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Abstract 

With the arrival of parallel, multiprocessor computing systems, the solutions used in the 
past to  implement dynamic, list-structure memories for applicative language evaluators are no 
longer adequate. Almost all of the techniques in current use are based upon a "stop-and-collect" 
approach. When only a single processor is applied to  program execution, this approach is 
acceptable, but the relative cost of garbage collection becomes enormous when a concurrent 
evaluation using a large number of processors must be shut down to  re-organize storage. 

In this paper we review the suitability of various schemes for concurrent garbage collec- 
tion, and propose a new scheme that  allows incremental, parallel collection. Incremental collec- 
tion is attractive even for a monolithic memory, but has really compelling advantages when 
memory is partitioned into disjoint modules. The new strategy is a reference-counting scheme, 
modified to allow collection of cyclic graphs. It requires little explicit cooperation between 
evaluator and collector processes. 
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1. Dynamic, list-structure memory 

Since the introduction of the first list-processing languages, every evaluator has made use 
of memory in a way that emulates a dynamic, list-structure memory. Such a memory consists 
of individually addressable nodes, each capable of storing a pair (or possibly more) of data, 
which may be basic values or the addresses of other nodes. Fresh nodes are supplied by the 
memory upon demand, ideally without limit. Dynamic, list-structure memory is an architectural 
primitive of all abstract machines that implement list-processing languages. 

In the early LISP interpreters, the implementation of dynamic, list-structure memories was 
solved by design of an  emulator that  allowed its function to  be realized with a finite, linearly 
addressable physical memory. The emulation initializes linear memory into the form of a list of 
free nodes, and employs mark-sweep garbage collection to reclaim nodes that  had been allocated 
to  the evaluator, but are no longer in use to  represent the expression under evaluation. 

When most list-processing evaluators were interpreters, the overhead of garbage collection 
to  emulate a dynamic memory was acceptable. As evaluators became faster, however, memory 
management consumed an ever-growing fraction of total processing time. This is particularly 
noticeable since the most expensive activity involved in memory management is the in-line exe- 
cution of graph-marking and a memory sweep, which interrupts the normal activity of evalua- 
tion. 

Four approaches have subsequently evolved to  improve the performance of dynamic, list- 
structure memory emulations. None is completely satisfactory. 

1 .I. Par allel mark-sweep collection 

The in-line overhead of a mark-sweep collector can be partially overcome by introducing 
an additional processor to  execute the mark-sweep algorithm and to  allocate node addresses 
upon demand of the evaluation processor. Algorithms for such a collector have been proposed 
and proven correct. Synchronization between a memory management processor and an  evalua- 
tion processor can be confined to  

(i) low-level, hardware-supported synchronization of access to  physical memory, 

augmented by 

(ii) producer-consumer synchronization of allocation requests made by the evaluation process, 

and periodically, 

(iii) the state of an  evaluation process must be communicated to  the memory manager in order 
to  reveal the current roots of the active expression graph. 

The use of a parallel processor to  perform the memory emulation function is a direct approach 
to  support dynamic, list-structure memory by improvement of the best-known techniques used 
for in-line emulation. It suffers the disadvantages that  the processing load required to  imple- 
ment mark-sweep collection in parallel is approximately double that  of sequential in-line collec- 
tion. This is because in the marking phase, the parallel collector must use partially obsolete 
data locating the roots of the active expression graph. In consequence, a node eligible for collec- 
tion must be examined in two successive passes of the collector before it  can be confirmed that  
i t  can be collected. 

A recent analysis [HiC84] indicates that  parallel mark-sweep garbage collection will yield 
fairly modest performance gains over a sequential, stop-and-collect algorithm, and will not 
significantly relieve worst-case congestion of memory. The worst case occurs when the active 
expression graph nearly fills the available memory. 

1.2. Copying compaction 

An alternative to  the use of mark-sweep garbage collection is a scheme that  divides the 
memory into two or more workspaces. Allocation of new graph nodes occurs by sequential 
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address incrementation within a current workspace. When the current workspace has been 
exhausted, the active expression graph is copied into a fresh workspace, and compacted into an 
initial segment of the address space as it  is copied. This strategy with two workspaces "wastes" 
half of the total available address space, as the active expression graph cannot occupy more 
than one workspace a t  a time. However, this is not significant in a virtual memory system. 

Just as is the case with mark-sweep collection, the copying-compaction algorithms do not 
perform well when the active expression graph nearly fills a workspace. In a virtual memory 
system, workspace size should be expanded dynamically when the active graph grows to  occupy 
more than 70 per cent of a workspace. 

Copying-compaction has the advantages that  allocation is a relatively cheap in-line opera- 
tion for the evaluator, and that  memory fragmentation is effectively eliminated by compaction. 
However, copying is approximately twice as expensive as is the marking phase of a mark-sweep 
collector, and it  is less amenable to  parallel execution. 

A parallel copier requires exclusive access to  a node while it  is being copied, thus mutual 
exclusion synchronization is required between the copier and the evaluator, and on a per-node 
basis. Furthermore, the evaluator will incur the additional overhead of following indirection 
pointers whenever a reference is made to  a node in the old workspace whose contents have 
already been copied. This requires an implementation mechanism in which the evaluator 
"faults" on an indirection pointer, and retries its memory access on the node tha t  is pointed to. 

1.3. Reference counting 

Both the mark-sweep and copying-compaction schemes traverse the active expression 
graph in order to  preserve it  during the collection process. Reference-counting attempts to  
account for the potential use made of a graph node, and allows it to be discarded as soon as no 
further reference to  it  is possible. Reference counting does not suffer the disadvantage that  its 
overhead increases with the size of the active expression graph. However, it  has several other 
disadvantages: 

i) Cyclic graph structures cannot be reclaimed by reference-counting alone; 

ii) In-line overhead is incurred to  maintain reference counts, and this effectively increases the 
cost of each memory reference; 

iii) Reference counting requires more memory bits to  be devoted to  memory management than 
does graph traversal for marking or copying. Furthermore, reference counts may overflow 
any fixed field. 

Modified reference counting schemes have been proposed to  cope with various of these 
difficulties. One in particular, a modification in which reference counts are used to  trigger 
graph traversals in order to  detect cyclic structures, has been proposed by Ashoke Deb [Deb84]. 
Simulations indicate that  his scheme may incur far less overhead than either mark-sweep collec- 
tion or copying-compaction, provided that the overhead of maintaining the reference counts is 
not excessive. Other schemes based upon reference counting, yet able to  collect cyclic struc- 
tures, have been proposed by David Brownbridge [Bro85]. Our parallel collection scheme is 
based upon an extension of Deb's algorithm. 

1.4. Adaptive memory management schemes 

Many of the newly-designed, high-performance list-processing computer systems have 
turned to  the use of adaptive schemes for memory management. In a typical adaptive scheme, 
the nodes allocated to  the evaluator are partitioned into those whose lifetimes are so long tha t  
they can remain allocated for the duration of an entire evaluation, those whose lifetimes are 
short and which can be reclaimed quickly, and those whose lifetimes are indeterminate, and 
which must be subjected to  a more general storage reclamation policy. 
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Examples of adaptive schemes include the Lieberman-Hewitt "scavenging" collector 
[LiH83], and the "one-bit" reference counting scheme of [SCN84]. These have all been shown to  
improve performance in the cases they were designed to  handle. The difficulty with such 
schemes is that  they are all ad-hoc to  some degree, and don't suggest any general principles on 
which to  base memory management for functional program evaluators. Also, they do not admit 
use of parallel processing to  reduce in-line overhead. 

2. Memory management for a graph-reduction evaluator 

In considering the requirements of a dynamic, list-structure memory, it  is important to  
take advantage of any information available about how the memory is likely to  be used. For 
instance, if it  were known that a program in execution always allocates an initial set of nodes 
that  are not to be released until execution terminates, then these nodes might be reserved from 
the dynamic memory management activity. When the evaluator is allowed to  use the memory 
as a random-access store, and can perform explicit pointer assignments dictated by a program 
(as does a LISP interpreter, or a program written in a language with ref-type variables), then 
little can be said about how memory may be used. Thus memory management must use a very 
general algorithm to  reclaim nodes. 

At the other extreme, an evaluator that used list-structure memory only to  implement 
representations of data types composed with cartesian product and discriminated union would 
form only acyclic graphs. Storage reclamation of acyclic graphs could make use of reference 
counts just as well as any more general scheme. 

A graph reduction evaluator does not form exclusively acyclic graphs; a graph representing 
an application of fixpoint operator to  a recursion scheme may exhibit one or more cycles during 
its reduction. However, in practice, the incidence of cyclic graphs is very much less than the 
incidence of acyclic graphs. This suggests that a reference-counting scheme might successfully 
be augmented by a graph-traversal scheme in order to  handle cyclic graphs as the exceptional 
case. This is a circumstance under which Deb's modified reference counting collector might be 
used with considerable advantage. 

2.1. Modified reference counts: the sequential algorithm 

In describing algorithms for garbage collection, we shall revert to  the terminology of 
[DLM78] when referring to  the functional-language evaluator, and call i t  the "mutator" process. 
The only aspect of its operation that  concerns us is that  it  may mutate the active data graph 
occupying memory. 

In Deb's scheme, reference counts are maintained as the mutator constructs and modifies a 
graph. Whenever the reference count of a node is decremented, a pointer to  that  node is put 
into the "Garbage Can", which is a set of those nodes that  might be eligible for collection. Sub- 
sequently (it is not crucial just when this action is scheduled), the mutator is stopped and nodes 
in the Garbage Can are examined to determine if they can be collected. 

Any node whose reference count is zero can be collected immediately. As a node is col- 
lected, the reference counts of any nodes it  points to  are decremented, and hence pointers to  
those nodes are put into the Garbage Can. 

Any node N whose reference count is non-zero might still be collectable, if it  were deter- 
mined tha t  N is the root of a strongly-connected subgraph in which 

(C) the reference count a t  each node is equal to  the number of edges incident from nodes 
within the subgraph. 

To test condition C, it  is sufficient to  make two traversals of a spanning tree through the graph 
rooted a t  N. An additional reference count field, called the local reference count, is maintained 
for each node. At the start of the first traversal, assume that  the local reference count of each 
node is zero. During the first traversal, the local reference count of each node visited will be 
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incremented each time a pointer to  the node is encountered1. The condition tested to determine 
if a node is being visited for the first time is that its local reference count is zero. 

Threshold I local ref. ct. I reference ct. I C I U 1 R I A I P I data 

The memory management fields of a node are shown above. In addition to  the reference-count 
threshold, and the local and total reference counts, the control bits are: 

C is collectable -- for private use by the memory manager 

U forever uncollectable -- private use by the memory manager 

R recently-referenced -- set when a ref. count is modified; explicitly cleared by the memory 
manager 

A allocated/not-allocated - private use by the memory manager 

P persistent - private use by the memory manager 

Table 1 -- Template of a graph node 

After the first traversal is complete, the local reference count a t  each node is exactly the 
number of edges incident upon the node from within the graph rooted a t  N. To determine if 
the graph is collectable, a second traversal is made. During this traversal, the collector runs in 
one of two states, optimistic or pessimistic. If a node is encountered when the collector is 
optimistic, and if the node's local reference count equals its total reference count, then the node 
is marked as potentially collectable and the collector continues to  be optimistic. Otherwise, the 
(potentially) collectable bit is cleared for the node, and the collector becomes pessimistic in 
visiting all successors of the node. Also during traversal 2, the local reference count of each 
node is restored to  zero the first time the node is encountered. Thus the condition indicating 
the first visit to  a node (other than the root) in traversal 2 is that  its local reference count is 
non-zero. 

The collector begins the second traversal in an  optimistic state. At the end of the traver- 
sal, the local reference count of each node will be zero, and the collectable nodes will be exactly 
those that  are both 

i) marked as collectable, and 

ii) reachable from N without traversing any node not marked as collectable. 

Actual collection of nodes requires yet another traversal of the collectable subgraph rooted 
a t  N. It is convenient to  allocate yet another bit to record whether a node is currently allo- 
cated, or has been collected, in order that a list data structure (allowing duplicate entries) can 
be used to implement the Garbage Can, without risking multiple collections of the same node. 

At first glance, this collection algorithm may appear to  be burdened with too much over- 
head, since it  requires two full tours of a graph in order to  determine whether or not it  is actu- 
ally collectable. There are two factors that mitigate the apparent overhead. First and most 
important is that the collection strategy has become incremental. Only a subgraph rooted a t  a 
candidate node is traversed, rather than the entire active graph, as is the case in mark-sweep or 
copying-compaction. The average size of subgraphs does not grow in proportion to the total 

T h e  local reference count of t h e  root node, N ,  is not  incremented when it is initially visited. Local references are 
arcs from nodes within t h e  graph,  and the  initial visit t o  the  root is a consequence of a pointer from t h e  Garbage Can, 
which lies outside t h e  graph. 
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size of the active graph. Simulations carried out by Deb have shown that  for active memories 
of even moderate size (of the order of 10,000 active nodes), the average incremental collection 
traverses only a tiny fraction of the nodes that a full graph-marking algorithm does in a mark- 
sweep collection. The relative benefit of incremental collection can only be expected to  improve 
as the size of the active memory increases. Furthermore, the average cost per node collected 
remains constant over all ratios of memory occupancy p with the incremental collection stra- 
tegy, whereas i t  grows as 

for both the mark-sweep and the copying-compaction algorithms. 

A second cost-reducting factor is particular to  the collection of heap-allocated memory for 
a programmed graph-reduction evaluator. Only properly-nested (i.e. reducible) cyclic structures 
are ever formed. In nearly all cases, a compiler can (in principle) determine a bound on the 
number of edges that  might close cycles on the root of a subgraph. The most usual bound is, of 
course, zero. Cyclic graphs are created only to  represent recursively defined ground values, in 
implementing expressions of the form 

letrec z= Hzin Gz 

Assuming that  a compiler can successfully identify all node allocations that  may be the roots of 
cyclic graphs, and can in many cases bound the maximum number of cycles that  could close on 
a node, then each allocation request can carry with it  the value of a bound on its cyclic clo- 
sures. It is sufficient in practice to  restrict cyclicity bounds to four values, 0, 1, 2 and more. If 
we provide, in addition to  the total and local reference count fields, a third field for this cycli- 
city bound, then it  serves as a threshold reference count to  determine whether or not to  place a 
node in the Garbage Can. When the reference count of a node is decremented, it  should be put 
into the Garbage Can only if its reference count has fallen to  the level of its threshold or less. 
This strategy can decrease nearly to  zero the probability that  a node is put into the Garbage 
Can when it cannot actually be collected. 

2.2. A concurrent algorithm 

As might be expected, the sequential, stop-and-traverse algorithm to  determine whether 
the contents of the Garbage Can are collectible breaks down if it is naively extended to  execute 
concurrently with a mutator. It is possible to  develop scenarios in which the collection criterion 
(C) appears to  apply, yet there remains a reference to  the root node N from outside the 
strongly-connected subgraph rooted a t  N. We say the criterion "appears to  apply", because it  
can only be tested by executing a sequential algorithm. The criterion is in fact the correct one; 
the difficulty is in formulating a reliable way to  test it. 

The first problem is that it  must be possible to  detect when an action of the mutator 
modifies the reference count of a node in a graph being traversed by the collector. This problem 
is solved by adding a single bit to the set of node tags, the "recently-referenced" tag. This tag 
will be set when a node is allocated and whenever its reference count is incremented or decre- 
mented. The recently-referenced tag will be cleared only by the memory manager when per- 
forming the collectability test. 

A second problem is to  assure that incrementation of local reference counts starts from 
zero. It is not adequate to  zero the local reference counts while inspecting a graph for collecta- 
bility. If in the course of inspecting a graph that  was not, in fact, collectable the graph were 
modified by action of the mutator, a node whose local reference count had been incremented 
could become separated from the local graph. It  could become attached to  some other subgraph 
while its local reference count is non-zero. The memory manager has no way to  locate it  in 
order to  restore its local reference count to zero. 

To solve the second problem, the concurrent algorithm makes one more traversal of a 
graph than does the non-concurrent version. This extra traversal precedes the other two. In this 
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traversal, the local reference count is zeroed and the recently-referenced tag is cleared (in that  
order) on each node visited. The test for first visit to  a node is that one of these values is non- 
zero. Note that  once a node has been visited in this first traversal, it  cannot be disconnected 
from the graph by action of the mutator without causing its recently-referenced tag, or that  of 
one of its ancestors, to  be set. 

Proposition 1: Following the initial traversal (which we number as 0), every node z in the graph 
rooted on N will either have zero local reference count, or else every path from N to  z will con- 
tain a t  least one node whose recently-referenced tag is set. 

Proof: Suppose the graph rooted on N contains a node y whose local reference count is non-zero 
after Traversal 0. Since the mutator cannot have changed the local reference count, it must be 
tha t  node y was not visited by the collector during the traversal, but has been appended since 
the traversal began. If y was added to  the graph by writing a pointer to  y into a node z 
already in the graph, then y's recently-written bit will be set. Otherwise, y has an ancestor ,z 
in the graph which also was not visited during Traversal 0.  The proof follows by induction on 
the depth of the unvisited node. 

Traversals 1 and 2 follow traversal 0 just as in the non-concurrent algorithm, except that 
these traversals do not descend below a node whose recently-referenced tag is set. 

Proposition R: At the conclusion of traversal 2, 

(a) no node reachable from the root N along a path containing only nodes marked as collecti- 
ble can be reached from any node of the active graph, and 

(b) any node in the active graph having a successor whose local reference count is non-zero 
either has its own local reference count non-zero, or has its recently-referenced tag set. 

Proof: Let GN be the maximal, strongly-connected graph rooted on N. Condition (a) depends 
upon the fact that  the local reference count of every node visited in Traversal (1) was zero a t  
the start of the traversal, and that  no node's reference contributes to  the local reference count 
if any other node unless both were present in GN a t  the start of Traversal 1. Thus the local 
reference count of each node a t  the end of Traversal 1 is less than or equal to  the number of 
references to  the node from within the graph. If no node of the graph has its recently-written 
tag set, then all will have been visited in Traversal 1, and the local reference counts equal the 
number of internal references. Thus the nodes of GN are marked as collectable in Traversal 2 
iff condition (C) holds. This establishes (a). The proof of (b) is analogous to  the proof of Propo- 
sition 1. 

Condition (a) guarantees that  only unreachable nodes will be collected. Condition (b) assures 
that  a t  the conclusion of traversal 0, every node reachable from a root N along a path contain- 
ing no node whose recently-referenced tag is set will have a local reference count of zero. 

2.3. Economizing on reference counts 

The G-machine [Joh83,Kie85] is a programmed graph-reduction processor. Because it  is 
programmed, it  is frequently able to reduce an  applicative expression without building a full 
application graph in memory. It uses a stack of graph pointers (P-stack) to  locate arguments of 
a function application, and these can often be produced without traversing an application 
graph. P-stack operations can make copies of pointers or destroy copies of pointers without 
mutating the stored expression graph. If such references are to  be counted by the memory 
reference-count mechanism, signals must be exchanged between the evaluation processor and the 
storage manager on nearly every stack operation the processor executes. It would be a consider- 
able economy not to  burden either the evaluator or the storage manager with the task of count- 
ing node references made from the P-stack. 

Many graph nodes are really short-lived and are never connected to  the rest of the active 
expression graph. Such nodes are allocated to  the processor, their pointers remain in the P- 
stack while in use, and then are discarded. If P-stack references were not counted, cells 
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allocated for temporary nodes such as these would never have their reference counts incre- 
mented from zero. 

Temporary nodes such as described above could be collected effectively by a stack alloca- 
tion discipline. Stack deallocation is satisfactory for temporaries, but not for all cells, because 
some cells allocated in executing a function call may be linked into the graph produced to 
represent the value of the function application. Such cells persist after return from the call. 

Since the functions of storage management and graph reduction can be separated, the 
mutator is not responsible for maintaining reference counts. That is left to  the storage 
manager. The rules governing reference count managment are as follows: 

a )  The reference count of a cell is zero upon its allocation. 

b) The reference count of a cell is incremented whenever a pointer to the cell is written into 
the graph. Thus a WRITE command from the G-processor signals the storage manager to 
increment the reference count of the cell pointed to  by the datum, if the datum is a 
pointer. (Pointers are tagged data.) 

c) Whenever a WRITE causes the content of a cell to  be erased, and the content was a 
pointer, the reference count of the cell it had pointed to  is decremented. 

According to  the rules given above, the reference count of a cell accounts only for arcs of 
the expression graph explicitly represented in G-memory. References held by the G-processor 
are not counted. This approximate form of reference counting relieves the storage manager of 
having to  track closely the activity of the G-processor. There are ramifications. 

* A cell with zero reference count cannot be deallocated so long as the G-processor's state 
may include a pointer to  the cell; 

Condition * can be accommodated by a stack discipline for possible deallocation, if 

i) no component of the state of the G-processor persists after completing evaluation of a 
function application, and 

ii) no cell allocated during evaluation of an application f el  . . e, is accessible after 
return from the function call unless it  is reachable in G-memory from the root of the 
expression graph representing the result of the call. 

Condition (i) asserts tha t  the implementation of a function call by the G-processor pro- 
duces no side effects. Given the above conditions, any cell allocated during a function call can 
be collected after return from the call, provided that its reference count is zero or it is identified 
as collectable by the cycle-detection algorithm. A cell which is not collectable a t  that time will 
be marked as perslrrtent. Any persistent cell can be collected immediately upon detecting that  
its reference count has become zero (or the cycle-detection algorithm certifies it  as collectible). 
The G-processor must signal the storage manager when it executes a function CALL or 
RETURN. 

The strategy outlined above can be called stack allocation with persistence. It has been 
studied in connection with storage management problems for Algol 68 [Wia75] and similar 
languages, although not in connection with reference-counted storage management. We propose 
two levels of modified stack allocation disciplines, that allow for persistence of data. 

2.4. Stack allocation from a freelist 

Suppose free cells are linked into a one-way list (freelist) from which all new allocations 
are made. Let us also provide an additional tag bit -- the persistence bit -- with each cell. 
When a cell is allocated from the freelist, its persistence bit is cleared, and a pointer to  the cell 
is entered into a list of cells allocated (but not yet collected) in the current function call. 

When a new function call is made, the list of allocated cells is pushed onto a stack, and a 
new list is started. When a function returns, the list of cells allocated during its activation is 
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examined for collectability. Nodes in this list with zero reference counts are immediately col- 
lectable. (So are cells found to be collectable by the incremental traversal algorithm.) Such 
cells are collected, and can be linked back into the freelist for re-issue. Nodes found not to  be 
collectable are marked as persistent. 

Once marked as persistent, a cell can be collected on-the-fly whenever its reference count 
becomes zero (or an incremental traversal finds it  to  be collectable). This is because, in opera- 
tion of the G-machine to  reduce functional program graphs, we can prove tha t  when a per- 
sistent cell is collectable, there can be no reference to  it  from the P-stack. 

Proposition 3: If the P-stack holds a pointer to  a node n ,  then either there is also a pointer to  n 
from the active graph (and hence n is not collectable) or else the function call in which n was 
allocated has not yet returned. 

Proof: Since we must reason about operation of the G-machine, the proof is necessarily informal. 
A node n is collectable if there is no pointer to  n from the active expression graph. If no 
pointer ever existed in the graph, then the only pointer to  n,  from the time it was allocated, 
must be in the P-stack. Since every pointer returned on the P-stack is a pointer to  a (former) 
application node that  a function call was made to evaluate, no node allocated in executing a 
function call is ever returned. Thus if a pointer to n actually exists, then the P-stack frame in 
which the allocation of n was made still exists. 

Suppose on the other hand that  a pointer to  n once existed in the graph, but all such 
pointers have been removed. The only operation of the G-machine tha t  deletes a pointer from 
the graph is the UPDATE of an application node, which occurs immediately preceding a return. 
Thus the P-stack a t  a return never holds a pointer that has been removed from the graph. At a 
return, the current frame of the P-stack holds only a single pointer, that  to  the evaluated node 
which, as argued above, was allocated in an  as-yet-unreturned function call. 

Here we see the tradeoffs among various strategies for storage management. Full reference 
counting allows collection of nodes a t  the earliest time they become inaccessible to  the ongoing 
evaluation. However, close cooperation between the mutator and the storage manager is 
required to  achieve this. The mutator must communicate to  the storage manager the references 
made and deleted by its internal state transitions. The cost of implementing this close coopera- 
tion may not be worth the benefit of immediate collectability. 

In stack allocation with persistence, if the storage manager maintains detailed accounts of 
the nodes allocated to  each outstanding function call, then garbage nodes can always be col- 
lected immediately after return of the function call in which they were allocated. Cooperation 
between the evaluation process (mutator) and the storage manager is reduced to  signaling 
WRITE operations, and function CALL and RETURN, but does not require signalling of inter- 
nal state transitions. 

2.5. Reducing fragmentation of the free storage pool 

As mentioned previously, the copying-compaction algorithm exhibits an advantage that  is 
particularly significant when paged virtual memory is in use; each time collection occurs, the 
interval of addresses occupied by cells of the active graph shrinks. This prevents the incidence 
of page faults generated by the running program from increasing over time to  degrade perfor- 
mance. 

On the other hand, when cells are allocated from a freelist, there is no inexpensive 
mechanism that  systematically improves program locality. Unless sorting by address occurs 
when a collected cell is re-linked into the freelist, a freelist whose cells were initially sorted by 
address can be expected to  degrade to  random order over time, as cells are allocated and 
reclaimed out of order. This has the bad effect that performance may degrade with the passage 
of time, because as storage fragmentation increases, so also does the incidence of page faulting. 
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The scheme we have proposed here does not provide a mechanism for storage compaction, 
and this is a weakness. A partial remedy may be achieved by using a variant of "buddy sys- 
tem" allocation [Knu68]. 

For buddy system allocation, storage is logically organized as a tree of nested blocks, each 
of size a power of two in address space. Each block, save the largest one (which is the entire 
address space) has a "buddy" whose initial address differs from its own in just a single bit. 
Buddy blocks are adjacent and of equal size. With each block, down to  the level of the smallest 
allocatable cell, there is associated a boolean flag which we call its alloction Jag.  This is set 
true if the block is currently allocated (or partially allocated), false if the block is free. When 
two buddies are free, so also is the block of twice their individual sizes that  encloses them. Thus 
when a block that  has been in use is returned to  the free storage pool, its allocation flag is 
cleared and the allocation flag of its immediate ancestor block is given the value of the alloca- 
tion flag of its buddy. Since the allocation flag of the block being released is false, the conjunc- 
tion of its allocation flag and that  of its buddy equals that of its buddy. This process of freeing 
ancestor blocks continues up the ancestor tree until some ancestor fails to  be freed by the pro- 
cess. 

Suppose the buddy system were modified so that the allocation flag of an ancestor block 
became the logical conjunct of the allocation flags of its progeny. Then the interpretation made 
of an allocation flag would be that  it  is true if and only if eveyy atomic cell of the block were 
allocated. This has some advantage if the only storage units allocated are atomic cells, because 
no freelist needs to  be maintained in order to  locate the next allocatable cell. In time loga- 
rithmic in the size of the memory, one can start from the root of the ancestor tree and locate 
the lowest-addressed atomic cell that  is not currently allocated. 

In the average case, allocation is much faster. To find the next unallocated cell, first 
examine the allocation flag of the father of the last previously allocated cell. If this flag is 
clear, then the next free cell is the buddy of the cell a t  which the search started. If not, then 
examine the allocation flag of the next higher ancestor block. Eventually, an  ancestor block is 
found to  be free, assuring that a downward search within that  block will find a free cell. On 
the average, the required depth of this search will be one when the storage is 50 per cent occu- 
pied, independent of the total memory size. 

Freeing a cell is similarly cheap. The allocation flag of a newly freed cell is cleared, and 
so also are the allocation flags of all its ancestors. Of course, the explicit clearing of ancestors' 
allocation flags can stop upon encountering, in a path from a leaf toward the root, an allocation 
flag that  is already cleared. 

Note the advantages of this scheme over a freelist: 

Freelist pointers do not have to  be modified when a cell is allocated or freed (although 
allocation flags do); 

Memory fragmentation is reduced, as the lowest-addressed free cell is always selected for 
allocation. 

Furthermore, in the modified reference-count storage management scheme suggested here, allo- 
cation flags are already present in atomic cells (graph nodes). Thus the added storage overhead 
of buddy system managment is one additional bit per cell. The allocation flags of ancestor 
blocks need not be stored with the cells themselves. 

2.6. Collecting un-reference-counted t empora ry  s torage  Temporary storage cells that 
are allocated during the evaluation of a function call and referred to  only by pointers from the 
evaluator's traversal stack are never reference counted and never put into the Garbage Can. It 
was suggested in Section 3.2 that  the storage manager should maintain a list of all pointers that  
have been allocated during each function call so that this set of cells can be examined for collec- 
tability after the call has returned. Maintaining a list of pointers to all cells allocated implies a 
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substantial burden on storage space, in order to support collection. It is unnecessary if the free 
storage pool is maintained by the modified buddy system. 

Since the modified buddy system permits address-sequential allocation of free storage cells, 
the set of addresses of cells allocated during any function call will lie in an interval whose start- 
ing address is that  of the first cell allocated and whose ending address is that of the last cell 
allocated. In fact, the interval may also contain addresses of some cells allocated during other 
function calls that have previously terminated, but any such cell will either be marked as per- 
sistent or will already have been as collected a t  the time the interval is swept. Thus, instead of 
explicitly saving a list of addresses allocated during a function call, it  is only necessary to  save 
the boundary addresses of an interval. 

Actually, it  may be necessary to  allocate from a (small) set of intervals, because some 
storage fragmentation can be introduced by the asynchronous collection scheme. When a func- 
tion call returns, the address interval it  used for allocations is made available to  the storage 
manager to  be swept of garbage. However, this interval should not be made available for real- 
location until a collection sweep has been completed, for if it  were, then attempted new alloca- 
tions within it  might overtake collection from it. Thus, after a function call has returned, new 
allocations should begin immediately from another interval, while the returned interval is held 
out of the free storage pool until it  has been swept. The division of intervals we have just 
described may result in a function call allocating from a set of address intervals rather than 
just a single one. 

3. Simulation results 

The incremental garbage collection scheme described in the preceding sections has been 
simulated to  obtain an  estimate of its performance [Fos85]. The simulation defined separate 
UNM processes for 

a )  the mutator, 

b) the storage manager which executes the cycle-detection algorithm, 

c) a memory access controller which performs reference-count maintenance and maintains 
the free storage pool as a linked list. 

Two other service processes were provided to  simulate the garbage can and a node-preallocation 
queue. Of these processes, the time consumed by the mutator and the storage manager was of 
interest. The other processes performed functions that  could be supported by hardware or 
firmware enhancements in a real implementation of the storage manager. 

The mutator process executed only memory reference operations. This corresponds to  an  
assumption that  performance in graph-reduction is limited by the available bandwidth to  the 
graph-storage memory. The operations, READ, WRITE, ALLOCate and context-switches were 
generated in a pseudo-random sequence controlled by probabilities for each type of operation. 

The rates of node allocation and of context switches were controllable parameters of the 
simulation. For the data quoted here, context switches (calls and returns) occurred with a pro- 
bability of 1/15 or 1/30 and the allocation rate was 1/12. READ and WRITE operations were 
given probabilities that  were 1/3 and 2/3, respectively, of the remaining distribution. READ 
operations are benign, as they cause no mutation of the active data graph. 

The size of the graph storage memory as simulated was 2000 nodes. The initial, active 
graph consisted of approximately 300 nodes. It was first constructed as an almost-balanced 
binary tree, then approximation 60 additional edges were introduced from leaves or non- 
branching interior nodes to  randomly selected nodes within the active graph. These edges 
formed shared subgraphs, including some cycles. 

After simulation began, the number of active nodes increased as a result of the simulated 
allocations. Pointers were also removed from the graph as a consequence of WRITE operations 
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that  occurred as the mutator randomly traversed the active graph. Thus the graph was frag- 
mented into a rooted part and unrooted (i.e. inaccessible) parts, as  well as mutated in its topol- 
ogy. The collector process located unrooted graph fragments, dissected them and released their 
storage cells to  the free storage pool. The collection process and the mutator process were given 
equal computation time, in alternating time slices, which fact was confirmed by profiling. 

As the simulation ran on, the probability of ALLOC operations was decreased by the ratio 

of - , where or is the memory occupancy ratio. Thus the allocation rate and the collection 
1 - 0  - - 

rate were brought into equilibrium over a period of time. It is the equilibrium allocation rate 
that  can be sustained tha t  is the measure of performance of a collection algorithm. The ratio of 
one allocation per 12 mutator instructions that  was obtained in the simulation experiments is 
comparable to  the ratio of occurrence of memory allocation instructions in a static examination 
of comiler-generated code for a graph-reduction processor. The ratio obtained in the simulation 
is also known to  be pessimistic because 

a)  the storage manager was maintaining an explicit list of allocated in each function call, 
and 

b) there were several sources of overhead in the collection algorithm as it  was simulated that  
can readily be removed. These may have accounted for up to  35 per cent of its execution 
time. 

4. Multi-process parallel collection 

Suppose M mutators share access to  a common address space with N garbage collectors. 
With the present algorithm, the N collectors cannot coexist, because they may have read-write 
and write-write conflicts on shared data structures. A first step would be to  ensure mutually 
exclusive access to  the GC and to  the free storage pool from which nodes are taken and 
returned, respectively. Then multiple collectors might coexist safely, provided that  they 
traversed mutually disjoint graphs in the incremental, cycle detection phase. Unfortunately, 
there is no way to  assure tha t  separately rooted subgraphs will be disjoint; in general they 
won't be. Let us analyze the consequences of conflict in the accesses of several collectors to 
shared data. 

Collectors wouldn't interfere with one another on the primary reference count data that  
they share with the mutators since they only read these data. Read-read conflicts don't inter- 
fere. Other data, the recently-written (R) tags, the local reference counts and the is-collectible 
(C) tags, may be both read and written by a collector, so multiple collectors would interfere. 
To ensure that  no conflict on these data can occur, each collector might set a lock on each node 
it  touches, while these data are in use, releasing the lock again after it  has completed its task. 
A two-phase locking protocol can ensure exclusive access. 

Two-phase locking is possible with a single test-and-set bit associated with each node, pro- 
vided that  a collector maintains a record of the set of nodes it  has previously visited. This is 
necessary so that  upon subsequent visits, when the collector finds the test-and-set flag to  be set, 
it  must be able to tell that the node belongs to  the subgraph for which it  has established 
exclusive (among collectors) access. Mutators, of course, can access nodes reachable from the 
active graph concurrently with collectors, as  before. Thus a second reason to  maintain the set 
of nodes visited is to  ensure that  each node can be located in the lock-releasing phase, even if 
the node has been disconnected from the subgraph by action of the mutator. 

In fact, it is not possible to  avoid interference if an unbounded number of collectors are 
allowed concurrent access to  a common set of nodes. Let's consider a hypothesized "solution" 
that does not involve two-phase locking. Each collector could maintain a private copy of the 
local reference counts and the C-tags, rather than using shared data in a common address 
space. Private data can be associated with shared nodes by maintaining an association table 
(say, by hash-coding on the node addresses). 
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But there remains one serious problem with such an approach. Conflicts on the R 
(recently-written) tag have not yet been accounted for. The accesses of a collector to  an R tag 
only read its value during Traversals 1 and 2, thus no direct interference occurs while collectors 
are in these traversals. A collector can also write the R tag, clearing i t  to  zero during Traversal 
0. The write-write conflict of two collectors is seemingly non-interfering because when a collec- 
tor writes, i t  invariably clears the tag. However, the mutators also write the R tag, to  set it, 
and each collector relies upon this tag for warning that  a mutator has modified a reference to  a 
node that  it  visits during Traversals 1 or 2. If collector A has cleared the R tag of some node 
during Traversal 0, then a mutator subsequently sets it ,  the value of the tag must remain set 
for the collector's test during its subsequent visits to  the node in Traversals 1 and 2. However, 
if another collector, B, arrives a t  the tag in Traversal 0 after the mutator has set it  and B 
clears the tag, collector A will have no way to  detect that  the mutator has modified the graph 
since A's Traversal 0, and the collection algorithm may be invalidated. In the worst conse- 
quence, collector A might determine that the graph is collectible even though it is still reachable 
from the active graph! 

If we assume that  the number of collectors is larger than any bound, then it  is easy to  
prove tha t  no finite-state protocol can alleviate this problem. Suppose P were an N-state pro- 
tocol proposed as a solution. Since the number of collectors can exceed N, the states of P can- 
not be used to  distinguish collectors from one another, thus the actions of different collectors 
inducing the same state change cannot be distinguished. 

The action of a mutator cannot drive P into a 'dead' state from which an initial state is 
unreachable, for then a node could be rendered forever uncollectable. Thus any node visited by 
a mutator and driven from a state r into a state s must eventually be restored to an  initial 
state by the action of collectors executing protocol P. But from an initial state, another collec- 
tor can reach state r of the collection process as if the node in question had never been visited 
by the mutator! A clear R tag no longer offers incontrovertible evidence tha t  the reference 
count of a node has not been modified by the mutator since a collector began its work. 

5. Future work 

Incremental collection has a very significant potential advantage over stop-and-collect 
schemes when the storage occupied by a data graph becomes heavily loaded. By "heavily 
loaded" we mean that either 

a )  the ratio of occupied address space to  available address space exceeds 0.7, or 

b) the ratio of occupied virtual memory pages to  real memory pages exceeds some critical 
value (probably 3 or 4), or 

c) the storage is physically distributed among the nodes of a message-passing multiprocessor 
system. 

In such cases, the cost of executing a stop-and-collect algorithm over the entire address space 
becomes excessively high. Incremental collection, on the other hand, should not degrade in per- 
formance when storage is heavily loaded. 

We have developed an algorithm for concurrent, incremental collection, on the assumption 
that  reference-counting can be made economical by providing direct hardware support for refer- 
ence count maintenance. Our initial simulation indicates tha t  the computational load imposed 
to  collect possibly cyclic data structures will not exceed the capacity of a processor running con- 
currently with the primary evaluation processor. 

Although the concurrent, incremental collection scheme appears potentially attractive, 
there are several aspects tha t  must be thoroughly investigated before it can be deemed a practi- 
cal solution. These include: 

1) Design and simulation of a reference-counting memory controller. Critical questions are: 
Will performance be degraded significantly by contention for memory cycles between 
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reference count maintenance and the evaluation process? To what extent is the pattern of 
locality of references degraded by reference-count updating? (The latter question is par- 
ticularly relevant for virtual or distributed memory systems.) 

2) Confirmation of the effectiveness of stack management with persistence. This strategy, 
adopted in order to  avoid counting references from the internal stack of the evaluation 
process, delays recovery of garbage until the collapse of the stack frame in which a node 
has been allocated. What is the penalty (in terms of available free storage) paid for this 
strategy? Simulations can provide useful data. 

3) Evaluation of the modified buddy-system for maintaing the free storage pool. We have 
estimated that the cost of allocation, using this scheme, is constant-time in the average 
case, independent of the size of the address space. Perhaps this can be verified by simula- 
tions or by instrumentation of the allocation process. 

4) Extension to  multi-process collection. We have described the synchronization requirements 
for multi-process collection. Such an extension seems highly desirable if incremental collec- 
tion is to  be used to  support multiple, concurrent evaluators. Simulations need to  be done 
to  evaluate the effect on performance that must be attributed to the additional synchroni- 
zation. 
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