
AN EXPERIMENTAL MULTICOMPUTER WITH A

REAL-TIME EVENT MONITOR

b y
R i c h a r d B . K i e b u r t z

and
J. M u k e r j i , P. S a d a y a p p a n , & D. R. S m i t h

OGC T e c h n i c a l R e p o r t N o . CS/E-83-004

An Jkperimental Multicomputer w i t h a
Real-Time Event Monitor

by
Richard B. Xieburtz
Oregon Graduate Center

Jishnu Mukerji, P. Sadayappan, and David R. Smith
State Univ. of New York

at Stony Brook

The Stony Brook Multicomputer was conceived as an experimental vehicle

to evaluate concepts for the design and use of distributed computLng systems.

It consists of a network of -processing nodes and an operating system that pro-

vides services to experimental applications, including message transport, a dis-

tributed fUe system, and facilities for process management. It is a130 instru-

mented to monitor prograrn-deflned events that may occur at processing nodes

of the Multicomputer. The monitor records event occurrences with such fine

temporal resolution that it can effectively trace instantaneous state transitions

tn a distributed system. This paper describes the capabilities of the Multicom-

puter, and its use to obtain performance data in some applications.

A testbed for evaluation of distributed system architectures should support

certain essential services needed by any distributed application, such as the

transport of messages. It should furthermore enaMe the performance of a pro-

posed system architecture to be evaluated experimentally, even though the

architecture under evaluation may difTer substantially from the architecture of

the testbed itself. Its requirements are those of a somewhat specialized system

simulator.

The Stony Brook Multicomputer [1,2,3] was conceived as an experimental

vehicle to evaluate concepts for the design and use of distributed computing

systems. As it has evolved through its own design and prototype implementa-

tion, it is now suited to distributed simulation of a great variety of distributed

system architectures. It consists of a processor network together with a distri-

buted operating systern called GOSSIP, that provides services to support experi-

mental applications. It does not directly provide services to human users

through a command language; these are provided by the UNM operating system

running on a PDf-11/60 which is integrated with the Multicomputer. Software

development is done in the UNIX environment.

The basic design of the Multicomputer has been kept simple. A guiding prin-

ciple in this design has been to amid complex problems whenever possible, in

preference to "solving" them. By following this dictum. GOSSIP exhibits a

characteristic of the earlier versions of it has a hghty modular structure

with cleaniy defined interfaces. There has been no atternp t to optimize its per-

formance to cater for a particular class of applications. However, its basic

interprocessor communications are reasonably fast, relative to the speed of the

underlying hardware. Tbis communication mechanism will be used in the simula-

tion of m y distributed computing system that is mapped onto the Multicorn-

puter architecture.

We hhve been particularly interested in performance measurement in a dis-

tributed computing environment. The Multicomputer has been instrumented so

as to allow detailed analysis of sequences of events in the system, with very fine

temporal resolution. The instrumentation subsystem provides timed profiles of

designated events occurring throughout the Multicomputer, without perceptibly

loading the system as it is running an application. Designation of which events

are to be monitored is programmable, and can be application dependent.

Before proceedmg to describe the Multicomputer, it will be w e l l to outline

our concepts of distributed compubg systems. A system is disbdnded when

viewed at a level of detail in which individual components communicate with one
-

another by exchanging messages. Of course, we recognize that by this definition

every conventional computer system can be considered as distributed when

viewed as a collection of individual component modules of electronics, which

exchange messages in the form of signals on wires. So we want to further clarify

what we mean by messages. We say that two (or more) system components com-

municate by ezchmtge of messages when the communications medium delays

information for a time wflicientiy long that the interconnected system com-

ponents may undergo state changes. Thus it is an inherent property, in our view

of a distributed system, that the instantaneous global state of a system is not

observable from any single point within the system. This is to be distinguished

from the situation in which system components communicate via rnemoryless

channels, or "wires", and the slgnal present on a channel can be thought of as a

direct manifestation of the current state of the system component generating

the signal.

In sottware systems, we also have good analogies. When processes commun-

icate by direct procedure cells, or by common access to shared memory, the

channel of communication is menoryless in this sense. A system that uses such

communication is logically concentrated. On the other hand, if processes com-

municate only through buffers (such as the pipe mechanism of UNDC), the rhan-

nels have memory and a system of processes is logically distributed. From now

on, when we talk about messages, we shall mean messages communicated over

channels with such a property.

Pleaee note that the property of a system being distributed implies nothug

about whether or not the system exhibits concufrency. Although distributed

sys tems tend to exhibit concurrency unless specffically synchronized, concen-

trated systems can also utilize pardel computation units to achieve concurrent

evaluation. And we are d l familiar with the technique of multiplexing a purely

sequential computer in order to run a system of processes whirh simulate con-

current activity.

In the Stony Brook ~ulticom~ut&, any system oi processes w i l l be &stri-

buted, as the basic communications channels have memory. However, the

degree to which an application makes use of concurrency is not mandated by

the system. The operating system allows an application to foUow any model of

computation that an experimentor has chosen, although support for that corn

putational model must also be provided in the application.

The notion of a system as being distributed suggests by analogy to our phy-

sical world the concept of a neighborhood, or locality. However, as we under-

stand from geometry, the concept of neighborhood arises only when we impose a

measure of distance upon a space. For a distributed computing system as we

have de6ned it, "distance" is traversed by messages. A suitable measure of the

distance between two system components is the cost of exchanging messages

between them. There are several such measures possible. A sottware measure

is the number of machine instructions that must be executed in order to

exchange a message with a given oorrespondent. Another useN measure is the

mean time required for a round-trip message exchange between two correspon-

' dents. The time can, of course, be normalized t o the average execution time of

a machine instruction, to obtain a measure more nearly independent of a partic-

ular hardware technology.

Ihs tribute d computing systems, analyzed by neighborhoods, tend to have

very simple topologies. Systems that use a common communications medium,

such as Ethernet, consist of a single. unstructured neighborhood. So also do

some store-and-forward networks, such as ARPANET, at the level of abstraction

seen by the user. This is because actual routing, which might contribute to a

cost measure, has been made transparent to the user (and in fact may be vari-

able, with Merent packets of a message following different routes). In store-

and-forward networks with more constrained routing, neighborhoods will

become apparent.

In the Multicomputer, nodes are connected point-to-point, and an immedi-

ate neighborhood of any node consists of all nodes to which it is directly con-

nected. Larger neighborhoods are those reached by forwarding messages

through one, two, or more intermediate nodes, until the network "diameter" is

reached, where this is defhed as the number of node stages d c i e n t to reach

any arbitrary node in the mtwork from any other. W e have chosen a hierarchical

tree interconnection topology because, of all the networks whose diameter is

logarithmically related to the node total, this seemed the closest rnatch to the

logical structures arising in most applications. This aspect is discussed further

in section 5.

2 Evaluating a Dhtr+buted System

The primary purpose of a testbed is to enable the experimental evaluation

of proposed system designs, prior to building a fuil-scale system prototype. With

a distributed system, not only is prototyping likely to be expensive, but meas-

urement also presents diflicuities. A testbed should provide the ability to simu-

late the performance of a prototype system, but in a single laboratory setting,

and without the demands on performance that may be characteristic of an

operational system.

There are several aspects of the behavior of a distributed .system design

that should be evaluated, and not all of these are easily determined by experi-

mentation. A system may be distributed in order to achieve reiiabilify, by the

use of redundant components, isolated from one another to minimize the proba-

bility of simultaneous failure in consequence of some disaster. The reliability of

a design cannot be measured directly, but the performance of a redundant

backup mechanism can be tested experimentally.

A system may be distributed because it is responsible for managing a physi-

cally distributed database, or set of devices, or both. Systems that support

asynchronous. possibly concurrent transaction activity have the responsibility

to prevent independent transactions from interfering with one another. A

testbed cannot eflectively simulate such a system in actual operation, but it can

test the effectiveness and performance of the interference avoidance algorithms

used in a system.

Some systems are designed to allow the multiple tasks of a complex prob-

lem to be processed concurrently by a network of processing nodes. The

motivation for this may be to enhance reliability, to manage transactions ini-

tiated by a set of geographically distributed customers, to utiiize processors to

meet the demands of time-critical processes, or just to increase throughput. In

any of these cases, there is usually a design goal for system performance. While

analytic performance estimates provide important data to designers, experi-

mental performance evaluation remains hlghly desirable.

The Stony Brook Multicomputer has been designed primarily to permit

experimental performance analysis. Thus it does not seek to provide high-level

support for transactions, nor does it contain redundant backup mechanisms,

but it does include a hardware-supported performance monitor capable of

recording events in quasi-real time. The applications for which it is intended are

experiments in which a distributed system design is installed on the Multicom-

puter. Parameters critical to a performance model will be measured experimen-

tally, and scaled to the timing parameters of a full-scale design by an ofl'he

analysis.

Typical experiments planned for the Multicomputer include simulation of a

&stributed architecture for evaluation of hmctional-language programs, investi-

gation of compilation as a pipelined process, and investigation of the perfor-

mance of several divide-and-conquer algorithms in wMch the cost of interpro-

cess communication can be taken into account, These applications are dis

cussed in more detail in Section 6.

The basic function of a distributed system testbed is to support a system of

processes representing an application, and which interact with one another by

exc- messages. At h t glance, it mlght seem that the most natural inter-

connection topology for a testbed intended to meet this general mandate would

have only a single neighborhood, i.e. would make the locations of processes

within the testbed network transparent to an application. Th~s is not necessarily

the case, however. The "application" to be run on an experimental system is not

always the distributed system under evaluation, but is more frequently an

ezperiment designed to evaluate a particular distributed system architecture .

The experiment may require control, scheduling, test vet tor generation, e tc.

which are outside the immediate scope of the distributed application that is to

be evaluated. These h t i o n s seem most naturally to be provided by a control

process whose neighborhood should include those processes of the application

that it controls. If the application involves subsystems, then the process hierar-

chy used in an experiment may be more than one level deep, as shown in l%gure

l(a).

The Multicomputer provides a tree of processing nodes on which to map a

hierarchy of processes. For instance the tree illustrated in Figure 1(b) may be

used to run the processes of Q u r e l(a) by multiplexing a cluster of processes

on a cluster of (possibly fewer) processing nodes. In this picture, the processes

at the frontier of the process tree represent those derived from a system to be

simulated; these processes m y relate to one another in an arbitrary topology of

neighborhoods. In the simulation environment provided by the Multicomputer,

dl communications between processes on this frontier are routed through a

control process.

The Multicomputer system architecture has been designed to support pro-

cess hierarchies of the kind just described. It consists of a tree of processing

nodes, in this case DEC LSI-11 processors with 56-Kbyte memories, whose arcs

are le-bit pardel, bidirectional communications links with independent latch

W e r s in either direction. We refer to these arcs as coltfrol l i d s .

This processing tree is augaented by a secondary tree which provides a dis-

tributed file system fur use by processes running at nodes of the primary tree.

The Be systems allow processes to make use of secondary storage and to

exchange data wi th one another. It also supports multiplexing of processes on

the nodes of the primary tree by providing storage for suspended process

images. Both the primary and secondary trees are shown in Figure 2. The

nodes labelled T in the secondary tree are also LSI-11 processors, each with 256

a y t e s of memory. The node labelled G i s a DEC PDP-11/60.

The one-level-deep subtrees oP the primary processor hierarchy can be

thought of as forming overlapping clusters of "leaves" of the secondary tree, as

illustrated in Figure 3. Each of these clusters is served by a single T-node of the

eecondary tree, which implements a file system accessible only to the processes

that run on nodes of the cluster. Inter-cluster communication can be achieved

in two ways. The P-node at the root of each cluster is also a member of the clus-

ter above it in the P-tree, and can relay messages that pass from the node above

it to those below. The file system that serves each cluster also has access t o the

global file system which is supported by the G-node. Thus file images can be

transferred between clusters by using the Gnode as an intermediary. In most

applications we have considered, inter-cluster communications are infrequent,

however.

Arcs of the secondary tree support the movement of file segment images

between local fUe systems and P-nodes w i h n a processing cluster. These arcs

afs capable of two modes of operation. In one mode they emufate the control

links of the P-tree, sen- messages between processors a word at a time. In

the other mode, they rune tion as direct-memory-acce ss (Dm) linlo; , transmit-

ting data in burst mode at close to the maximum access rate of the memories,

and without processor intervention The IIMA links can make use of 18 address

bits, and so can access the full 258 Kbyte address space of a T-node, even though

the LSI-il processor at each such node can access less than one-fourth of t h ~

address space. Thus the majority of the memory at each T-node is used only for

storage of file segments.

The Multicomputer architecture has been designed to support a relatively

i3at process hierarchy. In this hierarchy, a superior process is always to be run

at an interior node of tbe P-tree (called the control node), from which it never

migrates. Subordinate processes, which as we have said may be the processes

of an experimental application controlled by the superior, can be run intel-

changeably on any of the P-nodes in the cluster rooted at the control node.

Process multiplexing has been kept simple; a P-node supports only one pro-

cess at a time. The control process w-hich runs at its superior node can preempt

the execution of the process running at a subordinate P-node, ordering that pro-

cess to be suspended and replaced by another to be run in its place. When this

happens, a process smpensirm mcwd (PSR) is created and stored in the local

file system that serves the cluster. The control process can designate a dle con

taining the PSR of another process to be resumed, or can call for the creation of

a new process. By allowing cmly a single process to be active in a P-node at any

time, the resident portion of GOSSIP is relieved of the task of supporting a gen-

eral purpose interprocess communication facility; It needs to do little more

than to enable the exchange of messages between processors. Interprocess

communication is a duty of a control process, which also controls schedulmg

within a cluster, and must maintain a complete data base on the activities of an

entire neighborhood of communicating processes.

82. Yessage based c011~muniPation

GOSSIP supports the transport and achowledgement of messages between

adjacent nodes 141. These messages are intended for the functions of control,

status reporting, and support of hgher-level protocols, so it has been con-

sidered more important to make the message facility simple, efkient and reli-

able than to W e it very general. Accordingly, messages are bounded in length

(less than 32 bytes) and in number of message types. There are eight message

types, of which seven are interpreted by GOSSLP, and one type denotes messages

to be interpreted by applications processes. An application can, of course,

deiine higher levels of protocol which impose additional structure upon mes-

sages.

The format of a message is illustrated in Figure 4. A header word defines

the message type and its actud length, in words. The header also contains a

field to identify the message channel over which a message is to be sent, or has

arrived. Note that channel identifiers give oniy the relative direction of a neigh-

boring node within the Multicomputer, and are not process identifiers. When a

message is actually transmitted over a control Link between two processors, the

channel identifier becomes redundant, and this field of the header is replaced by

eight bits of redundant code for error detection. All one- and two-bit errors in

header words and acknowledgements are detectable.

A cyclic redundancy code (CRC) word was originally provided at the conclu-

sion of each message. However, it was found that the incidence of occasional

errors in message transmission was so small as to be practically umbservable.

Intermittent but frequently recurring errors, such as those that occur due to

noisy cable connections, are detected by the c o d q of header words and ack-

nowledgements. After observhg the system in continuous operation over a

period or time, the software-implemented CRC check on the bodies of messages

was removed in order to reduce the overhead of message transmission. To send

a message and receive its acknowledgement currently has a cost of about 140

instruc tion executions.

Messages are used in GOSSIP to support process scheduling within a cluster,

to transmit capabilities for the use of shared fles, and to support hgher-level

protocols, such as one that defines point-to-point message channels to connect

processes running at nodes beyond the immediate nerghborhood of a processor

[4]. Messages are also used to request file operations of the local file system

serving the nodes of a cluster, and to receive status information indicating the

outcome of a service request.

Processes active in the Multicomputer can communicate by means of mes-

sages. but the message facility is primarily intended to carry control and status

information. Data and programs are moved and stored by uslng the facilities of

a file system. Each cluster of processors in the P-tree (and therefore the

processes that run on this cluster) is served by an individual local me system. A

process can directly access only the files within the local iile system serving the

cluster to which it belongs. A process that has been assigned to the superior P-

node oi a cluster (such as 1, 2 or 3 of Figure 3) which is not at the root of the P-

tree can have access b two file systems, since the node on which it runs belongs

to two overlapping clusters. A s we have said, a process assigned to the superior

node of a cluster will normally perform a control function, rather than an appli-

cation defined task.

The use of independent, local file systems to serve process clusters provides

an effective interprocess communication facility capable of handllng data

objects of arbitrary size, and avoids the complexity inherent in supporting flle

migration, location-independent files, or files which exist in multiple copies. Of

course, any or all of these concepts may be bullt into an application to be run on

the Multicomputer, but they are not characteristic of all applications.

The Multicomputer also supports a single, global fLle system whose contents

are indirectly accessible from every P-node cluster. A P-node cluster never uses

a global tile directly; instead it may ask for a copy of a global file to be made in

its local file system. The operating system, GOSSIP, does not guarantee that

copies made of a global me will be kept consistent. If consistency of copies is

required by an application, it is up to the application to define and implement

the algorithms required to maintain consistency. A global file may also be

updated by overwriting it (or segments of it) with a file from one of the local fie

systems. Again, it is the responsibility of an application to ensure that multiple

updates do not interfere with one another.

The global file system is supported by the PDP-11/60 which runs at the G

node of the Multicomputer. The components of GOSSIP that implement the glo-

bal fUe system are embedded as processes in a UNM environment on the fDP-

11 /80. UNIX 1Ples may be copied to global GOSSIP mes, and vice-versa. Each

local Ale system will also make use of a global file to provide backmg store for

fie segments that might otherwise overflow the address space available at a T-

node.

Each file consists of an indexed set of zero or more segments. A segment is

a variable-length sequence of bytes, and is the granule of data transfer between

a P-node and a flle system. The segments which constitute a flle can be created

or deleted dynamically, and the length of any segment is the number of bytes

that were last written into that segment.

The contents of a me are accessed by transferring segment images, one at

a time, between a file system and a P-node, or between a T-system and the G

system. A segment transfer is accomplished in response to a request from a P-

node. A request names the file system (unique -within the Multicomputer) the

file, and the segment index Operations on segments include create segment.

delete segment, read segment, write aegment, and copy segment where the

copy operation takes place between local and global files.

Segmented files would offer no profound advantage over the use of a single-

level name space, except for the fact that files in the Multicomputer are also

subject to capability-based protection. A Ale, not a segment, is the granule to

which protection applies. We anticipate that it w i l l of ten be the case that several

segments will share the same access restrictions. The use of segmented files

allows a process to have access to a large number of individual data objects,

represented as segments, but allows the number of capabilities that the process

must retain to be much smaller.

4.2 Rlepwbctim

The protection system on the Multicomputer can be viewed as d e f f ~ ~ a

v d 3 . M pro tec t iaz mnchine which provides to the user a protected file system.

System functions are executed on this machine in a privileged mode. ?his per-

mits them to gain indirect access to the contents of capabilities, analogous to

the way that privileged processes can gain access to specific hardware registers

in a conventional computer. A process running in unprivileged made on this vir-

tual machine does not have access to the actual capabilities for files; capabili-

ties are transparent to a user process.

The concept of the virtual protection machine was found advantageous to

provide enforcement for locally centralized control in the Multicomputer, for

use of a local file system to support interprocess communication, and for p r e

cess multiplexing on the P-nodes of the Multicomputer.

Since the protection system occupies the same physical address space as

does an applications program, the LSI-11 processors used in the prototype

implementation of the Multicomputer have been modified by addmg primitive

two-mode memory protection hardware. This allows the. address space to be

partitioned into two regions. The protected region includes all I/O bus

addresses, and a designated, low-address region of memory. The resident code

of GOSSIP and its tables and buffers reside in the protected region; applications

code and data are loaded in the unprotected region. Processor interrupts are

always rnasked when executmg in the privileged mode, m a s k e d when execut-

ing in the unprivileged mode.

With memory protection for kernel code in a P-node, and physical separa-

tion of the file server processes (at T-nodes) from the applications processes (at

P-nodes), it is possible to have capability protection for flles. Only the applica-

tion code executed at a P-node is regarded as untrustworthy. This

untrustworthy code has m means af direct access to a file system, because of

the physical separation of fUe systems onto separate nodes. File access requires

the use of messages passed to a me system over a control link, which cannot be

directly accessed by applications rode executing in the unprivileged mode. A

file system will only respond to messages of a specific header type (WILE). The

me protection subsystem, which is part of the resident kernel of GOSSIP at each

P-node, prevents forgery of such messages by an applications process. A file

server process, executing at a T-node, can safely assume that every request it

receives has been validated before being sent.

The fie protection subsystem maintains, on behalf of the applications pro-

cess running at a P-mde, a list of file capabilities (C-list). Each capability con-

tinins

i) a tlle name, and the name of a local ffle system to which it belongs;

ii) a set of oights for use of the fUe;

iii) a set of segments of the me, for which access is authorized

A process acquires a capability either by

a) creation of a me (to wbich the applications process at this P-node has

the rights of an owner), or

b) a grant from a neighboring P-node.

A capability grant is made in the form of a control link message whose

header type is CAP, and which is interpreted by the protection subsystem rather

than directed to the applications process. An applications process refers to a

file by use of an index into the C-List, whch bas been furnished to it by the pro-

tection subsystem. When an applications process makes a request for a file

operation, the request is interpreted by the protection subsystem, and validated

against the rights contained in the capability to which it refers. If it is valid, a

file transfer request is formatted as a message of type TFILE, and addressed to

the appropriate local fUe system.

The original motivation for implementing memory protection in a Pnode

was in order to isolate the effect of software errors; t o help in distmguishmg .

between bugs in an untried opera- system a@ bugs in the code of an experi-

mental application. However, we believe it will be equally important to be able

to prevent misuse of the me systems by potentially errant applications. Protec-

tion is of greater importance in a distributed system than in one which is con-

centrated, because of the extreme diBculty of surveillance of the whole system.

The incremental cost of file protection, whether measured in terms of

operating system complexity or in bytes of resident kernel code, is very modest.

Protection is applied only to operations that require interpretation through calls

to the operating system, and not to operations that might ordinarily be carried

out by in-line code. Furthermore, no additional levels of indirection are intro-

duced in order to implement protection. Fie naming is a service that would be

required in any case, as would formatting of flle access request messages. The

system overhead directly attributable to protection enforcement is only that of

checkmg the types of messages that originate with an applications process, and

checlang the rights held in a capability.

4.3. m e access rights

The rights associated with a Ale are divided into two classes. Ghmic rights

refer to the file access operations that can be performed by a local me system,

read. write, delete, create segment. delete segment. These rights authorize the

transfer of file segment images between a me system and the address space of a

process running on a P-node, or authorize operations that aflect the file direc-

tory in the local file system. Other rights, called a d i a r y rights [lo] may res-

trict the direct use of a file image to specific procedures of higher levels of the

operating system.

4.4. Process multiplexing in the P4me

In the Multicomputer, auxiliary rights are used to protect the primitive

operations that implement process switchmg on a P-node. For instance, when a

control process orders the process currently running at a P-node to be

suspended, a suspend process primitive will be invoked, naming as an argument

a fite into which a PSR is to be stored. This file must be one for which the active

process holds the auxiliary r@t suspend process but on which no generic rights

are held. Thus, the unprotected code of an applications process may not read or

write directly to this file.

When the primitive operation suspend procesg is invoked, GOSSIP does not

immediately attempt to access the Ale that is named as an argument in the call.

Instead, its first action is to format a segment read request to the local T-

system, naming as an argument a system-defined file that contains the load

images of a set of system-defined procedures. These are the non-resident por-

tions of GOSSIP. The segment named in the read request is one that contains

the code of a procedure to implement the creation of a PSR. This segment is

read into unprotected memory locations in the P-node, and overwrites the code

d the applications process being suspended.

Before giving control to this procedure, however, the resident kernel of

GOSSIP must first establish for it a capability to write into the PSR storage file.

To do this, a copy is made of the capability given as an argument in the original

primitive call, but the rights of the copied capability are modified born a Tights

anplficntion table. This table contains a set of generic? rights whch are to

replace the auxiliary right that has been invoked on the named Ble. The system

procedure which has been loaded is then passed control, giving it as an argu-

ment the index of the new capability to the PSR file which has been created for

its use. The procedure gets control with memory protection disabled, allowing it

direct access to the C-list of the suspended process so that images of these

capabilities can be incorporated into the PSR being created. After the PSI? is

written to a new segment of the PSR me, the procedure returns control to the

resident kernel of GOSSIP, which re-initializes the C - l i t storage, and prepares to

interpret the next directive from a control process. The inverse operation,

using a PSR to reactivate a suspended process, takes place in a similar manner,

but elso makes use of a flle from which the process* code segment is loaded.

Analwcal performance measurement of a distributed system is a cballeng-

ing task. Performance bottlenecks typically show up as excessive synchroniza-

tion of the components of a system. That is, components that might otherwise

be expected to execute concurrently are observed to spend a large fraction of

available time waiting for notification of events from other system components.

Although it is not difficult to observe waitmg by system components, it can be

quite difficult to analyze the cause of synchronization, and to infer how

unwanted synchronization might be reduced. This is because it is not possible,

in a distributed system, to observe the global system state with precision from

any obsemtion point within the system.

Our solution to ths problem, within the framework of the experimental Mul-

ticomputer, has been to superimpose upon it an essentially c o e e d , real-

time event monitor which makes use of dedicated hardware attached to nodes of

the Multicomputer. I t is possible to do this because the raw processing speed of

the hardware components used in the Multicomputer is not very great. There-

fore, by using a fast microprocessor, it is possible to multiplex observation

channels rapidly enough to obtain a "snapshot" of selected components of the

system state, over a limited number (up to 16) of nodes of our network. Of

course, not very much state information can be extracted from each node in

such a snapshot. Therefore it is important that the particular state mmponent

to be monitored can be selected, for each experiment to be run on the Multi-

computer, under programmed control. The monitoring strategy is simple. but

effective.

At each P-node of the Multicomputer there has been added, on the circuit

board contaming the memory protection hardware, a three-bit latch called an

e u d regist-, which is addressable on the processor's external bus (Q-bus).

Any code can be stored into this event register by a single MOVE

instruction executed by the LS1-11 processor. The event registers from up to 16

P-nodes are connected into designated bit positions in a &bit data accumulator

register, whase entire contents are read as a sequence of &bit bytes on a 50

microsecond duty cycle. Strobe circuitry prevents indeterminats results from

occurring because of a race condition between rea- and writing to bit loca-

tions in the 46-bit register. A block diagram of this real-time event monitor is

shown in F'qgure 7.

Within each 50 microsecond readmg cycle, each of six eight-bit bytes of the

data accumulator are read by a Signetics 6x300 microprocessor, and compared .

with the value of the accumulator byte from the previous read cycle. If any byte

has changed in value from the preceding read cycle, that byte is pushed into a

hardware FIFO queue, along with the value of a 16 bit counter which is *re-

mented once each read cycle. Thus, changes in the global state of the Multicom-

puter, as represented by the three-bit code selected for an individual experi-

ment, are stored in the FlFO queue along with a t ime stamp of 50 microsecond

precision.

This temporal precision is close enough to instantaneous observation to suit

most conceivable experiments that could be run on the Microcomputer. It can

be compared with the average instruction execution time of approximately 8

microseconds. In 50 microseconds, an IS-11 processor can execute a sequence

of approximately six instructions. If an observable state change occurs as a

consequence of executing the six-instruction sequence, then one of these

Fnstructians will write to the event register of the local P-node.

We can further constrast these timings with those of events which are likely

to be of major consequence in an application. Significant events in a distributed

system tend to be marked by the transmission of messages. Recall that the

average number of instruction executions (by a processor at one end of a con-

trol link) required to send a message and receive its aclmowledgement is

approximately 140, or roughly 20 times the number occurring during a basic

monitoring cycle.

The rest of the process of recording global state change data is s t raght fo~

ward. The PDP-UI6O processor is interrupted whenever the FlFO queue becomes

hall full, and its contents are recorded on a sequential me, along with a low-

precision (16.67 ms.) time stamp, for later, off-line analysis. Provision has also

been made to dump the FIM) queue often enough that the lugh-precision

counter does not overflow between times that the queue is dumped, for other-

wise, the two-level time stamp could become ambiguous.

5.1. Use d the real-time event monitor

The real-time event monitor enables a small number of event types to be

chosen for analysis, and the occurrence of these events at nodes of the P-tree to

be recorded with 50 microsecond precision during the course of an experiment

on the Multicomputer. The location of an event within the P-tree is determined

by the position of its code in a data accumulator image. Analysis of a time-

stamped event trace consists in computing time intervals that separate

occurrences of pairs of events of interest, and statistical analysis of these time

intervals. From such analysis can be obtained processor utilization ratios,

statistics of arrivals of service requests at a file system, expected waiting tirnes,

etc. The causes of observed synchronizations of supposedly concurrently exe-

cuting processes can be iderred from a well planned experiment by using this

technique.

I t w i l l he4 the reader's intuition if we describe in some detail the plan of an

experiment, using the real-time event monitor. Suppose we want to measure

the activity of processes in the P-tree, to determine an effective processor utili-

zation ratio, and to determine expected service times for flle segment transfers

and the effectiveness at' scheduhg, when running some unspecified application.

We begin by giving a state diagram (Qure 6) of the process states of interest in

this experiment, and of the events which induce state transitions.

The sigdicant events are all associated with the transmission or receipt of

control messages by processes Nllning on nodes of the P-tree. A process can

send a message to another process (or to the kernel of GOSSIP) on an adjacent

P-node. The sender might either await a reply to this message, or it might

proceed without waiting. These two classes of events are distinguished, as they

have different implications insofar as processor utilization is concerned. If a

process must await a reply, we can assume that its processor is busy-waiting

until that reply arrives. Otherwise, we may assume that the process is active,

and its processor is effectively employed. We have also assumed in this experi-

ment that when a process sends a request for transfer of a fie segment, it will

be forced to wait until a confirming message arrives to indicate that the

requested service is complete.

The event "processor reset" indicates a preerntive interrupt from a supe-

rior control process in the P-tree, which aborts the activity of the currently

active process. The state transition in this case is (arbitrarily) made to state 0,

because the processor is assumed to be active in preparing to initiate another

process. However, in a ditierent experiment, one might wish to designate

another process state by this event.

As can be seen from the transition diagram, it may be the case that several

different events can induce the same state transition For the purpose of the

experiment we have outlined, there will be no need to distmguish among these

events.

The next step is to encode the state transition events into three-bit event

codes that can be stored in the data accumulator of the event monitor. A possi-

ble encoding is illustrated in FLgure 7. Note that from the codes, it is possible to

infer what transition has occurred without having traced previous states of the

process. We consider this desirable from the point of view of robustness of the

experimental data, became it does not rely upon synchronization of a sequence

of observations in order to inter the state of a process. However, many other

encodings are possible, including multi-word code sequences, if it were really

necessary to provide a flne-grained characterization of events.

Once an experiment has been planned, it is necessary to embed event-

recordmg instructions at the appropriate locations within the program that is to

be executed. In the case of the example we have considered above, all of the

significant events involve use of the message transport facilities provided by the

opera- system, and the event-recording code is easily inserted into an

"instrumented" version of GOSSIP at the levels that support file access and mes-

sage transport. For other experiments, it might be necessary to embed the

event-recording instructions into an applications program.

In the example considered above, it would be very easy to obtain gross

statistics on the utilization oi each monitored processor; these would simply be

the relative fractions of time the process spent in each of the three states,

active, awaiting a control message, or awaiting service from a local me system.

If we had found from an initial analysis of the data that processes seemed t o be

spendmg an inordinately long time awaiting service from me systems, we might

-wish to determine whether contention for that service had become a significant

factor. To make th is determination, the same experimental data wodd -be

reevaluated, but now, the traces of processors within a common cluster would

be analyzed to determine the degree to which they overlapped one another in

occupying state 3,awaiting a Ale operation. Since the P-nodes in a cluster are

served by a cornmon ffle system, overlapped service times indicate possible con-

tention for m e of the processor at a T-node.

A yet finer-grained analysis of the data could determine the distribution

function of service request interarrival times, and could approximate the distri-

bution of service times as a hmction of mean arrival rate. A software package

for analysis of the raw traces produced by the real-the event monitor has been

prepared by M. Hamza 161.

The real-time event monitor is the most recently engineered component of

the Multicomputer, and no experiments using it had yet been run at the time

this paper was written.

6. E x p ~ ' tal applications

The Multicomputer has been running in part since the f a l l of 1980. Since

then, additional software components have been developed, and more copies of

its hardware components have come on line. In its current operational

aonfjguration it runs with the P-tree and the P-Kernel while the T system

software is being debugged. The GOSSIP code to support the local and global ale

systems is complete. as is the P-system kernel through the levels of message-

based communication, d e access, and protection. The process management

level is not yet complete.

The initial experiments run on the Multicomputer did not require use of the

f3le systems, but involved asynchronous concurrent execution of tasks distri-

buted over the P-tree. These experiments included an algorithm t~ £ind the

least cost Hamiltonian circuit of a graph (travehg salesman problem), a

game-playing program (Othello) which used a logically parallel alpha-beta prun-

ing algorithm [7] to limit search, an experiment based on the 8 queens problem,

and a tree search problem. This last application will now be described in order

to appreciate the capabilities of the nurlticomputer as a research tool.

In [8] KeUer, Lindstrom and Patil at the University of Utah have proposed a

distributed architecture for concurrent evaluation of programs written in a

purely applicative programming language called FGL [9] . This architecture has

been evaluated initially by running a simulator on a conventional, sequential

computer. Several aspects of the distributed architecture that may have a pro-

found effect upon performance are difficult to evaluate in a sequential simula-

tion, however. It is particularly hard to obtain good estimates of the dynamic

behavior of task scheduhg and of the degree of concurrency that could be

achieved if execution took place on an actual distributed architecture. One

experiment presently being programmed for the Multicomputer is a distributed

interpreter for the FGL language, and an essential component of the interpreter

is a scheduler that distributes tasks among the P-processors in the network.

The process of evaluation of a functional program can be viewed in terms of

dynamic transformation of a function dependency tree (F'DT), in which leaf

nodes represent values and interior nodes represent applications of user ,defined

functions. Under one evaluation scheme, the computation of a function applica-

tion node may proceed when all of its subordinate nodes are either leaf nodes

(correspondmg to primitive values), or have been previously evaluated. These

computations may take place concurrently i f processing resources are avail-

able. One of the beauties of the applicative method is that such concurrency

trill synchronize itself automatically.

To illustrate, Q u r e 8 assumes that p(r,s) is a function defined in terms of

bc t ions fag and h, an4 that evaluation of an' application of p to arguments z

and y is required as a part of a larger program. Attempting to evaluate this

application induces a transformation of the FDT which reflects its dependency

on the subexpressions g@,y) and h(z,y). 'fhe function of the scheduler is to map

this FDT tree dynamically onto the physical processor tree in a manner that

yields a good speedup for the application on the Multicomputer, A simple, direct

scheme will be to map the FDT so that its subtrees map onto subtrees of the

phyeical processor tree. This scheme offers the advantage that a task's subordi-

nates always reside either on the same processor or on an immediately subordi-

nate one, and communication overhead is minimized. A disadvantage of this

strategy is that it two tasks assigned to siblhg processors require widely

differing amounts of computation, the entire subtree rooted at the lightly loaded

processor may wait idle for a significant amount of tune while the other subtree

computes. Such "unbalanced task trees could result in poor average utilization

of the available processors.

The following strategy attempts to alleviate the unbalanced loadmg prob-

lem. At any processor, instead of assignmg tasks to free subordinate proces-

sors as soon as possible. distribution is delayed, and some of the demanded

tasks are evaluated on the same processor. This may result in the generation of

further tasks. A list of demanded tasks is maintained, and whenever the size of

this list increases beyond a predetermined threshold value, extra tasks are dis-

tributed to suborhate processing nodes. Meanwhile, the parent processor con-

tinuously attempts to generate more tasks to maintain the size of the task list

above the threshold value. If a subordinate processor evaluates its asslgned task

well ahead of other siblings, another available task from the task List is immedi-

ately assigned to it. The expectation is that this "delayed distribution*' strategy

will improve processor utilization with unbalanced task trees.

An experimental scheduler incorporating this scheme has been imple-

mented with a two-fold objective:

1) To serve as a means of testrng the effectiveness of delayed distribution for a

variety of problems with varying threshold values. If good processor utiliza-

tion is obtainable for a variety of application situations representing vary-

ing degrees of load imbalance and a range of computation and communica-

tion requirements, this can then form the basis for the scheduler of a distri-

buted FGL interpreter.

2) To create an environment in which application programs for the Multicom-

puter could be written in the programming language "C" (enhanced with a

lugher order mapping function and with restrictions on use of globals).

A hlgher order "map" function permits the user to specify parallel evalua-

tion of several functions and/or simultaneous evaluation of the function for

Merent argument values. The f o m of the system call is:

where

argl - is an array; argl[O], argl[l], ..,argl[lenl-l] are

arguments to the "lenl" parallel invocations of

function f l .

res 1 - is the result array; the result of f l (arg l[O]) is

to be put in resl[O], fl(argl[l]) -> resl[l]. etc.

This specifies the parallel evaluation af functions f 1 ,f2,. . ,f n with the specified

argument and resuit locations. The functions tl,PZ;..,fn have to be defined as pro-

cedures of the form:

struct restype +res;

t

The scheduhg strategy of deferred task distribution has been partially

evaluated in a recent experiment with the Multicomputer. Nodes of the P-tree of

the Multicomputer were configured in two ways, as balanced binary trees of

depth two and of depth three, as shown in Figure 9. The experiment involved

running the same application an both configurations, using deferred task distri-

bution with task distribution thresholds varying from two up to nine. At a thres-

hold value of two, each newly demanded task is allocated to a subordinate node

as soon as possible, while at a threshold of nine, a superior processor attempts

to maintain a list of eight demanded but unevaluated tasks before distributing

excess tasks to subordinates. The variables measured in the experiment were

overall processing time and average processor utilization factor.

Fig.10 shows the experimentally measured speedup for a tree-search prob-

lem on the Multicomputer. The "balanced problem" involved the search of a

complete tree, while the corresponding "unbalanced problem" involved the

search of an incomplete tree d the same fanout and depth The incompleteness

resulted in an imbalance of compute requirements of different branches of the

tree at various points in the search.

From the results, the following observations may be made:

1) The "balanced" case shows no increase in speedup resulting from the use of

delayed task distribution for either the 3-processor or the 7-processor

configuration. In fact, the 7processor case shows a significant loss of

speedup with increasing threshold.

2) The "unbalanced" case displays a peaking behavior of the attained speedup.

As the threshold for task distribution is increased, there is an increase in

speedup; this is followed by a decrease as threshold is further raised. The

decliue in speedup beyond the peak is more rapid for the 7-processor case.

No speedup is to be expected in the "balanced" case, since very uniform

distribution and good speedup should result without having to resort to delayed

distribution; increased thresholds merely result in greater idle times for subol-

dinate processors. The greater deterioration of speedup for the ?-processor case

seems to result from poorer utilization of leaf processors at hgh thresholds.

The leaves of the 3-processor network experience idle delay during task List

build-up at their superior processor only once; after the initial build-up of tasks

at the superior, it continuously generates tasks while the leaves compute on

their tasks. In the ?-processor case, however. the superiors of the leaf proces-

sors are themselves subordinate to the root processor, and are started off with a

fresh task as soon as they complete their current task. Each time the processor

is started off with a new task, it must build up its task list afresh, and the sub-

tree below it is idle for that duration Thus the leaf processors accumulate a

significant amount of idle time. This also explains the p e a behavior of the

unbalanced case. The balancing effect of delaying distribution results in an ini-

tial rise in speedup. At Q h e r thresholds, the poorer utilization of the leaves

results in a decrease in average utilization, and hence of attained speedup. The

observed results suggest better performance can be attained through the incor-

poration of a "pipelining" mechanism into the scheduling scheme, so that gen-

eration of the task list of a succeedmg task is done in parallel with the evalua-

tion of a preceding one.

The continuation of these exparime~~ts and the incorporation of the results

into the design of the distributed FGL interpreter for the Multicomputer wjll be

reported on at a later date. Other measurements in conjunction with the FGL

interpreter relate to the volume of message traffic generated, the frequency

w i t h which task suspensions occur, and a distribution function of their lifetimes,

as well as concurrency measures and a measure of the performance of a distri-

buted garbage collector. Because communication events in the system can be

monitored with a high degree of ternporal precision, it should be possible to

scale performance data to the channel capacity of communications links, as well

as to processor and memory capacities. This will pmvide data for systems

designers that would be extremely expensive to obtain by the alternative means

of sequential simulation.

Another e@eriment being planned for the Multicomputer views compilation

as a pipeline process, In which procedure-sized packets of program are passed

through various phases of translation. The processing stages will be realized by

tasks (processes) dynamically assigned to nodes of the Multicomputer, and the

pipes connecting these stages w i l l be realized by use of the local file systems (T-

systems). The purpose of the experiment will be to assess the feasibility of using

a scheduled pipeline for processes that involve a high degree of variability in the

per-stage processing time. Again. the ability to account specifically for the cost

of moving data images will enable the results to be normalized to systems whose

design parameters differ from those used in the Multicomputer.

Other types of experiments for which the Multicomputer is suited include

performance measurement of highe~level protocols by distributed simulation,

performance measurement of transaction systems, and inveshgation ot rates of

convergence of distributed voting algorithms.

Many persons have been involved with the design and implementation of the

Stony Brook Multicomputer, over a period of more than three years. 'In particu-

lar, we wish to thank Devesh Bhatt, who did most of the hardware design for the

control links, Andrew Chang, who worked on the Pnode communications kernel,

on fDe protection and process management, Arch Harris, who contributed t o the

original concept and did system simulations, Mahmoud Hamza, who has

developed both the hardware and software for the real-time event monitor, and

Roger Lam and Brad Nohejl, who implemented the basic internode communica-

- tions software.

8. lbferezms

[I] Harris, J.k and Smith, D.R., "Sirnulation experiments of a tree-organized

multicomputer", Proc. 6th @ p . . s . on. Comptm A T c M e c b e , IEEE, April,

1979.

[2] Kieburtz, R.B., "A hierarchical multicomputer for problem-solving by

decomposition", Proc. 1st Inter7uzt. Conf. on. Dir-ed (3 m p d h g Sys-

tems, EEE, Oct., 1978, pp. 63-71.

[3] Mukerji, J. and Kieburtz, R.B., "A distributed file system for a hierarchical

multicomputer", e o c . 1st I d e r n a t . Cbnf. m ~ ~ e d Co7qmikg 9ys

t e r n , IEEE, k t . , 1979, pp. 4443-458.

[4] Kie burtz, R.B. "A distributed operating system for the Stony Brook Multi-

computer", Proc. - Internat . Cbnf. on Distribufed C b m . 9 *stems,

IEEE, Apr. 1981, pp. 67-79.

[6] Mukerji, J . "Design of a distributed file system for a hierarchical multicom-

puter", PhD. thesis, Dept. of Computer Science, SUNY at Stony Brook, April,

1982.

[8] Harnza, M., and Smith D. R., 'Design of the performance monitor for the

Stony Brook Multicomputer", submitted to IEEE Transactions on Comput-

ers.

[?I Lindstrom, G., "Alpha-beta pruning on evolving game trees", Tech. Rept.

UUCS-79-101, Dept. of Computer Sceince, Univ. ot Utah, 1979.

[8] Keller, R.M., Lindstrom, G., and Patil, "A loosely-coupled applicative multi-

processing system", MIPS CmLf. R o c . vol. 40, 1979 NCC, June, 1979, pp.

6 13-622.

[B] Keller, R.M., et d. "FGL programmers guide", Dept. of Computer Science,

Univ. of Utah, Feb., 1980.

[lo] Wutr, W., et d . "HYDRA.. the kernel d a multiprocessor operating system",

Cbnzm. ACMvo1. 17, June, 1974, pp. 337-34-5.

Figure l(a) - A system of processes which forms a rooted hierarchy. The node
labelled A is a control process. Node B is a the control process of a subsys-
tem.

Figure l(b) -- A processor tree. Nodes represent processors with local memory.
Arcs represent co~~~munications links for control messages.

Rgure 2 - Interconnection architecture of the Multicomputer. Control and
applications processes are run on the processing nodes labelled P . File
systems are implemented at the T-nodes and the Gmde. ~olicf arcs.
called control li&, are used for short control messages. Dashed arcs
have DMA capability, and are used for transport of data and code seg-
ments.

mure 3 - Processor clusters lie at the leaves of the fne systems hierarchy.

data words

header word

f

Figure 4 - Format of a control message. The length of a control message is vari-
eble, up to a maximum of 15 data words. The destination field of a header
carries a channel identifier.

message : length I destination
tYPe 1 (0..15) 8

802 16
FIFO

i -
cCmt7vL
processor
hp -0) I I (RON)

Figure 5 - Block diagram of the real-time event monitor. showing connection of
the event register aL one f -node.

receive
send (without waiting)

send and await reply
receive (other message)

reset processor

send (without waiting)
receive awaited reply
reset processor

await free channel for send
send and await reply

request

receive completion status
reset processor

transfer

w receive (other)

Flgure 8 - Activity states of a process running at a P-node. Arcs are labelled by
the names of events that induce state transitions. In state 1 the process is
active; in state 2 it is awaiting a reply from a message previously sent, or is
awaiting a free channel on which to send a message; in state 3 it is await~ng
notice of completion of a requested flle operation. Every event except
"send and await reply" corresponds either to an entry point st the P-node
kernel of GOSSIP or to an entry point of the interrupt handler.

Code
0:
1:
2:
3:
4:
5:
8:
7:

State 3 bl
Transition Events
1 -D 2 attempt to send, channel busy / send and await reply
e -, 1 send (without waitmg) / receive awaited reply / reset
1 -, 3 send request for file transfer
3 + 1 receive notice of flle transfer completion / reset
2 + 3 send request for file transfer
1 -, 1 receive message / send (without waitmg for reply)
2 -9 2 receive unawaited message / send and await reply
3 -c 3 receive (other than file transfer completion notice)

Figure 7 -- An encoding of process activity state transition events

Flgure 8 - A simple example of a functional program A. deAned in terms of func-
tions .. P, 2. P is itself detlned in terms of user-defined functions g, h,
which in turn are defined in terms of z, y, assumed to use no further
userdeflned functions in thew deflnition. As the program dependency
tree (PDT) evaluates, the debt ion of P is flrst invoked, causing evalua-
tion of g, h. The PDT reflects this and Pis changed to P', signifymg a p a s
tially evaluated function.

~ig-we 9 -- Two canfigurations of the P-tree of the Multicomputer

1 Balanced Tasks
I

I
I

- ----

2 3 4 5 6 7 8 9
Threshold

I Unbalanced Tasks 1
I

i
1 X - Speedup (3 p's)

* - Speedup (7 p's)
+ - Utilization (3 p's)

I
I # - Utilization (7 p's)

10.0 IlOO%
I I

2 3 4 5 6 7 3 9
Threshold

Fig.10 Variation - of speedup/leaf - utilization with threshold value.

