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Abstract 

A plausible, probabilistic theory for release testing of software is presented. In a release 
test a given program is assessed and testing ends. The theory gives the number of test 
points that must be used to  guarantee correctness with a given probability. Its strengths 
are: nothing need be assumed about the distribution or likelihood of failures or faults a 
priori; and, i t  is a true correctness theory, not one predicting future behavior by sampling 
a supposed "operational distribution. Application of the theory t o  partition testing and 
structural testing suggests ways to  decide when and how those methods should be used. 



1. The Many Kinds of Testing 

Testing of computer software occurs in a wide variety of situations, each with different 

goals. Initial unit tests are often part of debugging, for local diagnosis and fault 

correction. When software is first integrated, testing may provide input to  a model of 

fault repair that  seeks to  predict the effort needed to  reach an acceptable level of quality. 

And finally, when software is released, test performance is pure assessment: a t  best no 

failures are found, but in any case the purpose of the test is to  gain confidence in the 

decision to  stop testing. Theories appropriate to  these distinct goals also perhaps are 

distinct. Debugging theory may require a model of the programming process that  

includes the import ant psychological contribution of the human programmer [I]. The 

fault-correction process is so complex that an empirical model with many parameters for 

fitting complex behavior may be appropriate [2]. 

Theories of testing have often lacked a clear focus [S]. An "absolute" theory views 

the program and its specification as a puzzle, and tests as probes intended to  solve it. 

The object of testing is t o  find such clever tests that the puzzle can be unravelled, the 

program can be shown by the tests t o  be correct. Although in special cases of restricted 

languages [4] or special knowledge of the form the correct program must take [5, 61 the 

absolute view has been successful, in general it must fail because the problem of fixing 

the infinite behavior of a program with a finite number of test cases cannot be solved [7]. 

A "debugging" theory seeks to  detect errors that  commonly occur in programs. Tests are 

so chosen that  often-made blunders will be caught. Examples of such schemes are 

structural testing (for a recent example see [8]), in which the program's parts are 

exercised; and domain testing based on the specification, which seeks to  catch out the 

programmer who has omitted cases or confused boundary conditions [9]. These debug 

methods are very useful--indeed, faced with the actual unit testing of real software, no 

other systematic method is available--but they cannot claim theoretical validity. To see 

this, imagine the programmer as an antagonist. If the debug methods to  be used on a 

program were known, the program might be adjusted to  pass its tests, yet still be 

incorrect. 

The release test represents a clean situation. In the simplest case the test exposes 

no errors. The goal of a release-test theory is t o  assess the confidence inspired by this 

success, as the debug theories cannot. One may hope to  realize this goal without 

considering the process by which the software was developed. Any useful theory of 

release testing must be probabilistic in nature. Testing often stops only because 

resources, patience, ingenuity are exhausted. The quality of the resulting test can be 

expected to  vary, so success has varying implications for the confidence to  be placed in 

the program. An absolute theory can only call most such tests failures, and cannot 



distinguish the better from the worse. 

2. Tests as Samples of Program Behavior 

"Probabilistic" testing theories have not been popular (but see [lo, 11)). The idea that  

tests are samples allowing statistical statements to  be made about a program seems 

unexceptionable, but there is controversy about the significance of these statements. 

Existing models and analogies are flawed. 

2.1 Input data Space 

The most straightforward statistical view of testing sees the test inputs as drawn 

from the entire input space as samples. By observing the program's behavior on these 

samples, predictions can be made about its behavior on an arbitrary sample not yet 

drawn. Samples must be independently selected, and the likelihood that  a given input be 

selected must conform t o  actual usage. There is an  "operational distribution" for any 

program, the probability F(x) that  input x will actually be used. For a sample drawn 

according t o  this distribution, standard methods can be used to  predict the probability of 

failure, and the confidence to  be attributed t o  this prediction, based on the failure 

behavior of the sample. For 1 - e confidence that  the probability of no faults is a t  least 
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points must be drawn from the distribution without a failure [ll]. For example, 1-.1 

confidence that  the probability of no faults is .95 requires 45 test points. The double 

probability in the theory is a flaw, since it is not clear whether one should seek high 

confidence in a modest probability, or modest confidence in a high probability; a single 

number would be better. The result should depend on the size of the input domain, and 

on the size of the program, but does not. Finally, the numerical value seems much too 

low. 

Of course, if the operational distribution for a problem is not known, it cannot be 

used t o  determine test samples. Another distribution (say the uniform one) cannot lead 

t o  accurate predictions, because it may draw points from an unlikely part of the domain, 

or fail t o  concentrate them in a likely part. Indeed, for typical very large input spaces, 



the uniform distribution is so unlike the actual operational distribution that  it is unlikely 

t o  select any point that  could actually occur. For example, in testing a program whose 

input is a radar signal, the difference between actual signals and uniformly distributed 

random tests is dramatic, because the actual signals have a substantial structure the 

overwhelming majority of "possible" inputs lack. Similarly, regularities in each record 

field, and in the relationships between fields, make a typical payroll master file very 

unlike randomly generated data. In some cases enough information may be available 

about the input space to  approximate the operational distribution. For the radar one 

can use live signals, and for the payroll, historical files. 

Sampling according to  an operational distribution has a conceptual flaw more 

serious than the uncertainty of the distribution. Programs often solve problems in which 

no distribution describes the usage. When the program is large and complex, its inputs 

may all be special cases in the sense that  behavior on one input is unrelated to  that  on 

others. Then sampling is a poor idea, precisely because tests are samples not so much of 

the input space, but of parts (or combinations of parts) of the program. Since code is 

produced under widely varying circumstances, knowledge about the quality of one part 

predicts nothing about another part. The statistical theory assumes a uniformity in the 

process being sampled, such that  good behavior often repeated in one area has 

implications for behavior in a seldom-used area. This assumption obviously fails for a 

program comprising many special cases. 

Thus one never knows if the right distribution has been used, or if any distribution 

is appropriate. It is a common experience for software t o  pass stringent tests, as  closely 

duplicating the actual operating environment as possible, yet fail badly as  soon as it is 

used for live data. 

2.2 Time Sampling, Mean Time to Failure 

Some programs are continuously in operation, so that  the idea of sampling from an 

input space seems t o  apply to  them less well than sampling over the time domain. Such 

programs are often called "real time" because they respond t o  demand input from the 

environment. Operating systems and remote inquiry/control systems are important 

examples, and most "embedded" systems and process-control systems are of this kind. In 

the most common statistical testing scheme such a program is put into operation and the 

time distribution of its failures observed [12]. Conclusions are then drawn about the 

likely time until the first failure, should the program be restarted afresh. If the program 

were a natural process, operating according t o  unknowable laws, this would be the best 



one could do. 

However, the idea of inputs and an operational distribution is really behind time 

sampling, too. All time intervals of program execution are not equally significant, and 

unless the program is responding to  typical driving inputs (that is, drawn from an 

operational distribution), the statistical behavior observed across time is irrelevant to 

actual operation. In some cases this is obvious. For example, an operating system that 

is only idling--no tasks are changing status or resource usage, and things have fallen into 

a regular pattern--can be run indefinitely without collecting any real information on its 

likelihood of failure. Similarly, when a process-control program is handling only priority 

exceptions that  override normal complex operation, its behavior has little predictive 

power. 

Thus time-sampled theories have the flaws of those requiring an input operational 

distribution, only hidden behind observations in the time domain. 

2.3 The Analogy to Quality Control Sampling 

The analogy between production of software and production of s+called durable 

goods is an attractive one. Because the latter is better understood, there is a continual 

call for making software as appliances are made, with consequent improvement in quality 

and productivity. The language reflects our desires: "software factories," "software 

blueprints," and ultimately, "software quality assurance," are meant to  imply that the 

desirable characteristics of the analogous manufacturing process have been captured. 

Most of these phrases are empty. An analogy is useful when it shows what to  do (and 

how to  evaluate the result) in an unknown field. A clarion call for (say) "software 

assembly lines" is merely silly without some idea of what these might be in practice. It is 

desirable to  replicate Henry Ford's success, but Ford did not succeed by (say) adapting 

water power to  the task, however well this had worked to industrialize textile mills. 

Analogies can be counterproductive, too. When the correspondence is weak or 

spurious, thinking about an unknown field in familiar terms only hides the actual 

principles of the new subject. There is reason to  believe that  the "factory" or 

manufacturing analogy to software production is a misleading one, if only because the 

complexity of software is so much larger than anything else in the man-made world, and 

the process so a t  the mercy of human vagaries. Successful manufacturing relies on 

simplicity and strong physical laws central to  the production process, neither present for 



software. 

Quality assurance is a form of sampling intended to  apply to  mass production of 

functional objects. The objects manufactured are supposed to  do something, and it is 

the task of quality assurance to  see if indeed they do. This is necessary for mass 

production as it is not for hand-crafting because the steps of production do not directly 

relate to  the intended function. The assembly line station where part of a machine is 

installed has rules of operation, but the worker there can only tell if the rules are being 

followed, not if the complete machine is going to  work. 

Quality assurance selects complete units (or subunits in complicated cases) created 

by the mass production process, and tests them (perhaps destructively) for the desired 

characteristics. When the samples are selected a t  random (that is, without correlation to  

the production process), the expected failure rate and the confidence in that rate can be 

calculated. The analogy to software development and testing seems clear: software 

parts are created to  designs that those writing code do not know fully, so the integrated 

software must be tested for the behavior desired. The only difficulty is in the sampling: 

there is only one unit produced. Since software is intended to  have very complex 

behavior, it is also difficult t o  see what is analogous to  testing of a unit pulled from the 

assembly line. Running an operating system through its paces is not very similar to  

putting a washing machine through the cycle. However, these two difficulties appear to  

cancel: a typical software test is a sample, and this reintroduces the statistical element. 

The complete analogy is thus that  tests are conducted a t  random on completed software, 

and the expected failure rate is predicted from the test results. 

Again, the operational distribution enters, because it is evidently necessary that 

tests represent typical cases. The analogy is thereby called into question, because this 

idea has no counterpart for assembly lines. The correspondence would be better if a 

single manufactured unit were subjected to  many partial tests. 

The cause of assembly-line failures is assumed to  be in components or their 

assembly, each such difficulty present with a small probability. This probability is over 

the space of all components or assembly operations, and this space is appropriately 

sampled so long as there is no correlation between units selected for test and component 

circumstances. There would be such a distorting correlation, for example, if every tenth 

complete unit is selected for quality assurance testing, and some component arrives a t  an 

assembly station in batches of ten, in a fashion that  damages the last t o  arrive. Then 

the unit assembled from this last, damaged component is likely to  malfunction, but the 

quality-assurance sample will be misleading. If every damaged unit is taken, it will show 



that all units fail; if the cycles of ten are not aligned, it will show that  no units fail. 

The cause of program failure is not so clearly an identifiable component of the 

software. For example, which part of a system has failed if a typing error excites a case 

that the system is not required to  handle, and for which code has not been provided? 

However, in most cases even design flaws of omission can be attached to some portion of 

the program. A subroutine that fails t o  provide for some potential input is something 

like a physical component with improper ratings, and can be said to  fail. However, the 

appropriate way to sample and detect failures of this kind is not clear. Obviously one 

cannot sample the "component space" of all possible routines, since that space is very 

large and only one member is available. 

Test data points for a system as a whole provide only a distorted probe into the 

system's parts, because by the time values reach a deeply buried part, they have been 

conditioned in a way that  makes them heavily correlated. For example, uniformly 

distributed system inputs may very well result in only a single test value being sent to  

some internal routine; it does not augment the routine's sampling to  enlarge the system 

sample. The difficulty is that  we cannot sample the space of interest, but must use a 

probe into that  space (the input) that  does not necessarily treat the members fairly. As 

an analogy to  the more usual probability situation, suppose one were trying to  determine 

the color of balls in an urn by sampling, but the balls could only be selected by a 

peculiar mechanism. If it were deduced that all were silver, it would seriously 

compromise the result to  learn that the balls were polished brass and steel, and the 

"random" selection used a magnet. It does not help to  use an operational distribution in 

selecting inputs, because this does not remove the bias in the component space. 

Thus the component model of failure and the idea of sampling over a system input 

or time space are fundamentally a t  odds, and the analogy to  durable-goods quality 

assurance is not useful. 

3. Probable Correctness 

A program is correct if no input exists for which it fails. By selecting independent inputs 

a t  random and observing their success or failure this property is sampled directly. In the 

simplest case all tests succeed, and we wish to  know the significance of this result: how 

likely is it then that the program is correct? The samples are drawn from a pool of 

potential executions, each either a success or failure; the continued absence of a drawn 



failure makes it more and more likely that  there are none. 

The distinction between "probably correct" and "unlikely to  fail in use" is an 

important one. If the sample pool is one of success and failure, and inputs are only the 

unbiased mechanism for drawing from this pool, then no operational distribution is 

needed. What we seek is the probability that  no failure points exist t o  be drawn, not the 

probability that  some pattern of use will not excite a fault. 

In a different context, Valiant [13] has found a clever way to  analyze exactly this 

situation. Consider sampling a space seeking some property of its objects. Define N(h, 

S) as the minimum number of Bernoulli trials needed, each with a probability a t  least 

l /h  of success, t o  force the probability of having less than S successes to  below l /h .  If a 

space contains K kinds of objects, and probability a t  least p is required that  each of 

them has been detected by a drawing, Valiant shows that  N ( I / ( ~ - ~ ) ,  K) independent 

samples suffice. The application to  testing is appealing because nothing need be assumed 

about the frequency of occurrence for the objects being sampled, nor about the drawing. 

That is, we need not know if the program can fail, and need not assume an operational 

distribution. Valiant further shows that  

for all S 2 1 and all h > 1. 

For a release test the objects are program executions, each identified with an input, 

each either a success or failure. Thus K = 2, so for example if .99 probability of 

correctness is required, it will suffice to  take 

independent samples without a failure. For .9999 probability of correctness, 

samples are required. 

Intuitively, the number of tests required to  obtain a certain degree of confidence in 

a program ought to  grow with the program size, and with the size of the input domain; 

the theory presented above does not properly depend on these parameters. Furthermore, 

without recourse to  the idea of predicting future behavior (and hence again falling back 

on an operational distribution), how can an appropriate level of correctness be 



determined? These questions can be addressed by changing the sample space. 

3.1 Domain Testing for Release 

Consider partitioning the program domain into M parts Dl, Dq, ... , DM. Then if 

the sample space is taken to  be success/failure within a partition, there are between M 

and 2M different kinds of objects (partitions might be so chosen that  all members either 

succeed or fail). If N ( I / ( ~ - ~ ) ,  2M) independent samples show only success, the 

probability of correctness is a t  least p. More tests (since N(h, S) increases with S) 

guarantee more: parts of the domain that do not appear in the sample are likely never 

to  appear. An untested partition may be known to be important, however. Then direct 

testing can be used: samples drawn independently within each partition. The N ( I / ( ~ - ~ ) ,  

2) estimate then applies to  failures within each partition, but a total of MN(1/(1-p), 2) 

samples are required to  gain probability p of correctness over the whole domain. Had 

these samples been taken overall, it  would have improved the correctness probability. 

For example, the total number of points taken in 85 partitions to  guarantee .99 

probability of correctness, would give .9999 probability of correctness if chosen 

disregarding partitions. 

Duran and Ntafos [ll] computed the effectiveness of domain-restricted tests vs. 

overall random testing. It is difficult to  evaluate the many assumptions they required for 

the calculation, but their result was that  there is little difference. Here we can 

distinguish two cases: 

If overall sampling reaches all partitions more or less uniformly, partitioning is not 

useful. But there is no reason to believe in uniform coverage a priori, and no way 

to  verify it after the fact. In a release test where only success is observed, the 

distribution of success observations shows nothing about the failures, and hence 

nothing about the partition coverage. 

On the other hand, suppose that some partitions may be neglected to  an arbitrary 

degree by sampling that  ignores partition boundaries. The assumption that  failures 

are uniformly distributed across partitions is reasonable if partitions arise from 

specifications, so that  none represents a harder programming problem than the 

others. Then no global sample, however large, can give the degree of confidence 

that  samples within partitions can. 



There is a common-sense explanation of a lower confidence within partitions 

requiring more sample points. If the space is one of success and failure within partitions 

(as it is under the assumption of failures uniformly distributed among them), then the 

global confidence result is simply wrong. In this theory the only parameter is the space 

over which the test samples are drawn; hence a conflict in results must be resolved by 

selecting the right space. If there is reason to believe that  failures will be distributed 

uniformly across partitions, and that some partitions are under-represented in a random 

drawing from the whole domain, then it makes sense to  test those partitions separately. 

On the other hand, if little is known about failures by partition, greater confidence can 

be obtained from uniform random testing. In either case, the level of correctness can be 

selected using an estimate of the likely failure rate. When experience shows that  faults 

are likely, a low level of probable correctness suffices. For example, if the code for some 

partition has proved difficult t o  get right in the past, then that partition need only be 

tested a t  a low probability. On the other hand, where a complex domain is difficult to  

divide, and there is reason to believe that the code is of good quality, a higher probability 

overall is appropriate. 

The often-suggested partitioning idea that inputs within each partition should 

require or receive "the same treatment" (all tests should either succeed or fail in a 

domain) seems to be irrelevant in this theory. 

3.2 Structural Testing for Release 

Intuitively, the textual parts of a program are its "components," each perhaps 

faulty. The granularity of intuitively correct components is a tricky subject. For 

example, components must be allowed faults of omission. A statement missing is not a 

fault in statements near where it should be; but, it could be thought of as a fault in a 

procedure that should contain it. However difficult it is to  define plausible units, a good 

bound on their number probably lies between the number of procedures and the program 

line count. 

An input may invoke several fault units, however. Should the sample space be 

defined by units, by the power set of units, by all sequences of units? This question can 

be answered by considering the negative side of a successful release test. The objects not 

discovered in the drawn samples are failures and successes of a certain kind, depending 

on the choice of sample space. A good space is one in which the statement "this kind of 

failure will probably not occur" is worth what it costs. When more kinds are considered, 



more tests will be required to  reject them a t  any given probability level. 

First consider fault units alone. For one particular unit S, the space is 

success/failure/S-invoked/S-not-invoked. A successful random sample of size N ( I / ( ~ - ~ ) ,  

4) would then guarantee probability p that  failure with S invoked cannot occur. This 

same sample, however, would predict the same for any other fault unit. If failures in the 
L units were independent, this test would yield probability p that no unit fails, among L 

units. That is, the units must be tested to  correctness probability pl/L to  guarantee 

probability p for the independent collection. Taking p = 1-e, and keeping only the first 

two terms of the binomial series expansion, = 1 - e/L, gives 

For a program with 500 fault units (if 20 statements constitute a fault unit, then there 

would be 10,000 statements), the number of tests t o  guarantee .99 probability of 

correctness would be 

selected independently without a failure. 

Any coverage technique can be used to  define a sample space, but these spaces are 

large (or infinite) and their significance dubious. For the space of fault units themselves, 

the result is "the program probably will not fail when any unit is invoked." For sets ( 
resp. sequences) of fault units, it is "the program probably will not fail when invoking 

any set ( resp. sequence) of units." Viewed in this way, the combination spaces (the 

sequence one corresponds to  path testing) do not seem worth their cost. The sequence 

space is infinite; even the fault-unit-set space is hopelessly large--2L+1 objects for L fault 

units. (For example, 2501 > lo5'.) The ideal structural space would be described by "the 

program probably will not fail when any fault unit is invoked with any program data 

state." This space is usually infinite. 

The large structural coverage spaces suggest the futility of conventional test 

coverage methods for release testing. In these methods one test is required for each 

structural unit. Thus in a space of size K, about K samples are taken. They are likely 

not independent, but even if they were, the probability of correctness is nearly 0. (For K 

only 500, the value is about probability .002 of correctness.) 

Because fault units are only selected indirectly by inputs, there is no direct analog 

to  sampling within domains; the samples cannot be made independent. Hence the tester 

concerned with unsampled fault units has no recourse but to  increase the number of tests 



overall; and, as for partitions, success-only coverage cannot be trusted. However, if fault 

units can be directly executed in isolation, as they might be a t  the procedure level, then 

(literally) unit testing can be done. It seems reasonable to  assume that  faults are equally 

likely in each unit, and that  a random input selection may badly neglect some units. 

Under those assumptions, unit testing is wise, and the previously calculated estimates 

can be applied to  each procedure. If there are 50 procedures, each with about 10 fault 

units, the number of tests for .99 probability of correctness in them all is 

Here the comparison between testing units and testing overall is not unfavorable, in 

contract t o  the situation for domain partitioning. 

It has been suggested [14] that partition and structural testing be combined by 

intersecting specification-derived partitions with structural coverage classes. This 

multiplies the sample space size, in order to  establish assertions like, "the program 

probably will not fail when any fault unit is invoked within any partition." There does 

not seem t o  be an intuitive gain in such combinations. 

3.3 Practicality of Random Release Testing 

The utility of random testing depends on the difficulty of generating test data and 

judging success/failure in results. Both input and output sides of this question are 

difficult. 

In large or unbounded input domains, arbitrary truncation is required. The 

distortion that  truncation introduces can be intuitively measured by imagining the 

program restricting the domain with explicit boundary tests. The input-generation 

problem is less severe for smaller units--partitions, or procedures with distinct, simple 

domains. 

Program output is even more difficult to  handle: who will examine a million results, 

and decide their success? Systematic procedures for generating input-output pairs cannot 

be used, because they conflict with the need to  choose independent input points. The 

only general solution to  this problem is an effective specification, one that  can be used to  

mechanically judge results. Existing specifications seldom have this property. An 

attractive alternative is "dual coding" [15] in which two independently created programs 



run against each other under test. 

If random testing were more respectable, it is likely that  many common-sense, 

clever tricks would develop around its use. For example, in the absence of an effective 

specification, heuristic methods could automatically categorize most test results, 

simplifying the task of human examination. The subject is certainly a candidate for an 

aritificial-intelligence expert system. 

4. Summary and Suggestions for Future Work 

A probabilistc theory of release testing has been presented that  does not depend on an 

operational distribution, and cannot be faulted for hidden input-space sample correlation. 

Because the theory depends only on selection of an appropriate space of objects that 

tests sample, it can be used to  analyze practical methods quantitatively. 

Some obvious ways to  validate this theory suggest themselves. First, some software 

systems have been tracked for failures following release, and the early versions of these 

could be tested to  show that  the confidence calculated is no better than subsequently 

found. An easier trial of the theory could take a large, ready-terelease software 

product, and test it sufficiently to  expose faults a t  the usual level. For example, a 

program likely to  contain one fault per 20 fault units (roughly the rate of carefully 

software-engineered systems) should not pass a release test predicting .95 probability of 

correctness. 
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