
Displaying Database Objects

David Maier, Peter Nordquist, Mark Grossman

Technical Report No. CS/E 86-001

January, 1986

Displaying Database Objects

David Maier
Oregon Graduate Center

Peter Nordquist
Intel Corporation
Mark Grossman

Oregon Graduate Center

Technical Report No. CS/E 86-001

January, 1986

Presented a t the First International Conference on Expert Database Systems, Charles-
ton, South Carolina, April 1986.

Abstract

We outline the requirements for features and construction of interactive displays on complex database ob-
jects. Few systems to date meet these requirements, as they either do not support update through the
display, or are not generated automatically from a specification. We present a system, SIG, for producing
and interpreting high-level display specifications for complex objects. SIG supports diaplay types, which are
declarative descriptions of of interactive displays for classes of objects, and abstract views, which decode and
implement display types, and which can dynamically change the format of a display to accommodate
changes in the structure of an object.

1. Introduction
The study of database systems has largely overlooked the display of da ta , even though database

applications typically contain more code for da t a display and entry than for da t a manipulation [Pilo83].
Relational technology provides a very workable abstraction of secondary storage; there is no analogous
abstraction for user interfaces. With the advent of object-oriented database systems tha t support com-
plex objects and multiple connectivity, a fixed format for displaying the results of queries is no longer ade-
quate. We describe the SIG system for automatically generating interactive displays on structured
objects. We look at the capabilities of the system, and the main concepts behind i t . SIG is currently
implemented in Smalltalk-80 (TM Xerox Corp.), but the design could be ported t o other systems with win-
dow support. We conclude with our vision of how database applications should be assembled.

2. Requirements
We desire a tool for creating interactive displays (IDS) on complex database objects, in the environ-

ment of a personal workstation with bit-mapped graphics. An ID must not only provide a view of i ts
object on the screen, but also allow a user t o update the object by manipulating the view with a key-
board and mouse. We wanted a tool close t o the level of abstraction t h a t relational query languages pr*
vide for da t a manipulation. In particular, we tried t o satisfy the following requirements:

1. IDS should be described declaratively, and generated automatically from their descriptions when
needed. Ideally, no modifications t o the object being displayed should be needed t o define an ID on
it .

2. IDS should dynamically reflect the structure of the object displayed. The number and location of
the subviews in a n ID can depend on the s tate of the object displayed. For example, Figures l a and
l b are "before" and "after" snapshots of the same ID on a binary tree when a left subtree is added.
Each subtree has its own sub-ID, which can contain sub-IDS for subtrees a t lower levels. Four new
sub-IDS were added because the added subtree itself had three subtrees.

3. IDS should accommodate arbitrary levels of structure in the objects they display. There should be
no a priori bound on the depth of nesting of sub-IDS of a display. IDS should also accommodate
multiple connectivity in objects, in t ha t the same object can appear in multiple IDS, if i t is a sub-
par t of several objects. Updates t o the object through one of these IDS should be reflected in them
all.

4. The system should support multiple display descriptions for a single type of objects. Figures 2a and
2b show two IDS for the same binary tree, but generated from different descriptions. Figure 2a
shows a tree in a format similar to tha t of Figure 1, but with no arrows. Figure 2b portrays a tree
in outline form, with subtrees indented below their parents.

5. The system should assist in the creation of display descriptions, and support a design methodology
for building up complex IDS from simpler IDS. Once a display description is created on one class of
objects, t ha t description should be available for constructing displays for other classes.

3. Related Work
Previous works on displaying database objects and display generation mostly fail to meet our

requirements because either

1. update through the display is not supported, or
2. the displays are written a d hoc, not generated automatically from descriptions.

The INCENSE system (Myer831 generates displays on data structures in the Mesa language. Each data
type has an artist t o render instances of the type on the screen, but da ta cannot be updated through the
display. The Application Development Environment (ADE) being constructed a t Burroughs [Ande85] sup-
ports perspectives for defining a printable format of a da ta item. Perspectives build up a rendering of a
complex object from displays of its subparts, but do not provide for update of objects. The specifications
of perspectives are stored a s part of the database. Several researchers have proposed high-level languages
for drawing pictures Pgge83, Hend82, Pere83, VanW821, but again, these languages provide rendering but
not updating of objects. Also, certain document preparation systems Furu82, Kimu831 can be viewed as
displaying some document object on screen or paper, but without update capabilities.

One of the first graphical display systems for databases was the Spatial Data Management System
pero8O]. Another such system is included in the Sembase semantic database system [King84]. Sembase
provides displays tha t dynamically keep up with added objects and changed attributes. Both systems,
however, have a fixed set of formats for displaying a particular class of objects.

Program visualization systems, such as PECAN (Reis831, P V (Hero82, Kram831 and others (Fisc841,
aid program development and debugging by displaying data structures associated with a program and its
execution: parse tree, calling stack, variable bindings. Such systems provide dynamically changing
displays, but for a fixed set of structures. Algorithm animations display the changes in an algorithm's
data structures a s the algorithm executes, for purposes of documentation, education and algorithms
research. Such systems t o date [Baecgl, Brow84, Lond85] require tha t displays on new classes of data
objects be generated manually as needed.

The Programming-by-Rehearsal system [Finz84] gives support for constructing an interactive display
of a complex object from previously defined displays on its subobjects. However, each such display is con-
structed anew or copied from an existing display, not derived from a higher-level specification.

One example of where an interactive display has been constructed from a high-level specification is
in the Crystal system for interpreting oil-well logs [Smit84]. For tha t project, the IMPULSE editor
[Scho83] (used for editing knowledge bases described in the STROBE object representation language) was
modified t o accept declarations of specialized editors, and t o produce editors from the declarations.

4. The Implementation Vehicle
The Smalltalk Interaction Generator (SIG) [Nord85] is a prototype ID generator for complex

objects, as might be found in an object-oriented database system. SIG builds upon the model-view-
controller (MVC) mechanism of Smalltalk [Gold83]. An MVC is a triad consisting of three objects: model
t o be displayed and possibly updated, a view responsible for displaying the model on the screen, and a
controller for interpreting user inputs a s updates t o the model. The model can be an arbitrary Smalltalk
object, but the view and controller must be appropriate t o the class of the model. For example, different
flavors of views exist for text, list and Boolean objects. A simple ID is constructed from a single MVS
triad. An ID with sub-IDS uses an MVC triad for each sub-ID. The structure of the ID is maintained by
the view objects, which know about their subviews.

SIG actually makes use of an enhancement of the MVC paradigm known as pluggable views. A
pluggable view queries its model t o determine the aapeet of the model i t should display. Pluggable views
cut down the proliferation of types of views. Rather than constructing a new view class for each format
and class of model, one view class suffices for displaying a certain aspect, such a s the text, of any model.
Pluggable views also make interactions among displays easier t o program, a s several displays can be
linked by being views on different aspects of the same model. In a complex display, pluggable views cut
out unnecessary redisplay, a s a subview need repaint only if its aspect of the model changes.

The MVC mechanism, while providing many features needed for the prototype, does not by itself
meet all the requirements for a n ID generation system:

1. Defining a n ID with the MVC mechanism is a procedural, not declarative, task. TO produce an ID,
the programmer must write code to sire together views of existing types, and possibly code new view
classes.

2. IDS in the MVC paradigm usually have a fixed format; they do not dynamically adapt t o changes in
the structure of the model. Most Smalltalk-supplied IDS have only a twelevel hierarchy of sub-
views, and do not add or delete views while in use. Nothing prevents a Smalltalk ID from changing
the number of subviews i t has, but no tools are supplied to help construct dynamic IDS.

3. The MVC mechanism does not lend itself t o a modular design methodology. Most IDS are a mass of
interrelated pieces tha t are not easily separated. In adapting an existing ID, i t is often difficult t o
locate the right piece of code to change a particular facet of the display. Design questions concern-
ing which part (model, view or controller) should implement which functions are difficult t o resolve.
In the Smalltalk-supplied IDS, sometimes the view and controller store da ta t o be displayed apart
from the model, and the controller does some of the updating of the display.

5. SIG Capabilities

In database terms, Smalltalk objects are non-1NF tuples that have identity and tha t can share
attribute values. Classes group objects with similar structure and behavior. An object is a n instance of
its class. Every Smalltalk object has a protocol of messages to which i t responds by changing its state or
returning information. The protocol t o an object serves to encapsulate its internal state. An object may
not, a s a rule, manipulate or examine the internal state of another object directly, but may only do so
indirectly through a message.

SIG uses a display description, called a display type, t o define an ID for a n object. Display types are
associated with classes, and a class can have multiple display types, a s witnessed by the various IDS on
binary trees in Figures 1 and 2, which were defined in SIG. The IDS generated by SIG can adapt t o
changes in the s tate of the object displayed, as shown in Figures 3a and 3b. Those figures show an ID on
an object of a class BooleanListTest. An instance of BooleanListTest contains a Boolean value and a list
of strings. The list is only displayed when the Boolean value is true.

The next examples involve a class Employee. Instances of class Employee have a name and address
field, a social security number field, a projects field, and a manager field. The first two fields hold strings,
the project field holds an object from the class ProjectList, and the manager field holds another Employee
object. A ProjectList is an array of projects.

Figure 4 shows a SIG-generated ID on an Employee object. It has four sub-IDS, one for each field,
plus some labels. The labels are also IDS, but with no update capabilities. The sub-IDS on project and
manager are further structured. The sub-ID on project was generated from a display type for the class
ProjectList, and the sub-ID on manager was generated from the same display type tha t was used for the
entire ID. Thus, display types can reference other display types. In particular, a display type can men-
tion itself recursively.

Figure l a . Tree ID before adding left subtree.

Figure lb . Tree ID after adding left subtree.

Figure

Figure

--

2a. Tree ID using 'without arrows' display.

Figure 3a. BooleanListTest ID with list on.

Michael Smith
806 Independence Drive
Portland, OR 97210

projects:

Account Account

Figure 4. ID on an employee object.

manager: I
Martha Vernovage
10404 Crosscreek Terrace
Portland, OR 97219

projects: I
1

pichael A Salary Department
Smith Survey Budge&
Annual
Review I

P a r t of a display type is a specification of a menu of update commands on each sub-ID. By associ-
ating a menu with sub-IDS rather than with the display type itself, one display type can support different
kinds of update behavior in different contexts. In Figure 5a we see a menu in use to add a manager for
the manager, thus updating the underlying employee object. That update t o the employee object in turn
causes the ID to change by adding a new sub-ID. In Figure 5b the new manager appears, and we can
then add new information about him (Figure 5c).

Michael Smith
806 lndependence Drive
Portland, OR 97210

1
Figure 5a. Adding the manager's manager.

Michael Smith
806 lndependence Drive
Portland, OR 97210

*projects:

pudson kones
Account Account -

Figure 5b. New manager, uninitialized.

manager: uGdo
COPY I

cut
Martha Vernovage
10404 Crosscreek T
Portland, OR 97219

-

projects:

Smith Survey Budget
Annual
Review

manager: 1
manager:

Martha
Vernovage

10404
Crosscreek

projects:
projects:

Mic Sala Dep no projects hael ry artm
Smi Sur ent
th vey Bud
Ann get

Figure 5c

I . manager: I

I.
-

Michael Smith
806 Independence Drive A manager:
Portland, OR 97210 4

projects:
A A projects:

pudson i o n e s
Account Account

hael r y artm
Smi Sur ent
th vey Bud
Ann 9e t

. New manager with information filled in.

p a r k Grossrnan
1 18 Red Maple Drive
Levittown, New York

projects: I

SIG IDS can handle iteration in limited forms. The sub-JD on projects can adapt to different
numbers of projects, but once the number grows past four, some of the projects are replaced by ellipses
(Figure 6). Figure 7a shows tha t we can have two IDS open on the same object. (One of the IDS is a sub-
ID of the ID in Figure 6.) If the underlying object is updated through one of the IDS (Figure 7b), the
update also appears in the other ID (Figure 7c). The change is not propogated immediately, as the sub-
ID involved supports a kind of commit-abort mechanism on changes. The changes are actually made to a
copy of the model. The model is altered only when the user commits these changes.

A
Michael Smith
806 lndependence Drive
Portland, OR 97210

I, projects:

manager:

A

Martha
Vernovage

10404
Crosscreek

A projects: m Smi Sur

th 1 vey 1 Bud
Ann I I get

A manager: I

Mark Grossman
1 18 Red Maple Drive
Levittown, New York

-- -
A projects: I

Report Meeting

Figure 6. Elision of projects.

Figure

fmployeeDisplay 1
1 manager:

Michael
Smith

8 0 6
lndependence
F .

#083-42-
531 2

projects:

' Martha
Vernov
3 no

#O
21 -1 0
-3322

manager:

Mark
Grossman
118 Red

a. Two IDS on the same object.

~ m ~ l o ~ e e ~ i s ~ l a ~ l
manager:

Michael
Smith

806
lndependence
F.'

projects:

I manager:

Martha
Vernov

-

Figure 7b. Update through one ID.

A

Mark Grossman
1 18 Red Maple Drive
Levittown, New York 11756

-
~ m ~ l o ~ e e ~ i s ~ l a ~ ~

Mark Grossman
1 18 Red Maple Drive
Levittown, New York 11756

#084-12-6214

projects:

V.P. Monthly
Report

J

Staff Meeting

~ r n ~ l o ~ e e ~ i s ~ l a ~ ~
1 manager:

Michael
Smith manager:
806

Independence Martha
n - ~ e r n o v Mark

o Grossman
#083-42- ' a n

118 Red
531 2 #O -

21-10 #084-1
-3322 2-6214

projects: -

Figure 7c. Update appears in other ID.

A SIG ID can detect if the screen space allotted it is too small in which to display (Figure 8a). In
that case the screen space is painted dark gray, and there is a menu option to spawn a new ID on the
obscured object (Figure 8b).

Display types in SIG are created with the aid of a display-type editor, which guides a display
developer through the various steps in describing a display. The display-type editor suggests a design
methodology for IDS, by progression through its panes left to right, top down, filling in requested informa-
tion. The editor has two modes: display m o d e (Figure 9a), for inspecting previously created displays, and
edi t m o d e (Figure 9b), for creating new displays, or modifying existing ones. Our experience is that
adding a new class and defining the first display type on that class takes several days, for a Smal1t)alk
user who has never constructed a display before. After that, additional display types on the same class

take a half hour to four hours to develop. The display-type editor supports copying a t various levels of
structure in a display type. All or part of a new display type often can be concstructed by modifying a
copy of an existing display type. Generating an ID from a display type is a matter of seconds.

Figure 8a. Insufficient space to display ID on project.

~ r n ~ l o ~ e e ~ i s ~ l a ~ ~

Mark Grossman
1 18 Red Maple Drive
Levittown, New York 11756

#084-12-6214

projects:

Residential
Report

Staff Meeting

Figure 8b. Spawning a larger ID on the object. I I I

menu: ActionMenu

Figure 9a. Display-type editor in display mode.

The following are legal MVCViews:

MVCAbstractView
MVCBooleanView
MVCConstantFormView

Figure 9b. Display-type editor in edit mode.

t

6. System Concepts

The two major contributions of this research are display types and abatract viewa. Display types
gather together the design decisions in constructing a new ID into high-level specifications, separate from
the ID itself. An abstract view can interpret a display type, and accommodate its display to changes in
the s tate of the object displayed.

The structure of a display type is best understood through the display-type editor, which reflects
tha t structure (Figure 9b). Each display type is associated with a class of objects. All classes that have
display types are listed in the upper left pane. Selecting a class in t ha t pane produces a list of display
types for the class in the upper center pane. Each display type is composed of one or more recipes.
Selecting a display type in the upper center pane produces a summary of its recipes in the upper right
pane. Recipes correspond to different states of the object t o be displayed, and allow different
configurations of the ID for t ha t object. A recipe has a selection condition and a list of ingredients. The
selection condition is a message sent t o the displayed object t o determine if a particular recipe applies.
The ingredients specify the position, contents and rendering of subregions of a n ID. It is the selection con-
ditions for recipes of the selected display type tha t are shown in the upper right pane of the editor. Pick-
ing one of the conditions causes the corresponding ingredients t o be summarized in the middle pane.
Selecting the summary of a n ingredient in the middle pane produces a detailed description of that
ingredient in the bottom panes.

Each ingredient is a sub-ID specification. SIG supplies specifications for several kinds of views com-
monly used in describing sub-IDS:

1. text views, which display and edit text,
2. read-only views, which display text, but do not support update,
3. list views, which support scrolling and selection in a list of items,
4. Boolean views, for displaying and toggling a Boolean value, and
5. constant form views, for scaling and displaying a fixed graphical image (a form

in Smalltalk parlance).

These SIG-supplied view specifications are templates t ha t must have some additional information filled in
t o describe the sub-ID fully. The lower left pane lists the slots tha t must be filled in t o complete the
specification of a sub-ID. Selecting one of those slots causes its current value to be listed in the lower
right pane, along with information on permissible values for the slot. SIG fills in the slots with initial
values tha t are appropriate for the kind of view selected. There are slots for the position of the view
within the ID, what object is being displayed in the view, widths of borders, a menu for updates, and
more. The right pane also provides a pattern for filling in a new value for the selected slot. An
ingredient can also specify a user-supplied custom view for producing special graphic images. Custom
views are used for graphic details tha t are not produced well by scaling a constant form, such as the
arrows in Figure 1.

The last possibility for an ingredient is tha t i t specify an abstract view. Specifying an abstract
view defers most decisions on the format of a sub-ID t o a display type on another object, usually a sub-
part of the object being displayed a t the highest level. In the display type we have been using for the
Employee ID, abstract views were used for the projects and manager fields. (Note tha t not all the
ingredients are visible in the center pane of Figure 9b.)

When an ID is created for an object from a display type, an abstract-view object is created by SIG.
The abstract view has the object as its model, and also holds a copy of the display type t o be used. The
proper display type t o be used is found in a dictionary tha t SIG maintains, which is keyed on class and
names of display types. The abstract view generates an ID for the object by interpreting the display
type. The abstract view queries the object about its state, t o determine which recipe in the display type
pertains. The query is performed by sending the selection condition messages in the recipes to the model
until one returns true. Once the recipe is determined, the abstract view creates sub-IDS based on the kind
of view and corresponding slot values for each ingredient in the recipe. It does so by creating a view
object of the kind specified, and selecting an appropriate controller t o go with it , and binding tha t view
and controller t o the correct model. If the ingredient calls for an abstract view on a subobject with a
different (or the same) display type, the ID-generation process is repeated recursively. Thus, abstract
views are the mechanism that permits modular description of an ID based on IDS for subparts of an
object.

An abstract view interprets a display type dynamically. An ID using an abstract view monitors the
object being displayed for significant changes. If changes occur and another recipe is called for, the
abstract view reconstitutes itself with sub-IDS based on the ingredients in the new recipe. Par t s of the ID
that correspond to parts of the objects tha t did not change usually do not have t o be repainted.

7 . Work Outside of SIG

There are a few aspects of display development t ha t currently must be dealt with outside of SIG. If
a display designer wants t o use a custom view, then he or she must implement a routine that draws the
desired graphics in a given area. The designer then includes a message to invoke tha t routine in a display
description.

For the class being displayed, the designer must write routines so tha t objects can process certain
messages issued by the ID. Some messages request updates corresponding t o items on the ID'S menu.
Many of those update messages will be implemented in any case when constructing a new class of objects.
Usually the subregion of a display area tha t a sub-ID occupies is fixed in the ingredient for the sub-ID. If
tha t subregion is t o depend on some property of the model (such as the number of nodes in a subtree), the
model must provide a rectangle message that returns that proper subregion in relative coordinates. Other
messages are needed to support the pluggable view mechanism. The most important is the aspect mes-
sage, which is sent by a view t o a model to determine which aspect of the model t o display. A model may
require several aspect messages, if different views display different aspects of it.

While some Smalltalk code must be written to produce a display with SIG, t ha t code need only be
written once for a class, even if the class has multiple display types. Furthermore, all the code is associ-
ated with the class of the object being displayed. No view or controller code need be written, a s con-
trasted t o using the MVC mechanism directly.

8. System Construction

As mentioned before, SIG builds upon the MVC mechanism of Smalltalk. Models use a broadcast
message t o let views know tha t they have been updated. Smalltalk maintains a dependencies l ist telling
which views are concerned with which models. When a model changes, the list is scanned, and the
appropriate views are notified. If the model changes in only one aspect, i t broadcasts t ha t t ha t aspect
has changed. Only views concerned with tha t aspect respond. The views and controllers SIG uses to
build IDS are adaptations of views and controllers supplied with Smalltalk, except for abstract views.

The display-type editor is itself a SIG-generated ID on an object of class DisplayBuilder.

9. What Next?

We believe more of the construction of a display type can be done graphically, rather than lexically.
For example, the subregions of a display corresponding t o different ingredients could be sketched on the
screen, rather than specified via relative coordinates. Other parts of a display type, such a s border width
and the kind of view for a n ingredient could be chosen off menus. We also need better support for itera-
tive sub-IDS, such as a view tha t can scroll a sequence of subviews. Also, while we can spawn a new ID on
a sub-ID t h a t is too small t o display, we have no facility t o zoom in on one region of a n ID.

We would like t o specify the routines for messages t o the model a t a high level in a display type,
rather than a s Smalltalk code. Display types would then be self-contained descriptions of displays, which
would make i t easier t o implement SIG on systems other than Smalltalk.

- Ideally, we would like t o create display types for a class with no modification of the class itself. The
da t a modeling and computation portion of application development could proceed separately from the
display design. We have experimented with an architecture for interactive applications called Humanizer

- [Gros85] t ha t cleanly separates display modules from da t a access and computation modules in a database
application. Figure 10 shows the layout of Humanizer. Display modules and other application modules
communicate through shared objects held in a Data Access Manager (DAM). Display modules continually

- monitor the objects in the DAM for changes made by the other modules. In response t o user input,
display modules modify objects tha t the other application modules are monitoring. The DAM is an in-
core database system tha t ensures serializable access of objects, enforces constraints, imposes authoriza-
tion conditions, and maintains queues of interesting events for the various application modules. With
Humanizer, i t is easy t o have two displays communicating with one computation module, or one display
communicating with two computation modules, or even switch displays while an application is running.

Acknowledgements

We thank Harry Porter and Mark Ballard for help with the software for producing hard copies of
screen images. This work was supported in part by NSF grant IST 83 51730, c+sponsored by Tektronix
Foundation, Intel, Digital Equipment Corporation, Servio Logic, Mentor Graphics, Xerox, IBM and the
Beaverton Area Chamber of Commerce.

Database Access Manager (DAM)

Figure 10. Humanizer layout.

Interface or Main

Module
A A 4

w

DAM

Provides:

serial access Activity

limited type checking j m LOP

privilege control

maintains queues

updates activity log d

A

Fl Fl Fl
. w -.

Shared Object Data Base (hierarchically organized)

Each data object bas the following information:

Object Identifier. Cornposite/Atornic Rag
Type Checking Routine. Read Write Protection

Data storage or pointers to sub-objects .

Interface or Main

Module

... Interface or Main

Module

10. Bibliography

[Ande85] T . L. Anderson and B. B. Claghorn. ADE: Mapping between the external and conceptual lev-
els. In Information Systems: Theoretical and Formal Aspects, (Proceedings of the IFF WG 8.1
Working Conference on Theoretical and Formal Aspects of Information Systems, Sitges, Bar-
celona, Spain, 16-18 April, 1985), A. Sernadas, J . Bubenko, and A. Olive, e d ~ . North Holland,
1985.

[Baec8l] R . Baecker. Sorting Out Sorting, 16mm color sound film, 25 minutes, SIGGRAPH '81, 1981.

[Brow841 M. H. Brown and R. Sedgewick. A system for algorithm animation, Computer Graphic8 18 (3),
July 1984.

[Egge83] P . R . Eggert and K . P. Chow. Logic programming graphics and infinite terms, Department of
Computer Science, UC Santa Barbara, June 1983.

[Finz84] W. Finzer and L. Gould. Programming by Rehearsal, BYTE Magazine, June 1984.

[Fisc84] G. Fischer and M. Schneider. Knowledge-based communication processes in software engineer-
ing, Proceedings 7th Int. Conf. on Software Engineering, March 1984.

Furu82) R . Furuta, J. Scofield, and A. Shaw. Document formatting systems: survey, concepts, and
issues, ACM Computing Surveys 14 (3), September 1982.

[Gold831 A. Goldberg. Smalltalk-80: The Language and it8 Implementation, Addison-Wesley, 1983.

[Gros85] M. B. Grossman. Humanizer-A framework for implementing flexible human-machine inter-
faces, unpublished manuscript, Department of Computer Science & Engineering, Oregon Gra-
duate Center, May 1985.

[Hend82] P. Henderson. Functional geometry, Proceedings ACM Conference on Lisp and Functional
Programming, August 1982.

[Nero80] C. F . Herot, R. T. Carling, M. Friedell, and D. Kramlich. A prototype spatial da ta manage-
ment system, Proceedings SIGGRAPH '80, 1980.

(Hero821 C. F. Herot, G. P. Brown, R. T. Carling, M. Friedell, D. Kramlich, and R. M. Baecker. An
integrated environment for program visualization, Proceedings IFXF' WG8.1 Working Conf. on
Automated Tools for Information System Design and Development, 1982.

[Kimu83] G. D. Kimura and A. C. Shaw. The structure of abstract document objects, T R 83-09-02,
Computer Science Department, Univ. of Washington, September 1983.

[King841 R. King. Sembase: A semantic DBMS, Proceedings First Int. Workshop on Expert Database
Systems, October, 1984.

[Kram83] D. Kramlich, G. P . Brown, R . T. Carling, and C. F . Herot. Program visualization: Graphics
support for software development, Proceedings 20th IEEE Design Automat,ion Conference,

1983.

[Lond85] R. L. London and R. A. Duisberg. Animating programs using Smalltalk, Computer 18 (8),
August 1985.

Wyer831 B. A. Myers. INCENSE: A system for displaying data structures, Computer Graphics 17 (3),
July 1983.

[Nord85] P. R. Nordquist. Interactive display generation in Smalltalk, TR 85-009, Department of Com-
puter Science & Engineering, Oregon Graduate Center, March 1985 (Master's Thesis).

pere83] F. C. N. Pereira. c a n drawing be liberated from the von Neumann style?, Artificial Intelli-
gence Center, SRI International, March 1983.

(Pi10831 M. Pilote. A data modeling approach to simplify the design of user interfaces, Proceedings 9th
VLDB, October-November 1983.

[Reis831 S. P. Reiss. PECAN: Program development systems that support multiple views, Proceedings
1983 International Conf. on Software Engineering.

[Scho83] E. Schoen and R. G. Smith. IMPULSE: A display oriented editor for STROBE, APLAI '83.

[Smith841 R. G. Smith, G. M. E. LaFue, E. Schoen, and S. C. Vestal. Declarative task description as a
user-interface structuring machanism. IEEE Computer 17 (9), September 1984.

[VanW82] C. J. Van Wyk. A high-level language for specifying pictures, ACM Transactions on Graphics
1 (2), April 1982.

