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Abstract 

This paper first reviews Earley deduction, a proof method appropriate for PROLOG 
execution, having advantages over the execution rule used by the standard PROLOG inter- 
preter. One advantage is that  correctness and, unlike the standard interpreter, complete- 
ness are guaranteed. Informal proofs of this are included. Another advantage is that, for a 
restricted class of programs known as DATALOG programs (i.e. PROLOG without func- 
tors), it is guaranteed to terminate (unlike the PROLOG interpreter). An informal proof of 
this is also given. As initially described, the algorithm does not appear to be fast enough to  
be useful. We conclude by describing implementation techniques that  make Earley Deduc- 
tion practical for DATALOG programs. 
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Earley Deduction 

There are two general schemes for parsing context-free grammars: topdown and bottom- 

up. Top-down is goal driven. The parser begins by asking what non-terminal is sought and 

works by then asking what possible non-terminals can be found to  satisfy the higher-level goal. 

Bottom-up is da ta  driven. Here the parser looks to  see what terminals are present and asks 

what non-terminals can be composed out of them. Both methods have their advantages and 

disadvantages. The top-down parser may fail t o  find a valid parse by failing t o  terminate. The 

bottom-up method may do more work than necessary. 

Jay Earley devised a method, call Earley Parsing or chart parsing, tha t  is a combination of 

top-down and bottom-up [Earley 19701. It is goal-driven since the method never looks for any 

non-terminal unless i t  is needed and i t  is bottom-up in the sense tha t  it saves partial results so 

tha t  they may be re-used instead of being recomputed. 

The traditional PROLOG interpreter is top-down. It  begins with a goal and subsequently 

refines it. Like a top-down parser, i t  is depth-first, trying first one rule and if tha t  fails, backing 

up to try another. As PROLOG programmers well know, if the program contains left-recursive 

rules, the interpreter may go into an infinite loop, failing to find a proof even though one exists. 

Bottom-up strategies have also been investigated. With DATALOG programs (i.e. those PRO- 

LOG programs which contain no functor symbols) the bottom-up procedures will terminate but, 

just as for context-free parsing, they may do a lot more work than necessary. 

F.C.N. Pereira and D.H.D. Warren have extended Earley Parsing to the execution of PRO- 

LOG programs and call the method Earley Deduction [Pereira and Warren 1983). We will 

explain the method by tracing its execution on an  example PROLOG program taken from their 

paper. Later, we will show tha t ,  for DATALOG programs, this algorithm always terminates. 

The clauses tha t  make up the program are: 

p(X,Z) p(X,Y), P(Y,Z). (1) 
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The first clause is a rule with the positive literal on the left-hand side and the negative literals 

on the right-hand side. The second and third clauses are called unit clauses since they have no 

clauses on the right-hand side. The method uses a dummy predicate ans for program goal 

clause. The program goal is: 

This goal has only one literal but, in general, there will be several literals on the right-hand 

side. 

The method works by building up a set of derived clauses. As an  initialization step, the 

goal clause is added a s  the first element t o  the set of derived clauses. Each step of the method 

adds another clause to  the set of derived clauses and, when no more clauses can be added, ter- 

minates. 

There are two inference rules called reduction and instantiation. Let's look a t  a reduction 

first. Consider clause (4) and unit clause (2). Clause (4) says tha t  we want t o  show p(a,Z). A 

one-step solution for this program can clearly be made using clause (2) giving an  answer with 

Z=b. We can thus add 

t o  the set of derived clauses. 

Each step (both instantiation and reduction) works by selecting a derived clause and com- 

bining i t  with another clause (either program or derived). The former will be called the selected 

clause. Within the selected clause, there will be a selected literal. I t  can be chosen when the 
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clause is first created and added to  the derived clause set or at the time the clause is first 

chosen a s  the selected clause. We will always choose the first literal as  the selected literal. 

To  be more specific, the reduction step works as  follows. First, unify the selected literal of 

the selected clause with a unit clause. The selected clause must always be a derived clause but 

the second clause - the unit clause - can be either a program or a derived clause. Let a be the 

most general unifier. In the example, p(a,Z) is the selected literal of the selected clause since i t  

is the left-most literal on the right-hand side. The unifier is a = { 2 t b ). 

Second, remove the selected literal from the clause, apply u t o  what remains and add 

what's left as a new derived clause. Removing the selected literal gives ans(Z) and applying the 

unifier gives ans(b) which is added. 

The second kind of inference rule is called inetantiation. To illustrate this rule, we will use 

clause (4) a s  the selected clause to  instantiate clause (1). Clause (4) says tha t  we can show 

ans(Z) if we can show p(a,Z). Clause (1) is a rule that  can be used to show p(X,Z) and can be 

used. The clause tha t  we add t o  the derived set is 

P(.,Z) p(a,Y), P(Y,Z). (6) 

The instantiation step says to  take the selected literal of the selected clause (a derived 

clause) and unify i t  with the positive (left-hand side) literal of a non-unit program clause, giving 

a most general unifier a. The unification of the selected literal p(a,Z) with the left-hand side 

literal of clause (1) gives a = { X t a ). Then apply a to  the program rule (clause (1)) and add 

the result as  a new derived clause. 

Clause (6) now has two negative (right-hand side) literals and the first, p(a,Y), is the 

selected literal. Since i t  unifies with the unit-clause (2), we can perform a reduction step and 

add: 
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It  is occasionally possible t o  perform a reduction or instantiation step producing a clause 

tha t  has already been derived earlier. For example, clause (6) can now be used t o  instantiate 

clause (1) but the result has already been derived (as clause (6) itself). T o  avoid this redun- 

dancy, we stipulate tha t  a clause is not to be added a s  a new derived clause if i t  is subsumed by 

a n  already-derived clause. (A more general term subsumes a more ground term if the latter can 

be obtained by applying a substitution to  the former.) The obvious way to perform this check is 

to take a new candidate clause and look through all the derived clauses, performing the sub- 

sumption check on each. This blind searching can be quite time consuming and we will have 

something to  say below about doing i t  more intelligently. 

There are several more instantiations and reductions we can perform before we reach a 

point where no new clauses can be derived. Below, we complete this example, leaving the reader 

t o  hand-trace each step if desired. We have included comments and, for convenience, the previ- 

ously listed clauses are repeated. 

Program Clauses: 
P(X,Z) P(X,Y), p(Y1Z). 
p(a1b). 
P ( ~ , c ) .  

Derived Clauses: 
.ans(Z) + p(a,Z). 
ans(b). 
p(a,Z) + p(a,Y), p(Y1Z). 
p(a,Z) + p(b,Z). 
p(b,Z) + p(b,Y), P(Y,Z). 
p(a,c). 
p(b,Z) + p(c,Z). 
P ( c , ~ )  + p(clY)l p(Y1Z). 
ans(c). 
P(.,Z) + p(c1Z). 

Goal 
2 reduces 4 
4 instantiates 1 
2 reduces 6 
7 instantiates 1 
3 reduces 7 
3 reduces 8 
10 instantiates 1 
9 reduces 4 
9 reduces 6 

Discussion ' 
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We can informally understand how the procedure works by recognizing tha t  the derived 

clauses are true statements vis-a-vis the program. Derived unit-clauses, such as clause (9), 

represent true (but not necessarily ground) facts. Derived rules, such as (lo), represent true 

rules. Clause (10) was produced from a previous rule (clause (8), inductively assumed to  be true) 

by using clause (3), also assumed t o  be true. Thus we must conclude tha t  clause (10) is true. In 

this way, the algorithm exhibits a bottom-up character. 

Furthermore, the right-hand sides of derived non-unit clauses (including those clauses with 

ans( ...) as  their heads) represent goals we have discovered that  need solving in order t o  produce 

an  answer. We s ta r t  with one (clause (4)) that  contains the original goal on its right-hand side. 

The right-hand side of clause (7) indicates that  we need t o  solve p(b,Z) in order t o  produce the 

answer p(a,Z). Each new derived non-unit clause comes from an  existing subgoal. Either we 

reduce the subgoal by removing its selected literal in a reduction step (using a unit-clause telling 

us the selected literal is true) or we use a program non-unit clause t o  generate a new subgoal. 

In this way, the algorithm works top-down. 

Correctness of Earley Deduction 

We next give a very informal argument t ha t  this proof procedure is cor rec t  in the sense 

tha t  any answer obtained implies the query is a logical consequence of the program. New 

clauses are added t o  the bottom of the derived set, implying they rest on previous clauses. We 

assume the reader is familiar with refutation proofs [Robinson 19651 and show tha t  all clauses 

are true inductively on the sequential numbering of the clauses. 

Recall tha t  a PROLOG clause is a disjunction of literals, one positive and several nega- 

tive, although i t  is more intuitively written using an implication whose antecedent is a conjunc- 

tion of positive literals. The query, a conjunction of positive literals, is negated (and then re- 

written a s  a disjunction of negative literals) and the proof is by refutation. The contradiction is 

represented by the e m p t y  clauae. In the Earley Deduction Algorithm ans( ...) denotes the empty 

clause and also carries information about the binding that  was used in deriving it. 
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In a traditional refutation proof, there is only one inference rule: resolution. Here we have 

2 rules, instantiation and reduction. Reduction is clearly a special case of resolution, namely 

when one of the two clauses consists of a single positive literal. A clause produced by instantia- 

tion can also be seen t o  be a logical consequence of previous clauses since it  is just a n  instan- 

tiated version of a program rule. Thus, if the unit clause ans( ...) is derived, the empty clause 

has been produced and thus the query is proved true. Figure 1, which shows graphically the 

relationships between derived clauses in the proof of ans(c), may make the correspondence 

between Earley Deduction proofs and the resolution proof process clearer. 

Completeness of Earley Deduction 

We will call trees like the one in Figure 1 Earley Deduction Trees. The tree will always 

have the empty clause ans( ...) a t  the root and every node will either (1) have 2 children or (2) be 

a program clause, goal clause or derived unit clause. If the node has 2 children, i t  will have 

been produced from those clauses by either reduction or instantiation. For clauses produced by 

reduction, one child will be a unit clause, since one of the clauses used in the reduction step 

must be a unit clause. Clauses produced by instantiation will simply be less general instantia- 

tions of some program rule. 

In showing t ha t  Earley Deduction is complete, we assume tha t  the query is provable (thus 

a proof exists) and show t h a t  the algorithm will find a proof, expressed as  a n  Earley Deduction 

Tree. If the query is true, then a PROLOG proof tree ( to  be defined below) exists [although the 

PROLOG interpreter won't necessarily find it]. We show how this tree can be converted into an  

Earley Deduction Tree and then show tha t  Earley Deduction will discover a tree a t  least as  gen- 

eral. 

Figure 2 is a n  example PROLOG proof tree. The root node is the query clause and every 

other node is a n  instantiated rule clause from the program. Note t ha t  the substitutions (which 

some authors just a t tach  t o  the clauses) have already been performed on the clauses. In the 

example, the substitution happened t o  eliminated all variables but t ha t  won't always happen. 
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Figure 1 

Also note tha t  the head of a child clause exactly matches a negative literal in its parent's 

right-hand side. If the query is provable, then such a tree exists. 

Next, we show how t o  construct an  Earley Deduction Tree from a PROLOG proof tree. 

Call the result the constructed tree. With every node in the PROLOG tree associate an Earley 
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Figure 2 

tree. The construction is defined recursively, starting a t  the leaves of the tree and working up 

t o  the root. The Earley tree associated with the root is the result. The leaves of the PROLOG 

tree are  unit clauses from the program. With these, associate one-node Earley trees consisting 

of the same program unit clauses. Translating interior nodes of the PROLOG trees is a little 

trickier and is shown diagrammatically in Figure 3. Figure 4 shows the constructed tree we get 

from the PROLOG proof tree shown in Figure 2. 

Before taking the last step, we need t o  specify how the Earley algorithm selects pairs of 

clauses for combination, which we have not yet done. Not every selection strategy will find 

answers even when they exist, as  the following example demonstrates: 

Program Clauses: 
P(X) + p(f(X))- (14) 
~ ( 4 .  (15) 

Derived Clauses: 
ans + p(a). Goal (16) 
p(a) + p(f(a)). 15 instantiates 13 (17) 

p(f(a)) + ~ ( ~ ( f ( ~ ) ) ) .  16 instantiates 13 (18) 
~ ( f ( f ( a ) ) )  + ~(f(f(f(a)))) .  17 instantiates 13 (19) .. . . 



Figure 3 
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Figure 4 

At some step in the algorithm let clauses C1 and C2 be two clauses tha t  can be combined 

(either using instantiation or reduction) t o  produce a new clause C3. We will make the assump- 

tion tha t  the selection strategy will eventually get around to combining C1 and C2 and consid- 

ering C3. Eventually, a clause a t  least as  general as C3 will be added to the derived set (since 

C3 itself will be added unless i t  is subsumed by some previously derived clause). Call such a 

selection strategy jab. [One strategy meeting the fairness assumption is the rule t ha t  says com- 

bine the oldest clauses first.] 
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Next, consider an  interior node of the constructed Earley tree built from the PROLOG 

proof tree. I t  is labelled with clause C3 and has two children whose roots are labelled with 

clauses C1 and C2. Assume tha t  the Earley deduction algorithm has already produced two 

clauses tha t  are at least as  general a s  C1 and C2. Then, using the assumption about the com- 

bination strategy, they will ultimately be combined to  produce a clause a t  least a s  general as  

Finally, we note tha t  the Earley algorithm begins with a collection of program and goal 

clauses containing clauses a t  least a s  general as  the clauses labelling the leaves of the con- 

structed tree. By induction on the size of the constructed tree, we conclude tha t  the algorithm 

will ultimately derive a clause which is a t  least a s  general as  the head of the goal clause label- 

ling the root of the PROLOG proof tree. Thus, assuming a fair selection strategy, Earley 

Deduction is complete and will eventually find all existing solutions. 

Termination for DATALOG 

A DATALOG program is just a PROLOG program tha t  contains no functors. Our exam- 

ple was such a program. Does Earley Deduction always terminate for DATALOG programs? 

Yes. A rough justification follows. 

Every step of the deduction adds a new clause to  the set of derived clauses but these 

clauses are never any longer than the longest program clause. To see tha t  infinitely long clauses 

can never be derived, consider the reduction and instantiation rules. Reduction takes a given 

clause (the selected clause) and removes the selected literal. Thus reduction can't be used to  

make bigger clauses. Instantiation takes a program clause and instantiates i t  and so it can't be 

used to  make a bigger clause either. 

Assuming tha t  the DATALOG program has a finite number of clauses, each with a finite 

number of literals and each of these with a finite number of arguments (which is implicit), there 

are only a finite number of clauses with k or fewer literals using only the predicates and con- 

stants appearing in the program. (Two clauses differing only in the names of variables are 
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considered equal.) 

The only question left is: Can  we get stuck infinitely looking for but never finding a new 

derived clause? A t  any moment, there a re  only a finite number of pairs of derived and program 

clauses and there are  only a couple of ways t o  combine each pair t o  produce a new clause. 

Given a newly produced clause, the subsumption check can also be done in finite time. So, if 

there is another clause t h a t  can be derived, the procedure must eventually find it .  

Thus, since the subsumption check insures t ha t  we never add a clause t o  the derived set if 

i t  is already there (since every clause subsumes itself), and since we can find new derived clauses 

(if they exist) in finite time, the procedure must eventually derive all derivable clauses. Then, 

after examining all pairs of clauses looking for a new derived clause, the procedure will find 

none and terminate. Of course, when we allow functor symbols, the derived clauses may be 

bigger than either of the two existing clauses and so the procedure is not guaranteed t o  ter- 

minate. 

Implementation 

We have implemented Earley Deduction using Smalltalk on the Tektronix 4404 personal 

workstation t o  evaluate the speed of the basic algorithm and t o  explore several optimizations. 

We begin by indexing the clauses using several keys t o  avoid searching all clauses during the 

subsumption check, the reduction step and the instantiation step. 

T o  speed up the subsumption check, a complete key based on the predicate names and 

their arities is created. For example, the clause: 

has the complete key p2-q-3-r-1. T o  determine whether a clause is subsumed by any existing 

derived clauses, we only consider clauses in the clause database with the same complete key. 
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For reduction, we maintain an  index based on the selected-literal key which consists of the 

predicate name of the first literal and its arity. The selected-literal key for this clause is.q-3. 

Given a unit clause, we will use i t  t o  reduce all clauses in the database. Since the unit clause 

must unify with the selected literal of other clauses, we need only retrieve those clauses with a 

selected-literal key matching the complete key of the unit clause. 

Finally for instantiation, an index based on the program-rule-head key is maintained. For 

every non-unit program clause, a program-rule-head key is computed from the predicate name 

of the head (positive) literal and its arity. For the above clause, i t  is p 2 .  Given a non-unit 

derived clause tha t  we wish t o  use to  instantiate program clauses, we compute a key based on 

its selected literal and arity. Then we need only consider those clauses with an identical 

program-rule-head index. 

Optimizations for DATALOG Programs 

T o  increase the algorithm's performance further while restricting i t  t o  DATALOG pro- 

grams, secondary indices based on format vectors are maintained in addition to  the primary 

indices described above. The format vector for a clause is a string containing information about 

which argument positions are filled by constants and about variable usage in the clause. The 

format vector for the clause: 

is #-1-2-2-#-I. The predicate and arity information (which is contained in the primary keys) 

is not present in the format vector. The character "#" appears in the format vector in posi- 

tions corresponding t o  constants and the numbers serve a s  normalized variable names. 

Given the complete key and format vector for a clause, all tha t  is needed to  fully specify 

the clause (up t o  renaming of variables) are the values of the constants. These are represented 

simply as tuples of constant values. In a database with more than a couple of clauses tha t  are 



Earley Deduction March 10, 1988 

equal up constant values (and renaming of variables), this (rather complex) da ta  representation 

saves space. Since many clauses with identical keys and format vectors are generated during a 

typical DATALOG execution, this representation pays off. 

The main optimization for DATALOG, however, is compiling the reduction and instantia- 

tion steps. When a new clause is generated, it becomes necessary to  compare it with all existing 

clauses to  see what new clauses can be derived using the reduction or instantiation rules. Given 

such a candidate clause, we must look through the primary indices and, for each, we must look 

through all format vectors. Associated with each of these is a set of tuples, each one represent- 

ing a clause. Since all these tuples (clauses) have the same key and same format vector, the 

unification can be done for all the tuples a t  once by abstracting away from the actual values of 

the constants. The result of such a compiled unification is a sequence of equality checks, which 

can then be evaluated quickly for each of the tuples in the set. 

We gloss over the details of the compilation step (see [Porter 19851) by giving a n  example 

compilation for a reduction step. Consider the candidate clause: 

q(a, b, b, U, Ul V, V). 

This clause must be used to  reduce all clauses with a seven-placed predicate named q as the 

selected literal. To  find these clauses, we first use the selected-literal index to  retrieve all those 

clauses with keys of the form z-z-q-7-2-2- .... One such key is p3-q-7-r-3 and it will be used for 

this example. 

Associated with this key are several format vectors. We will Iook at :  

For example, the clauses 
I 
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- -- - -- 

would be represented by the tuples 

a b c d e  
a a c c e  
a b d d e  

We call these tuples (clauses) the target  tuple8 (clause8). 

The compilation phase may fail, in which case we know tha t  none of the target tuples 

unify with the candidate tuple without ever looking a t  any of the target tuples. In this example 

however, the compilation succeeds producing the following "instruction" sequence: 

These instructions say tha t  any tuple with the constant a in the second position and with the 

third and fourth positions equal unifies with the candidate clause. 

For every such tuple we must construct a new derived tuple. By removing the selected 

literal from the target clauses, we get the key p3-r-3. The compilation phase also produces a 

format vector describing the new clauses (I-#-#-%#-#) along with the following information 

telling how to  construct the new derived tuples from the target tuples: 
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After the compilation is complete, the equality comparisons are  evaluated for each of the 

target tuples. Only the second tuple satisfies them. The following derived tuple can then be 

constructed using this tuple creation information: 

b a e b  

This tuple represents the desired clause: 

These operations - comparing and manipulating tuple values - are familiar from rela- 

tional algebra. In fact,  the process of executing the comparisons and creating new tuples 

representing reduced clauses for any tuples found to  satisfy the comparisons can always be 

expressed using standard relational operators. If we label the positions of the target tuples with 

the attribute names A1,&, . . . Ab and call the set of target tuples the relation r,  the set of 

tuples representing the reduced clauses in this example can be represented in the notation of 

w a i e r  19831 as: 

A very similar compilation-execution technique is used t o  speed up the instantiation step 

and the subsumption check. 

Earley Deduction is guaranteed t o  terminate for DATALOG programs even if the sub- 

sumption check is relaxed t o  a n  equality check. In tha t  case, a new tuple is not added t o  the 
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derived set if i t  is already there. By using a hash table index for the individual tuples, this 

check can be done in essentially constant time. This will save time only if the time saved by 

using the equality check outweighs the additional time associated with processing extra clauses 

tha t  would have been deleted by the full subsumption check. 

Another optimization we implemented involves batching up the subsumption checking. In 

the course of a reduction (or instantiation) step, a number of clauses with identical keys and 

format vectors will be created. The subsumption check must be performed on each of these 

before i t  can be added t o  the derived set. By delaying the subsumption checking until one of 

these tuples is referenced, a number of very similar compilations can be replaced with a single 

compilation. Then the subsumption check for all of the clauses is performed a t  one time by 

repeatedly executing the compiled "instructions". 

Conclusions 

All of the implementation optimizations described above were implemented and a number 

of programs were executed t o  determine whether and how much they speeded up the Earley 

Deduction algorithm. For general logic programs, Earley Deduction is not nearly fast enough to 

compete with typical PROLOG interpreters. It usefulness lies where one desires t o  run logic 

programs without concern for the order of the program clauses or where one wants all solutions 

for programs tha t  do not terminate. We are interested in using i t  t o  execute large Natural 

Language rule-based parsers. We want t o  be able t o  express the grammar a s  clearly as possible, 

without letting implementation details like clause order get in the way. The grammar rules 

express general knowledge about language and i t  is often difficult t o  foresee how they will be 

used. Another area where the generality of Earley Deduction is desirable is for systems in which 

the clauses are generated automatically by a program tha t  would be unnecessarily complicated 

by concern about execution order order. 

Representing the clauses a s  tuples and compiling the reduction step, the instantiation step 

and the subsumption check for DATALOG programs resulted in a significant speed-up over the 
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general algorithm - over 10 times for some of the programs tried. Replacing the subsumption 

check with the simpler equality check speeded the algorithm up a little more (8.8% for the.pro- 

grams we tried) and replacing the equality check by the batched subsumption check improved 

performance even more (20.3%). Furthermore, the improvement realized from the DATALOG 

optimizations increases as  the length of the deduction grows since compiling has a greater 

benefit the more times the compiled instructions are executed. 

Our experiments were performed using Smalltalk which placed limits on the size of prc- 

grams our system can handle. The clause representation we use would make i t  fairly straight- 

forward to store the tuples in a traditional relational database, keeping the compilation and 

overall system organization in Smalltalk. The accesses made to  the tuples can all be done using 

standard relational operators. In this way, our system could be enhanced to  handle large 

DATALOG programs and we believe a comparison between such a system and PROLOG inter- 

preters is the logical next step. 

In summary, Earley Deduction in general appears too slow for the execution of logic pro- 

grams in all but very specialized applications. However, when the logic program does not con- 

tain any functors, enough improvements can be made in its performance t o  make i t  feasible. 

Furthermore, i t  appears tha t  for sufficiently large DATALOG programs, i t  can be made faster 

than the traditional PROLOG interpreter. 
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