
AN EF.F.ICIENT GARBAGECOLLECTOR FOR GRAPH MACHINES

Ashoke Deb

The Oregon Graduale Cenler
19600 NWWalker Road

Beaverlon. Oregon 97006 U.S.

UUCP address: ogcvax!ashoke
CSE TR 84-003

Jen

, ti.

~,-'

D ...

0

;}''\,

'}

+/,

tC'

,r\

-.;",."1"".' . (-

AN EFFICIENT GARBAGE COLLECTOR FUR GRAPH MACHINES

Ashoke Deb
The Oregon Graduate Center

lINTRODUCTlON

Most of the garbage collection algorithms use two possible techniques: 1) Refer-

ence counting and 2) graph marking. Reference counting technique makes use

of a field in each node. which contains a count of how many arrows point to this

node. Such a count is rather easy to maintain as a program runs. and whenever

it drops to zero. the node in question becomes available. But reference counting

technique can not be used if the graph is recursive ie. their are cycles in the

graph. On the other hand. graph marking algorithms makes use of a special field

.called mark field. which is used to mark all the reachable nodes from the root

node of the graph. After the traversal of the entire tree. the nodes which are

not marked (or 'specially' marked - as in the case where marking algorithm

uses more than one color to mark nodes) - become available to the free list.

Such marking alg orithms work for cyclic graphs. But in order to find all the

reachable nodes. it has to traverse the entire graph - which is very expensive.

In this paper we take a different route to the same problem. The strategy used

by the traditional marking algorithms may be characterized as the one which.

given a graph G such that there exists subgraphs G1 and G2 and G1(\,G2=Q; and

G= G1+ G2 and G and G1 has common root. will find G1 by marking all the reach-

able nodes from R and then find ~ as ~=G-G1. Then ~ is made available to

the free list.

Our strategy is to find G2 directly by traversing the smallest possible subgraph

Gs if G such that G2 C Gs c G. Given a node N whose successors are possible

2

candidates for the garbage collection - i.e the outgoing edges of N are to be

deleted, we :find the graph ~ as the collection of exactly those nodes which are

exclusively reachable from N, but not reachable from any node which is not

reachable from N. Assuming that as the computation progresses, the sub-

graphs to be deleted are smaller than the subgraph to be retained, this algo-

rithm is claimed to be highly efficient. In section 11. we give a set of definitions,

a computing environment consisting of a mutator process. a collector process

and a structure. called the garbage can, and the algorithms. Section III contains

the proofs of correctness of the algorithms. In section IV .we will discuss some

of the merits of the algorithms presented, and then we present the results of the

simulation. The simulation results confirm the efficiency of the algorithms ,in

comparison to the traditional marking algorithms which mark the non-garbage

nodes in the main graph.

3

D. DEFINITIONS AND ALGORI'fHMS

Definition 1: A graph G is defined as a pair (N,E), denoted as G =(N.E), where N

is the set of nodes, which includes a special node labeled nil , and E c N 1 X N. is

the set of edges .where Nl =N - ~nil~.

Definition 2: A graph is called a binary graph if for each node A E: N, there are

exactly two edges el and e2 such that el =(A.E), and e2 =(A,C), where E, C E:N.

These two edges are called left edge and right edge of A, respectively.

L R
A left edge (A.E) [right edge (A.C)] will be represented as A B [A C].

Without any loss of generality, we will consider only binary graphs. In such a

graph. a non-nil node A is represented by a six-tuple described as :

A: (CA .EA , LA ,leftofA. TA . rightofA) ,

where

L
A leftofA,

R
A rightofA.

lA{TA): a binary digit, initially 1.

EA : the in-degree of A.

CA : initially O.

CA.LA.TA are used and modified by the algorithms, colorgreen and colorred , to

be described later.

Tbe computing environment:

The computing environment consists of (i) a rooted. possibly cyclic, graph struc-

ture - in the case of a graph machine. the root represents the entire expression

to be evaluated. cycles may represent recursive expressions. and a node may

have multiple input edges in case of shared common sub-expression; (ii) a pro-

cess which manipulates the graph structure by changing the existing links

4

between nodes- such a process is called the mutator; (iii) a process which will

find the nodes which are no longer accessible from the root node of the graph -
and hence referred to as garbage nodes; such a process is called the collector.

We will view the the mutator to be a process which deletes an input edge to a

node N.j,. One or many such deletions may disconnect a subgraph. from the main

graph. thus. possibly creating a set of garbage nodes.

A data structure. called thegarbag~. possibly of fixed size s .is maintained.

which will save temporarily the node name N, one of whose input edges has been

disconnected by the mutator.

When the garbage-can is full. the collector process uses those node names Ni.'s.

to find all the garbage nodes.

The size s of the garbage-can may be used to dictate the frequency of calls to

the collector; but there are other variations of this activity which are also possi-

ble.

Fig. 1 below shows an abstract view of the system. Delele-an~dge-from(Il~(N)

will (i) save N to the garbage-can (ii) modify the appropriate field of the node M.

It will not decrement EN. which will be done by the collector.

Delectgarbagefrom(garbage-can[1..s]) will (i) use the entries of the garbage-can

to detect garbage nodes in the graph. (ii) decrement EN for each entry N in the

garbag e-c an.

In the following. we will describe. in detail. the algorithm for Detectgar-

bagefrom.

The Detectgarbagefrom algorithm makes use of two coloring algorithms. color-

green and cololTed .

5

MUTATOR: GARBAGE-CAN: COLLECTOR:

DELETE-AN-EDGE-FROM (M1)-TO(N1)

N1

N2

DELETE-AN-EDGE-FROM(M2)-TO(N2) DETECTGARBAGEFROM(N[1..sJ)

NS

Fig. 1. An abstract view of the system.

'!be Detectgarbagefrom (N[1..s])

(* comment: Given a node Ni. 0 this algorithm will color all nodes reachable from

N, such that all nodes exclusively reachable from N.i. will have the color Green

and the others which are not exclusively reachable from Ni.. will have the color

Red. Instead of using another field for color. the encoding Cp =0 will represent

the color Red and Cp~1 will represent the Green color of a node P, respectively.

Initial values of Cp is zero. *)

Begin

For i := 1 to s do colorgreen(Ni.);

For i := 1 to s do colorred(green. Ni.);

For i := 1 to s do EN, EN, - 1;

End.

6

The Green Algorithm: colorgreen (Q)

(* comment: Given a node Q. this algorithm colors all nodes P reachable from Q

as Green, encoded as Cp~l *)

Begin

If Q ~ nil Then

Begin

CQ~CQ+l ;

If lQ~O Then Begin

lQ+-O ;

colorgreen (leftofQ) ;

End;

If TQ~O Then Begin

rQ+-O;

colorgreen (rightofQ)

End

End

End.

(* commenl: The fields lQ and TQ are used here to ensure that each edge is

traversed exactly once. Also note that after termination Cp value of each node

P will be equal to the number of input edges to P reachable from the node Q *)

7

The Red Algorithm: colorred (Color. S)

(* comment: colorred will paint all nodes P red where P is not exclusively reach-

able from S. The encoding of the red color is Cp=0 .*)

Begin

If (S >"nil and Cs;t 0) Then

Begin

B <- (Color =Green and Cs=Es) ;

If B then

Begin

If ls;t 1 Then Begin

lsl

colorred (Green, leftofS)

End;

If Ts;t 1 Then Begin

Tsl

colorred (Green, rightofS)

End;

End;

If -B then

Begin

Cs"'O ;

lsl ;

colorred (Red,leftofS) ;

rsl ;

colorred (Red,rightofS) ;

End;

End

End.

8

Note: The purpose of ls ~ 1 and TS ~ 1 is to 'reset' back these bits in the node S if

it gets colored Red so that we don't need to make another pass for resetting is,

rs. Similarly the encoding Cs=O meaning Red is chosen so that the nodes which

will not be garbage collected will be reset back to their original condition.

9

F.YRmple 1

(see Fig.2)

R L

In this diagram, terminating edges are assumed to be nil and 10 -+ 3, 13 -+ 6, 9

L R
-+ 11. The edge 1 -+ 3 has been removed and now there is a virtual edge (shown

as the dotted edge) pointing to 3.

Detectgarbagefrom will call colorgreen(3). The initial values of C and E of all

relevant nodes are shown in Fig.3 . Fig.4 shows the essential trace of color-

green(3) and the final values of C's.

Nodes 3 5 6 7 B 9 10 11 12 13

c 0000000000

E 2121111211

Fig.3

Node(P) visited 3 5 7 B 6 9 11 12 13 6 10 3

new Cp 111111111212

Fig .4

10

The colorred{Green. 3) is then called. Fig.5 shows the essential lrace of

colorred{Green. 3) and also shows their last Color values. If Cp =Ep is main-

tained, then we depict that in the trace as G. If Cp =O. then we depict that as R

Node{P) visited 3 5 7 B 6 9 11 12 13 6 9 10 3 5 7 B

new Cp GGGGGGR R R RRR RRRR

Fig. 5

For this example, one sees that there will not be any Green color node created,

indicating that none of the nodes can be made available for the free list.

r.rample 2

(see Fig.6)

R R
Example 2 is a modification of example 1 where 10 -+ 6 instead of 10 -+ 3.

Reader can convince himself that Detectgarbage in this example will leave the

nodes 3,5,7 and B as Green colored; and the nodes 6.9,10.11.12,13 as Red

colored nodes.

11

m. DEFINITIONSANDPROOFSOF CORRE~

Definition 3: An 1-chain (G-chain) of length n ~ a from a node Q to a node A. A 7-

1- 0-

nil, denoted as Q A (Q A). is defined to be an ordered sequence (XAo,XA1' .oon n

,X.4,.-I)' such that

L

%~ = 4.if .-\ -+.-\+1and l~ = 1(0),

R

=Ri.,if A.:-+.-\+1and r~ = 1(0),

Q = Ac and An = A.

Definition 4: Two chains PI =(XAo .XAI ,oo..XA,.-I)and P2 = (YBo'YBt, YB".-I) are

said to be distinct if %~ 7- YBj' for all i,j.

Definition 5: A chain P = (%A .%A ,...,X..!) is said to be loop-free if x..!. 7- XA" for0 1 ""-1 .'" ".,

all i,j.

The following simple lemmas follow directly from the Definition 3, which are

presented here for the future reference.

b-
Lemma 1: (i) Q A ~ Q =A ;

0

b-
(ii) Q 7- A and Q -+A ~ n > 0 ; where b = 1 or O.n

Definition 6: Two chains PI and P2. from a node Q to a node A, where PI =(xQ'

%At ""'x..!) and P2 = (y,." YB ,"',YB), are said to be end-1:listincl if x..! I
#-

""-1 ... 1 ",-1 ""-

YB".-1'

Example: Consider a graph G represented by the following set of six-tuples:

(CA.O.O,B.l,C)

(CB,2.0.D.l.E)

(Cc,3.1,E, tF)

(CD,tlonil,O.nil)

(CE,2.1.nil,l,C)

(CF, loO,B.tC)

12

Some of the chains in the graph are

0-
PI: A -+ D =(LA. LB).2

1-
Pi: A -+ F =(RA. Lc.RE.Rc),.

I-
Ps : A -+ C = (RA),1

1-
p.: A -+ C =(RA. £C.RE)'5

Also, P5 and P. are end-distinct.

Definition 7: We define a set

CS[b.Q.A] = r 1%\:Q~A,~~OI\XiislOOP -free 1\ end-distinct)

Lemma 2: Given any binary graph G, let

SI = CS[b,Q,A].

S2 = CS[b.leftofQ,A],

S3 =the largest subset of CS[b,rightofQ,A]

such that x E:52 and y e: S3 implies that x and yare distinct.

Then IS11=1'l+1'2!52!+1'3!5s!,where1'2(1'S)= l,iflQ(TQ)=b;1'2

(1's) = O.otherwise; PI = 1. if Q = A;PI = O.otherwise.

b-
Proof: Ab-chain x: Q... A e: SI and n > 0n

<=> Either lQ = band 3 a b-chain y e: S2 such that x = (LQ, y), Or. TQ = b and 3

a b-chain z e: S5 such that x = (RQ, z).

<=> Isl = 1'21s21+ p5lSsl. where 1'2(1'5) =1, if lQ (TQ) =b.
b-

If A = Q .then Q ... Q e: 51 also. Hence, the lheorem follows from the above two0

observations.

Q.E.D

13

In the following theorem, we show that, given a node S, after the execution of the

algorithm colorgreen(S) , the field Cp of any node P is equal to the number of

distinct input edges to p, each of which is in a chain from S to P.

Theorem 1: V S~V ,!CS[l,S,P] I=M[P,S] > 0/\ Cp= ap)

colorgreen(S)

(cp = ap + M[P,S] /\ lp = Tp = 0)

Proof: For the sake of brevity. we will use the following notations:

J[PtS] -ICS[l,S,p]1 =M[P,S] > 0 /\ Cp =a[P,S]

K[PtS] E Cp = a[P,S] + M[P,S] /\ lp = Tp = O.

Basis: [The last stage of recursion]

We need to consider two cases: (i) S=nil and (ii) S ~ nil/\ ls = 0/\ TS = O.

proof of (i):

We have to shovdhat V P(I[P,S] /\ S = nil) => KIP,S].

1-
Now,S = nil => there does not exist any P such that S p, n >= 0n

=> J[P,S] is false.

Therefore, the theorem holds vacuously.

proof of (ii):

We have to show that

VPf[P,S] /\ S~nil /\ ls = TS = 0) Cs 4-Cs + 1 (K[P,S]).

Now,J[P,S] /\ S ~ nil/\ ls =TS = 0
1-

=> V P,S-+P, n = 0n

=> S=P /\ M[P,S] = 1 --(from Lemma 1 and Lemma 2).

Clearly,

14

{I[P,S] /\ S ptnil/\ ls =TS = 0) Cs +-Cs + 1 {S=P /\ ls = TS = 0/\ Cs = a[P,S] + 1)

holds.

Induction: Assume that the theorem holds for the n-th level of recursion. We

have to show that it also holds for the {n+1)-th level of recursion.

It su!!ices to show that f[P,S] /\ S ptnil/\ (ls = 1V TS = 1») colorgreen{S)

{KIP,S]) holds.

From the assumption. we can very easily conclude that both of the following

hold:

{ICS[l,leJtoJ S,P] 1= M[P.leJtoJ S] >0/\ Cp = bp /\ ls =x)

first-if-then

{f = 1 => (cp = bp + M[P,leJtoJ 5] /\ lp = Tp= 0»)/\ (x = 0 => Cp= bp) /\ ls = 0)'

and similarly,

{ICS[l,rightOJ S,P] 1= M[P,rightoJ S] > 0/\ Cp= dp /\ TS = z)

second-if-then

{[z = 1 => (cp = dp + M[P,rightoJ 5] /\ lp =Tp = 0») /\ (z = 0 => Cp = dp) /\ TS = 0).

where

first-it-then I! If ls pt 0 then begin

ls 4- 0;

colorgreen{leftofS)

end.

and,

15

second-if-then E If rs #- 0 then begin

rs ~ 0;

colorgreen(rightofS)

end.

Additionally, the following holds

(I [P ,S] /\ S #- nil /\ ls =x /\ r s =y)

Cs ~ Cs + 1

(s =P => Cp = ap + 1/\ S #-P => Cp = ap).

By using the above results and the fact that

(M[P,S] > 0/\ M[P,leftof SJ > 0) => (x = 1)

and similarly,

(M[P,S] > 0/\ M[P,rightof S] > 0) => (z = 1),

we conclude that

(I[P,S]/\s#-nil /\ls =x /\rs =y)

Cs ... Cs + 1;

first-if-then;

second-if-then

(Cp =ap +Pl +P2M[P,leftof S] + psM[P,rightof S] /\ (x = 1V z = 1)

=> (ip = 0 /\ rp = 0)

(P rt S =>PI =0) /\

(z =0 =>ps=O»)

/\ (ls = 0/\ rs = 0) /\ (P=S=>Pl=l)/\

(x = 1 => P2 = 1) /\ (x = 0 => P2 = 0) /\ (z = 1 => Ps = 1)/\

Finally, by using the fact that P#- S => (x = 1 V z = 1) and by applying Lemma

16

2, we get

(I[P,S] 1\ 5 ~ nil 1\ Is =z 1\ TS =y]

Cs ... Cs + 1;

first-if-then;

second-if-then

(cp =IIp +M[P,S] I\lp =Tp= 0]

Q.E.D

From the above theorem one observes that, given a graph where initial value of

Cp, for any node p, is zero and lp = Tp = 1. colorgreen(S) will (i) visit all the edges

reachable from S exactly once. (ii) update Cp's to be equal to the number of

input edges to P reachable from S and (iii) leave its mark on the edges travelled

by setting lp's and Tp'S to zeros.

From the above, one can also observe that ,given a set of nodes SI' S2,...,SI:, the

order in which colorgreen(S}), colorgreen(S2)'"'' colorgreen(Sk)' are invoked is

inconsequential to the total number of the edges travelled, the values of the

Cp's, and the values of the lp's and Tp'S.

Next we will prove a property of the algorithm colorred(color.S) ,which shows

that the algorithm colorred(color,S) resets the Cp values to 0 .for all p's which

are not exclusively reachable from S. Thus, nodes with Cp values equal to 0 are

not garbage yet.

Definition 8 : We define a set

Zs = ri IS~ Pi'~ <!:0]

17

Theorem 2: V S~V Pf € Zs /\ COlOT= Cs /\ Cs =k is >O/\Es =k2S)

colorred(color.S)

[«CS=Ted V (k 1S<k2s)) => Cp= 0) /\ -(cs = Ted V (k 1S<k2s) => (3

R,R€Zs/\P€ZR/\CR=O) => Cp=0)/\lp=1/\TP=1)

Proof : For the sake of brevity, we will use the following notations:

A[P.S].p € Zs /\ COlOT =Cs /\ Cs =k IS> 0/\ Es =k2s

B[S] .cs =red V (k1s <k2S)

D[PJ .Cp = 0

E[P.SJ -3 R. R € Zs /\ P € ZR /\ CR=0

F[P,SJ .(B[SJ =>D[PJ) /\ (-B[S] => (E[P,SJ => D[P]»)

Therefore. we need to show that, for any node Sand p,

1A[P.SJ! colorred(color,S) !F[P.S]! holds true.

basis: [last stage of recursion]

There are three possible cases which have to be considered: (i) S =nil (ii) Cs = 0

(ill) -B[S] /\ ls =1/\ TS =1.

C.
proof of (i): S =nil => -<:3 P. S-.P. n~O) =>A[P.S] is false.n

Therefore. the theorem holds vacuously.

proof of (ii): Also. Cs =0 =>A[P.S] is false.

proof of (iii): Let G[S] . ""B[S] /\ ls =1/\ TS =1.

From the definition of Zs. we have

(A[P.SJ /\ ls = 1/\ TS = 1) => (P = S).

Also, since

E[S.S] =>Cs = O.

then

(P = S /\ G[S]) => (notB[SJ => (E[P.S] => D[P]») /\ lp = 1/\ Tp= 1.

18

Hence the theorem holds.

Induction: Assume that the theorem holds for the n-lh level of recursion. We

want to show that it also holds for the {n+ 1)-th level.

At the {n+1)-th level of recursion, since it is not the basis, we have the following

condition:

S # nil/\ (Cs = k IS> 0) /\ -G[S]

E S #nil/\ (Cs =k1s >0)/\ (B[S] V ls = OVrs = 0) is true.

Now it suffices to show that both (i) and (ii) below hold.

(i) [A[P,S] /\ S # nil/\ (Cs = k IS> 0) /\ B[S]) colorred (color ,S) [F[P,S])

(ii) r[p,S] /\ S?f nil /\ (Cs = k1s > 0) /\ -B[S] /\ (ls = 0 V rs = 0»)

colorred(color,S) r[p,S])

proof of (i): To prove (i), it suffices to show that the following holds:

r[p,S] /\ S #-nil /\ (Cs =k1s > 0) /\ B[SJ)

Cs ... 0;

ls~1;

colorred (red,leftof 5);

rs ... 1;

colorred(red,rightof S);

{DfPJ I\lp =11\ rp =1J.

since B[S] remains uneffected and since

(B[S] /\ D[P] /\ lp =1/\ Tp =1) => F[P,S].

By assumption, we know that

19

~[P ,leftof S] Joolorred (Ted ,lef tof s+~/,,/ s = Ted /\ F[P ,leftof S] J.

and

(CWJtoJs=red /\ F[P,leftof 5J) => (D[PJ /\ Ip = 1/\ Tp = 1) .

Similarly, we conclude that

~[P,righiof SJ]COIOrred(red,rightof S)!Crig~OfS = red /\ F[P,rightof 5]],

and

(CWJtofS= Ted /\ F[P,leftof 5J) => (D[P] /\ Ip = 1/\ Tp = 1) .

Finally.

« Cs = a /\ Is = 1/\ rs = 1) /\ (P E:Z/.8!to!S=> D[P]) /\ (P E:ZriII~oJs=> D[P])

/\ lp = 1/\ rp = 1) => (D[P] /\ lp = 1/\ rp = 1) .

Therefore the theorem holds for (i).

proof of (ii): To prove (ii), it suffices to show that the following holds:

r [P ,S J /\ S ~ nil /\ (CS = k IS >0) /\ (...B [S J/\ (ls = 0 V TS =0))]

first-if-then;

second-if-then;

!(E[P,S] =>D[P]) /\ lp = 1/\ rp = 1] ,

since. ... B[S] remains unaffected and since

-B[S] /\ (E[P,S] =>D[P]) /\ lp = 1 /\ Tp = 1 => F[P,S];

where

first-if-lhen . If ls ~ 1lhen begin

ls ... 1;

colorred(green,leftof S); end;

20

second-if-then IE If TS ~ 1 then begin

rS ~ 1;

colOTTec1(green,rightof S); end:

By assumption. we have that

~[P.leftof S] /\ ls =x)

first-if-then

{(X = 0 => F[P.leftof S]) /\ ls = 1) ,

and similarly.

{A[P,rightOf S] /\ TS = X)

second-if-then

{Cy= 0 => F[P,rightof S]) /\ TS = +

Since. by the definition of Z,

PEZs ~ (P=SV PEZ/.e/to/sV PEZrwh.to/S), and

(P E Zs /\ P E ZL8/tO/S)=> x = 0, and CP E Zs /\ P E Zrwh.to/s) => Y = 0, and by the

initial condition.

xVy=o.

we simply need to show that

(i) (P=S /\ ls = 1 /\ TS = 1 /\ E[P.S]) => (D[P] /\ lp = 1 /\ Tp = 1),

(ii)(P E Zs /\ P E Z/.e/to/s /\x = 0 /\ F[P.leftof S] /\ E[P,S])

=> (D[P] /\ lp = 1/\ Tp = i).

and similarly.

(iii)(P E Zs /\ P E Zrwh.to/s

=> (D[P] /\ lp = 11\ Tp = 1).

/\ y = 0/\ F[P.rightof S] /\ E[P,S])

proof of (i): Follows directly, since E[S,S] => D[S].

21

proof of (ii):

(P E Zs /\ P E Zt./to/s /\x = 0/\ F[P,leftof S] 1\ E[P,S)) =>E[P,leftof S].

Now,

(F[P,leftof S] /\ E[P,leftof S]) => (D[P] /\ lp = 1/\ rp = 1).

Proof of (iii): is similar to the one above.

Q.E.D

~

IV. &>IIE EF'F1CIENCY MEASlJRF:) AND RESULTS OF SIIlUlA'110NS

i) Cost Functions.

Tbe best garbage collection routines known have an execution time essentially

of the form C}N + C2M,where C} and Ce are constants, N is the number of nodes

marked. and M is the total number of nodes in the memory. Thus M - N is the

number of free nodes found, and the amount of time required to return these

nodes to free storage is (C}N + CeM)/ (M - N) per node. Let N = pM; this figure

then becomes (Cl p + Ce)/(l -P). So if P =3/4 Le. if the memory is three

-fourths full. it takes 3 C} + 4 Ce units of time per node returned to storage;

when p =1/4, the corresponding figure is only 1/3 C} + 4/3 Ce. If one uses only

the reference count technique. the amount of time per node returned is essen-

tially B.constant Cs. and it is doubtful that Cs / C} will be very large. Hence we

can see to what extent garbage collection is inefficient when the memory

becomes full. and how it is correspondingly efficient when demand on memory is

ligh t.

Following the above analysis, as given in [l),let's see where the algorithm

Detectgarbagefrom stands.

The algorithm presented here traverses the subset N 1 of nodes and marks (M -
N) nodes as garbage. Hence the cost per node is (C} Nl + Ce M)/(M-N). Let N} =
(M-N) + Ne. where Ne is the number of nodes traversed by the algorithm but

are not garbage. If Ne « (M-N) then the cost per node is equal to C} + C2 /(1 -
p) .where p =N/M .

Also. there are many classes of computations where the rate of consumption of

nodes is larger compared to the the deletions - in which cases M- N < N. or p >

1/2.

Z3

Under this conditions, we demonstrate the following efiiciency relation between

Markgoodnodes and Detectgarbagefrom where

Markgoodnodes =(Cl P + C2)/(1 -p) and

Detectgarbagefrom =C1 + C2 / (1 -p) .

From these equations, it follows that

Markgoodnodes - Detectgarbagefrom =C1 (2 P - 1)/(1 -p) .

Since 1 ~ P > 1/2 , Markgoodnodes -Detectgarbagefrom > 0 ;

and also as p tends towards 1, (Markgoodnodes - Detectgarbagefrom) tends

towards a significantly large quantity.

ii) Slack or no slack.

The most interesting feature of garbage collection is the fact that while this

algorithm is running, there is only a very limited amount of storage available

which we can use to control our marking algorithm.

If one chooses to implement the Green algorithm and the Red algorithm using

simple stacks, then obviously the simplicity of the implementation will make it

run fast - Le. time efficient. Stack size is proportional to the length of the long-

est path in the tree -- and in the worst case, proportional to the size of the tree

traversed. If it is the case that the tree to be deleted is much smaller than the

tree to be retained --or, the frequency of invocation of the Detectgarbagefrom

algorithm is such that the above assumption is justifiable -- then a compara-

tively small stack area is only needed.

But the Green algorithm and the Red algorithm can also be implemented

without using stacks. Such implementation would be similar to the techniques in

24

[2], where as the tree is traversed downward the struclure of the tree is tem-

porarily altered - by switching pointers; and as the tree is traversed upward the

original tree is restored back.

ill} Simulation Results. Simulation was performed by randomly generating

graphs of total nodes upto ten thousands. and then randomly modifying the links

between nodes.

The size of the garbage-can was varied from 2 to 16. Each time the garbage-can

was full, the garbage collector was invoked and also the total number of nodes

visited, both during colorgreen and colorred phases, are counted. Then a con-

ventional marking algorithm was used for garbage collection and the number of

nodes visited was counted.

The relative performances of these two algorithms are shown in the accopanying

plots. Continuous smooth lines were drawn through the actual points. to see the

sensitivity pattern of the algorithms with respect to the amount of the garbage

actually collected.

REFERENCES

1. Knuth,D.E., "The Art of Computer Programming",AW, 1973.

2. Schorr,H.,Waite,W.M.,"An Efficient Machine-Independent Procedure for Gar-

bage Collection in Various List Structures", CACM,vol.l0,No.B,1967 .

-..J
0
0

~

,,""",,

N

OD....
&..

~

0
0
~

~.........

\0

00
'...
~

~240

~I 2c

~t 0 :g-
OJ
0()
"

/2te ~"OJ
<J)-x

b~O -
<J)'"."

'20 ~.....
0
"

,'~ .15
E
:J
Z

'0 .

,",0

1 / 3

~op Graph---Then~mber o~ nodes traversed b~
conventional marking algorithm.

Middle Graph---The n~mber of nodes traverse~ by the.
given coloring algorithm.

Lower Graph---The number of garbage nodes to be collected.

LEGEt;!) :

S'?ed = 7774755

Size of Garbage-Can = 4

..... ~ . It.L .

..
.

.
ID

1 2 3 4 5 I) 7

.. . ..: &

.

8 12 159 10 11 13 14

ith Instance of Invocation of the Garbage Collector

IOL'II

5/2D

.,25"D

1.2&0

EAc

310

1/00

~

~D

.Jj)

2/3

Top Graph---The number of nodes traversed by
convention?l mar~ing algorithm.

Middle Graph---The number of nodes traversed by the.
given coloring algorithm.

Lower Graph---The number of garbage nodes to be collected.

LEGEND:

Seed = 7774755

Size of Garbage Can = 4

- - -"'It"- ,... -_. - ~

10

t
' r\ .

./'-\ ,I

'V\\
. ~

, I I I , . .. ,

16 17 18 19 20 21 22 23 24

~ - < - ...o;-~---':'- 0,""

~-/~

. . .. --

25 26 27 28 29 3S

ith Instance of Invocation of the Garbage Collector

lo1Ito -

SIlC-."t:'"
OIJ

25bo;:
'"'"

IlBCr
tI)

'"."
,,'to:i

""'
0

320~
.0
E
;J
Z

1"0

~f)

lIo

UJ

10

3/3

'J!::GI':ND: Top graph---The number of no~es traversed by
co~ventional marking algorithm.

Mi~~lE Craph---The number of no~es tra~ersed by the
given coloring algorithm.

Lower Graph---The number of garbage nodes to be collected

Seed = 7774755

Size o~ Garbage Can = 4

..
... It.. .. " ,.. ,,: ~71111:

!\
/ \

/

;

1\ \.
. ;

8 .~\

, \ \ \
I \ \ \

i I \ " .

/ I ~~",~~J/\ '\.
/'0 ~'- ,~/ \!'. , ,/ . -/

31 36 39 40 42 4'"4341 4437 3834 3532 33

ith Instance of Invocation of the Garbage Collector

\e~o

51~o

;:f5t:'c
>
-

.=i\'2'i:O.
~o
'"
Z

:S.2,o

,...
~

~I""

~o

~c

A.o

10

1/3

Top Graph---mhenUMber of nodes traverse~ b~
cQ~ve~tio~al marking algorithm.

~~ddle Grarh---T~e nu~bcr of ~odes trav~rs~d by the gi~e~
color~"g algorithn.

LEGE!\D:

Lo~er Graph---The ~u~ber of garbage nodes to be collected.

Seec = 77-;~ :0(1
Size of Garb2r.e-Ca~ = s = 4

"""' K"

l~

ith instancE' of im'ocation of the garbage collector

LEG r:~:!) :

2/3

Top Graph---The number of no~es traverse~ by
con~entional merking algorithm.

Mi~~le Graph---The number of noces tr~versed by
coloring algorithm.

Lower Graph---The n~mber of garhage nodes to be collec~€c.

the given

feec = 7774700
Size of G?rbage-C~n= s = 4

~r:Gf.ND:

3/3

~op Graph---The number of nodes tra~ersed by
conve~tional nar~ing algorithm.

Middle Graph---The number of nodes tra~Ersed by the given
coloring algorithm.

Lower Graph---The numbe" of garbage nodes to be collected.

Seed = 7774700
Size of G2rba~e-C2n = s = 4

\r,.q\; . ..(1(.. .. . "

51'1t' I

... ...
1/(..

:; SU
c
0;
OJ)'"
.....IB
'"'"!FJ.

f.'1L'
!FJ
OJ
-0
0
Z S"-C
......
0

..
1> I bC
E
:0
Z

c;;:

"Ii:

2c

. IC'
I

n

30 31 32 33 34 35 36 37 38 39 40 41 42 43

ith instance of in':ocation of the garbage collector

