
Translating an FP Dialect to L - A Proof of Correctness 

Dennis M. Volpano 

CSE TR 85001 

Oregon Graduate Center 
19600 NW Walker Rd. 
Beaverton, OR. 97006 

Abstract whiledo : 2 + 1 

A dialect of FP includes FP selectors over 
tuples and the F P  combining forms composition, 
condition, iteration and tuple construction. The 
primitives in a dialect are the primitive operations 
over some abstract data type. In this technical 
report, the translation of an FP dialect to an 
abstract imperative language L is formalized. A 
denotational description of L is given and the trans- 
lation is proven correct. 

Preliminary definitions 

Before proving the correctness of the transla- 
tion, some definitions and conventions must be 
given. 

assign : 0 + 1 

cond : 3 -+ 1 

constr, : n --r 1 

The operator aasign is a family of nullary opera- 
tors indexed by elements of no, Sezp and Id. For 
example, if tl E u,,, z E Sezp and n E Id then 
assign ( n  , apply ( t l  , z )) is a nullary operator. Let 
Tn be an f2-algebra whose carrier is the set of all 
fl-terms and whose operators are those in n. 

Definition. (Domains). Let Id be a set of cell 
names (identifiers) and V be a domain of objects. 
Let Sezp be the domain of store ezpressions. A 
store expression is a cell name or a sequence of 
store expressions. Let Env denote the domain of 
environments where an environment is a sequence 
of cells such that each cell is a triple 
<CELL, name , contents > [l]. 

Definition. Let the signature C be given by: 

while : 2 -, 1 

Conventions. Unless otherwise noted, p , f and g 
are Cterms, 1 , l 1 , l 2  ,... are n-terms and 
z , z l ,  z z ,  .. . are store expressions. Upper-case 
italic symbols ( I ,  I' , ...) will be used as metavari- 
ables ranging over cell names. 

Definition. The apply constructor builds an appli- 
cation of a primitive in uo to a store expression. 
The usual extractors, operator and operand, can be 
used on constructions built with apply but do not 
appear in our proof since no further interpretation 
is given to apply in the domain of n-terms. 

Definition. Let new be a function that  maps a set 
of cell names s to a single cell name such that  
new ( 8 )  4 s .  Let cells : Sezp -+ P ( I d )  be a 
function defined as follows: 

[I,, : n  4 1  cells I = { I )  

cells <zl ,  ..., z. > = cells z ,  U . . . U cells z, 
The operator uo is a family of nullary operators 
each of which is a primitive operation over some Definition, Let store Id -, (Env + Env)  and 
abstract data type. Let Tz be a C a k e b r a  whose fetch sezp + ( E ~ ~  + V )  be functional forms 
carrier is the set of all C-terms and whose operators defined as follows: 
are those in C. 

(store I )  = apndl I[-, T, I], 21 
Definition. Let the signature f2 be given by: 

(fetch I )  = eq [T, 2 11 -+ 3 1; 

(fetch I )  tl 



January 11,1985 

constr, ( Q ( @ ( f  I, 2 ,  VI), z),..., 
The functional form fetch on store expressions 
behaves like the function "lift" on sequences in [2]. + ( @ ( / n ,  2,  vn), 2 ) )  

Definition. Let 9 : Tn -+ Sezp be a function 
defined as follows: 

I) whiledo (1 1, 12) = 9 l2  

Intuitively, 1 is the store expression representing 
the array of cells in which results would be "dep* 
sited" if 1 were evaluated. 

Definition. Let 6 : Tn x Sezp --r Tn be a function 
such that 9 6 (1, z ) = z . The mapping 6 must 
satisfy an axiom as we shall see. Intuitively, 6 per- 
forms a result-cell coercion by forcing the "result" 
cells of 1 to be cells (z ). 

Definition. Let J, :  Tn x Sezp -+ Tn be a func- 
tion. Intuitively, J, (1, z ) preserves the meaning of 
the n-term 1 and preserves the store expression z. 
As we shall see, the mapping J, must satisfy two 
axioms. 

Definition. Let @ : Tc x Sezp X P (Id ) -+ Tn 
be a function. In @ ( f  , z , s ), j is a Cterm to be 
translated, z is a store expression to which f is 
applied and s E P (Id)  is called the reserved set. 
The set s is reserved in the sense that any cell 
names created by virtue of translating f must be 
cell names that do not appear in s. Let @ be 
defined as follows: 

where f , f are Eterms, v l = a  and 
v3 = =elf8 ( ~ @ ( f , - ~ ,  z ,  V , - ~ ) ) U  v , - ~ .  

Definition. Let p : Tn --r (Env -+ Env ) be a 
"meaning map" or representation function giving 
meaning to Q-terms. The meaning of n-terms is 
couched in FP so that the FP algebra can be used 
in proofs about Q-terms. Let p be defined as fol- 
lows:' 

p Baasign ( I ,  apply (select,, <zl ,  ..., z, >))I = 

(store I) [(fetch z, ), id] 

P O-ign(I, ~ P P ~ Y ( O P ~ ,  z ) ) ]  = 

(store I )  [opr (fetch z ) ,  id] 

p lwhiledo (11, 12)) = 

(fetch rill) p 0111 + 

p !whiledo (11, 12)] p 11s) ; id 

The mappings 6 and J, must satisfy the following 
axioms: 

(fetch z )  p 16(1, z ) ]  = 

(fetch 9 I )  p gl 1 (All 

where f is a primitive in uo. 
(fetch z ) p (J, (1, z )]  = (fetch z ) (A21 

@ ( f  * g , z , s ) =  
(fetch 9 Q ( l ,  2)) p BJ,(l, z ) ]  = 

*mi(@(g, z , a ) ,  @(f , 9 @ ( 9 , z ,  a ) , ~ ) )  
(fetch 9 1 )  p 1 1  1 (A31 

Axiom (Al) is the axiom of "resultcell coercion" 
cOnd (@ (P , ), (@ ( /  , J 1, 9 (9 1 1 ) ) I  and axioms (A2) and (A3) are the axioms of preber- . . . . 

@ ( g I  Z ,  8 ) )  vation. 

@(while p / , z ,  8 )  = 
The function (fetch 9 1) ia interpreted aa 

whiledo(@(p, z ,  a),  b ( @ ( / ,  2 ,  a),  2 ) )  fetch (9 (1 )I. 



January 11,1985 

Proof of correctness 

The translation is now proven correct by 
showing that  @ preserves the meaning of Eterms. 
The proof proceeds by structural induction on C- 
terms. 

Theorem. For any C-term f , store expression z 
and reserve set s E P (Id ), 

(fetch r ) @ ( f ,  z ,  8 ) )  P ! @ ( I ,  z ,  811 

= f (fetch z ) 

Proof. Proceed by structural induction on C-terms. 
As basis cases, consider the FP selectors over tuples 
and the primitive operations over some abstract 
data type. If f is a primitive operation and 
new (s ) = I then for any environment e: 

(fetch r ) @ ( f ,  z ,  8)) * P  [ @ ( I ,  z ,  811 : e 

= (fetch r) assign ( I ,  apply ( f , z ))) 

P O-ign(I, a p p l y ( f ,  z))1 : e 

= (fetch I )  (store I )  [f (fetch z ), id] : e 

=(fetch I ) :  <<CELL,I, f ~ ( f e t c h z ) :  e >, e >  

= f (fetch z ) : e 

If f is an F P  selector, say select,, and 
new (s  ) = I then for any environment e : 

(fetch r) 9 (select,, < z 1, ..., z, >, 8 )) 

p [@(select,, <z l ,  ..., z, >, s ) ]  : e 

= (fetch I)  

p sseign ( I ,  apply (select, , < z l, ..., z, >))I : e 

= (fetch I )  (store I )  [(fetch z,), id]: e 

= (fetch I )  : <<CELL, I, (fetch z,) : e >, e > 

= (fetch z, ) : e 

Now suppose that  for any C-term f , store expres- 
sion z and reserve set s ,  

(fetch r ) @ ( f ,  z ,  8)) P O @ ( f ,  z ,  811 

= f (fetch z ) 

Composition. 

( fe tchr )@(f  * g , z ,  8)) * P  I@(! * g , z , s ) l  

=(fetch r ) @ ( f ,  r) @ ( g ,  z ,  a),  8)) 

P Osemi(@(g, z , ~ ) ,  @ ( f ,  r )@(g ,  z , ~ ) ,  s)) l  

{defn. of r) and @) 

= (fetch r ) @ ( f ,  r) @(!I, z ,  81, 8 1) 
P l @ ( f  , r ) @ ( g J z , 8 ) , s ) l  ' P  ! @ ( g t z , s ) l  

{defn. of p )  

= f .(fetch r )@(g ,  2 ,  8))  * P  O@(g, z ,  811 

{ind. hyp.) 

= f g (fetch z ) {ind. hyp.) 

Conditional. 

(fetch r) @ (P -, f ; g , z , 8 1) 

= (fetch r) cond (@ (p , z , 8 ), 

6 ( @ ( f ,  2 ,  s ) , r ) @ ( g ,  2 8  8))) 

@(9  v 2 ,  8 1)) 

= ( f e t c h r ) 6 ( @ ( f ,  z ,  s ) , r ) @ ( g ,  z , s ) ) )  

{defn. of r)) 

= (fetch q @ (g , z , 8 )) {defn. of 6) 

By definition of @, 

P O@(P -, f ; g ,  z , s ) l  

Theref ore, 

(fetch r) @ (P -, f ; g , z , 8 1) 
P O@(P -+I ; g s z , s ) I  



January 11,1986 

=( fe t ch  q 4 ( g ,  z ,  8)) = (fetch q 4 (while p f , z  , s  )) 

(fetch t ) @ ( P ,  z , u ) )  * P  !*(P, 2 ,  a ) ]  + (fetch 9 4 ( P ,  2 ,  8)) P 1 4 ( P ,  z , s ) l  

r P ( @ ( f  , 2 ,  $1, 9 4 ( g , z ,  $111; I.( !@(while P f ,  z , s ) l  

r l @ ( g ,  z , s ) l  r la(@(!, 2 ,  81, 211; id 

{defn. of p )  
= ( fe t ch  V*(P ,  2 , s ) )  * r  O@(P, 2 ,  a ) ]  -* 

(fetch 9 4 (g , , 8 1) =( fe t ch  9 @ ( ~ ,  2 , s ) )  * r  I @ ( P ,  z , s ) l  + 

P V ( @ ( f ,  f ,  81, q @ ( g ,  f , d))]; (fetch 9 @ (while p f , z  , 8 )) 

(fetch r l + ( g , z ,  8))  II I + ( g ,  2 ,  a ) ]  r I*(while P f , z ,  811 P 0 6 ( @ ( f ,  z , s ) ,  211; 

{FP algebra) (fetch r) 4 (while p f , z  , s  )) {FP algebra) 

= ( f e t c h 9 4 ( ~ ,  2 , s ) )  * P  O@(P, z , s ) ]  + =( fe t ch  9 4 ( p ,  z ,  8)) * ~ r  I @ ( P ,  z ,  a ) ]  + 

(fetch r l @ ( f ,  z ,  8)) * I ,  ! a ( / ,  2 ,  a ) ] ;  (while p f ) *( fe t ch  z )  p 1 6 ( 4 ( f ,  z ,  s ) ,  z ) ] ;  

(fetch 9 @ ( 0 ,  z , ~ ) )  C( I*(o, z , ~ ) ]  (fetch r) 4 (while p f , z  , s  )) {fix. ind. hyp.) 

{axiom Al)  
= ( fe t ch  r l @ ( p ,  z ,  8)) P O@(P, 2 ,  811 + 

= p (fetch z  ) + f (fetch z  ); g (fetch z  ) (while p f )  * ( f e t c h q @ ( f ,  2 , s ) )  

{ind. hyp.) r , z , 8 ) ] ;  

= (p + f ; g ) (fetch z )  {FP algebra) 
(fetch q @ (while p f , z  , 8 )) {axiom Al)  

Iteration. Proceed by fixpoint induction. (while p f ) . ( fe tch  9 4 ( f ,  z ,  8)) 

(fetch r l Q ( ~ ,  z ,  8)) P !Q(L, 2 ,  $11 /J I @ ( /  # z , u ) l ;  

(fetch z  ) {defn. of 9) 
= (fetch q 4 (J., z , s  )) p 0 L ] {defn. of @) 

= p (fetch z  ) + (while p f ) f (fetch z  ); 
= {FP algebra) (fetch z  ) {ind. hyp.) 

= I (fetch z  ) {FP algebra) 

Now the fixpoint inductive hypothesis is given by: 

(fetch q 4 (while p f , z  , s )) 

r !@(while P f , z ,  811 

= (while p f ) (fetch z  ) 

Assume the fixpoint inductive hypothesis. Then, 

(fetch 9 4 (while p f , z  , s  )) 

Cc !@(while P f , z ,  811 

= (fetch q 4  (while p f , z , s  )) 

r [wh i l edo(@(p ,  2 ,  8 ) , 6 ( @ ( / ,  2 ,  81, z))]  

{defn. of 4) 

= (p  + (while p f ) f ; id ) (fetch z  ) 

{FP algebra) 

= (while p f ) (fetch z  ) {FP algebra) 

Construction. The following proposition is needed 
in the proof of construction. 

Proposi t ion .  For any n-term of the form, 
conatr, (J, (1 z  ) ,..., J, (1, , z )) where z  is a store 
expression and i # j , 
(fetch rl JI (I,, 1) ~c O J ,  (I,, z  )I 

= (fetch rl J, ( 4 ,  z  1) 

Proof. If 9 J, I ) # 9 * ( 1 ,  1 then by 
definition of fetch the proposition holds. Suppose 
It = Q ( f , ,  z ,  v,) and 1, = 4 ( / , ,  z ,  v,) where 
v, and v, are reserved sets such that 



January 11,1985 

v ~ + ~ =  cells ( q @ ( f t , z ,  v t ) ) U  v t .  If i < j 
then without resultrcell coercion q (I, (1, , z ) E v, . 

Therefore q (I, (1, , z ) # q (I, (1, , z ) since v, is a 
reserved set. Similarly, if i > j then without 
coercing result cells q (I, (1, , z ) E v, . Therefore 
q (I, (1, , z ) # q (I, (1, , z ) since v, is a reserved set. 
Hence q (I, (1, , z ) = q (I, (1, , z ) only if 1, and 1, are 
the products of a resultrcell coercion such that 
q tc, (1, , z ) = 11 (I, (1, , z ) = z . By axiom (A2), 

(fetch 2 )  p 0t,!~(l,, z ) ]  = (fetch z )  

and since z = q $ (I,, z ), the proposition holds. 

The proof of construction now proceeds as follows: 

(fetch q ( I , ( @ ( f ,  , z ,  v,), 2 ) )  

c( no (If 1 I..., f.  I, Z 3 s )I 

=(fetch q ( I , ( @ ( f , ,  2 ,  v,), 2))  

P Oconst~n ((I,(@(f 1 , z ,  v,), z), . . . ,  

(I,(@(f., 2 ,  vn), z ) ) l  

{defn. of 9 )  

=(fetch rl(I ,(@(fl> 2 ,  v,), 2)) 

/J lJ*(Q(r.J 2 ,  v.), 211 . - .  . 
cl O$(Q(f 1, z ,  vl), z ) ]  

{defn. of p )  

= (fetch q (I, ( 9  ( f ,  , z , v, ), z )) 

/J l l*(@(fl,  2 ,  ~ l ) >  211 . . .  
P U(I,(@(f 1 > z >  v1) ,z) l  

{proposition) 

= (fetch t l 9  ( f  I, 2 ,  Vl)) 

P n * ( f l , z ,  Vl)] . - .  
P U(I,(@(f 1, 2 ,  v1), 211 

{axiom A3) 

= f ,  - ( fe tch z )  

fi U( I , (@(f t - l ,Z ,  V,-l), 211 . . . 
P U(I,(@(f l ? ~ ,  v1),z)I 

{ind. hyp.) 

References 

(1) Backus, J., "Can Programming Be Liberated 
from the von Neumann Style? A Functional Style 
and Its Algebra of Programs", CA CM, 21, 8, 1978, 
pp. 618641. 

[2] ----, "Function Level Programs as Mathematical 
Objects", ACM Conf. on Functional Programming 
Languages and Computer Architecture, Ports- 
mouth, NH, 1981, pp. 1-10. 

= f , (fetch z ) {axiom A2, i - 1 times) 

This concludes the proof of correctness 


