
Technical Report CSIE 84-005 September, 1984

FUNCTIONAL SEMANTICS OF MODULES

John Ganwn
Universiq of Mmyhnd

Dick Hamlet
Oregon Graduate Center

Harlan Mills
University of MmyInnd

Because large-scale software development is a struggle against internal program complexity,
the modules into which programs are divided play a central role in sdtware engineering. A
module encapsulating a data type allows the programmer to ignore both the details of its
operations, and of its value representations. It is a primary strength of program proving that
as modules divide a program, making it easier to understand, so do they divide its proof.
Each module can be verified in isolation, then its internal details ignored in a proof of its use.
Tbis paper describes proofs of module abstractions based on the functional method of Mills,
and contrasts this with the Alphard formalism based on Hoare logic.

Authors' addresses: Dr. Hamlet, Department of Computer Science, Oregon Graduate
Center, Beaverton, OR 97006; Drs. Gannon and Mills, Department of Computer Science,
University of Maryland, College Park, MD 20742. Research of Drs. Gannon and Hamlet
was partially w e d by the Air Force Office of Scientific Research under contract
F49620-80-C-0004.

MocMes that encapdate complex data types are perhaps the mmt hportmt sequential
programming-language idea to emerge since the design of ALGOL 60. Such a module serves
two purposes. First, in its abstraction role, it allows the programmer to ignore the details of
operations ~~ abstraction) and value representations (data abstraction) in favor of a
concise description of their meaning. Second, encapsulation is a protection mechanism
isolating changes in one module from the rest of a program. The first role helps people to
think about what they are daing; the second allow program changes to be reliably made with
limited effort.

Modules have their suurce in practical pragamming languages beginning with SIMULA
[I], and their theory has developed in two directions, based on program proving by Hoare [2],
W, London, Shaw [3] and others; and on many-sorted algebras by Guttag [4], Goguen,
Thatcher, Wagner, Wright [5] and others. This paper reports on a new proving theory using
the functionat semantics of Mills 161.

?he essence of data-abstraction is captured by a diagram showing the relationship
between a concrete world, the objects manipulated directly by a conventional progtmmhg
language, and an abstract world, objects that the programmer chooses to think about instead
of the more detailed program objects. Within each world, the items of interest are mappings
among the objects. The two worlds are connected by a representation function that maps
from m e t e to abstract.

{abstract objects j - map - > !abstract objects1

representation representation

I I
iconcrete objects - map - > lcon&te objects{

A data-ahtraction theory must define correctness, intuitively the property that the concrete
map programmed do properly mirror the abstract maps in our minds. A theory following
Hoare's example also defines a proof method, a means of establishing the correctness of any
particular module.

2 . Functional Semantics of Modules

A &wtational semantics associates a mapping with each fragment of a program, as the
meaning of that fragment. Denotational definitions are mathematically precise, but do not
always obviously capture the intuitive meaning of programs. In this paper we do not
demonstrate that our demtational definitions agree with operational intuition, althuugh that
argument can be given [7]. We treat only a subset of Pascal needed for the example of
Section 4.

The most fundamental meaning function is the state, mapping program identifiers to
their value sets. Thk function may be undefined when an identifier has no value; the
situation can arise for syntactically correct programs only in the execution interval between

declaration and assignment of the first value.

Eqwessions have as meaning mappings from states to values. The meaning of an
integer constant in state S is the (mathematical) integer whase representation in base 10 the
cunstant is (as a string). The meaning of an identifier V in state S is its value, that is, S(V).
C)n this base the meaning of integer expressions can be de6ned inductively. If the e v s s i o n
is X + Y, then in state S its value is the value of X in state S plus (integer addition) the
value of Y in state S. It is convenient to have a notation for meaning functions, and we
adopt a convention similar to one used by Kleene: the rneaning function correspntm to a
programming object is denoted by a box around that object. Using this notation, we have

a for integer cmstant c is the constant function for which c represents the base-10
value.

a (S) = S(V) for identifier V and state S.

(and sidarly for subtraction, multiphcation, and integer division).

Far Boolean expressions it is almost the same. For example,

-1 (S) is rue iff (Sf > a (S) and fdse iff a (S) a a (S).

Since it is possible for the value functions on identifiers to be undefined, expression functions
may inherit this property.

This inductive definition hides the parsing that must actually be done to assign a
meaning function to an expression. Ln an expression with more than one operation, the
operator precedence must be followed in applying the definition. The use d the
rnathematical operations in these definitions ignores the possibility of werfluw. A precise
defiizition d d be given f a any particular Pascal implementation, but it wauld mphca te
aur p.oofs.

Program statements are given meanings of state-testate ma-. Ttu: meaning of
assignment

1 7 : = i(S, T) (T = sex* that a (T) = a (s)].

The meanings of other program constructions are inductively defined; for example

where o is functional colmposition, written in the order the functions are applied. (Again, the
parsing necessary to isolate the compound statement is ignored.)

A more complex example is

-!mmq = 1 (u, (u)): (u) j u t(u, u): - (u) j

for the conditional statement with Boolean expression B and nested statement S.

The loop has a less obvious definition:

In words, the loop function is undefined for state S unless there is a natural number k (the
number of times the loop body is executed) for which the test fails for the first time following
k iterations. Then S is transformed to the k-fold canpasition of @ on S. This definition is ,

not constructive, So a characterizing theorem is needed to allow practical proofs to be canied
out. It is:

EYEOREM (WHILE statement Verification): Let W be the program fragment

WHILE B W D.

Then

if and only if:

2. f(T) = T whenever - 'm (T)
3. f = - p m m q o f .

(The prod is given in [7].) This theorem imphes a poof method for loop W as follows:
M, guess or work out a trial function f, say by reading program documentation, or by
examining representative symbolic executions of W. Then use the three conditions of the if-
part of the theorem to check that the trial function is correct.

A comparison between this method and that of Flayd/Hoare is revealing. The function
f cormponds to the Floyd/Hoare loop assertion, but unlike an assertion, it must be exact, it
cannot merely be sufficiently strong to capture necessary properties of the loop. This is both

the strength and weakness of the MiUs method, becaw exact functions are sometimes easier
to find than assertions, yet sometimes much harder to work with than weak assertions.

?he definition of statement meaning culminates with the procedure-call statement: the
meaning function of a call is the function for the declared body, after textual substitutions
(based on the ALGOL 60 c w rule) have been made to accommodate parameters and
identifier conflicts. When there is one VAR parameter X in the declaration of procedure P,
whose body is T, the meaning of a call on P passing parameter A is:

where =+A means that each occurrence of X in T is replaced by A. Students of ALGOL
60 will r e q p j z the semantics of call-by-name; in the a'bsence of arrays this is the same as
Pascal's strict call-by-reference. A similar copyn.de substitution can be used to define the
meaning of call-by-value parameters. This definition hides a great deal of parsing: to find
the meaning of P (A) actually requires locating the definition

PROCEDURE P WAR X: . . .
and extracting the declared body.

In practice it is convenient to calculate the meaning of a procedure in terms of its
formal parameter and for each call later substitute the actual parameter identifier. That is,
to calculate]P(A)/ = 1 m , instead calculate a 34-A.

The definition assumes there are no conflicts between local and global identifiem; its
generalization to multiple parameters is straightforward if there is no aliasing. Each
restriction imposed for simplicity can be lifted (and call-by-value parameters handled) in the
Mills theory, in contrast to the Hoyd/Hoare theory. When there is recursion, the definition
leads to a fixed-point equation whose least solution is the d e w meaning, and a theorem
similar to the WHILE verification theorem is needed for practical proofs.

The meaning function for a procedure call gives precise form to the concrete @on of
the diagram for a data abstraction. The concrete objects are states, and the concrete mapping
is the meaning function for a procedure call. The abstract level is more difficult to capture.
Its objects and transformations are mental constmtions, thugs a programmer finds
convenient to think about. A mathematical theory is seldom available to describe them.
There are, however, well defined identifien and states in the abtract world, formed using
type identifiers in place of their component ideders. The final element in the picture is the
correspoodence between a typical concrete object and its abstract counterpart, the
representation fmction. This mapping is often many-@one, because the concrete realization
is not unique.

In the data-abstraction diagram:

!abstract states1 -m - > [abstract states1

I I
[concrete states] - a - > !concrete states{

the abstract mapping is m, the representation mapping is A, and the concrete mapping is the
meaning of some procedure P. We say that the diagram commutes iff beginning in the lower
left corner and passing in both pxssible directions always gives the same result, that is A o m
= ~ o A .

3. Proof Method

When using a m d e , a programmer begins with objects that are not of the module's type.
These may have come from the external world, or may have been created internally. They
cannot be of the module's type because details of the representation are the module's secret.
What the programmer possesses is raw information necessary to constwt a value of the
module type, and the first call on a module is therefore a conversion call: the callrng program
passes the component information, and within the module it is placed in the secret internal
form. Succeeding invocations of the module make use of the value thus stored, transforming
it according to the operations defined within the module. Finally, the transformed value must
again be communicated to the world outside the module, converted back to externally usable
form. For example, in a module implementing complex m b e r s , the raw data might take
the form of two REAL values, one for magnitude and the other for angle. The COMPLEX
module's input conversion routine would have a declaration like

PROCEDURE I nComp 1 ex (flag, Ang: REAL; VAR Va I: COMPLEX)

and a programmer might begin by reading in the pair of REAL values, or by creating them
(e.g., for the constant i with:

InComplex(l.0, pi/2, Eye)

to place the result in the variable Eye). Sdar ly , a routine declared

PROCEDURE OutComp 1 ex (VAR Mag, Ang: REAL; Va I: COflPLEX)

would be called to obtain a m e n , while ones like

PROCEDURE AddComplex(A, 8: COMPLEX; VAR Result: COMPLEX)

would implement operations of the type. Of come, if the implementor chose the radix form
for complex numbers internally, the code for I nConlp 1 ex and 0 u t Comp 1 ex would be trivial;
hawever, if there is a great deal of addition and not much conversion, an implementation
using real and imaginary parts would be better, and in that case these routines make actual

conversions.

In any application of a module, its users will ream about its actions "in the abstract."
That is, they will imagine it performing a mapping involving objects that do not really exist,
those of the intuitive type it implements. For example in COMPLEX, they will think of
AddComp I ex as performing the mathematical operation of complex addition, etc. Here the
input- and output-conversion operations have a special role: they are thought of as maps
between the built-in hgmge values and the intuitive values of the type being defined. ?bus

InComplex(l.0, pi/2, Eye)

intuitively gives Eye the value l.Oxein' = i. Ihe r d n g represented by this equality is
an example of "in the abstract:" it in no way depends on the implementation of the module,
only on mathematical properties of complex numbers.

The objects whose values are the raw data from which type values can be constructed,
exist in the concrete world, which for these objects is also the abstract world. That is, the
representation function for such objects is reqmed to be identity. If the abstract function for
the input conversion of COMPLEX is C, the diagram is

!concrete states] - C- > !abstract states1

I
fmorrete statesj - -> -->concrete statesj

showing identity on the left instead of the representation mapping. Or, the left side d d be
collapsed to identify the two worlds, producing a triangular diagram. Here for example:

-
[concrete statesj - 1-1 -> !concrete statesj

Thus the prqgammer has in mind abstract functions for each operation of a module.
These map between values of the module's type, and other values that may be built in, or
defined by other modules. In reasoning about the program using a module, the proepmmer
will employ these abstract functions. Intuitively, the module implementation is correct if and
only if such reasoning is safe. In terms of the operation di-, a sequence of operations is
thought of on the top: be-g with a triangular diagram whose left side does not involve
objects of the module's type T, an object of type T is created by the abstract operation InT,
then used by abstract operations m T, m T, . . . and finally converted back to knuwn values
by (another triangular diagram) &i!t~. &e abstract view of this sequence of diagrams is that
non-module values are transformed to other non-module values by the function

InT o mlT o y T o ... o OutT

with the intermediate values being the abstract ones of the module's type.

Of came, the actual calculation proceeds across the bottom of the diagrams. The
implementation begins with values and wcessively transforms them, at no time leaving the
built-in types of the language. If the p r e e s for the example functions above are PI nT,
Pml , Pm2, . . . , PDu t T , the actual function computed in the sequence is

Correctness then means that any extended diagram, a sequence with triangular diagrams at
the extremes, commutes. ?hat is, in the general example above,

The strange feature of this defmhg equation is that the representation function does not
appear!

To be useful in software development, however, p r d must apply to operations in
isolation, not to sequences of operations. The following theorem allows such proofs to be
given.

7HEOREM. A m d e ' s implementation is correct if there is a representation function A such
that each operation7s diagram cummutes using A, and A is the identity I on built-in types.

Proof. Without lm of generality, assume that the module in question makes no use of other
modules. (This must be true of the lowest-level module, and its use by others can be thought
of as adding "hidden" operations to them.) The proof is by in&~&on on the number of
operations in a sequence between the input- and output-conversion operations.

Bare care. If there are none, the extended diagram consists of the input-conversion
function immediately followed by the output-conversion function:

lcancrete states] - InT-> !abstract states] - OutT-> cmrete states{

T t T
I

(concrete ?tates] -]PInTI-> iconneL states jIWutTl-> imocrete states]

In the notation above, we must shaw that

InT o OutT = 1PInT1 o]m[.
Suppose it were not so, f a the point x, i.e.,

OutT(InT(x)) #]ml((x)).

The diagram for the input-conversion function commutes, and a special case is

IoT(x) = A(]ml (x)) ,

which substituted on the left side above gives:

Out(A(]mI (x))) # 1-1 (IWI (x)).

That is, there exists a y =]mj (x) such that

OutT(A(y)) #]mi (y).

But this violates the assumption that the diagram for the output-conversion function
commutes. Hence the two diagrams commuting imply that the extended diagram commutes,
as Iquired.

Induction step. Suppose then that for all diagrams with less than k > 0 operations
between input and output conversions, the component diagrams commuting implies that the
overall diagram commutes. Consider a diagram with k operations between conversions.
Reasoning W a r to that used in the base case shows that if the extended diagram fails for
some point x, then the diagram formed by stripping off its last operation w d d also fail for x.
But that contradicts the inductive hypothesis. QED.

The verification of a m d e may therefore be accomplished in isolation by selecting a
proper representation function, calculating the meaning of each procedure, and then showing
that each operation's diagram commutes for the intended abstract function, calculated
meaning, and chmn representation function.

4. An Example: Rational Numbers

A Pascal TYPE declaration is an implicit form of the repmentation mapping. For example,

TYPE Rational = RECORD Num, Den: INTEGER END

suggests the abstract world of rational numbers, where concrete states contain pairs of integer
values (N, D), and the corresponding rational value is the fraction with numerator N and
denominator D, defined ody if N and D # 0 are defined. The representation mapping drat
from concrete state S to abstract state T is thus

Am = {(S,o: T = S except that identifiers of the form x.Num and x.Den are replaced
by x, with the corresponding rational value if x.Den # 01

The pmcedure ExpRat given below is intended to raise a rational number R to the
power N. 'Ihe comment describes this intention in the abstract ("abs") and concrete ("con")
worlds. The comment notation combines concurrent assignments with alternative relational
guards to describe functions in the syntax of programs. For example, the "ah" part would be
more conventionally e x p r d :

N (S){ ExpRatds = i(S, I): a (S) 2 1 A T = S except that a (7') = a (S) a
[(s, s): (s) < lj.

Smilarly, the "coa" comment describes I s [.

PROCEDURE ExpRat (VAR R: Rat i ona I ; N: INTEGER) ;
labs: (N>cl --> 67> : = d*aN>) I (N d --> 0 := 0)
con: (N>cl --> dl.Num, R. Den> : = (R.Nuni*&J, R. DenwN>) I

(N d --> 0 := 0) 1
VAR

T: R a t i o n a l ;
I : INTEGER;

BEGIN fExpRat j
T.Num := R.Num; T.Den := R.Den;
I := 1;
WHILE I < N
DO

BEG I N
I := I + 1;
T.Num : = T.Nun1 * R.Num;
T.Den := T.Den * R.Den

END;
R.Num : = T.Num; R.Den : = T.Den

END tExpRat j

To demonstrate the cxxmtness of this p'ocehc, we must calculate 1-1 (see
Appendix), and prove that the following diagram cummutes:

{abstract states! - ExpRa tabs -> [abtract states!

T T

I I
{concrete statsj -]ExpRat[-> @nnet.e states1

mat is, on domin(Arat) :

The composition of Ara with ExpRa tabs is:

?he trace table [8] is a device for organizing the calculation of program meanings,
particularly useful when there are many cases introduced by conditional statements. It is
essentially a symbolic execution of the program. Two trace tables, corr-Chne to the two
cases of ExpRa tds, are used to mmplte the composition:

/ R. Den& / R. Nurn/R. Den I I

par t

'The msulting furaction is:

R. Den& R. Nuni/R. Den

condi t i on R

part

(R.Den& AND M -+ d3> := < (R.Num/R.Den)**N >1 I
(R.Den4 AND N d -+ o := 0 1

R condi t ion

m e mmposition of 1-1 with Ara is:

R.Num

((M -+ 67.Num. R.Den> := &.Num**N, R.Den*d>)]
(Nd -+ 0 : = 01 1 o (R. Den # 0 -+ 67> : = &. Num/R. Den>)

R.Den

R.Nuni

7 3 ~ 0 trace tables are also used to compute this ccmpsition:

R. Den

par t I condition I R I R.Num I R.Den

Since R. Den*&d4 implies R. Den&, this part of the composition can be rewritten as:

M AND R. Den4 -+ &> : = < R. Num**N/R. Den**N >

Turning to the second case, we have the folluwing table:

par t Icondition I R I R.Num I R.Den
I I I I

1 R. Den& I R. Num/R. Den I I

Thus the result of the second function composition is:

(M AND R. Den4 + 61> : = < R.Num*fl/R. Denafl >I I
(N d AND R. Den4 + &> : = < R.Nuni/R. Den > 1

which is identical to the first composition. Hence the diagram commutes, and E xpRa t is
COrZect.

5. Comparison with Related Work

Just as the Mills method of program proof is clclsest in spirit to that of Hoare, so this
treatment is little more than the application of denotational-semantic definitions to Hoare's
initial formalization of SIMULA classes. However, we believe that the choice of the
concrete and abstract domains as sets of states cantaining variables co~ected by the
representation mapping is an improvement over the Alphard methodology which is also based
on Hoare's work. The states allow the representation to include not only the value
m e e n c e , but an identifier correspondence as well. When a data abstraction is used,
the calls on its operations occur in states that include the abstract variables, and aur proof
method allows the abstract function whose correctness has been established by the prod of a
module to be used directly in such a state.

In the Alphad methodology thugs do not work quite so well. For example, consider
the procedure ExpRat proved in Section 3. In Alphard terms, its abstract pre- and
pmtconditicxx would be

where the ghost variable R' has been intrcxhced to represent the initial value of the
parameter. The concrete input and output assertions are similarly:

8. = RNum = RNum' A R.Den = RDen'
ln

 out E RNum = RNum' ** N A RDen = RDen' ** N

with ghost variables RNum' and R.Den' . Proof of a usage requires

where C is the cancrete invariant and A the representation function. With the invariant
R . E n # 0 this is

R B n # 0 A R = R' 2 RNum = RNum' A RDen = RDen'

which cannot be proved, since the concrete representation is not unique. Nor can the
invariant be strengthened to allow the proof. The trouble is that the c o r r ~ d e n c e between
abstract and concrete state is not precise enough to pull implications about the latter from
facts about the former.

References

1. 0.-J. &hl, B. My&ug, and K. Nygaard, The SIMULA 67 common base language.
Norwegian Computing Center, Oslo, Publication Nr. S22, 1970.

2. C. A. R. Hoare, Proof of correctness of data representations, Acta Informutica 1 (1972),
pp. 271-281.

3. W. A. W, R L. Landon, and M. Shaw, An i n t d d i o n to the co~struction and
verification of Alphard programs, IEEE Tram. SofhYQre Engineering SE-2 (1976), pp. 253-
265.

4. J. Guttag and J. Horning, The algebraic specification of abstract data types, Acta
Ir$ormatica 10 (1978), 27-52.

5. J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright, Initial algebra semantics
and continuous algebras, J. of the Assoc. for Comp. Mach. 24 (1977), pp. 68-95.

6. R. G. Hamlet and H. D. Mills, Functional semantics, University of Maryland Computer
Science Technical Report 1238, 1983.

7. Ibid., Functional Analysis of l'qpms, in preparation.

8. Linger, RC., Mills, H.D., and Witt, B.I., Structured Programming: Theory and Practice,
Addison-Wesley, 1979.

To determine Ex Rat , we compclse the functions computed by the three initial assignment
statement, and the two Snal assignment statements. statements, the

'Ihe r d t of the compositions is:

Simphfymg and ignoring the effects on local variables yields the function:

This is identical to 1-1 :

(N>l + 43. Num, R. Den> : = dl. NumwN, R. Den*dd>) I
(N d +o := 01

since for N=l, RNum = RNum**N.

The functions for the sequem of assignment statements were obviously charen
correctly. However, we dl must establish the correctness of the function chosen for the
WHILE statement.

WHILE I < N
DO t (Id --> <I, T.Num, T.Den> :=

4, T. Num*R. Numn* (N-I) , T. Den*. Den** (N- I >) 1
(I>N --> O :=

BEG I N
0) t

I :=I+l;
T.Num : = T.Num * R.Nuni;
T.Den := T.Den * R.Den

END;

Using the WHILE Statement Verification Theorem, the intended function F, which appears
as a comment on the WHILE statement, and 1 AH1 LE I < N Dl S 1 are identical if:

I -

2. F(T) = T whenever 4-1 (T)
3 . F =] I F I < N T H E N S ~ O F

?he domain of F is:

I<N OR&N = true

If kN, the WHILE statement is skipped so termination is assured. If I<N, the WHILE
statement is executed, I is incremented, and the eventual termination of the statement is

assured because the value of I approaches N. Thus the first condition is satisfied.

The second condition requires F to be the identity if the WHILE mdition does not
hold. This is exactly the final case in the definition of F.

Finally, we can work out the right side of the third condition. The function of the IF
statement

((1 4 -, <I,T.Num,T.Den> := <I+l,T.Num*R.Num.T.Den&.Den>) I
(Is4 -+ 0 := 0 1) 0

(I4 -+ <I,T.Num,T.Den> :=
4, T. Nunid. Numw (N-I 1 , T. Den*R. Den** (N-I 1 >) I

(Is4 +o := 0)

There are faur cases to consider.

Execution Table 1

T. Num*R. NumsR. Num I N 1 **(N-(I+l))

SimpMymg some of these eqmsiom yields:

T. Den

I d AND I+ld = I+l4
T.Num*R.Nunid.Num~*(N-(I+l)) = T.NuniwR.Num(N-I)
T. DengR. Dend . Den** (N- (I +1) 1 = T. DenwR. Den (N-I

Part

?bus this part of the ccnqxxitim is:

I Condition T. Num

'The condition is:

Id AND I+lM = I+l=N

Execution Table 2

For I+ 1 =N, we observe:

T. Num*R. Numw (N-I) = T. Num*R. Num
T.Den*R.Denm(N-I1 = T.Den*R.Den

T. Num T. Den

T. NumsR. Num T. Den*R. Den

'Thus this part of the function is:

I+l=N -+ <I. T. Num, T. Den> : = dl. T. Nun&. Numa* (N-I 1, T. Den*R. Den** ic(N-I >

I

I +1

Part

I F

F

Condition

Id

I +lrN

Execution Table 3

The condition IrN AND I dl cannot be satisfied, so this part contributes nothing to the
coI.nposition.

I F

F

Part

Thus this part of the function is:

I Condition

IA I
Id ! N

Execu t i on Tab l e 4

Putting the four part functions together:

T. Num T. Den

T. Num*R. Numm (N-I 1 T. Den*R. Denn (N-I 1

T.Den Part

I F

F

I Condition

I1N

I2N

T.Num

(I+1& -, <I,T.Num,T.Den> :=
d, T. Num*R.Numw (N-I) , T.Den*R.Den** (N-I 1 >) j

(Id'.! -, 0 := 0)

Since I +Id = I 4, the comwtion of the four part functions is identical to F,
estabhshq the third condition.

