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1. Introduction 

There is a component of every database system that is seldom formalized 
and even more rarely explicitly supported by the database system. This com- 
ponent is the meaning of the data in the database. This paper examines the 
problem of conveying the meaning of the database to humans and programs that - - 

use the database. We shall examine some current efforts in this area, to see 
what the next generation of commercial database systems might offer and what 
we might expect five years from now. We shall also point out directions 
further research might take. 

In our discussion we shall draw examples from a database designed for 
recording energy production, flow and consumption in the United States [EEMIS]. 
What we intend by the meaning of a database is the information that the user 
needs to make sense of the data in the database. (This is a minimal defini- 
tion of database meaning--certainly there can be aspects of a database's 
semantics that lie outside this definition.) It is the answers to such ques- 
tions as: 

What does the value "50R6" in the ENERGY-TYPE field stand for? 
What objects in the database could correspond to refineries in Oklahoma? 
What does an instance of the OIL-SHIPMENT record represent? 

How should we convey the answers to these questions to the user? 

In many existing database applications--an inventory, for example--the 
scheme of the database is quite simple. There is a small number of fields, 
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and the meanings of the fields can be learned in minutes, or may even be 
obvious from the field names. Record instances are likely to be uniform. 
In other applications, or potential applications, the scheme can be large, 
the meaning complex, and record instances can exhibit wide variations. The 
record format for an oil refinery could have over a hundred fields and in- 
stances of it may differ because some refineries do only distillation, while 
others also do cracking, or one record instance might represent a single re- 
finery, while another represents the aggregate of all refineries in a state. 

A user or application programmer must know the structure and meaning of 
a database before he or she can utilize it. For a simple database, this know- 
ledge can be acquired through a ten-minute chat with another user. For a 
complex database, a user might not even be able to remember the entire data- 
base structure at once. There is also the danger of oversimplification in 
complex applications. Certain variants or details may be elided because they 
complicate the database scheme. The database system should assist the user 
in storing, recalling, and manipulating the information necessary to access 
and make sense of the data in the database. The database must somehow cap- 
ture its own meaning. 

To better understand this problem, we shall first look at the parallels 
between databases and programming languages. We next examine several approaches 
to the precise specification of conceptual data models and the means of des- 
cribing the connection between a specific conceptual model and the database 
scheme that implements it. We explore the feasibility and advantages of stor- 
ing a semantic description of a database as part of the database itself. 
Finally, we briefly present an experimental database query language, PIQUE, 
that uses such information. 

The Analogy to Programming Languages 

In this section we try to point out some similarities between program- 
ming languages and databases. The analogy is tenuous and inexact at times; 
it is not intended to be carried further than it is here. Figure 1 diagrams 
the basic task in both areas, which is one of translation. With programming 
languages, the task is to translate from abstract concepts of algorithms, 
such as "Bucket sort" or "greedy algorithm for memory allocation," down to 
machine code programs. With databases, the translation is from mental models 
of real-world information, such as "inventory of parts" or "employee personnel 
records," down to configuration of bits in memory. 
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In either case, the computer level is at too low a level of detail to 
easily comprehend, and the organization is not at all similar to the organi- 
zation we use at the human level. In the programming languages domain, we 
have assembly languages and intermediate codes as representations that are 
one step up from machine code programs. For databases, we have data types 
as ways to view memory configurations. We shall call the level of assembly 
language, intermediate code, and data types the structural level, for it is 
mainly concerned with structuring, grouping and naming objects at the com- 
puter level (see Figure 2). 
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In all cases, we have automatic translation from the structural level 
to the computer level. There are assemblers for assembly language, machine 
code generators in compilers for intermediate code, and standard implementa- 
tions in programming languages for data types, as well as operations for 
manipulating the types. For example, most programming languages have matrices, 
and many support the matrix data type. (That is, they include operators, such 
as matrix-multiply and transpose, whose arguments are entire matrices.) 

Admittedly, there is more abstraction on the data side than the program 
side in going from the computer level to the structural level. In particular, 
for databases we have very abstract data types (such as relations and hierar- 
chies), which are usually called data models. The most important aspect of 
the structural level is not the amount of abstraction layered over the machine, 
but that the abstraction is machine oriented. Even the relational data model, 
which is far removed from the bit level, was intended to mask the complexities 
of file and index manipulations, rather than to provide a natural framework for 
modeling real-world information. 

The advantages of working at the structural level are manifold. There 
is a simplified view of the computer: many details are taken care of auto- 
matically or suppressed, reducing the choices that must be made, and the 
opportunities to go astray. There is an opportunity to incorporate mnemonic 



information through the naming of instructions, locations, variables and so 
forth. Optimization seems most easily done at the structural level. And, 
in the case of intermediate code and data types, we are offered some physical 
independence. If we want compilers for a single programming language for 
ten different machines, we do not have to write ten compilers from scratch. 
A single complier can be written through the intermediate code stage and then 
fitted with various machine code generators, one for each of the ten machines 
The implementation of a particular data type can be changed to account for 
different machine capabilities, such as different word sizes or different 
instructions. 

Despite the advantages of the structural level, the languages and con- 
structs there are essentially a means for looking down at the lower level 
of detail of the computer. The representations at the structural level still 
do not correspond that well to the concepts we use at the human level. They 
do not help that much in translating from a mental idea to a more formal and 
precise specification of an algorithm or database--we must still go from human 
terms to computer terms, although the distance is not quite so great. 

What we want are mechanisms for looking up to the human level. We want 
a method for precise and formal specification of algorithms and databases 
that nevertheless allows us to understand what is going on in human terms. 
We want precise definition with easy understanding. At the structural level 
we do have naming and comments to help us understand assembly language pro- 
grams, but in a sense they do not count. The assembler does not attach any 
meaning to the names, nor does it read the comments. The intent of the comments 
are not guaranteed to be carried out in the programs. Mnemonic names for in- 
structions do help somewhat, because they are easier to read than machine code 
and we are given a precise translation. 

Let us examine mechanisms for looking upward toward the human level. Most 
of us who do programming or program design have some semi-formal notation in 
which we work out the initial design of a program, such as structure charts 
or pseudocode. Such notations are precise enough to serve as a useful tool 
for discussion and evaluation of a design. Furthermore, we can establish a 
correspondence between boxes in the structure charts or pseudocode statements 
and groups of statements in the actual program once it is written. For example, 
the pseudocode statement 

let MAX be the largest value in array A 

might correspond to the program segment 

MAX := A[l]; 
FOR I := 1 to ALIM DO 

IF MAX < A[I] THEN MAX := A [ I ] ;  

Thus, when there is a change in flow diagram or pseudocode, we can easily 
locate the corresponding part of the actual program that should change. Again, 
however, we have no guarantees that our intent in the flow diagram or pseudocode 
is carried out in the actual program. 



We generally have some translation in mind for each chart box or pseudo- 
code statement. A high-level programming language can be regarded as an 
attempt to formalize someone's pseudocode sufficiently to automatically trans- 
late it. It is a step up from the structural level. 

We have evolved from BLZ to arithmetic IF and GO TO'S to IF-THEN-ELSE and 
WHILE-DO. 

In SmallTalk-80, we can define a unary operator ("message" in SmallTalk 
terms) 'max' that will select the maximum element from any type of collection 
that has a greater-than relation defined on its members. We approach more 
and more closely our own concepts and are tied less and less to the concepts 
of the machine. Of course, we trade the ability to easily specify some high- 
level programming constructs for the ability to specify arbitrary machine code 
programs. It becomes easier to specify a looping structure, but harder to 
manipulate individual bits of memory. But the trade pays off, since we need 
to manipulate individual bits of memory seldom compared to how often we need 
looping structures. We are creating a semantic level--one that tries to repre- 
sent the meaning of programs in human terms, but still formally. We are ever 
decreasing the distance that a human translation has to traverse (see Figure 3 ) .  
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What is the corresponding state of affairs for databases? The database 
models supported by current database management systems (DBMSs) are not much 
above the structural level. They are essentially data type packages provided 
to simplify our view of the computer level, but there is little correspondence 
between the objects in our conceptual model and structures in a database. For 
example, in the relational database model, everything is organized into tables. 
However, our conceptual models of data only correspond directly to tables in 
cases such as inventory lists and airplane schedules. We do have naming, but 
the name of a field or record does not affect the treatment the DBMS gives that 
field or record. There is still a long jump to the human level. 



Semantic data models, as shown in Figure 4, are an attempt to make possible 
unambiguous descriptions of people's ideas of specific data applications. We 
discuss semantic data models in the next section. They have not reached the 
status of high-level programming languages; we are just beginning to see auto- 
matic translation from them to the structural level in prototype DBMSs [Ca,Ch+, 
We]. Nevertheless, they are useful for discussing the intended meaning of a 
database, and someday automatic translation will be available in commercial 
systems. 

Conceptual data models Human level 

human translation- - - - - - - - - - - - 
Semantic data models Semantic level 

'/ - - - - - - - - - - - - - - - - 
Database models Structural level 

automatic translation - - - - - - - - - - - - 
Configuration of Memory Computer level 

Figure 4 
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3. Semantic Data Models 

It is possible for one person to impart to another the general meaning 
of a database informally, but to discuss the faithfulness of an implementa- - .  

tion or to store the meaning of a database as part of a database some formalism 
is necessary. Semantic data models are systems for precise specification of 
conceptual data models, but, unlike database models, they attempt to use terms 
and concepts humans use. We briefly cover four such models. 

Probably the most well-known semantic data model is the entity-relationship 
model of Chen [Ch]. In the entity-relationship model there are four types of 
objects: 

1. entities 
2. attributes of entities 
3. relationships among entities 
4. attributes of relationships. 

Information structures in this model are easily expressed through diagrams such 
as Figure 5. Rectangles denote sets of entities, diamonds are relationships 
and circles are attributes of entities or relationships. The entity-relationship 



Figure 5 

model, as first presented, does not speak much to definition of domains of 
attributes or any involved integrity constraints. It is simple and readily 
understood, but does not capture the complexities that arise in certain data- 
base applications. 

Brodie has defined a semantic data model through his language BETA [Br]. 
BETA focuses on definition of domains and integrity constraints on the data- 
base. BETA has objects and maps (roughly corresponding to entities with 
attributes and relationships in the entity-relationship model), and also 
assertions. One goal of BETA is to be able to make inferences-from a data- 
base description and to be able to check the consistency of the assertions. 
A partial BETA specification follows: 

const curyear = 83; 

refinery = object name: nametype; 

location: loctype; 

owner: company-type; 

keys: name, (owner, location); - 
end obiect: 

dates = object month: 6(1..12); 

year: d(1960..1995); 

end object; 



production-records = object facility: refinery; 

period: dates; 

ptype: (actual, projected); 

end object; 

produced-amount = map from p in production-records -- - 
to a in amounts - - 

end map; 

assert: all p in production-records - - 
where (p.date.year > curyear) 

(p.rtype = projected); 

BETA also has features for describing sub-objects and sub-maps. BETA 
resembles a database definition language with the addition of assertions. It 
is slightly restricted in that maps are always binary relations. 

Biller and Neuhold's Logical Data Definition Language is similar to the 
BETA language, except it deals in types and relations on types [BN]. 

The semantic data model SDM of Hammer and McLeod [HM] has classes, with 
members of classes having attributes, and various means for defining classes 
from other classes, such as restriction or grouping. For example, if we were 
interested in looking at projected production by itself, we might define 

PROJECTED-PRODUCTION-RECORDS, 

interclass connection: subclass of PRODUCTION-RECORDS 

where PTYPE = "PROJECTED". 

The last three semantic data models are still somewhat downward-looking. 
Specifications in each case come out looking like database schemes or data 
type declarations in a programming language. The problem is not wholly in the 
models; some of it lies in the terminology and syntax used for specifications 
in the model. "Interclass connection" is not an everyday term. Humans would 
more likely phrase the specification above as: 

I1 A production record is either actual or projected." 

without creating a name for the concept. Of course, natural language expres- 
sion and precision are often antithetical. So, while these semantic data models 
are removed somewhat from the database scheme level, there is still a computer 
flavor . 

Another manifestation of the "downward-looking" tendency of some semantic 
data models is their lack of modeling primitives for data manipulation; the 
problem Codd characterizes as "anatomy without physiology" [Co]. Even when 
the structure of the data can be modeled in high-level and near-human terms, 
manipulations on the data end up being expressed as "add element x to class y" 



or "change property p of x to c." We would much rather express our updates in 
the form "x opened a new refinery in Oklahoma" and "refinery x closed its crack- 
ing operation." For more on the problems of modeling real-world actions in the 
database world, see Maier and Salveter [MS, SM]. 

It is fairly straightforward to design a database scheme that implements 
(but doesn't support directly) a data description expressed in the language 
of one of these semantic data models. All of the authors give design methodol- 
ogies to go from a semantic specification in their model to a database scheme. 
It does not seem an impossible task, either, to build a DBMS that lets the user 
deal with the data in the database at the level of the semantic model. As men- 
tioned, we are already seeing prototype systems of this type. 

4. The Correspondence Between Semantic Specifications and Database Schemes 

For a semantic data specification to be a useful device for describing 
the meaning of a database to a user, there must be a precise means of expressing 
the relationship between the semantic specification and its implementation in a 
particular DBMS. The correspondence may not always be transparent. For example, 
a database implementation would probably not have two distinct files for produc- 
tion records and the subset of projected production records. Rather, projected 
records would be distinguished by the value in some field of the production 
record. Also, the values "actual" and "projected" would not be represented as 
character strings, but as shorter values, such as 0 and 1. Company names would 
likely be abbreviated. These conventions must be part of any explanation of 
the meaning of the database. 

A group formed at Stony Brook (which is now widely dispersed) has been 
working on a data semantics language (DSL) to be used to express the corres- 
pondence between semantic specifications and database schemes. The DSL will 
formalize such statements as 

Projected production record is a production record where ptype = 1. 

0 is the database representation for "actual" in the ptype field. 

Closing an oil processing operation means updating the capability field 
in a refinery record. 

The first use envisioned for DSL is expressing the correspondence between 
semantic data specifications and database schemes, once the correspondence is 
established. A longer range goal is developing a system that does automatic 
or computer-aided translation from a semantic model to schemas in a particular 
DBMS and produces a DSL description of the correspondence. The final goal is 
to then let the user deal with the database through the semantic model rather 
than through the DBMS implementation, and also allow the user to ask questions 
of the DBMS about the structure and meaning of a database. 

This last goal has been partially realized by Harris' ROBOT system (com- 
mercially marketed as Intellect) [Ha]. ROBOT is a natural language front-end 



for existing DBMS's. The semantic model is the English language, although the 
semantic specifications for databases are not explicitly incorporated. Users 
are assumed to know the English description of the information in the database. 

ROBOT translates English queries to a precise English-like format and 
thence to the retrieval language of the given DBMS. Some examples (with 
slight typographical liberties): 

GIVE ME THE NAME OF ALL EMPLOYEES WHO HAVE JOBS WORKING AS A SECRETARY 
IN CHICAGO. 

--Print the NAME of any EMPLOYEE with CITY = CHICAGO and JOB = SECRETARY. 

ROBOT gives the same translation for 

PRINT THE NAMES OF ALL CHICAGO EMPLOYEES WORKING AS SECRETARIES. 

and 

WHO ARE THE CHICAGO SECRETARIES? 

Other examples: 

WHO EARNS BETWEEN $20,000 and $30,000? 

--Print the NAME of any EMPLOYEE with SALARY between 20000 and 30000. 

LOS ANGELES AREA MANAGERS? 

--Print the NAME of any EMPLOYEE with JOB = AREA MANAGER and CITY = 
LOS ANGELES. 

ROBOT'S knowledge of the general structure of the English language is 
contained in its parsing routines. This component does not change from ap- 
plication to application. The correspondence between the semantic level and 
a given database implementation is kept in a dictionary that gives English 
words and phrases and corresponding database structures, referents for wh-words 
(who, where, . . .  ) ,  abbreviations for words, words for abbreviations, and so 
forth. In addition, ROBOT regards values in the database as being in the dic- 
tionary, so it is not necessary to enter every possible name as part of the 
dictionary. 

ROBOT cannot answer questions about the semantic description, since ROBOT 
has no information on it. ROBOT draws a blank on 

WHAT IS THE MAXIMUM NUMBER OF EMPLOYEES ALLOWED TO BE ASSIGNED TO A 
SINGLE MANAGER? 

ROBOT cannot answer questions about the correspondence between semantic speci- 
fication and database, even though it has the information, because the dic- 
tionary is not treated as part of the database. The query 

WHAT IS MA AN ABBREVATION FOR? 

will also come up empty-handed. 



5. Storing the Database Description 

We have seen that for a user to utilize a database, he or she must know, 
in addition to the database query language, 

1. the semantic description of the data represented in the databse, 
2. the structure of the database, and 
3. the correspondence between the two. 

For example, 

1. production records can be actual or projected, 
2. there is a PTYPE field in the file PROD-RECORDS, and 
3. a 0 in the PTYPE field means actual, a 1 means projected 

One could argue that not every user needs all these kinds of knowledge. For 
example, a database administrator may be able to provide views for casual users 
that embody the correspondence between semantic and structural levels. For ex- 
ample, a view could replace short, stored values ( 0  and 1) by longer, more mean- 
ingful values('~actua1" and "projected"). This meta-information is spread among 
a number of sources, with possible duplication and contradiction, in most current 
information systems: 

S1. the database itself 
S2. system files for the DBMS that are maintained outside the database 
S3. application programs that use the database 
S4. external documentation 
S5. people's heads. 

Source S1 seldom contains more than structural information about the data- 
base, such as field names for each record. Source S2 is the database sheme 
given in the data definition language of the DBMS, although a compiled form of 
the data definition may reside within the database. Source S3 can contain many 
types of information about the meaning of the database, although in implicit 
form. For example, a report generation program may know to translate the 
values 0 and 1 in the PTYPE field to "actual" and "projected" in the output. 
Source S4 includes users' manuals, system specifications and operator's in- 
structions. Source S5 can contain any of the above items and more. 

5.1. How and Where to Store the Database Description 

If descriptive information is to be stored in one place, the obvious ques- 
tions are Where? and In what form? In answering these questions, we must be 
mindful of who or what will be using the information. Will it be new users, 
old users, application programs or some combination of the three? 

Researchers in artificial intelligence are using semantic networks to 
represent general knowledge. Such networks contain nodes that represent 
objects, classes of objects and concepts, and labeled links between nodes 
that represent connections between objects and concepts. Semantic network 
research has much to say about methods for storing descriptive information 
for databases, but semantic nets do have two drawbacks. The information in 
semantic networks is not meant for human consumption, at least not directly. 



Programs must traverse the network and manipulate the information before a 
human can make sense of it. Semantic networks also allow more generality 
than is needed. Since we know in advance the types of information we plan 
to store, we can hope to find faster and more concise systems than one that 
must be prepared to deal with any kind of knowledge. 

The method for accessing the database description is important; the des- 
cription must be readily available to human and program users. We would like 
users not to have to learn another access method besides the database query 
language. Some database systems allow access to system files containing the 
database structure, but not with the same access method used for the rest of 
the database. A user has to learn special commands to get at this information. 

We propose storing all the descriptive information in a standard format 
as part of each database. We then garner the benefits of uniformity of access 
and of having the information in one place, available to humans and programs. 
Users need only learn the format of the database description once to learn the 
descriptions of many databases. The range of possiblities for database inde- 
pendent programs--programs that will run on more than one database--is extended. 
Even very special purpose programs are less subject to change with changes in 
the database structure. Some existing database systems do store a small amount 
of this descriptive information as part of the database. For example, Query-by- 
example [Zl] and INGRES [St+] have standard relations giving the relation names 
and attributes in each relation for every relation in the database. Another 
approach, which is being used with increasing frequency in integrated informa- 
tion systems, is to provide a data dictionary manager along with the other 
system programs such as report writers, data entry programs and browsers. The 
dictionary manager keeps track of the structure and status of data in all parts 
of the system: the database schema, input files, data files outside the data- 
base, on-line manuals, and possibly data not in machine form, such as documenta- 
tion and data entry forms. 

The descriptive information should be stored using the same data structures 
as the rest of the database. Having different data structures for this informa- 
tion would mean the added compelxity of essentially a second database system to 
manipulate and manage the descriptive component. In addition, if the descrip- 
tion information looks like part of the regular database, it can describe itself 
Of course, update access to the descriptive component of a database must be 
carefully restricted, especially if system programs operate off this data. 

5.2. Uses for the Descri~tive Com~onent 

Once the description of the database is incorporated as a component of 
the database, to what use can it be put? Having this information available in 
standard format will allow a user to answer many of his or her questions about 
various databases without having to consult sources outside the database. More 
interesting are the types of application and system programs that could be written 
to take advantage of the descriptive information. We give some categories of 
applications below, and present a specific program in the next section. 



Database Tutor: A program to introduce a new user to a given database 
and provide help interactively for all users. 

Natural Language Query System: A system, such as ROBOT, to translate 
English questions into database query language. Unlike ROBOT, the query sys- 
tem would not have a separate dictionary. All the information it needs will 
be part of the database. Thus, the system can handle "meta-questions'' about 
the description of the database. 

Loaded Query Detector: Answers to queries, although literally correct, 
can often be misleading. A response of 0 to "Number of production records 
for New Jersey 3 refinery" could be due to there being no New Jersey 3 re- 
finery, as well as there being no production records if the refinery does 
indees exist in the database. A program looking at the descriptive informa- 
tion could detect cases where there are implied assumptions in a query that 
may not hold in a given case. Additional information could be given along 
with the flat answer if the implicit assumptions are violated. 

Enforcing Constraints: The descriptive information is sure to include 
constraints on the state of the database. The database system should en- 
force these constraints and point out which constraints are violated when an 
update to the database is disallowed. Current systems can, for the most part, 
only handle constraints involving ranges for field values and keys for record 
instances. 

Dealing with Partial and Unreliable Data: While constraints on the data- 
base are restrictions on updates, they can also be viewed as general statements 
about what should be true about a state of the database. As such, they can be 
used to fill in missing values in the database. For example, suppose each re- 
finery has a unique owner. If there is one refinery record instance with a 
refinery name and owner, and a second instance with the same refinery name, 
but missing the owner information, the former instance can be used to fill in 
the latter. The database can also contain descriptive information for an in- 
dividual data item, a data pedigree, source and reliability. 

5.3. What Should the Descriptive Component Contain? 

The hard thing is not deciding whether to include a descriptive component 
in a database, but deciding which information about the database to include in 
the description. We won't take space here to enumerate all the types of des- 
criptive information that might be included, as the profitibility of including 
any specific type of information depends on the anticipated users, the data 
model and what applications are planned. However, we will offer one framework 
for developing the descriptive information, based on dividing the information 
into 

1. semantic 
2. syntactic, and 
3. correspondence 

categories for each construct in the data model. Below we give some examples 
of types of descriptive information for constructs in the relational data model: 
domains, attributes, tuples, relations and databases. 



A. Domains: Sets of values representing entities and properties in the 
real world. 

1. Definition of a class of entities: A fuel group is a collection of 
related petroleum products. 

2. The format of domain values: Values in the FUEL - GROUP domain are 
4-character strings such as AVIA, DIES, 50R6. 

3. The entities represented by domain values: AVIA is aviation fuel, 
DIES is diesel oil, 50R6 is No. 5 or No. 6 fuel oil. 

B. Attributes: The names of components in a record (field names in a record). 

1. The intent of an attribute: Every storage facility has one or more 
storage capabilities, that is, the ability to store petroleum products 
of a given fuel group. 

2 .  The domain of values associated with an attribute: FUEL - GROUP is the 
domain of attribute Storage - Capability. 

3. What a particular entity or property represents as a value for an 
attribute: G as a value for Storage Capability mean the storage 
facility means the facility has tanks for storing petroleum products 
in fuel group G. 

C. Tuples: Lists of values corresponding to a list of attributes. 

1. The connection among a set of entity classes: A storage facility 
a storage capacity for each of its storage capabilities. 

2 .  The scheme of a tuple: There are tuples over scheme (storage - Facility, 
Storage - Capability, capacity) . 

3. The interpretation of a tuple in terms of its components: A tuple 
(fa g, c) over scheme (storage Facility, Storage Capability, capacity) 
means that storage facility f can store c barrels of petroleum 
products of fuel group g. 

D. Relations: Sets of tuples over the same scheme. 

1. A description of a set of related facts: For all storage facilities, 
there is total capacity and free capacity. 

2. The scheme of a relation: Relations total cap and free - cap have scheme 
(storage - Facility, Storage - Capability, capacity). 

3. What set of facts a relation represents: Relation total cap represents 
total storage capacities for storage facilities, while £Tee cap repre- 
sents the unused storage capacity at the beginning of the current month. 



E. Database: A collection of related relations. 

1. Relationships between classes of entities: Every storage facility . 
is an energy facility. 

2. Inter-relational constraints: Every value in the Storage Facility 
column of the total cap relation must appear in the ~ n e r ~ y  Facility - 
column of the facilTty owner relation. - 

3. Methods for inferring facts from the database: Owners of storage 
facilities can be related to storage capacities at their facilities 
by joining total cap with facility owner on Storage Facility = Energy - - - - 
Facility. 

The list above is far from exhaustive, and it should be apparent that 
classification of a type of information into semantic, syntactic or corres- 
pondence is somewhat fuzzy. 

6. The PIQUE Query Language 

We describe here a database access program that is driven off meta- 
information stored about a database. PIQUE is a high-level query language 
for relational database systems [M+, Ro]. In addition to the usual relation 
scheme and domain definitions, it uses information about likely connections 
among attributes, captured as descriptors called associations and objects [MW]. 
The goal of PIQUE is to provide a query language in which the entities involved 
in a query all appear in the corresponding English query. That is, no purely 
database-oriented artifacts need appear in a query. PIQUE can be considered 
a "database back-end to natural language interfaces" (contrasted to "natural 
language front-ends for databases"). PIQUE is similar to tuple calculus 
languages, but it removes the need for binding tuple variables, and frequently 
eliminates explicit tuple variables altogether. 

Consider an example database of three relations 

Teaches(INST, COURSE#, SEMESTER) 
Enrol(STUDENT, COURSE#/, SEMESTER) 
NAMES(COURSE, CNAME) 

giving the instructor for a course each semester, the students in a course each 
semester, and the course names corresponding to course numbers. Suppose we want 
to answer the question 

"Which students have taken Compiler Design from Warren?" 

In QUEL, the query to answer this question is 

range of t is Teaches 
range of e is Enrol 
range of n is Names 
retrieve e.STUDENT 
where t . INST = "Warren" and n. CNAME = "Compiler Design" and 

t . COURSE# = n . COURSE#/ and t . COURSE# = e . COURSE# and 
t.SEMESTER = e.SEMESTER 



Note that certain database objects that did not appear in the English question 
crop up in the query, namely, the relation names and tuple variables. Also, 
the attributes COURSE# and SEMESTER have to be included to make the appropriate 
connections. This question can be answered with the PIQUE query 

retrieve STUDENT 
where INST = "Warren" and CNAME = "Compiler Design'' 

Admittedly, there still are two attribute names, INST and CNAME, that do 
not appear in the English question, but the database-oriented objects have been 
removed. Another way to view PIQUE is as a query language based on second-order, 
rather than first-order, predicate logic. A PIQUE query is implicitly quantifying 
over all stored and virtual relations that contain certain attributes. This 
quantification makes PIQUE queries partially immune to changes in the logical 
structure of a database. 

Our current work involves extending the types of meta-information we cap- 
ture about a database, and developing companion languages for updates and data 
definition. We are looking at ways of incorporating role (ISA) hierarchy in- 
formation into PIQUE, and the possibility of adding stative verbs to replace 
relation names [MRS]. We are formalizing the process of automatically computing 
the connection among a set of attributes. We are also investigating mechanisms 
for supporting virtual relation definition that are more powerful than relational 
algebra, which cannot express all functions of relations. Logic programming 
languages are our most attractive alternative at the moment. 

7. Conclusion 

We have seen how development in databases is following that of programming 
languages in trying to come to more human terms. We examined several methods 
for precise semantic descriptions of data applications, and discussed the prob- 
lem of representing the correspondence between such a semantic description and 
the database scheme that implements it. We proposed storing the database scheme 
semantic description and the correspondence between the two as part of the data- 
base and the benefits that may accrue from this approach. 

We believe that it is useful to maintain the distinction between semantic 
and structural levels in database systems. Models at the structural level should 
be kept simple, with a small number of different constructs. The structural 
level should be geared toward performance, looking at both efficient implementa- 
tion and keeping system overhead low. The structural level also seems to be 
the right level for optimizing query evaluation and storage. At the semantic 
level, constructs must proliferate until data applications can be modeled naturally 
and in human terms. 
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