
PREDICATE DRIVEN.,MODEL OF
DATA FLOW COMPUTATION

Ashoke Deb*

Oregon Graduate Center
19600 N.W. Walker Rd.
Beaverton, OR 97006

OGC TR CS/E 83/008

The concept of data flow computation has several attributes and provides
interesting solutions to problems encountered in von Neumann style of compu-
tation, namely simple synchronization mechanism, side effect free programming,
increased exposure to parallelism and asynchronism. But, the conventional
tools for representing a data flow computation is either based on imperative-
style program structures or a very low level graph model, usually obtained
from an imperative-style program. This makes the understanding and exploita-
tion of parallelism difficult and also the underlying architecture becomes
highly complex.

We propose a model, called Predicate Driven Model (PDM), for representing
data flow computations. This model has several advantages:

i) the types of constructs, namely Function-node, Input initialization
and Line composition, are minimal and simple,

ii) two synchronization tools, one by 'encapsulation' and the other by
'arrival', are available and implicit in the model,

iii) transformation to a graph notation is direct, and
iv) the elimination of imperative structures, exposes 'hidden'

parallelism much more effectively than the traditional approaches.

KEY WORDS: Data flow computation, von Neumann system, Imperative programming,
Functional programming, Single-assignment, Parallelism, Synchronization.

* On leave from Memorial University; St. John's, Newfoundland.
This work was supported in part by the Natural Sciences and Engineering
Council of Canada under Grant A-4176.

I. Background

A growing body of computer architects, language designers and software
developers believe that the traditional ideas built around von Neumann model
of computation should be abandoned.

From the architectural viewpoint, von Neumann designs have the following
characteristics. (1) It distinguishes control elements from data operational
elements. (2) Space (e.g., variable locations), as opposed to values, are the
primary objects. (3) As a result of (1) and (2 1 , control initiates operation
whose domain and range are spaces. An operation modifies a space. This modi-
fied space is responsible for the next control signal. Thus, control-operation-
space model works entirely on side effect (3). Even our notion of categorizing
systems as (instruction stream, data stream) pair is an implicit way of classi-
fying control-operation-space model.

From the language designer's viewpoint, the influence of von Neumann
characteristics are obvious. (1) The most basic element in a language is a
variable, which sometimes represents a value and sometimes a location, depend-
ing upon its context. (2) Most such languages are endowed with features facili-
tating side effects e.g., common block, call-by-reference, call-by-name, assign-
ment statements of the form A := A + B, to name a few. (3) Transfer of control
features e.g., GOTO, procedure CALL, conditional branch, came into existence in
order to optimize the use of operations and spaces in that control-operation-
space model.

Over the number of years, software developers were trained to be 'clever'
users of side effects and control transfers. Sometimes higher level construc-
tions were developed to hide the low level complications, but understanding
and implementation of these high level constructs depended on extensive (and
often complex) use of side effects and control transfer mechanisms. For example,
(1) implementation of P, V operations on semaphores or other variations of it
depend exclusively on side effects produced on the semaphore variable. (2) After
a decade of realizing the danger of GOT0 or its equivalent, these constructs are
still well and alive. Mathematicians try to prove the correctness of a program
with great difficulty and in a roundabout way. For example, it is difficult to
mathematically justify A = A + B. Denotational semantics of GOT0 is not easily
given. Also, programs written using conventional constructs such as IF-THEN-
ELSE, FOR-DO, Assignment etc. do not expose parallelly computable parts and un-
ravelling of such structures is hard due to intricate 'data dependencies'.

Hence realized was the need of (1) computer architectures [2,4,6,8,10,14]
that can free itself from the von Neumann design bottlenecks. (2) A language
[1,2,3,9,13] that can be used to express parallelism within a computation, such
that it is mathematically sound, free of side effects, free of complex control
mechanics and also which is readable and descriptive of a computation.

At present, data flow computation [1,2,4-8,11,14] seems to provide a v i g b l e
alternative to von Neumann computation. In data flow, 'values' as opposed to
variable locations are considered as the primary objects. Operations are per-
formed on operand values to produce result values. The usual interpretation
of a data flow computation is that the computation is described as a network
such that values flow (operand values arrive at the operation node and re-
sultant values flow out of the operation node) through the network, finally
producing the result.

To illustrate the difference between von Neumann computation and data
flow computation, we show the following example.

Example :

To evaluate the following function

von Neumann style of computation will be as follows:

LOAD N
SUB ONE
STORE TEMP
SUB ONE
MULT TEMP
MULT N

N /* The value of n */
ONE /* The constant 1 */
TEMP /* A temporary variable location */
AC /* An implicit variable location */

used by an operatoin as accumulator * I

On the other hand, data flow style of computation can be expressed as
follows:

Figure 1.

Points of difference between these two styles of computation are that in
the first method (1) variable locations are key objects to be manipulated,
(2) side effects (e.g., AC = AC * TEMP and AC = AC * N etc.) are used to mini-
mize the code length (hence execution time) and the storage space, (3) as a
result of that, parallel computations are obscured, whereas in the second method
(1') values are the key objects and functions are applied to produce result
values, (2 ') an operation is activated by the arrival of valid input values,
(3 ') there are no side effects and (4 ') parallelism of computations can be
directly expressed and computations can proceed asynchronously.

End of Example.

Recently, functional (applicative) languages [1,2,7,9,13] have received
a good deal of attention because (1) they do not use any side effects,
(2) these were designed (in purest form) to manipulate values rather than
variables and (3) being functional, mathematical theorems can be used more
easily for reasoning.

To illustrate the difference between von Neumann (imperative) style and
functional (applicative) style of programming, we show the following example.

Example :

To find the sum of the squares of the numbers from 1 to n.

In an imperative style this might be written as:

sum := 0;
FOR i := 1 to n DO

sum := sum + square (i);

Above code does not need any explanation to most 'experienced'
programmers, because they 'know' the meanings of 'sum := sum + square (i)'
and 'FOR i := 1 to n DO' etc.

In applicative style one might write:

Listadd o Elementwise-square o Allnumbers [l,n]

The applicative program is shorter, free of intermediate variables and
more meaningful to one who is not corrupted by imperative style of thinking.
(Read the above program as "Add up elementwise square of all numbers from 1
to nt'.) In this, 'Listadd', "Elementwise-square', 'Allnumbers' are functions
'ot is the function composition operator. A function application is right
associative.

End of Example.

Currently, one of the major issues in the design of functional languages
is to provide a set of functions and functional operators which can be used
to construct other functions.

Aside from the mathematical elegance of functional languages, the current
approaches do not provide enough 'granularity' to allow the programmer to dic-
tate the flow of data. For example, in the last functional style program, if
the programmer wants to modify the program so that computation terminates as
soon as square (i) > BIGNUMBER, for some i, 1 - < i - < n, and a constant BIGNUMBER,
modification becomes implementation dependent and not so immediate. Also, once
a function is defined, the domain and the range associated with the function is
fixed. A simple way of imposing property on the domain (or the range) and
associating this directly with a function definition is desirable, which seems
to be a common usage in mathematics.

For example, given a definition of * (multiply), define F such that
2

F2 (x,y) = r = x * y such that r # 16, i.e., F2 'produces' results of product
of two numbers such that the result is not sixteen. In other words, the range
of F2 is a restriction of the range of *.

In the context of data flow computation, the direct association of prop-
erties (i.e., restrictions) on both the domain (i.e., input values) and the
range (i.e., output values) of a function has important implications which will
be discussed later in the paper.

Traditionally. a data flow computation is represented as a program by
using a 'data flow language', such as ID or VAL [1,2], or by a data flow program
graph, sometimes referred to as the base language of the data flow machine [5,6,
121.

In the following, we will discuss why the above tools are not adequate
for representing data flow computations.

Data flow languages (e.g., VAL) allow structures such as IF-THEN-ELSE,
WHILE-DO, Assignment, etc. for writing programs imperative style.

We will show an elementary data flow program written in VAL and its data
flow graph.

Example:

(Assume that x and w are some given values.)

For y := x; t := 0;
do if t # w t h e n

if y > 1 then iter y := y/2 enditer
else iter y := y * 3 enditer

endif;
iter t := t + 1 enditer
endif

end f or

End of Example

Another commnnlv l~sed tool for re~resenting data flow ccmputations is
data flow graph whose constructs are based on 'links' and 'actors' and their
'firing rules'. In one such model (61, the links, actors and firing rules
are as follows [Fig.2-51. Figure 6 shows the data flow graph of the example
program written in VAL.

(a) l inks

data link

@) actors

'r' decider

control link

control actors

Boolean actors

f-+- ̂Br

mer Re

Figure 2: Node types for data flow program.

data link -- control link

Figure 3 . Firing rules for link nodes.

(a) (b)

operator decider

Figure 4 . Firing rules for operators and deciders.

(a) (b)

false ++z

merge

false &
Figure 5 . Firing rules for control actors.

Figure 6: An elementary data flow program.

It should be noted that in VAL, expression of the form 'iter y := y/2'
is different from the imperative form 'y := y/2' (as a matter of fact, VAL
does not allow such assignments). 'iter y := y/2' like expressions can be
used only inside a loop and essentially means that the 'value of y in the
next iteration' is equal to the 'value of y in the current iteration' divided
by 2.

Still a closer look at languages of this type and their semantic models
reveal several drawbacks.

(1) Use of traditional constructs (or their modifications) such as IF-THEN-
ELSE, WHILE-DO, etc. which do not lend themselves to clear specification
of parallelly computable parts. In the last example, the fact that liter
y := y/2', 'iter y := y/3' and 'iter t := t + 1' are parallel computations
is not revealed. This is also the case in the graphical view of the com-
putation.

(2) Although expressions of the form y := y/2 is not allowed and the 'principle
of single assignment' is used, the fundamental idea,that the value of y from
one cycle of computation is fedback (in true sense), is kept implicit.
Notice that in von Neumann style of computation where controlling the in-
struction sequencing was an important issue, programmers were given facil-
ities to accomplish 'flow of control'. On a similar basis, in data flow
style of computation, programmers should be given facilities to directly
specify the 'flow of data values'.

(3) Finally, we need a higher level semantic model, which will express func-
tionality, parallelism and synchronization in a structured form.

In the next section, we present a model, called Predicate Driven
Model (PDM), of data flow computation. Some of the important character-
istics of the PDM are that (1) there are three main constructs which are
used to represent a data flow computation, and (2) the semantics of these
constructs rely on two levels of synchronization--by containment and by
arrival, on queuing of the input values and on 'local' data validation at
the input and output lines of a node. There are two other important features
a special value X and 'memory less' property of the output lines, which will
be discussed later.

In the last section, we will discuss our future goals and areas of
research.

11. Predicate Driven Model of Data Flow Computation

In PDM, a computation is a composition of functions, where:

i) Function-body is a definition of input to output mapping.
ii) Domain is a definition of all valid in~ut values of a function-bodv. - - - -

iii) Range is a definition of all valid output values of a function-body.
iv) Activation of a function body takes place only if

a) previous activation of the function-body has completed
b) a set of all valid input values in the domain of the function

has arrived.

Note that the input (output) values arriving at (leaving from) the func-
ion-body may not all be valid. Activation of a function-body does not neces-
arily require that output value(s) from its previous activation be consumed.

Also, it is possible to have more than one function with identical function-
body but different domains and/or ranges. Implications of these will shortly
be explained.

Structure of a computation may thus be looked upon as a synthesis (or
refinements) of several structures such that the range (or subrange) of one
is a subset of the domain of another [Figure 7 1 .

Figure 7: Structured representation of a computation, D{F)R, where F is
the function-body, D is the domain, R is the range, which is a
collection of lower level of computations D i {F~) Ri. 1 - < i - < n
such that R 5 Dk for some j , k's.

For the sake of subsequent discussions, we will make the following
assumptions:

i) V is a set of values, V r fvl, v2, . . . , vN}, called the Universe
of Discourse, which includes a special value X. The highest level
domain and range are subsets of V, e.g., V = (integers, A}. The
meaning and use of X will be explained later.

ii) OP is a set of primitive operators, OP = {o,, 02, . . . , On}, such that

for some integers n. and m and v E V, e.g., OP = {+, -, / , *, ~ i v ,
1 i Mod, <, =, > 1 .

The PDM uses three basic constructs, namely Function Node, Line Composition
and Input Initialization, to represent a computation.

Function Node:

Syntax of a function node f, without input initialization, is as follows:

where D = [C1] I1 [C2] I2 . . . [Cn] In- ,

In the above,

f is the function name, which is optional,

[C1[I1 [C2] I2 . . . [Cn] In is the list of predicated -- input lines,

11, 12, . . . , In are symbolic names, called -- input lines,

C1, C2, . . . , C are predicates, called input predicates
n such that C: is formed by using logical and relational

L

operators from OP, constants from V and I I > 5 , . . . , In
such that any occurrence of I is free.

j

[C1'] O1 [C2'] O2 . . . (Cml] Om is the list of predicated output lines,

01, 02, ..., 0 are symbolic names, called output lines,
m

C C , . C are predicates, called output predicates,

such that each C ' is formed by using logical and relational operators i
from OP, constants from V and I 12, ..., In, 01, 02, ..., Om such

that any occurrence of I or 0 is free.
k j

Lastly ,

If: (Il, 12, . . . , In) + (0 1, 02, ' . . 0) is called the function body m
which consists of zero or many mappings of the form E + 0. . E. is an expres-

j 1 J
sion formed by using operators from OP, constants and V and I 1, 5 9 - . . , 1 n
Also there does not exist two mappings in a function body such that E + 0.

j 1

and Ek + Oi for j # k.

The semantics of a function node f, without input initialization, is as
follows:

Let v be the value present in input line I (output line 0.) at an instant. i J
v is said to be valid if the corresponding input predicate C. (output predicate

1
C . ') is true. If an input or output predicate is the constant TRUE, then it is

3
usually omitted.

A function node is said to be firable if (i) the activity due to the last
firing is complete and (ii) a set of valid input values are available in all
input lines.

If a value v is present at the input line I such that v is not valid.
then v is called invalid input and its effect is equivalent to the removal of
the value v from line I.

Note: Since each input line validates its own value, it is possible to allow -
two input lines, I1 and I with predicates C and NOT (C1) respectively and the
input value v to both I 2; . This may proviae for two dlstinct actions for two
classes of input valuesl;o 8e taken. An example of this is where 'incorrectf
values are used to produce error messages.
End of Note.

If a value v is obtained for output line 0 such that v is not valid, then
the special value h is produced at line 0 .

An input line I is allowed to maintain a sequence of values.

An output line 0 is not allowed to retain its value.

Firing of a function node is said to be complete when the entire function
body has been executed, values have been produced at the output lines and the
present input values have been removed from the input lines.

Note: According to the above requirements of the firing of a node, two -
levels of synchronization are present. One is achieved by the arrival of all
valid input values. The other is achieved by the encapsulation of several
operations of the form E + 0 within the function body. All such operations

j i
within a function body may proceed in parallel.

Also, a sequence of output values may be retained by 'channelling' those
values to an input line.
End of Note.

In the following, we will present and discuss a few examples.

Example: Let

This is equivalent to the imperative style statement

IF ((15 > Il > 10) and ((IZ = 5) OR (I ~ = 6)))

THEN P := I1 * I2 .
Also, let

f, : [] I1 [I I2 { I ~ * I2 + PI [15 > I1 > 10 AND (I2 = 5 OR I2 = 611 P

Although fl and f2 appear similar, there are a number of important dif-

ferences between them. In f , the function body will be executed for only a
subset of integer for which the predicates (15 > I1 > 10) and (I2 = 5 OR I2 = 6)

are true. On the other hand, in f there are no input predicates associated with
2 it; the function-body of f will be executed for all values of I and 12.

2 1
Secondly, f will never produce A output, whereas f may produce A output (when 1 2 the output predicate is false). Thirdly, in terms of actual execution sequence,
in fl, the evaluation of the input predicates and the execution of the function
body is strictly serial. Whereas in f the execution of the function body and

2 ' the evaluation of the output predicate may proceed in parallel.

End of Example.

Example: Let

C square (I1) + P;
f : [I, > 51 I1 3 [P > maxint] P [P > maxint]~ -

maxint + Q

where 'square' is an element of OP and 'maxint' is an element of V.

A logically equivalent imperative style statement would be:

IF (I1 > 5) THEN

BEGIN
P := square (I1);
Q := maxint;

IF (P > Q) THEN Q := A ELSE P := h

END.

End of Example.

Another type of construct used in PDM, called h e Com~osition, is defined
as follows.

Line Composition

The syntax of a line composition is as follows:

where 0 and I are output and input lines, respectively.

A set of line compositions of the form I1 + 0, I2 4 0, I3 + 0, . . . , Ip + 0 ,
called Fan-out Line Composition, is equivalently expressed as

11, I*, 13, . . . , Ip + 0 .
A set of line compositions of the form I + 0 , I + 02, I 4 03, . . . ,

I + Ok, called Fan-in Line Composition, is equivalently expressed as

The semantics of line composition are as follows.

The meaning of Ii + 0 is that the value generated at 0 will arrive at I..
j j 1

The meaning of a fan-out line composition I 12, . . . , Ip + 0 is that the value

generated at 0 will arrive at each of I for all i, 1 < i < p.
i ' - -

The meaning of a fan-in line composition I + 0 , O2 . . . , Ok is that the value
generated at each 0 . will arrive (asynchronously) at I. The values arriving at I

1 will be serialized according to their order of arrival. In case more than one
value arrives at I at the same time, then they will be serialized arbitrarily.

In case the input line I has an input initialization sequence, the serial-
ization of additional incoming values will take place following the initial
sequence of values. (Input initialization is described later.)

In the following, we will present a few examples.

PDM provides a powerful tool for composing ('connecting) function nodes.
Here we will illustrate three type of compositions, called Inside fit, Outside
fit, and Partial fit. [See Figure 81 -

Figure 8. Inside fit Outside fit Partial fit

Let 0 = set of output values flowing from f 1 to f2, and

D = domain of f
2 '

We call the composition of f , , f2 '
an inside fit, if 0 n D = 0
an outside fit, if 0 n D = D and
a partial fit, if 0 A D # D or 0.

A composition which is both an inside fit and an outside fit is called
a total fit.

Example (Total it)

Let

f, : [I I, Ifl (I1) + ol) 1 1 o1 ;

f2

I2 + o1 .
Here 0 = f (I) and O2 = f *f (I)

1 1 1 2 1 1

End of Example

Example (Outside fit)

Let

In this example, what
f2

does is take an 'action' (denoted by the function
f) when f produces invalid outputs.

2 1

End of Example

Example (Partial fit)

Let the function fl(n) compute the nth element of the Fibonacci sequence
and f (x) compute x modulo 10.

2

fl
: [n > 01 n { ~ i b (n) + oll [] O1 ;

f2
: [even x] x {x mod 10 -+ 02} [I O2 ;

x + O 1 .

The predicate even x is true if x is even.

End of Example

The following examples show iterative composition on a function

Example (Indeterminate loop)

Let

f : [Cl I if(1)+01 [I 0 ;

Here at termination, 0 = fn (I) such that n - > 0, C is true for all
i < n , when O = fi (I) and C is false when O = fn (I) .

End of Example

Example (Determinate Loop)

Let

f : [I I [N # 01 N [I 0, [I 0, ;

1 + 0 1 ; N + 0 2 .
N

Here at termination, 01= f (I) .
End of Example

Example (Determinate loop with exit condition)

Let

f : [Cll I [N # 01 N [I Ol [lo, ;

Here at termination, O1 = fn (I) such that 0 - < n - < N and for all
i i - < n, O1 = f (I) and C1 is true.

End of Example

Input initialization

Input initialization provides the facility in a function node definition
where an input line may have a sequence of initial values.

The syntax of such construct is as follows.

I. init(vl,v . . . , v 2 ' P
where I is the symbolic name of an input line to a function node, init is
a key word, vl, v,, ..., v are elements of V.

P

The semantics of such construct is as follows.

For the first p instances, the sequence of values arriving at the input
line I will be vl, v,, . . . , v in that order.

P '
If additional values arrive at I (as a result of line composition)

before its initial values vl, v2, . . . , v are consumed, the additional
values will be serialized following v . P

P

Example (Selective mapping)

Suppose we have a sequence of values (v v . . . , v) and a sequence of 0' 1' t'
binary selection values (b bl, . . . , bn) such that f(vi) is computed
if bi = 1 . 0 '

f : X Y {f(1)-+0) [I 0 where

X is [B # 01 B.init (boy bl, . . . , bn) and

Y is [B # 01 1.init (vo, vl, . . . , vn) .

End of Example

It is well known that asynchronism is used to achieve speed up. But the
nondeterministic nature of it have led some to incorrectly assume that such
computations are inherently difficult to express. The following example is
presented to show that it is not the case. Simpler, terser and more transparent
representation of a computation, which exploits asynchronism, than any imperative
style of programming is demonstrated.

Examp 1 e

Let 01, 02, ..., 0 be the results produced by n independent computations
n

and, hence, the arrival time of these results may be different. We want to
compute the cumulative sum of these results. The following achieves this goal.

A comparative analysis of the above with an imperative style program is
useful.

The following code

S : = o - ;
FOR k := 1 TO n DO

S : = S + o k ;

will add 01, 02, ..., 0 exactly in that order but not as they are available. k

End of Example I
Before we conclude this section, we will present solutions of some common

problems, as expressed in PDM, including the one illustrated in Section 1.

Example The following expresses the computation as expressed in VAL and the -
'dataflow' diagram in Section 1.

f : [y +),I y.init (x) [t # w] t.init (0) [Y > 11 o1 [y 2 1 1 0-,
L

t+l -+ o3

End of Example

Example Computing ~actorial (n), n > 0 .

fo : [I > O] I.init (n) {I - 1 + ol) [lol ;

X,1 4- o1 ; Y + o*

End of Example

Example Recognizing a string of matched and well balanced left- and right-
parentheses. Assume that the string is given by v v

0' 1' - . - , v n
where v. = (or) 0 < i < n and v = $, end of sequence marker

1 - - n

where the predicate C is I = (AND I2 =), and NOT is logical negation.
1

End of Example

It should be pointed out that the algorithms used here are for illustration
purposes only and are not meant to be "the" solution.

Example Job Dispatcher.

Previously, we studied problems where data is deterministically - sent to a
definite processor. In those examples, it is the arrival of data that starts
a processor--i.e., a valid data arrives at a processor and waits until the
processor becomes 'free'. Now suppose that there are M independent
processors, all of which are capable of processing a data -- in other words,
as far as a data is concerned, all processors are identical.

We also have N data items, which we would refer to as jobs.

The problem is to process N jobs on M processors as rapidly as possible.

Obviously, a deterministic passing of a job to a processor does not solve the
above problem due to possible processor bottlenecks.

The solution also must incorporate the following facts that:
(1) if there is an available processor and there is an unprocessed job, the

unprocessed job must be dispatched to an available processor.

(2) if there is more than one available processor, then exactly one should
process the job,

(3) use minimum number of interprocessor communications and

(4) lastly and most important, the solution must -- not use any side effects.

In the following, we present such a solution expressed in PDM.

It should be noted that the dispatcher and the processors are assumed to be
cyclic and the dispatcher at the beginning of its life will have the numbers
of all the processors.

Dispatcher: [] AvailableProcessorNO [] ~ob.init (Jobl, Job2, . . . , JobN)

{~vailable~rocess~~ -+ 0 1 ' Job -r ol)

[lo, [lo, ;

11' 12' . . - , IH + 01 ;

JobR1, JobR2, . . . , Job% f 0 2 .

Processor k: [Ik = k]Ik []JobRk

1 < k < M \process (J O ~ R ~) + 0 c
- - lk ('

k + O :
2k .

[lolk ;

AvailableProcessNO + 0 2k a

End of Example

111. DISCUSSIONS AND FUTURE GOALS

Earlier in the paper, we have mentioned that directly associating predicates
on both the input and the output ends of a function-node have important implica-
tions in the context of data flow computations.

Some of the advantages are that:

(1) the representation of the computation becomes concise, because an additional
function composition can be avoided.

is equivalent to

fo : [Cll I, { f (~ ~) + oll [I o1 ;

1 : LC,] I2 { I ~ + 0,) 1 1 o2 Y

(2) properties (of values) and their evaluations are kept 'local', thus
avoiding 'superfluous' passing of values to another function node. E . g . ,
suppose the predicate C in the following example, depends on inputs
11, I and the output

2 O1 '

f : I I I I I I + 0 I 0 ;

this would be equivalent to

(3) also, by placing predicates at the output end of the function node,
parallelism may be exposed and exploited to a greater extend. E.g.,
suppose the predicate C in the following example depends on the
input I .
In f: [C] I {£(I) -* 0) [I 0 , the predicate C has to be evaluated and if
successful, then computation of the function-body may proceed. This may
be necessary for some computation. But, there are computations where the
predicate C is used only for selecting or not selecting a result of compu-
tation. In those cases, evaluation of C and the function-body could be
done in parallel. That can be done in f: [I I (f(1) + 03 [C] 0 .

At present, we have implemented an interpreter on VAX 111780 under Unix
operating system for experimental purposes.

So far, we have not addressed the issues related to dynamic data flow
systems. We are currently working on several ideas which, we believe, will
nicely extend the present level of PDM to dynamic systems.

REFERENCES

1. Ackermann, W. B. and J. B. Dennis (19791, "VAL - A value-oriented
algorithmic language -- Preliminary Reference Manual", MIT/LCS/TR-218,
June 1979, 80 pp.

2. Arvind, K. P. Gostelow and W. E. Plouffe 119781, "An asynchronous
programming language and computing machine", TR 114a, Dept. of Info. and
Computer Science, Univ. of California - Irvine, December 1978.

3. Backus, J. [1978], "Can programming be liberated from the von-Neumann
style? A functional style and its algebra of programs", CACM, 21, 8,
August 1978, pp. 613-641.

4. Comte, D., N. Hifdi and J. C. Syre [1980], "The LAU data driven multi-
processor system: results and perspectives", Proc. IFIP '80, Tokyo and
Melbourne, October 1980, pp. 175-180.

5. Dennis, J. B. [1971], "On the design and specification of a common
base language", Proc. of Symp. on Computers and Automata, Polytech. Press,
Brooklyn, NY, 1971.

6. Dennis, J. B. [1980], "Data Flow ~u~ercomputers", IEEE, Computer,
November 1980, pp. 48-56.

7. Glauert, J. [1978], "A single assignment language for data flow computing",
MSc Thesis, Dept. of Computer Science, Univ. of Manchester, January 1978.

8. Gurd, J. and J. Watson [1980], "A data driven system for high speed
parallel computing", Computer Design, 19, 6-7, JuneIJuly 1980, pp. 91-100197-106.

9. Henderson, P. [1980], Functional Programming -- Application and Imple-
mentation, Prentice Hall, 1980.

I1 10. Mag6, G. A . [1979], A network of microprocessors to execute reduction
languages", Int. JCSS, 8, 5 & 6, October-December 1979, pp. 349-385/435-471

11. McGraw, J.R. (1980], "Data flow computing -- software development",
IEEETC, C-29, 12, December 1980, pp. 1095-1103.

12. Rodriguez, J.E. [1969], "A graph model for parallel computation", MAC-TR-64,
Project MAC, MIT, Cambridge, Mass., September 1969.

13. Proc. of the 1981 Conference on Functional Programming Languages and Computer
Architecture, ACM #556810, October 1981.

14. Special Issue on Data Flow Computers, IEEE, Computer, February 1982

