
SOFTWARE TEMPLATES

R. B. Kieburtz
&

R. G. Babb

OGC T R CS/E 83-006

Oregon Graduate Center
Dept. of Computer Science & Engineering
19600 N.W. Walker Road
Beaverton, O R 97006

Abstract
Software templates are high-level specifications of algorithms,

given in a notation that is intelligible to a human reader, and
independent of any particular computing environment. The intent
is that such a specification should be directly translated into a
computer program, when it is called out of a library and bound to a
particular computing environment. The research proposed here
will attempt to determine the feasibility of automating t h s transla-
tion process, by drawing-upon recent results in formal semantic
specification, program transformation, and semantics-directed
compilation.

SOFTWARE TEMPLATES

Despite numerous attempts to make programming easier by
designing better languages, working out logics for program
verification, developing concepts of program modularity, and
improving the tools used to construct programs, programming
remains a difficult, demanding, and labor-intensive activity. To
develop the ability to re-use validated program segments as com-
ponents of programmed systems has long been a goal of program-
ming methodology. This goal has proven to be an elusive one, not
only when a new system is designed, but especially in the mainte-
nance of existing systems. I t motivates the research proposed
here.

The reason that programs are so difficult to use as components
of systems other than the ones for which they were specifically
designed, is that each program is a concrete object, configured to
fit exactly into the mold in whch it is cast.

Consider, for instance, the common task of reducing strings of
blanks to single occurrences, in a stream of characters. When
expressed in Pascal, this program is tailored to an environment
expressed by the Pascal types used to construct the representa-
tion of a stream of characters. If the program removes blanks
from a file of characters, for instance, it doesn't bear much resem-
blance to a program that removes blanks from an array of charac-
ters. The problem is not restricted to strongly-typed languages;
exactly the same specialization to its environment would be found
in a program coded in "C" or in an assembler language.

How, then, are we ever to achieve interchangeability of pro-
grams as components of systems? The ~ d a ' approach is to prohlde
a standard language as a first step towards standardizing the
enxlronments in whch program c ~ r ~ p o n e n t s are to be embedded.
This is analogous to the standardization that makes it possible to
build electronics systems from components. If you stick to a com-
mon technology, then all the components use common dc voltages,
and have compatible power requirements and switchng times.
Programs are not electronics components, however, and will not
easily be forced into a "common technology" mold.

We believe the answer will be found at the level of abstract pro-
gram specifications, rather than by viewing concrete programs as
interchangeable components. The correct analogy with electronics
is not the off-the-shelf hardware component, but a design in the
VLSI cell library, or better yet, the high-level functional

' ~ d a is a trademark of the U.S. Department of Defense

specification from which the cell layout was derived.
In this research we propose to address the problem of reusable

program components from the point of view of abstract
specifications. These specifications must account not only for t5e
functionality of programs, but also for the environments in whch
the programs can work. Concrete programs are to be derived from
abstract specifications; this is a process that we believe can be
largely automated. W e call these reusable specifications software
templates.

1. Template Specifications
Our notion of template specifications is based upon the theory

of abstract data types that has been developed over the past ten
years [ADJ??, ADJ78, Gut??, GuH78, hZ74, Par72]. T1.lls style of
specification is precise, has a well-defined abstract semantics, is
constructive (in the sense that algorithms are specified), and pro-
vides for the use of generic typing [Mi1?8], allowing general-purpose
templates to be specified. Formal verification of abstract
specifications is feasible, although difficult, whereas for most con-
crete programs i t is infeasible because of the complexity of the
programming language semantics. Efforts to achieve correctness
should be concentrated a t the specification level.

A template spzcification is completely independent of imple-
mentation environment and language. I t does not unduly constrain
the choice of data representations, yet i t contains all the informa-
tion necessary to derive a program component and to match it to
its environment. What we hope to demonstrate is that good (i.e.
efficient) programs can be automatically derived from abstract,
equational specifications, and that human interaction can be
effectively employed to aid in the process.

1- 1. Deriving program components from templates
An abstract data type is a? algebra [ADJ?8] whose functions are

specified by a set of defining equations, and whose carrier set is
unspecified. There are two more or less separable parts to the
derivation of a program from an abstract specification, (i) choosing
a representation, and (ii) translating equations into program code.
The questions of automating both of these aspects of programming
have been studied separately, [Dew79, SSS81, HOD821, but both
problems need further work in order to make their automation
practical.

W e don't propose to tackle the enormously difficult problem of
developing an algorithm to choose appropriate data representa-
tions automatically. When a software template is instantiated rela-
tive to a particular environment, much of the choice of

representation will be constrained by the environment, and by the
representation choices that have been made for other components
of the same program. That choice whch remains is best exercised
by a human programmer, using an automated template instantia-
tion tool. Initially, a programmer may have to spend a lot of effort
in choosing appropriate representations for a new class of environ-
ments, such as that provided by a new operating system, or a new
programming language. Once chosen, however, the representa-
tions of commonly used abstract data types will be entered into a
catalog of representations, and used by a template instantiator
without further troubling the human programmer.

We advance the hypothesis that translation of equations into
efficient program code can be made feasible with a reasonable
amount of effort, and we intend to demonstrate a system that will
accomplish this. In order to make translation of equations possi-
ble, one must know what the equations mean, in a very strict sense.
Our notion of the meaning of equations is based upon a mathemati-
cal semantics of equations that define functions [Kie82].

A set of defining equations will have well-defined semantics if
the following constraints are satisfied [ODo??]:

i) No function variable may be repeated on the left-hand side of
an equation;

ii) If the left-hand sides of two equations are unifiable, then the
right-hand sides must be the same after application of the uni-
fylng substitution;

iii) I t must not be possible for a well-formed term to contain an
(overlapping) critical pair of redices.

Constraints i), ii), iii) are sufficient to ensure that if a set of equa-
tions is directed as term-rewriting rules, then for any term whch
has a reduction to a normal form, that normal form will be unique.
This property is required if a set of equations is to define functions.

The constraints i), ii), iii) are not enough to guarantee that a
set of defining equations constitutes a complete specification, how-
ever. A potential hazard is that the equations do not specify the
behavior of a function on all objects of the abstract data type. In
order to avoid this difficulty, we require that the objects of a data
type must all be representable by a basis of terms, freely gen-
erated by a finite set of generators. This requirement is not
confining; it merely restricts us to enumerable domains of objects.
A further constraint that we impose upon defining equations is
iv) The terms appearing as argument expressions in the left-hand

sides of definitions must be basis terms.
This constraint subsumes i) and iii), and is also not altogether
necessary, but together with ii) i t is sufficient to ensure

decidability of whether or not two left-hand sides overlap, and of
whether or not a set of equations defines the behavior of a function
on all canonical terms. Constraint iv) obviates the need to postu-
late "sufficient completeness" [GuH78], a property which is not
decidable, in general, unless constraint iv) is satisfied.

When a set of equations has a semantics whch gives it meaning
as a set of computable functions, then the translation of equations
to recursive function definitions is not hfficult. So in one sense,
the translation of specifications to programs is an easy problem
[HOD82]. However, we wish to obtain translations into programs
that are not necessarily to be given in an applicative programming
language. For this purpose, we need to address the transformation
of recursively-defined functions into iterative schemes, whenever
this is possible, and the generation of code in a (possibly impera-
tive) programming language not of our own choosing. In this con-
text, we mean by a programming language any notation that can be
used to express commands, or demands for evaluation, to a com-
puter system. This includes sequences of calls upon system-
defined primitives, an operating system's command language, or
database commands as well as the familiar compiled programming
languages.

Transformation of recursion schemes to iteration schemes is a
problem in which we, along with others, have invested considerable
effort [BuD7?, DaB76, Fea82, KS81]. We propose to continue the
implementation phase of that effort as part of the experimental
research we propose here.

Note that our approach differs from the approach of transfor-
mational implementation [BGW?7, BrP8 1, Wi18 11 in a significant
detail. We do not propose to put the human programmer into the
decision process in which transformations are selected. Our
experience with transformations makes us pessimistic that a
human will be able to follow the steps of successive transformation
of a program's form. We advocate using the judgement of the
human programmer in the selection of algorithms (when
specifications are written) and of data representations. In some
sense, our plan intends a realization of the concepts of "putting
theories together" [BuG7?].

Generation of programs from iterative, functional program
schemes appears not to be too difficult, if it is assumed that choice
of representation will be taken care of by an interactive human
user whenever it cannot be done by directly instantiating represen-
tations drawn from a library. The problem of program generation
we contemplate is simpler than the more general problem of
semantics-directed compilation because our d e b n g equations
have a direct semantics.

When a program is assembled out of a number of software tern-
plates, the interfaces between templates are specified in abstract
terms, but are not yet cast in concrete. This affords an opportun-
ity for considerable optimization of the resulting program. Most of
this optimization can be based upon well-known techniques of
data-flow analysis, and will result in economies such as copy elirni-
nation, avoiding redundant computation, and avoiding the evalua-
tion of unreferenced expressions. These are the measures needed
to derive programs from abstract specifications that will run as
economically as those carefully coded in an imperative program-
ming language.

2. A n example: Removing excess blank characters from text
As an example of what we have in mind, let's consider a

software template to meet a very simple requirement: reducing
each string of blank characters in a stream of text to a single blank
character. We begin by specifying the data type of a blank rem-
over

squee ze blanks : se q (a) + se q (a)

where a is a type variable. The specification of squeezeblanks can
make use of any of the functions defined for the type seq(a) .
These are:
Generators:

nike q : se q (a)
apndr : seq (a) , a +seq (a)

Extractors:

first : s e q (a) + a
rest : seq (a) + seq (a)

where

first (a p d r (nilseq, z)) = z

first (a p d r (apnclr (s , y) , z)) = first (apndr(s , y))
rest (apndr (nilseq , z)) = nilseq
rest (apndr (apndr (s , y) , z)) = apndr (rest (apndr (s , y)) , z)

In order to write the equations specifying squeezeblanks we
find that a cannot stand for just any type, but for a type whlch
defines an operation

Equations defining squeeze blanks are:

squeeze blanks (nilseq) = nilseq

squeeze blanks (s) =
if isblank? (first (s))
then apndl (first (s), squeezeblanks (stripblanks (rest (s))))
else apndl (f irst (s), squeezeblanks (rest (s)))
fi

where s = apnrlr(w,z)
andwhere apndl (z , nilseq) = apndr (nitse q , z)

apnd(z, apndr(w,y)) = apndr(apndl(z, w),y)

The function stripblanks is necessary for the definition of
squeezebtanks, but is not by itself a part of the abstraction we are
trying to capture. If the abstraction were packaged as an abstract
data type, stripblanks would not be mentioned among its exter-
nally visible operators. It is defined by:

st~pblanks (nilseq) = nilseq

stripblanks (s) = if isblank? (first (s))
then stripblanks (rest (s))
else s
f i

where s = apndr (w ,z)

In giving the specification of squeezeblanks it was necessary to
define an additional function on the type seq(a). Kotice that it is
not necessary that this function, apncll, actually be defined in the
specification of seq(a); it is an adliary functiqn needed to
describe the algorithm which defines squeeze blanks. The function
a ~ d may or may not have any apparent realization in a program
for squeezeblanks.

The first step in deriving a program from a specification is
always the same, independent of the environment. The equational
specifications are interpreted to give a recursive function
d e h t i o n . Because of the constraints (ii) and (iv), the separate
equations defining a function lead directly to separate arms of a
conditional whose predicate(s) can be inferred from the equations.
In the case of our example, the function definition becomes:

squeeze blanks = As. if isnilseq? (s) then nilseq
else apnd (f irst (s),

squeeze blanks
(if isblank? (first (s))
then strip blanks (rest (s))
else (rest (s))
fill

In the right-hand side of this "program", the predicate isnilseq?
distinguishes (the representation of) a sequence whose value is nil-
seq from one which is not.

The second step is the transformation of a recursive defining
form into an iterative form, whenever this is possible. The defining
form is first rewritten as a combinator expression2 by eliminating
variables. The combinator form of a recursive function defhtion
will then be examined by a program transformation system to
determine whether i t can be replaced by a semantically equivalent
iterative form. We have studied and cataloged a class of transfor-
mations on program schemes that we believe to be generally useful
[KSh81]. We are currently developing a scheme recognition system
[KG821 that will be capable of recognizing programs for which a
cataloged transformation is applicable, and of applying the
transformation.

In the case of our example, such a transformation is possible.
The functions apnd and apndr satisfy the condition of being associ-
ative duds with pivot nilseq, allowing the defhtion of
squeezeblanks to be subjected to the transformation given as Pro-
position 2 of [KSh81]. The equivalent form is3:

squeezeblanks = l%(while not~ i sn i l se~? .znd
[apndr 011 , first 02nd],
if isblank? of irst 2~~
then stripblanks o rest znd
else rest 0 2&
fi I

0 [nilse q , id]
Notice that in this form, the auxiliary function a w which had
been defined in order to give the equational specification of

'lnstead of the primitive combinators S, K, and I of combinatory logic, we
find the combining forms of FP [Bac'lB] to be more convenient.

SThe transformed function representations are given in sli htly modified FP
notation. The symbol 0 r e ~ e s e n t s unctional composition. V,gy is the construc- a tion of a functional pair, 1 and 2" are selectors on functional pairs, the condi-
tional is written as if ... then ... else ...fi, and the form (while y p) is equivalent to i f

squeezeblanks has disappeared. It does not require any concrete
representation.

The function stripbhnks can also be transformed to an itera-
tive form. If we have incorporated into our program transforma-
tion system the result isnilseq? (s) = true * nilseq = id (s) then
the definition of stripblanks can be written in FP notation as:

stripblanks = if o r o [isnilseq? , not oisblank? o f irst]
then id
else stripblanks o rest
fi

This is an instance of a particularly simple form of recursion
scheme which has as an equivalent iterative form

stripblanks = (while ando [not isnilseq? , isblank? o f irst] rest)

The functional program for squeezeblanks is obtained by substitu-
tion of the iterative form for stripblanks into the iterative form
previously obtained.

What remains is to define representations for the functions nil-
seq, a p d r , first, rest, isnilseq? of the abstract data type seq(a) ,
and for the combining forms (while y p') and if ... then ... else ... f i in
the environments in which squeezeblanks is to be realized. If these
environments are programmable, then it is highly likely that the
combining forms will be closely realized by primitives of the pro-
gramming language. The construction combining form, "[...]" and
the selector functions 1" and znd of FP will have to be realized by
the use of variables, in conventional, programmable environments.

The task that requires (for the present, at least) human inter-
vention is the identification of abstract functions with functions
provided by the environment in which instantiation of a software
template is to occur.

2.1. Environment 1: Pascal files
As our %st example, let's apply the redundant blank removal

template to a file of characters, as provided by Pascal. The pro-
grammer must come up with a list of identifications of abstract
functions with program forms available in the environment. Since
this environment is an imperative programming language, in whch
some operations produce side effects on the environment, it will
not be possible to identify each abstract operator, which is a func-
tion, with a single concrete operator of the environment. Instead,
we shall identify combinations of abstract operators with sequen-
tial combinations of concrete operators. In this example, our

7 then (while y p) ~ p else id fi.

Pascal expert makes the following identification:

seq (a) file of char
isnilseq? s e of (s)
nilse q rewrite(<file variable>)
Mrst, rest) s : (st, s) after initial reset(s)

(ST, s) after get(s)
apndr (s , x) s after sr : = x; put($
isblank? x x = BLANK

The ambiguity in the identification of the pair (f irst , rest) reflects
the fact that the Pascal environment is characterized by a state
which is not part of the abstraction. In t h s case the ambiguity is
resolved by use of the initial specification; we make no claim that
this mechanism is adequate to resolve all state specification arnbi-
guities.

The combining forms while and if. ..then.. .else.. .fi are readily
identified with Pascal control structures. This identification is
actually part of the task of environment specification and is a job
for the human programmer. The realization of squeezeblanks whch
results from the identification is:

var infile, outfile : file of char;
x : char;

begin
reset (idle) ;
rewrite(outfile) ;
while not eof(inf3e) do

begin
x := infile?;
outfie? : = infile?;
put(outfile) ;
get(id1e) ;
if x = BLANK then

(* stripblanks *)
while not eof(infle) and (infile? = BLkIK) do

get(infi1e)
end

end
This realization may be incorporated into a Pascal program either
as a macro (assuming that provision is made to avoid clashes of
identifier names, and to insert declarations at the appropriate
places) or as a closed procedure.

There are a couple of interesting aspects to the translation
from a functional program specification into Pascal. One is that
since applications of the functions first, rest are implemented in
Pascal by a side effect of the procedure get, multiple occurrences

of an expression involving an application of Prst or rest must be
collapsed into a single call upon the procedure get. In order to
accomplish t h s , it has been necessary to introduce a variable, x, to
save the state of the file buffer of infile.

A second observation is that we have been using a functional
notation in which certain operators (the sequence constructor
apndr and the construction combining form) have non-strict (i.e.
"lazy") semantics. In consequence, it is possible to give non-strict
interpretations to some functions that act upon these forms, such
as "and", which applies to a two-element construction. A non-strict
"and" is defined as if curried,

and(f alse) = false
and(tme) = id

The first of these two applications of "and" results in a constant-
valued function, the second does not. When a non-strict "and" is
translated into Pascal, one has to watch out for the fact that the
semantics of the corresponding Pascal operator is defined neither
as strict nor as non-strict (the IS0 standards committee copped
out on this issue) and different implementations of Pascal can and
do differ. We have assumed a non-strict Pascal "and" in the exam-
ple above.

2.2. Environment 2: Standard files in 'C'
Changing the example slightly, suppose the environment pro-

vided is a 'C' program. Our 'C' expert might provide the following
identifications:

-9 (a) : #include "stdio"
char ch;

isnilseq? s : ch == NUL
nilse q : inull expression-standard output is preinitializedj
(first, rest) s: (ch, stdin) after getc(ch)
apndr (s,x) : stdout after putc(x)
isblank x : x==BLANK

Jn this example, there is no ambiguity about which concrete opera-
tion to use, depending upon the state of the system. However,
there is a need to associate a particular, declared variable with an
input file, as the function isnilseq? is realized not by a test upon a
file variable in 'C', but by a test upon a value read from the file.
Thus our p r o g r a m e r has bound a program variable " c h , by giving
its declaration in the identification list. The 'C' code resulting from
this identification will be:

#include "stdio"
char ch;
while (getc(ch) -= NUL)

Iputc(ch);
if (ch == BLANK)

Iwhile ((getc(ch) -= NUL) && (ch == BLkhJK))
; 1

2.3. Environment 3: A Pascal array representation
For another application, we might wish to use a representation

of a string as an array of characters. Our Pascal wizard makes the
following identification:

seq (a) : record
str : packed array[1. .maxinx] of char;
inx : l..maxinx+ 1; (* with succ *)
length : 0. .maxim; (* with succ *)

end
where maxinx = 2048

i sn i l seq?~ : s.inx>s.length
nilse q : s after s.length := 0; s.inx := 1
(f irst , rest) s: (s.str[s.inx], s) after initial s.inx := 1

: (s.str[s.inx], s) after s.inx := succ(s.inx)
apdr (s,x) : s after s.str[s.length] := x;

s-length := succ(s.length)
isblank? x : x = BLANK

This representation differs from those of the first two examples in
that it makes use of no environment-defined data type that is
naturally suited to the abstraction to be realized. Substantial care
is required by the programmer to ensure that the representation
simulates the abstraction. Ths may be a fruitful level on which to
apply the techniques of program verification, since the individual
code sequences are short, and the abstract specifications are given
precisely. However, such verification is beyond the immediate
scope of the presently proposed research.

The program derived from the identification is:

constMAXZhX = 2048;
MAXIM1 = 2049;

type seq = record
str : packed array [I. .MAXIhX] of char;
inx : l..MAXIhXl;
length : 0. .MAXIhX;

end,
var strin, strout : seq;

lastch : char;
begin

strin.inx := 1;
strout.length := 0; -

strout.inx := 1;
while not (strin.inx > strin.length) do

begin
strout. str[strout.length] : = strin.str[strin. inx];
strout.length := succ(strout.length);
lastch := strin.str[strin.inx];
strin.inx := succ(strin.inx);
if lastch = BLAXK

then while not (strin.inx > strin.length)
and (strin.str[strin.inx] = BUYK) do
strin.inx : = succ(strin.inx)

end
end

This is an example of a program that is particularly tedious to code
(or recode) by hand.

2.4. Alternate forms of specification -

Equational specifications have some advantages. Among them
are generality, familiarity, and to those who think readily in terms
of functions, the ability to describe algorithms in terms of applica-
tive expressions. Kot everyone thlnks of algorithms in this way.
however, and for some classes of problems, a description of algo-
rithms in terms of state transitions is most natural.

A task which acts on a single input stream to produce one or
more output streams can be described as a genera l i zed sequent ial
machine (g.s.m.) [Gin62]. A g.s.m. is characterized by

i) a finite set of states, S;
ii) an input alphabet, CI;
iii)a finite set of output alphabets, C . ;
iv) a state-transition function, o : SX$ 4 S;
v) a finite set of output functions, qj : SX& + C i
vi) a distinguished start state, so E S.

A g.s.m. has a formal characterization which can be automatically
interpreted, if it is given in machine-readable form, and if the
state-transition and output functions are specified in such a way
that they can be interpreted. If each output function is restricted
to produce only a bounded -output sequence, then output function
qj can be constructively specified using conditionals, predicates
over CI, and finite sequences over Cj.

For example, the specification o f squeeze blanks in t h s form is
particularly simple. The input and output alphabets are identical;
call them C, and suppose that C contains a distinguished element,
eos which occurs only at the end of a sequence. There are three
states, and the state transition function is:

(s2, e o s) - sl
(s2, BLAIN) - s2
(s2, z E C-teos , BLANK]) i, so

The output function is:

(so, B M K) w B M K
(so, e o s) ++ eos
(so, z E C-IBW.KK, e o s j) c--, z

(s2, eos) ++ eos
(s2, z E C-[BUIK, eos 1) - z

The initial state is so.
Graphical descriptions of g.s.m.'s would be convenient in for-

mulating specifications, but without some effort, they are not
machine-readable.

In translating g. s.m. 's, sequence data types have special
significance. In particular, any function applied to eos may have a
special representation, as may an output of eos . Giving these
representations is a task for the programmer. Returning to our
example, suppose that a Pascal programmer has decided upon a

representation of sequences in terms of Pascal files. The represen-
tation is specified by:

input s t r eam : var f : file of char; init reset(f)
output s t ream : var g : Ne of char; init rewrite(g)
input token = eos : eof(f)
output eos token : lno operation]
s c a n inpu t token : get(f)
e m i t output x : g? : = x; put (g)

The Pascal program segment produced from the g.s.m.
specification and the chosen representation will be:

t p states = (so, sl, s2);
var f , g : file of char;

s : states;
begin

s := so; reset(f); rewrite(g);
while not eof(f) do

begin
case s of

so : if eof(f) then s := s,
else if fr = BLLKK then

begin s := s2; gr := f?; put(g) end
else begin gr : = f ?; put(g) end;

Sl : ; (* s k p *)
s2: i feof (f) thens :=s l

else if fr = B U Y K then (* skip *)
else begin s := so;

gr := fr := fr ; put(g)
end

end;
get(f)

end
end

This example, constructed by hand, could be optimized by recog-
nizing that the state sl is vacuous in the sense that no further out-
put is produced once i t is reached, and that the tests for eos within
the cases for states s o and s2 are unreachable and can be elim-
inated. However, the point we wish to make is that specifications
given as g.s.m. mappings can be realized by very stereotyped pro-
gram forms, of which the one above is a simple example.

Notice that in the last example, the program structure is radi-
cally different from that of the first example although both use the
same Pascal environment, and both have chosen the same data
representation for sequences. This is because the algorithm is
determined by the abstract specification, and the two algorithms

differ .

3. Scope of the proposed research
We propose an experimental investigation of a system to

instantiate software templates in specified environments. The
examples shown in the preceding section illustrate the kind of
capabilities that our system is to exhibit, and which we believe are
achievable.

Our prior work has given us confidence that we can derive
recursive function definitions from systems of defining equations,
and can manipulate the intensional forms of functions to produce
iterative forms suited to direct representation in a lower-level pro-
gramming environment. We believe the most difficult step to auto-
mate, in instantiating a program template, is the choice of suitable
representations for abstract objects, in terms of the types of
objects provided by an environment. We intend to rely upon
human interaction to accomplish ths step.

The template instantiator must have considerable, although
not exhaustive, knowledge about the programming environment in
which a program component is being created. Ideally, this
knowledge should be contained in an external (to the instantiator)
specification of the environment. Externalizing this knowledge
may indeed be possible. Initially, however, we shall probably
embed some assumptions about a class of environments into our
prototype instantiator. These assumptions will include knowledge
about program variables, some rules about how atomic statements
(or functions) are composed, knowledge of conditional and while
forms, and knowledge of assignment or other binding mechanisms.

This is a project with ambitious goals, but we dready have a
foothold upon achieving them, by virtue of having constructed
several subsystems. These include a tool [Ro182] which under-
stands concrete and abstract syntax, and constructs a translator
to abstract syntactic notation from a suitably annotated parsing
grammar, a tool which interprets a system of equational
specifications to give the normal form of any term, and a tool whch
computes the data types of functions defined by a set of equations,
and which accommodates polymorphic types. We also have inter-
preters for several functional languages, including FP.

We are presently developing a tool that will apply cataloged
program transformations, recognizing programs which are
instances (in quite a general sense) of commonly occurring recur-
sive program schemes. And we have available for study, an exam-
ple of a contemporary experimental semantics-directed compila-
tion system [JoS81]. This system uses externalized knowledge of a
programming environment in order to synthesize programs for

that environment.
The research we propose here could be described as explora-

tory systems development. Its goal is to develop enough technol-
ogy to show feasibility of the software templates approach to pro-
gram design, and to uncover problems in use of the approach that
we may not have forseen. Achieving high performance from an
experimental prototype is not a goal. It is not intended that our
prototype system will be suitable for use by others, except possibly
as a research tool.

4. References
[ADJ??]

Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, J.B., Inti-
tial algebra semantics and continuous algebras, Jour ACM 24, 1
(Jan. 19?7), 68-95.

[ADJ?8]
Goguen, J.A., Thatcher, J.W., and Wagner, E.G., An initial algebra
approach to the specification, correctness, and implementation
of abstract data types, in Current Trends in Programming
Methodology, Vol 4: Data Structuring (R.T. Yeh, editor),
Prentice-Hall, (1978), 80- 149.

[Bac78]
Backus, J., Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of programs,
Comm ACM 21, 8 (Aug. 19?8), 6 13-641.

[BGW??]
Balzer, R., Goldman, N. and wile, D.S., On the transformational
approach to programming, Proc. 2nd Inter. Conf. on Software
Engr. (19?6), IEEE, New York, 337-344.

[BrP8 11
Broy, M. and Pepper, P., Program development as a formal
activity, IEEE Trans. on Software Engr. SE-7, 1 (Jan. 1981), 14-
22.

[BUD??]
Burstall, R. M. and Darlington, J., A transformation system for
developing recursive programs, Jour ACM 24, 1 (Jan. 19??), 44-
67.

[BUG??]
Burstall, R.M. and Goguen, J.A., Putting theories together to
make specifications, Proc. 5th Inter. Joint Conf. on A.I., (19??),
1045- 1058.

[DaB?6]
Darlington, J. and Burstall, R.M., A system whch automatically
improves programs, Acta Informatics 6, 1 (M a r . 19?6), 41-60.

[Dew791
Dewar, R.B.K., e t al, Programming by refinement, as
exemplified by the SETL representation sublanguage, ACM
TOPLAS 1, 1 (July 19?9), 27-49.

[Gin621
Ginsberg, S., Examples of abstract machines, EXE Trans. on
Electronic Computers TEC-11, 2 (1962), 132- 1 35.

[GuH?8]
Guttag, J.V. and Horning, J.J., The algebraic specification of
abstract data types, Acta Inforrnatica 10, (19?8), 27-52.

[Gut??]
Guttag, J.V., Abstract data types and the development of data
structures, Comm ACM 20, 6 (Jun. 19??), 396-404.

[HOD821
Hoffman, C.M. and O'Donnell, M. J., Programming with equations,
ACM TOPLAS 4, 1 (Jan. 1982), 83-1 12.

[JoSBl]
Jones, N.D., and Schmidt, D.A., Compiler generation from deno-
tational semantics, in Lecture Notes in Computer Science 94,
Semantics Driven Compiler Generation, Springer-Verlag, 70-93.

[Kie 821
Kieburtz, R.B., Precise typing of abstract data type
specifications, Proceedings of 1983 ACM Conf. on Princ. of Prog.
Lang., (Jan. 1983).

[f(lG82]
E(leburtz, R.B., and Givler, J., The recognition problem for func-
tional program schemes, Research Memorandum (Aug. 1982),
Dept. of Computer Sci. and Engr., Oregon Graduate Center.

[KShBl]
Pheburtz, R.B. and Shultis, J., Transformations of FP program
schemes, Proc. of ACM Cod. on Functional Prog. Lang. and
Computer Arch. (Oct. 1981 1, 41-48.

[Mil781
Milner, R., A theory of type polymorphism in programming,
Jour. Comp. and Syst. Sci. 17, (19?8), 348-375.

[Moi82]
Moitra, A., Direct implementation of algebraic specification of
abstract data types, IEEE Trans. on Software Engr. SE-8, 1
(Jan. 1982), 12-20.

[OD0771
O'Donnell, M.J., Computing in systems described by equations,
Lect. Notes in Computer Science 58, monograph (19??),
Springer-Verlag, New York.

[Liz741
Liskov, B.H. and Zilles, S.N. , Programming with abstract data
types, ACM Sigplan Notices 9 4 (Proceedings of 1974 ACM Sym-
posium on Very High Level Languages), 50-59.

[Par721
Parnas, D.L., A technique for the specification of software
modules with examples, Comm ACM 15, 330-336.

[Ro182]
Rollins, E.J., A syntax-analyzer constructor, Technical report
CS /E-82-4, Oregon Graduate Center (1982).

[SSS81]
Schonberg, E., Schwartz, J.T., and Scharir, M. , An automatic
technique for selection of data representations for SETL pro-
grams, ACM TOPLAS 3, 2 (Apr. 198 I), 126-143.

[Wi18 11
Wile, D.S., Type transformations, IEEE Trans. on Software Engr.
SE-7, 1 (Jan. 1981), 32-39.

