived as an experimental vehicle
to evaluate concepts for the design and use of distributed computing systems.
It consists of a network of ‘processing nodes and an operating system that pro-
vides services to experimental'applications, including message transport, a dis-
tributed flle system, and facilities for process management. It is also instru--
mented to monitor program-defined events that may occur at processing nodes
of the Mﬁlticomputer. The monitor records event occurrences with such fine
temporal resolution that it can eflectively trace instantaneous state transitions
in a distributed system. This paper describes the capabilities of the Multicom-

puter, and its use to obtain performance data in some applications.



1. Introduction

A testbed for evaluation of distributed system architectures should support
certain essential services needed by any distributed application, such as the
transport of messages. It should furthermore enable the performance of a pro-
posed system architecture to be evaluated experimentally, even though the
architecture under evaluation may differ substantially from the architecture of
the testbed itsell. Its requirements are those of a somewhat specialized system

simulator.

The Stony Brook Muilticomputer [1,2,3] was conceived as an experimental
vehicle to evaluate concepts for the design and use of distributed computing
systems. As it has evolved through its own design and prototype implementa-
tion, it is now suited to distributed simulation of a great variety of distributed
system architectures. It consists of a processor network together with a distri-
buted operating system called GOSSIP, that provides services to support experi-
mental applications. It does not directly provide services to human users
through a command language; these are provided by the UNIX operating system
running on a PDP-11/60 which is integrated with the Multicomputer. Software

development is done in the UNIX environment.

The basic design of the Multicomputer has been kept simple. A guiding prin-
ciple in this design has been to avoid complex problems whenever possible, in
preference to "solving” them. By following this dictum, GOSSIP exhibits a
characteristic of the earlier versions of UNIX; it has a highly modular structure
with cleanly defined interfaces. There has been no attempt to optimize its per-
formance to cater for a particular class of epplications. However, its basic
interprocessor communications are reasonably fast, relative to the speed of the
underlying hardware. This communication mechanism will be used in the simula-

tion of any distributed computing system that is mapped onto the Multicom-




puter architecture.

We have been particularly interested in performance measurement in a dis-
tributed computing environment. The Multicomputer has been instrumented so
as to allow detailed analysis of sequences of events in the system, with very fine
temporal resolution. The instrumentation subsystem provides timed profiles of
designated events occurring throughout the Multicomputer, without perceptibly
loading the system as it is running an application. Designation of which events

are to be monitored is programmable, and can be application dependent.

Before proceeding to describe the Multicornputer, it will be well to outline
our éoncepts of distributed computing systems. A system is distributed when
viewed at a level of detail in which individual components communicate with one
another by exchanging messages. Of course, w; recognize that by this definition
every conventional computer system can be considered as distributed when
viewed as a collection of individual component modules of electronics, which
exchange messages in the form of signals on wires. So we want to further clarity
what we mean by messages. We say that two (or more) system components com-
municate by ezchange of messages when the communications medium delays
information for a time sufficiently long that the interconnected system com-
ponents may undergo state changes. Thus it is an inherent property, in our view
of a distributed system, that the instantaneous global state of a system is not
observable from any single point within the system. This is to be distinguished
fromn the situation in which system components communicate via memoryless
channels, or "wires”, and the signal present on a channel can be thought of as a
direct manifestation of the current state of the system compcnent generating
the signal.

In software systems, we also have good analogies. When processes commun-

icate by direct procedure calls, or by common access to shared memory, the




channel of communication is memoryless in this sense. A system that uses such
communication is logically concentrated. On the cother hand, if processes com-
municate only through buffers {such as the pipe mechanism of UNIX), the chan-
nels have memory and a system of processes is logically distributed. From now
on, when we talk about messages, we shall mean messages communicated over

channels with such a property.

Please note that the property of a system being distributed implies nothing
about whether or not the system exhibits concurrency. Although distributed
systems tend to exhibit concurrency unless specifically synchronized, concen-
trated systems can also utilize parallel computation units to achieve concurrent
evaluation. And we are all familiar with the technique of multiplexing a purely
sequential computer in order to run a system of processes which simulate con-

current activity.

In the Stony Brook Multicomputer, any system of processes will be distri-
buted, as the basic communications channels have memory. However, the
degree to which an application makes use of concurrency is not mandated by
the system. The operating system allows an application to follow any model of
computation that an experimentor has chosen, although support for that com-

putational model must also be provided in the application.

1.1. locality in a distributed system

The notion of a system as being distributed suggests by analogy to our phy-
sical world the concept of a neighborhood, or localfty. However, as we under-
stand from geometry, the concept of neighborhood arises only when we impose a
measure of distance upon a space. For a distributed computing system as we
have defined it, “'distance" is traversed by messages. A suitable measure of the
distance between two system components is the cost of exchanging messages

between them. There are several such measures possible. A software measure




is the number of machine instructions that must be executed in order to
exchange a message w*lth a given correspondent. Another useful measure is the
mean time required for a round-trip message exchange between two correspon-
dents. The time can, of course, be normalized to the average execution time of
a machine instruction, to obtain a measure more nearly independent of a partic-

ular hardware technology.

Distributed computing systems, analyzed by neighborhoods, tend to have
very simple topologies. Systems that use a common communications medium,
such as Fthernet, consist of a single, unstructured neighborhood. So also do
some store-and-forward networks, such as ARPANET, at the level of abstraction
seen by the user. This is because actual routing, which might contribute to a
cost measure, has been made transparent to the user (and in fact may be vari-
able, with different packets of a message following different routes). In store-
and-forward networks with more constrained routing, neighborhoods will

become apparent.

In the Multicomputer, nodes are connected point-to-peint, and an immedi-
ate neighborhood of any node consists of all nodes to which it is directly con-
nected. Larger neighborhoods are those reached by forwarding messages
through one, two, or more intermediate nodes, until the network 'diameter” is
reached, where this is defined as the number of node stages sufficient to reach
any arbitrary node in the network from any other. We have chosen a hierarchical
tree interconnection topology because, of all the networks whose diameter is
logarithmically related to the node total, this seemed the closest match to the
logical structures arising in most applications. This aspect is discussed further

in section 5.



2. Evaluating a Distributed System

The primary purpose cof a testbed is to enable the experimental evaluation
of proposed system designs, prior to building a full-scale system prototype. With
a distributed system, not only is prototyping likely to be expensive, but meas-
urement also presents difficulties. A testbed should provide the ability to simu-
late the performance of a prototype system, but in a single laboratory setting,
and without the demands on performance that may be characteristic of an

operational system.

There are several aspects of the behavior of a distributed system design
that should be evaluated, and not all of these are easily determined by experi-
mentation. A system may be distributed in order to achieve reliability, by the
use of redundant components, isolated from one another to minimize the proba-
bility of simultaneous failure in consequence of some disaster. The reliability of
a design cannot be measured directly, but the performance of a redundant

baékup mechanism can be tested experimentally.

A system may be distributed because it is responsible for managing a physi-
cally distributed database, or set of devices, or both. Systems that support
asynchronous, possibly concurrent transaction activity have the responsibility
to prevent independent transactions from interfering with one another. A
testbed cannot effectively simulate such a system in actual operation, but it can
test the effectiveness and performance of the interference avoidance algorithms

used in a system.

Some systems are designed to allow the multiple tasks of a complex prob-
lem to be processed concurrently by a network of processing nodes. The
motivation for this may be to enhance reliability, to manage transactions ini-
tiated by a set of geographically distributed customers, to utilize pfocessors to

meet the demands of time-critical processes, or just to increase throughput. In




any of these cases, there is usually a design goal for system performance. While
analytic performance estimates provide important data to designers, experi-

mental performance evaluation remains highly desirable.

The Stony Brook Multicomputer has been designed primarily to permit
experimental performance analysis. Thus it does not seek to provide high-level
support for transactions, nor does it contain redundant backup mechanisms,
but it does include a hardware-supported performance monitor capable of
recording events in quasi-real time. The applications for which it is intended are
experiments in which a distributed system design is installed on the Multicom-
puter. Parameters critical to a performance model will be measured experimeri—
tally, and scaled to the timing parameters of a full-scale design by an offline
analysis.

Typical experiments planned for the Multicomputer include simulation of a
distributed architecture for evaluation of functional-language programs, investi-
gation of compilation as a pipelined process, and investigation of the perfor-
mance of several divide-and-conquer algorithms in which the cost of interpro-
cess communication can be taken into account. These applications are dis-

cussed in more detail in Section 8.

3. Ahierarchical system architecture

The basic function of a distributed system testbed is to support a system of
processes representing an application, and which interact with one another by
exchanging messages. At first glance, it might seem that the most natural inter-
connection topology for a testbed intended to meet this general mandate would
have only a single neighborhood, i.e. would make the locations of processes
within the testbed network transparent to an application. This is not necessarily
the case, however. The "application” to be runr on an experimental system is not

always the distributed systern under evaluation, but is more frequently an




experiment designed to evaluate a particular distributed system architecture.
The experiment may require control, scheduling, test vector generation etc.
which are outside the immediate scope of the distributed application that is to
be evaluated. These functions seem most naturally to be provided by a control
process whose neighborhood should include those processes of the application
that it controls. If the application involves subsystems, then the process hierar-
chy used in an experiment may be more than one level deep, as shown in Figure
1(a).

The Multicomputer provides a tree of processing nodes on which to map a
hierarchy of processes. For instance the tree illustrated in Figure 1(b) may be
used to run the processes of Figure 1(a) by multiplexing a cluster of processes
on a cluster of {possibly fewer) processing nodes. In this picture, the processes
at the frontier of the process tree represent those derived from a system to be
simulated; these processes may relate to one another in an arbitrary topology of
neighborhoods. In the simulation environment provided by the Multicomputer,
all communications between processes on this frontier are routed through a

control process.

The Multicomputer system architecture has been designed to support pro-
cess hierarchies of the kind just described. It consists of a tree of processing
nodes, in this case DEC LSI-11 processors with 56-Kbyte memories, whose arcs
are 18-bit paralle]l, bidirectional communications links with independent latch

buffers in either direction. We refer to these arcs as conirol links.

This processing tree is augniented by a secondary tree which provides a dis-
tributed file system for use by processes running at nedes of the primary tree.
The file systems allow processes to make use of secondary storage and to
exchange data with one another. It also supports multiplexing of processes on
the nodes of the primary tree by providing storage for suspended process




images. Both the primary and secondary trees are shown in Figure 2. The
nodes labelled T in the secondary tree are also LSI-11 processors, each with 256

Kbytes of memory. The node labelled G is a DEC PDP-11/60.

The one-level-deep subtrees of the primary processor hierarchy can be
thought of as forming overlapping clusters of "leaves” of the secondary tree, as
illustrated in Figure 3. Each of these clusters is served by a single T-node of the
secondary tree, which implements a file system accessible only to the processes
that run on nodes of the cluster. Intercluster communication can be achieved
in two ways. The P-node at the root of each cluster is also a member of the clus-
ter above it in the P-tree, and can relay messages that pass from the node above
it to those below. The ﬁle system that serves each cluster also has access to the
global file system which is supported by the G-node. Thus file images can be
transferred between clusters by using the G-node as an intermediary. In most
applications we have considered, inter-cluster communications are infrequent,

however.

Arcs of the secondary tree support the movement of file segment images
between local flle systems and P-nodes within a processing cluster. These arcs
are capable of two modes of operation. In one mode they emulate the contrql
links of the P-tree, sending messages between processors a word at a time. In
the other mode, they function as direct-memory-access (DMA) links, transmit-
ting data in burst mode at close to the maximum access rate of the memories,
and without processor intervention. The DMA links can make use of 1B address
bits, and so can access the full 258 Kbyte address space of a T-node, even though
the LSI-1l processor at each such node can access less than one-fourth of this
address space. Thus the majority of the memory at each T-node is used only for

storage of file segments.




3.1. Hierarchical control

The Multicomputer architecture has been designed to support a relatively
flat process hierarchy. In this hierarchy, a superior process is always to be run
at an interior node of the P-tree {called the control node), from which it never
migrates. Subordinate processes, which as we have said may be the processes
of an experimental application controlled by the superior, can be run inter-

changeably on any of the P-nodes in the cluster rooted at the control node.

Process multiplexing has been kept simple; a P-node supports only one pro-
cess at a time. The control process which runs at its superior node can preempt
the execution of the process running at a subordinate P-node, ordering that pro-
cess to be suspended and replaced by another to be run in its place. When this
happens, a process suspension record {PSR) is created and stored in the local
file system that serves the cluster. The control process can designate a file con-
taining the PSR of another process to be resumed, or can call for the creation of
a new process. By allowing only a single process to be active in a P-node at any
time, the resident portion of GOSSIP is relieved of the task of supporting a gen-
eral purpose interprocess communication facility. It needs to do little more
than to enabie the exchange of messages between processors. Interprocess
communication is a duty of a control process, which also controls scheduling
within a cluster, and must maintain a complete data base on the activities of an

entire neighborhood of communicating processes.

3.2. Message based communication

GOSSIP supports the transport and acknowledgement of messages between
adjacent nodes [4]. These messages are intended for the functions of control,
status reporting, and support of higher-level protocols, so it has been con-
sidered more important to make the message tacility simple, efficient and reli-

able than to make it very general. Accordingly, messages are bounded in length




{less than 32 bytes) and in number of message types. There are eight message
types, of which seven are interpreted by GOSSIP, and one type denotes messages
to be interpreted by applications processes. An application can, of course,
define higher levels of protocol which impose additional structure upon mes-
sages.

The format of a message is illustrated in Figure 4. A header word defines
the message type and its actual length, in words. The header also contains a
field to identify the message channel over which a message is to be sent, or has
arrived. Note that channel identifiers give only the relative direction of a neigh-
boring node within the Multicomputer, and are not process identiflers. When a
message is actually transmitted over a control link between two processors, the "
channel identifier becomes redundant, and this field of the header is replaced by
eight bits of redundant code for error detection. All one- and two-bit errors in

header words and acknowledgements are detectable.

A cyclic redundancy code {CRC) word was originally provided at the conclu-
sion of each message. However, it was found that the incidence of occasional
errors in message transmission was so small as to be practically uncbservable.
Intermittent but frequently recurring errors, such as those that occur due to
noisy cable connections, are detected by the coding of header words and ack-
nowledgements. After observing the system in continuous operation over a
period of time, the software-implemented CRC check on the bodies of messages
was removed in order to reduce the overhead of message transmission. To send
a message and receive its acknowledgement currently has a cost of about 140

instruction executions.

Messages are used in GOSSIP to support process scheduling within a cluster,
to transmit capabilities for the use of shared files, and to support higher-level

protocols, such as one that defines point-to-point message channels to connect

10




processes running at nodes beyond the immediate neighborhood of a processor
[4]. Messages are also used to request file operations of the local file system
serving the nodes of a cluster, and to receive status information indicating the

outcome of a service request.

4. A distributed file system

Processes active in the Multicomputer can communicate by means of mes-
sages, but the message facility is primarily intended to carry control and status
information. Data and programs are moved and stored by using the facilities of
a file system. Each cluster of processors in the P-tree (and therefore the
processes that run on this cluster) is served by an individual local file system. A
process can directly access only the files within the local flle system serving the
cluster to which it belongs. A process that has been assigned to the superior P-
" node of a cluster (such as 1, 2 or 3 of Figure 3) which is not at the root of the P-
tree can have access to two flle systems, since the node on which it runs belongs
to two overlapping clusters. As we have said, a process assigned to the superior
node of a cluster will normally perform a control function, rather than an appli-

cation defined task.

The use of independent, local file systems to serve process clusters provides
an effective interprocess communication facility capable of handling data
objects of arbitrary size, and avoids the complexity inherent in supporting file
migration, location-independent files, or files which exist in multiple copies. Of
course, any or all of these concepts may be built into an application to be run on

the Multicomputer, but they are not characteristic of all applications.

The Multicomputer also supports a single, global file system whose contents
are indirectly accessible from every P-node cluster. A P-node cluster never uses
a global file directly; instead it may ask for a copy of a global file to be made in
its local file system. The operating system, GOSSIP, does not guarantee that

11




copies made of a global file will be kept consistent. If consistency of copies is
required by an application, it is up to the application to define and implement
the algorithms required to maintain consistency. A global file may also be
updated by overwriting it {or segments of it) with a flle from one of the local file
systems. Again, it is the responsibility of an application to ensure that muitiple

updates do not interfere with one another.

The global file system is supported by the PDP-11/60 which runs at the G-
node of the Multicomputer. The components of GOSSIP that implement the glo-
bal file system are embedded as processes in a UNIX environment on the PDP-
11/80. UNIX files may be copied to global GOSSIP files, and vice-versa. Each
local file system will also make use of a global file to provide backing store for
file segments that might otherwise overflow the address space avaﬂéble at a T-

node.

4.1. Segmented files

Each file consists of an indexed set of zero or more segments. A segment is
a variable-length sequence of bytes, and is the granule of data transfer between
a P-node and a file system. The segments which constitute a file can be created
or deleted dynamically, and the length of any segment is the number of bytes

that were last written into that segment.

The contents of a file are accessed by transferring segment images, one at
a time, between a file system and a P-node, or between a T-system and the G-
system. A segment transfer is accomplished in response to a request from a P-
node. A reguest names the flle system (unique within the Multicomputer) the
file, énd the segment index Operations on segments include create segment,
delete segment, read segment, write segment, and copy segment where the
copy operation takes place between local and giobal files.

12




Segmented files would offer no profound advantage over the use of a single-
level name space, except for the fact that files in the Multicomputer are also
subject to capability-based protection. A file, not a segment, is the granule to
which protection applies. We anticipate that it will often be the case that several
segments will share thé same access restrictions. The use of segmented files
allows a process to have access to a large number of individual data objects,
represented as segments, but allows the number of capabilities that the process

must retain to be much smaller.

4.2. File protection -

The protection system on the Multicomputer can be viewed as defining a
virtual protection machine which provides to the user a protected file system.
System functions are executed on this machine in a privileged mode. This per-
‘mits them to gain indirect access to the contents of capabilities, analogous to
the way that privileged processes can gain access to specific hardware registers
in a conventional computer. A process running in unprivileged mode on this vir-
tual machine does not have access to the actual capabilities for files; capabili-

ties are transparent to a user process.

The concept of the virtual protection machine was found advantageous to
provide enforcement for locally centralized control in the Multicomputer, for
use of a local file system to support interprocess communication, and for pro-

cess multiplexing on the P-nodes of the Multicomputer.

Since the protection system occupies the same physical address space as
does an applications program, the LSI-11 processors used in the prototype
implementation of the Multicomputer have been modified by adding primitive
two-mode memory protection hardware. This allows the- address space to be
partitioned into two regions. The pr;tected region includes all I/0 bus

addresses, and a designated, low-address region of memory. The resident code

13




of GOSSIP and its tables and buffers reside in the protected region; applications
code and data are loaded in the unprotected region. Processor interrupts are
always masked when executing in the privileged mode, unmasked when execut-
ing in the unprivileged mode.

With memory protection for kernel code in a P-nede, and physical separa-
tion of the file server processes (at T-nodes) from the applications processes {at
P-nodes), it is possible to have capability protection for files. Only the applica-
tion code executed at a P-node is regarded as untrustworthy. This
untrustworthy code has no means of direct access to a file system, because of
the physical separation of file systems onto separate nodes. File access requires
the use of messages passed to a file system over a control link, which cannot be
directly accessed by applications code executing in the unprivileged mode. A
file system will only respond to messages of a specific header type (TFILE). The
file protection subsystem, which is part of the resident kernel of GOSSIP at each
P-node, prevents forgery of such messages by an applications process. A file
server process, executing at a T-node, can safely assume that every request it

receives has been validated before being sent.

The file protection subsystern maintains, on behalf of the applications pro-
cess running at a P-node, a list of file capabilities (C-list). Each capability con-
tains

i} afile name, and the name of a local file system to which it belongs;

ii) & set of rights for use of the file;

iii) a set of segments of the flle, for which access is authorized
A process acquires a capability either by

a) creation of a file (to which the applications process at this P-node has

the rights of an owner), or

14




b) agrant from a neighboring P-node.

A capability grant is made in the form of a control link message whose
header type is CAP, and which is interpreted by the protection subsystem rather
than directed to the applications process. An applications process refers to a
file by use of an index into the C-list, which has been furnished to it by the pro-
tection subsystem. When an applications process makes a request for a file
operation, the request is interpreted by the protection subsystem, and validated
against the rights contained in the capability to which it refers. If it is valid, a
file transfer request is formatted as a message of type TFILE, and addressed to
the appropriate loéal flle systemn.

The original motivation for implementing memory protection in a P-node
was in order o isclate the effect of software errors; to help in distinguishing
between bugs in an untried operating system and bugs in the code of an experi-
mental application. However, we believe it will be equally important to be able
to prevent misuse of the file systems by potentially errant applications. Protec-
tion is of greater impertance in a distributed system than in one which is con-

centrated, because of the extreme difficulty of surveillance of the whole system.

The incremental cost of file protection, whether measured in terms of
operating system complexity or in bytes of resident kernel code, is very modest.
Protection is applied only to operations that require interpretation through calls
to the operating system, and not to operations that might ordinarily be carried
out by in-line code. Furthermore, no additional levels of indirection are intro-
duced in order to implement protection. File naming is a service that would be
required in any case, as would formatting of file access request messages. The
system overhead directly att.ribut.al';le to protection enforcement is only that of
checking the types of messages that originate with an applications process, and
checking the rights held in a capability.

16




4.3. File accessrights

The rights associated with a file are divided into two classes. Generic rights
refer to the file access operations that can be performed by a local file system,
read, write, delete, create segment, delete segment. These rights authorize the
transfer of file segment images between a file gystem and the address space of a
process running on a P-node, or authorize operations that affect the file direc-
tory in the local file system. Other rights, called auziliary rights [10] may res-
trict the direct use of a file image to specific procedures of higher levels of the

operating system.

4.4. Process multiplexing in the Ptree

In the Multicomputer, auxiliary rights are used to protect the primitive
operations that implement process switching on a P-node. For instance, when a
control process orders the process currently running at a P-node to be
suspeﬁded, a suspend process primitive will be invoked, naming as an argument
a file into which a PSR is to be stored. This file must be one for which the active
process holds the auxiliary right suspend process but on which no generic rights
are held. Thus, the unprotected code of an applications process may not read or

write directly to this file.

When the primitive operation suspend process is invoked, GOSSIP does not
immediately attempt to access the file that is named as an argument in the call.
Instead, its first action is to format a segment read request to the local T-
system, naming as an argument a system-defined file that contains the load
images of a set of system-defined procedures. These are the non-resident por-
tions of GOSSIP. The segment named in the read request is one that contains
the code of a procedure to implement the creation of a PSR. This segment is
read into unprotected memory locations in the P-node, and overwrites the code

of the applications process being suspended.

16




Before giving control to this procedure, however, the resident kernel of
GOSSIP must first establish for it a capability to write into the PSR storage file.
To do ‘t.his, a copy is made of the capability given as an argument in the original
primitive call, but the rights of the copied capability are modified from a rights
amplification table. This table contains a set of generic rights which are to
replace the auxiliary right that has been invoked on the named flle. The system
procedure which has been loaded is then passed control, giving it as an argu-
ment the index of the new capability to the PSR file which has been created for
its use. The procedure gets control with memory protection disabled, allowmg it
direct access to the C-list of the suspended process so that images of theseir
capabilities can be in