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MocMes that encapdate complex data types are perhaps the mmt hportmt sequential 
programming-language idea to emerge since the design of ALGOL 60. Such a module serves 
two purposes. First, in its abstraction role, it allows the programmer to ignore the details of 
operations ~~ abstraction) and value representations (data abstraction) in favor of a 
concise description of their meaning. Second, encapsulation is a protection mechanism 
isolating changes in one module from the rest of a program. The first role helps people to 
think about what they are daing; the second allow program changes to be reliably made with 
limited effort. 

Modules have their suurce in practical pragamming languages beginning with SIMULA 
[I], and their theory has developed in two directions, based on program proving by Hoare [2],  
W, London, Shaw [3] and others; and on many-sorted algebras by Guttag [4], Goguen, 
Thatcher, Wagner, Wright [5] and others. This paper reports on a new proving theory using 
the functionat semantics of Mills 161. 

?he essence of data-abstraction is captured by a diagram showing the relationship 
between a concrete world, the objects manipulated directly by a conventional progtmmhg 
language, and an abstract world, objects that the programmer chooses to think about instead 
of the more detailed program objects. Within each world, the items of interest are mappings 
among the objects. The two worlds are connected by a representation function that maps 
from m e t e  to abstract. 

{abstract objects j - map - > !abstract objects1 

representation representation 

I I 
iconcrete objects - map - > lcon&te objects{ 

A data-ahtraction theory must define correctness, intuitively the property that the concrete 
map programmed do properly mirror the abstract maps in our minds. A theory following 
Hoare's example also defines a proof method, a means of  establishing the correctness of any 
particular module. 

2 .  Functional Semantics of Modules 

A &wtational semantics associates a mapping with each fragment of a program, as the 
meaning of that fragment. Denotational definitions are mathematically precise, but do not 
always obviously capture the intuitive meaning of programs. In this paper we do not 
demonstrate that our demtational definitions agree with operational intuition, althuugh that 
argument can be given [7]. We treat only a subset of Pascal needed for the example of 
Section 4. 

The most fundamental meaning function is the state, mapping program identifiers to 
their value sets. Thk function may be undefined when an identifier has no value; the 
situation can arise for syntactically correct programs only in the execution interval between 



declaration and assignment of the first value. 

Eqwessions have as meaning mappings from states to values. The meaning of an 
integer constant in state S is the (mathematical) integer whase representation in base 10 the 
cunstant is (as a string). The meaning of an identifier V in state S is its value, that is, S(V). 
C)n this base the meaning of integer expressions can be de6ned inductively. If the e v s s i o n  
is X + Y, then in state S its value is the value of X in state S plus (integer addition) the 
value of Y in state S. It is convenient to have a notation for meaning functions, and we 
adopt a convention similar to one used by Kleene: the rneaning function correspntm to a 
programming object is denoted by a box around that object. Using this notation, we have 

a for integer cmstant c is the constant function for which c represents the base-10 
value. 

a (S) = S(V) for identifier V and state S. 

(and sidarly for subtraction, multiphcation, and integer division). 

Far Boolean expressions it is almost the same. For example, 

-1 (S) is rue iff (Sf > a (S) and fdse iff a (S) a a (S). 

Since it is possible for the value functions on identifiers to be undefined, expression functions 
may inherit this property. 

This inductive definition hides the parsing that must actually be done to assign a 
meaning function to an expression. Ln an expression with more than one operation, the 
operator precedence must be followed in applying the definition. The use d the 
rnathematical operations in these definitions ignores the possibility of werfluw. A precise 
defiizition d d  be given f a  any particular Pascal implementation, but it wauld mphca te  
aur p.oofs. 

Program statements are given meanings of state-testate ma-. Ttu: meaning of 
assignment 

1 7 :  = i(S, T) (T = sex* that a (T) = a (s)]. 



The meanings of other program constructions are inductively defined; for example 

where o is functional colmposition, written in the order the functions are applied. (Again, the 
parsing necessary to isolate the compound statement is ignored.) 

A more complex example is 

-!mmq = 1 (u, (u)): (u) j u t(u, u): - (u) j 

for the conditional statement with Boolean expression B and nested statement S. 

The loop has a less obvious definition: 

In words, the loop function is undefined for state S unless there is a natural number k (the 
number of times the loop body is executed) for which the test fails for the first time following 
k iterations. Then S is transformed to the k-fold canpasition of @ on S. This definition is , 

not constructive, So a characterizing theorem is needed to allow practical proofs to be canied 
out. It is: 

EYEOREM (WHILE statement Verification): Let W be the program fragment 

WHILE B W D. 

Then 

if and only if: 

2. f(T) = T whenever - 'm (T) 
3. f = - p m m q o f .  

(The prod is given in [7].) This theorem imphes a poof method for loop W as follows: 
M, guess or work out a trial function f, say by reading program documentation, or by 
examining representative symbolic executions of W. Then use the three conditions of the if- 
part of the theorem to check that the trial function is correct. 

A comparison between this method and that of Flayd/Hoare is revealing. The function 
f cormponds to the Floyd/Hoare loop assertion, but unlike an assertion, it must be exact, it 
cannot merely be sufficiently strong to capture necessary properties of the loop. This is both 



the strength and weakness of the MiUs method, becaw exact functions are sometimes easier 
to find than assertions, yet sometimes much harder to work with than weak assertions. 

?he definition of statement meaning culminates with the procedure-call statement: the 
meaning function of a call is the function for the declared body, after textual substitutions 
(based on the ALGOL 60 c w  rule) have been made to accommodate parameters and 
identifier conflicts. When there is one VAR parameter X in the declaration of procedure P, 
whose body is T, the meaning of a call on P passing parameter A is: 

where =+A means that each occurrence of X in T is replaced by A. Students of ALGOL 
60 will r e q p j z  the semantics of call-by-name; in the a'bsence of arrays this is the same as 
Pascal's strict call-by-reference. A similar copyn.de substitution can be used to define the 
meaning of call-by-value parameters. This definition hides a great deal of parsing: to find 
the meaning of P (A)  actually requires locating the definition 

PROCEDURE P WAR X: . . . 
and extracting the declared body. 

In practice it is convenient to calculate the meaning of a procedure in terms of its 
formal parameter and for each call later substitute the actual parameter identifier. That is, 
to calculate ]P(A)/ = 1 m  , instead calculate a 34-A. 

The definition assumes there are no conflicts between local and global identifiem; its 
generalization to multiple parameters is straightforward if there is no aliasing. Each 
restriction imposed for simplicity can be lifted (and call-by-value parameters handled) in the 
Mills theory, in contrast to the Hoyd/Hoare theory. When there is recursion, the definition 
leads to a fixed-point equation whose least solution is the d e w  meaning, and a theorem 
similar to the WHILE verification theorem is needed for practical proofs. 

The meaning function for a procedure call gives precise form to the concrete @on of 
the diagram for a data abstraction. The concrete objects are states, and the concrete mapping 
is the meaning function for a procedure call. The abstract level is more difficult to capture. 
Its objects and transformations are mental constmtions, thugs a programmer finds 
convenient to think about. A mathematical theory is seldom available to describe them. 
There are, however, well defined identifien and states in the abtract world, formed using 
type identifiers in place of their component ideders.  The final element in the picture is the 
correspoodence between a typical concrete object and its abstract counterpart, the 
representation fmction. This mapping is often many-@one, because the concrete realization 
is not unique. 

In the data-abstraction diagram: 



!abstract states1 -m - > [abstract states1 

I I 
[concrete states] - a - > !concrete states{ 

the abstract mapping is m, the representation mapping is A, and the concrete mapping is the 
meaning of some procedure P. We say that the diagram commutes iff beginning in the lower 
left corner and passing in both pxssible directions always gives the same result, that is A o m 
= ~ o A .  

3. Proof Method 

When using a m d e ,  a programmer begins with objects that are not of the module's type. 
These may have come from the external world, or may have been created internally. They 
cannot be of the module's type because details of the representation are the module's secret. 
What the programmer possesses is raw information necessary to constwt a value of the 
module type, and the first call on a module is therefore a conversion call: the callrng program 
passes the component information, and within the module it is placed in the secret internal 
form. Succeeding invocations of the module make use of the value thus stored, transforming 
it according to the operations defined within the module. Finally, the transformed value must 
again be communicated to the world outside the module, converted back to externally usable 
form. For example, in a module implementing complex m b e r s ,  the raw data might take 
the form of two REAL values, one for magnitude and the other for angle. The COMPLEX 
module's input conversion routine would have a declaration like 

PROCEDURE I nComp 1 ex (flag, Ang: REAL; VAR Va I: COMPLEX) 

and a programmer might begin by reading in the pair of REAL values, or by creating them 
(e.g., for the constant i with: 

InComplex(l.0, pi/2, Eye) 

to place the result in the variable Eye). Sdar ly ,  a routine declared 

PROCEDURE OutComp 1 ex (VAR Mag, Ang: REAL; Va I: COflPLEX) 

would be called to obtain a m e n ,  while ones like 

PROCEDURE AddComplex(A, 8: COMPLEX; VAR Result: COMPLEX) 

would implement operations of the type. Of come, if the implementor chose the radix form 
for complex numbers internally, the code for I nConlp 1 ex  and 0 u t Comp 1 ex would be trivial; 
hawever, if there is a great deal of addition and not much conversion, an implementation 
using real and imaginary parts would be better, and in that case these routines make actual 



conversions. 

In any application of a module, its users will ream about its actions "in the abstract." 
That is, they will imagine it performing a mapping involving objects that do not really exist, 
those of the intuitive type it implements. For example in COMPLEX, they will think of 
AddComp I ex as performing the mathematical operation of complex addition, etc. Here the 
input- and output-conversion operations have a special role: they are thought of as maps 
between the built-in hgmge values and the intuitive values of the type being defined. ?bus 

InComplex(l.0, pi/2, Eye) 

intuitively gives Eye the value l.Oxein' = i. Ihe  r d n g  represented by this equality is 
an example of "in the abstract:" it in no way depends on the implementation of the module, 
only on mathematical properties of complex numbers. 

The objects whose values are the raw data from which type values can be constructed, 
exist in the concrete world, which for these objects is also the abstract world. That is, the 
representation function for such objects is reqmed to be identity. If the abstract function for 
the input conversion of COMPLEX is C, the diagram is 

!concrete states] - C- > !abstract states1 

I 
fmorrete statesj - -> -->concrete statesj 

showing identity on the left instead of the representation mapping. Or, the left side d d  be 
collapsed to identify the two worlds, producing a triangular diagram. Here for example: 

- 
[concrete statesj - 1-1 -> !concrete statesj 

Thus the prqgammer has in mind abstract functions for each operation of a module. 
These map between values of the module's type, and other values that may be built in, or 
defined by other modules. In reasoning about the program using a module, the proepmmer 
will employ these abstract functions. Intuitively, the module implementation is correct if and 
only if such reasoning is safe. In terms of the operation di-, a sequence of operations is 
thought of on the top: be-g with a triangular diagram whose left side does not involve 
objects of the module's type T, an object of type T is created by the abstract operation InT, 
then used by abstract operations m T, m T, . . . and finally converted back to knuwn values 
by (another triangular diagram) &i!t~. &e abstract view of this sequence of diagrams is that 
non-module values are transformed to other non-module values by the function 



InT o mlT o y T  o ... o OutT 

with the intermediate values being the abstract ones of the module's type. 

Of came, the actual calculation proceeds across the bottom of the diagrams. The 
implementation begins with values and wcessively transforms them, at no time leaving the 
built-in types of the language. If the p r e e s  for the example functions above are PI nT, 
Pml , Pm2, . . . , PDu t T , the actual function computed in the sequence is 

Correctness then means that any extended diagram, a sequence with triangular diagrams at 
the extremes, commutes. ?hat is, in the general example above, 

The strange feature of this defmhg equation is that the representation function does not 
appear! 

To be useful in software development, however, p r d  must apply to operations in 
isolation, not to sequences of operations. The following theorem allows such proofs to be 
given. 

7HEOREM. A m d e ' s  implementation is correct if there is a representation function A such 
that each operation7s diagram cummutes using A, and A is the identity I on built-in types. 

Proof. Without lm of generality, assume that the module in question makes no use of other 
modules. (This must be true of the lowest-level module, and its use by others can be thought 
of as adding "hidden" operations to them.) The proof is by in&~&on on the number of 
operations in a sequence between the input- and output-conversion operations. 

Bare care. If there are none, the extended diagram consists of the input-conversion 
function immediately followed by the output-conversion function: 

lcancrete states] - InT-> !abstract states] - OutT-> cmrete states{ 

T t T 
I 

(concrete ?tates] - ]PInTI-> iconneL states jIWutTl-> imocrete states] 

In the notation above, we must shaw that 

InT o OutT = 1PInT1 o ]m[. 
Suppose it were not so, f a  the point x, i.e., 



OutT(InT(x)) # ]ml( (x)). 

The diagram for the input-conversion function commutes, and a special case is 

IoT(x) = A( ]ml (x)) , 

which substituted on the left side above gives: 

Out(A( ]mI (x))) # 1-1 ( IWI (x)). 

That is, there exists a y = ]mj (x) such that 

OutT(A(y)) # ]mi (y). 

But this violates the assumption that the diagram for the output-conversion function 
commutes. Hence the two diagrams commuting imply that the extended diagram commutes, 
as Iquired. 

Induction step. Suppose then that for all diagrams with less than k > 0 operations 
between input and output conversions, the component diagrams commuting implies that the 
overall diagram commutes. Consider a diagram with k operations between conversions. 
Reasoning W a r  to that used in the base case shows that if the extended diagram fails for 
some point x, then the diagram formed by stripping off its last operation w d d  also fail for x. 
But that contradicts the inductive hypothesis. QED. 

The verification of a m d e  may therefore be accomplished in isolation by selecting a 
proper representation function, calculating the meaning of each procedure, and then showing 
that each operation's diagram commutes for the intended abstract function, calculated 
meaning, and chmn representation function. 

4. An Example: Rational Numbers 

A Pascal TYPE declaration is an implicit form of the repmentation mapping. For example, 

TYPE Rational = RECORD Num, Den: INTEGER END 

suggests the abstract world of rational numbers, where concrete states contain pairs of integer 
values (N, D), and the corresponding rational value is the fraction with numerator N and 
denominator D, defined ody if N and D # 0 are defined. The representation mapping drat 
from concrete state S to abstract state T is thus 

Am = {(S,o: T = S except that identifiers of the form x.Num and x.Den are replaced 
by x,  with the corresponding rational value if x.Den # 01 



The pmcedure ExpRat given below is intended to raise a rational number R to the 
power N. 'Ihe comment describes this intention in the abstract ("abs") and concrete ("con") 
worlds. The comment notation combines concurrent assignments with alternative relational 
guards to describe functions in the syntax of programs. For example, the "ah" part would be 
more conventionally e x p r d :  

N (S){ ExpRatds = i(S, I): a (S) 2 1 A T  = S except that a (7') = a (S) a 
[(s, s): (s) < lj. 

Smilarly, the "coa" comment describes I s [  . 

PROCEDURE ExpRat (VAR R: Rat  i ona I ;  N: INTEGER) ; 
labs: (N>cl --> 67> : = d*aN>) I ( N d  --> 0 := 0) 
con: (N>cl --> dl.Num, R. Den> : = (R.Nuni*&J, R. DenwN>) I 

( N d  --> 0 := 0) 1 
VAR 

T: R a t i o n a l ;  
I : INTEGER; 

BEGIN fExpRat j 
T.Num := R.Num; T.Den := R.Den; 
I := 1; 
WHILE I < N 
DO 

BEG I N 
I := I + 1; 
T.Num : = T.Nun1 * R.Num; 
T.Den := T.Den * R.Den 

END; 
R.Num : = T.Num; R.Den : = T.Den 

END tExpRat j 

To demonstrate the cxxmtness of this p'ocehc, we must calculate 1-1 (see 
Appendix), and prove that the following diagram cummutes: 

{abstract states! - ExpRa tabs -> [ abtract states! 

T T 

I I 
{concrete statsj -]ExpRat[ -> @nnet.e states1 

mat  is, on domin(Arat) : 



The composition of Ara with ExpRa tabs is: 

?he trace table [8] is a device for organizing the calculation of program meanings, 
particularly useful when there are many cases introduced by conditional statements. It is 
essentially a symbolic execution of the program. Two trace tables, corr-Chne to the two 
cases of ExpRa tds, are used to mmplte the composition: 

/ R. Den& / R. Nurn/R. Den I I 

par t  

'The msulting furaction is: 

R. Den& R. Nuni/R. Den 

condi t i on R 

part  

(R.Den& AND M -+ d3> := < (R.Num/R.Den)**N >1 I 
(R.Den4 AND N d  -+ o := 0 1 

R condi t ion 

m e  mmposition of 1-1 with Ara is: 

R.Num 

((M -+ 67.Num. R.Den> := &.Num**N, R.Den*d>) ] 
(Nd -+ 0 : = 01 1 o (R. Den # 0 -+ 67> : = &. Num/R. Den>) 

R.Den 

R.Nuni 

7 3 ~ 0  trace tables are also used to compute this ccmpsition: 

R. Den 

par t  I condition I R I R.Num I R.Den 

Since R. Den*&d4 implies R. Den&, this part of the composition can be rewritten as: 

M AND R. Den4 -+ &> : = < R. Num**N/R. Den**N > 

Turning to the second case, we have the folluwing table: 



par t  Icondition I R I R.Num I R.Den 
I I I I 

1 R. Den& I R. Num/R. Den I I 

Thus the result of the second function composition is: 

(M AND R. Den4 + 61> : = < R.Num*fl/R. Denafl >I I 
( N d  AND R. Den4 + &> : = < R.Nuni/R. Den > 1 

which is identical to the first composition. Hence the diagram commutes, and E xpRa t is 
COrZect. 

5.  Comparison with Related Work 

Just as the Mills method of program proof is clclsest in spirit to that of Hoare, so this 
treatment is little more than the application of denotational-semantic definitions to Hoare's 
initial formalization of SIMULA classes. However, we believe that the choice of the 
concrete and abstract domains as sets of states cantaining variables co~ected by the 
representation mapping is an improvement over the Alphard methodology which is also based 
on Hoare's work. The states allow the representation to include not only the value 
m e e n c e ,  but an identifier correspondence as well. When a data abstraction is used, 
the calls on its operations occur in states that include the abstract variables, and aur proof 
method allows the abstract function whose correctness has been established by the prod of a 
module to be used directly in such a state. 

In the Alphad methodology thugs do not work quite so well. For example, consider 
the procedure ExpRat proved in Section 3. In Alphard terms, its abstract pre- and 
pmtconditicxx would be 

where the ghost variable R' has been intrcxhced to represent the initial value of the 
parameter. The concrete input and output assertions are similarly: 

8. = RNum = RNum' A R.Den = RDen' 
ln 

 out E RNum = RNum' ** N A RDen = RDen' ** N 

with ghost variables RNum' and R.Den' . Proof of a usage requires 

where C is the cancrete invariant and A the representation function. With the invariant 
R . E n  # 0 this is 



R B n  # 0 A R = R' 2 RNum = RNum' A RDen = RDen' 

which cannot be proved, since the concrete representation is not unique. Nor can the 
invariant be strengthened to allow the proof. The trouble is that the c o r r ~ d e n c e  between 
abstract and concrete state is not precise enough to pull implications about the latter from 
facts about the former. 
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To determine Ex Rat , we compclse the functions computed by the three initial assignment 
statement, and the two Snal assignment statements. statements, the 

'Ihe r d t  of the compositions is: 



Simphfymg and ignoring the effects on local variables yields the function: 

This is identical to 1-1 : 

(N>l + 43. Num, R. Den> : = dl. NumwN, R. Den*dd>) I 
( N d  +o :=  01 

since for N=l, RNum = RNum**N. 

The functions for the sequem of assignment statements were obviously charen 
correctly. However, we dl must establish the correctness of the function chosen for the 
WHILE statement. 

WHILE I < N 
DO t (Id --> <I, T.Num, T.Den> := 

4, T. Num*R. Numn* (N-I ) , T. Den*. Den** (N- I >) 1 
(I>N --> O := 

BEG I N 
0) t 

I :=I+l; 
T.Num : = T.Num * R.Nuni; 
T.Den := T.Den * R.Den 

END; 

Using the WHILE Statement Verification Theorem, the intended function F, which appears 
as a comment on the WHILE statement, and 1 AH1 LE I < N Dl S 1 are identical if: 

I - 

2. F(T) = T whenever 4-1 (T) 
3 . F =  ] I F  I < N T H E N S ~ O F  

?he domain of F is: 

I<N OR&N = true 

If kN, the WHILE statement is skipped so termination is assured. If I<N, the WHILE 
statement is executed, I is incremented, and the eventual termination of the statement is 



assured because the value of I approaches N. Thus the first condition is satisfied. 

The second condition requires F to be the identity if the WHILE mdition does not 
hold. This is exactly the final case in the definition of F. 

Finally, we can work out the right side of the third condition. The function of the IF 
statement 

( ( 1 4  -, <I,T.Num,T.Den> := <I+l,T.Num*R.Num.T.Den&.Den>) I 
(Is4 -+ 0 := 0 1 )  0 

(I4 -+ <I,T.Num,T.Den> := 
4, T. Nunid. Numw (N-I 1 , T. Den*R. Den** (N-I 1 >) I 

(Is4 +o := 0) 

There are faur cases to consider. 

Execution Table 1 

T. Num*R. NumsR. Num I N  1 **(N-(I+l)) 

SimpMymg some of these eqmsiom yields: 

T. Den 

I d  AND I+ld = I+l4 
T.Num*R.Nunid.Num~*(N-(I+l)) = T.NuniwR.Num(N-I) 
T. DengR. Dend . Den** (N- ( I  +1) 1 = T. DenwR. Den (N-I 

Part 

?bus this part of the ccnqxxitim is: 

I Condition T. Num 



'The condition is: 

Id AND I+lM = I+l=N 

Execution Table 2 

For I+ 1 =N, we observe: 

T. Num*R. Numw (N-I) = T. Num*R. Num 
T.Den*R.Denm(N-I1 = T.Den*R.Den 

T. Num T. Den 

T. NumsR. Num T. Den*R. Den 

'Thus this part of the function is: 

I+l=N -+ <I. T. Num, T. Den> : = dl. T. Nun&. Numa* (N-I 1, T. Den*R. Den** ic(N-I > 

I 

I +1 

Part 

I F  

F 

Condition 

Id 

I +lrN 

Execution Table 3 

The condition IrN AND I dl cannot be satisfied, so this part contributes nothing to the 
coI.nposition. 

I F  

F 

Part 

Thus this part of the function is: 

I Condition 

IA I 
Id ! N 

Execu t i on Tab l e 4 

Putting the four part functions together: 

T. Num T. Den 

T. Num*R. Numm (N-I 1 T. Den*R. Denn (N-I 1 

T.Den Part 

I F  

F 

I Condition 

I1N 

I2N 

T.Num 



(I+1& -, <I,T.Num,T.Den> := 
d, T. Num*R.Numw (N-I) , T.Den*R.Den** (N-I 1 >) j 

(Id'.! -, 0 := 0) 

Since I +Id = I 4, the comwtion of the four part functions is identical to F, 
estabhshq the third condition. 


