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Abstract A natural mechanism for incorporating negation within Horn-clause programs is 
presented. Logic programs utilizing constructive negation provide negative as well as positive 
definitions of predicates. Constructive negation possesses several advantages over the negation 
mechanism used in standard Horn-clause programs: negation by failure. Important properties of 
constructive negation are presented. Though negative definitions can be provided by the pro- 
grammer, a method for inference of negative definitions is described. The inference scheme also 
precludes production of inconsistent programs. 



Constructive Negation 

1. Introduction 

In this paper I will investigate a sub-class of general logic programs, called extended Horn- 

clause programs. This sub-class is similar to  standard Horn-clause programs in many respects. 

A key difference is the introduction of constructive negation. This mechanism for providing 

negation is very different from the usual implementation of negation in standard Horn-clause 

logic [S85]. However, a Horn-clause logic interpreter can execute programs containing construc- 

tive negation. 

This paper is organized as follows: Section 2 introduces the syntax of extended Horn-clause 

programs. Sections 3 and 4 describe the declarative and procedural semantics of extended 

Horn-clause programs. Section 5 demonstrates that  the declarative and procedural semantics 

are in fact equivalent by proving soundness and completeness. Section 6 compares constructive 

negation with the usual implementation of negation, negation by failure. Extended Horn-clause 

programs can be inconsistent. To prevent this, inference of a conservative extension is described 

in section 7. Section 8 describes opportunities for further research. Finally appendix A shows 

that  standard Horn-clause interpreters can execute extended Horn-clause programs. 

2. Syntax of Extended Horn-Clause Programs 

In this section I will describe the syntactic structure of Horn-clause programs with con- 

structive negation. Such programs will be referred to  as eztended Horn-clause programs. The 

syntax is very close to  standard Horn-clause logic [CM81]. 

A term is either a variable, or a structure of the form Atl, ..., t,), where each ti is a term 

(when n = 0, the term is a constant). An atom is of the form p(tl, ..., t,), where p is a predicate 

name and each ti is a term. A negative atom is expressed as -A, where A is an  atom. A literal 

is either an  atom or a negative atom. Extended Horn-clause programs are composed of clauses. 

Each clause is of the form L :- a, where L is a literal and is a phrase. If and are 

phrases, x is a variable, and L is a literal, each phrase is of the form: 
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Conjunction: O1 /\ O2 

Disjunction: O1 V O2 

Existential: (3%) O1 

Literal: L 

A variable z is global within a clause L :- Q if z occurs within L. A variable z is bound 

within the phrase (3z)Q. A clause L :- cP is closed if every variable in cP is either global or 

bound. Henceforth, all program clauses are assumed to be closed. 

At this point, the notation of. substitutions will be introduced. A substitution is a total 

function mapping expressions to  expressions. Every substitution can be denoted by a set of 

pairs [el/zl, ..., en/zJ, where each ei is an  expression, and all variables zi are distinct. Applica- 

tion of a substitution a to an expression is defined inductively by: 

a a(z) = e if a contains a pair e/z; otherwise, a(z) = z. 

4Ae1, ..., en)) = Au(eJ,... ,4en)). 

Composition of substitutions is defined by: ao  r(e) = a(l(e)). The empty substitution 0 is the 

identity for composition. Expressions e and e ' are unifiable with substitution a if a(e) = a(e '). 

A difference operator is also defined: a - z = ( e/y E a and y # z]. Substitutions cannot 

affect bound variables. If Q is a quantifier, a((Qz)e) = (Qz)uO(e), where a' = a - z. A substitu- 

tion is a renaming if the substitution is of the form [yl/zl,...,yn/zJ, where every vi is a variable. 

a(L :- a) is an instance of a clause L :- cP if a = [tl/zll...ltn/~n]l and each zi is a global vari- 

able. A ground expression contains no variables. a(L :- O) is a ground instance of a clause L :- 

O if a(L :- @) is a ground clause. a(L :- cP) is a variant of a clause L :- O if a is a renaming sub- 

stitution. 
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3. Declarative Semantics of Extended Horn-Clause Programs 

As with general first-order predicate logic, a model-theoretic meaning can be ascribed to  

each extended Horn-clause program. An interpretation is a set of ground literals. For the 

declarative semantics of extended Horn-clauses alone, every interpretation must contain the dis- 

tinguished atom true. I will denote the fact that  a phrase 9 is a valid consequence under 

interpretation I  by I +  9. Ib @ when I +  u(@) for every ground instance a(@) of a. Given tha t  

@ is a ground phrase, Q, is such tha t  I F  9 according to  the following recursive definition: 

Q is a literal, and 9 E I. 

9 = (3z)@,, and there is a substitution a = [t/z], with t a ground term, such that  I 

a(+,). 

An interpretation I  is true of a ground clause L :- 9 if I k L when I  k 9. Interpretation I is 

true of a non-ground clause L :- 9 if I is true of every ground instance of L :- 9. Finally, 

interpretation I is true of a program ll if I  is true of each clause in ll. An interpretation true 

of a program ll is a model of ll. 

For any program ll there is a class of models of l l ,  E(l7). A distinguished member of this 

class is the least model, nE(n) ,  which is contained in all members of C(ll). Existence and 

uniqueness of the least model is demonstrated below. 

Lemma 3.1: For every program l l ,  the following is true: 

(i) nE(l l)  is a model. 

(ii) nZ(ll)  is the smallest model of ll. 

Proof: 

(i) Say tha t  n E ( n )  is not a model. There must be a ground instance L :- 9 of a clause in ll 

such tha t  n E ( n )  + @ and nC(ll) L. But for all models M, if M k @, then M + L. So nC(n)  
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+ L, and nX(ll) must be a model. 

(ii) Say there is a model M' and ground literal L such that  L 6 M' and L E nC(ll). There must 

be a ground instance L :- Q of a clause in II such that  nC(Il) Q. So M + Q for all models M 

and M + L. Hence M' is not a model. 

The definition of the least model provides a non-effective characterization. An equivalent 

definition places a structure on the least model. Define the least model to  be the smallest 

interpretation satisfying the inductive criteria below: 

Mo(ll) = {true}. 

L E Mn(ll) if L :- Q is a ground instance of a clause in ll and M i l l )  Q for some i < n. 

Define M(n) to  be the limit of the Mn: There is some finite number N for which M(ll) = %(II) 

= %+JJI) for all non-negative integers k. 

In a standard way, I will now show that  M(II) is equivalent to nC(II). 

Lemma 3.2: For every program ll, nX(n) = M(ll). 

Proof: The proof is in two parts, first demonstrating M(n) nZ(ll), then demonstrating nE(lI) 

E M(W. 

M(ll) C nE(ll): This inclusion is demonstrated by induction on the subsets Mi of M(l7). 

(Basis) true E Mo, and true E M for all M E C(ll). 

(Induction) Assume Mi C nE(ll) for all i < n. If L E Mn, there is a ground instance L :- Q of a 

clause in II such that  Mi k Q for some i. By the hypothesis M 9 for all M E C(I2). Since 

every M E C(II) is a true interpretation of ll, L E M. 

nE(II) M(ll): I now show that  for all phrases Q such that  M + 9, there is a minimum integer 

i such that  Mi + Q. 
(Basis) If Q, = true, then i = 0. 

(Induction) Assume that  for phrases Ql and Q2, Mi C a1 and M .  Q2. Also assume that  M k 
3 

for all M E X(ll). Now examine each of the phrase forms: 

[@ is a literal L] Since M + Q for all models M E C(ll), there must be a ground instance L :- Q1 
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of a clause in ll such that  M + O1 for all M. Then Mi /= O1 by hypothesis, and MGtl L. 

[Q = O1 A 02] Since M /= Q for all models M E C(II), M k cPl and M b Q2. By hypothesis, Mi + 
el and Mi C 02. If i > j, then Mi C a2, so Mi + O1 A 02. 

[O = O1 V QJ Since M k O for all models M E C(ll), M k % for X E (1, 21, and all M. By 

hypothesis Mk %, for k E {i ,  31. So Mk b a, V a,. 

[Q = (3z)cP1] Since M + O for all models M E C(II), M u(al) for some u = [tlz], and all M. By 

hypothesis, Mi u(Q1), so Mi (3z)01. 

Let IT O denote the fact that  phrase (9 is a valid consequence of the least model, M(ll). 

The following lemma will be used in the soundness and completeness proofs to  come. 

Lemma 3.3: If L :- O is a clause in program ll, and ll k 7(O) for some substitution 7, then IT 

7(L). 

Proof: For every substitution q such that  q o  T(@) is a ground instance, ll q e  r(Q). By definition 

of M(IT), IT+ q e  7(L). Since this is true of all substitutions q ,  ll 7(L). 

4. Procedural Semantics of Extended Horn-Clause Programs 

Having described the intended connection between logic programs and logic, in this section 

I will describe the actual execution of logic programs. The procedure for executing a standard 

Horn-clause logic program is called SLD-resolution pK76], which is a variation of the resolution 

procedure [R65]. Programs are evaluated with a similar procedure that  I will call SLD- 

resolution with constructive negation (or SLDCN-resolution). SLDCN can be described by an 

algorithm accepting three arguments: a program, a phrase, and a substitution. When initiated, 

SLDCN is provided the empty substitution. Successful execution of the SLDCN procedure 

returns a substitution. When unsuccessful, SLDCN either terminates, returning 1, or does not 

terminate. I will denote the fact that SLDCN returns substitution 7 when given a program n, a 

phrase O and a substitution u by SLDCN(ll,Q,u) = T (when program II is understood, this argu- 

ment is omitted). The computation procedure of SLDCN is described by the following recursive 



Constructive Negation 

rules: 

SLDCN(@, 1) = 1. 

SLDCN(@,AQ2, a) = SLDCN(QB, SLDCN(Q ,a)), where {r, s) = {1,2), and r # s. 

SLDCN(@,V@,, a )  = r if SLDCN(Or, a )  = T; otherwise SLDCN(Os, a) if SLDCN(Qr, a)  = 

L, again where {r, s) = (1, 21, and r # s. 

SLDCN((3z)@, a )  = SLDCN(p(@), a )  - y, where p = [y/z] and y is a variable not contained 

in a or @. 

SLDCN(L, a )  = SLDCN(@, pea )  (L is a literal) if there is a variant L' :- @ of a clause in 

ll such tha t  p(L') = pea(L) and L' :- Q has no variables in common with a or L; other- 

wise L. 
This rule involves use of the unification algorithm b65]. 

The values r and s used in these rules are not necessarily constant. Values of r and s can be 

any tha t  will lead to  successful termination of SLDCN, as  if chosen by an  oracle. In this paper 

I will assume the SLDCN procedure relies on such an oracle. By contrast, the Prolog language 

specifies the values for r and s to be constants 1 and 2, respectively. Consequently, execution of 

the Prolog interpreter may not terminate in cases when successful execution could be achieved. 

To demonstrate this definition of SLDCN, assume that  ll contains the clauses: 
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Example 4.1 

(i) eq(a,a) :- true. 

(ii) eq (b, b) : - true. 

(iii) "eq(a,b) :-true. 

(iv) "eq(b, a) : - true. 

( 4  subsequence (nil, M) : - true. 

(vi) subsequence (cons (X, L) , cons (Y, M) ) : - 
[eq (X , Y) A subsequence (L , M) ] 
V subsequence (cons (X, L) , M) . 

(vii) subsequence (cons (X, L) , nil) : - "true. 

( v )  "subsequence (cons (X, L) , ni 1) : - true. 

(ix) "subsequence (nil, M) : - "true. 

(x) "subsequence (cons (X, L) , cons (Y, M) ) : - 
["eq (X, Y) V "subsequence (L, M) ] 

"subsequence (cons (X, L) , M) . 

This program defines a predicate subsequence (L, M) , which is intended to  be true when list 

L is a subsequence of list M. An empty list is represented by the term nil. A nonempty list is 

represented by the term cons(h,t) where h, the head of the list, is an  element from the domain 

{a b), and t, the tail of the list, is also a term representing a list. The following expressions 

are equivalent, providing a refutation of subsequence (U, cons (b, nil) ) 
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SLDCN(subsequence (U, c o n s  (b , n i  1 ) ) ,0) 

Unification with a variant of clause (vi): 
= SLDCN({ [eq (X, Y) A subsequence  (L ' , M') ] 

V subsequence  (cons  (X, L ') , M') ), 
[cons (X, LO)/U, b /Y,  n i l /M'])  

Use of the SLDCN rule for V: 
= SLDCN([eq (X, Y) /\ subsequence  (L' , M') 1, 

[cons (X,  L') /U, b /Y,  n i l /M'])  

Use of the SLDCN rule for A: 
= SLDCN(subsequence (L ' , M') , SLDCN(eq (X,  Y) , 

[cons (X. L') /U, b/Y, nil/M'])) 

Unification with a variant of clause (ii): 
= SLDCN(subsequence (L ' , M') , SLDCN(true, 

[cons (b .L ' ) /U,  b /X,  b/Y, nil/M'])) 

Use of the SLDCN rule for true: 
= SLDCN(subsequence (L ' , M') , 

[cons (b ,L8)  /U, b/X, b/Y,  n i l /M'])  

Unification with a variant of clause (v): 
= SLDCN(true, 

[cons (b,  n i l )  /U, n i l / L O ,  M'/MW , b/X,  b /Y,  n i l /MO])  

Use of the SLDCN rule for true: 
= [ c o n s ( b , n i l ) / U ,  n i l / L ' ,  M'/M1', b/X, b/Y, n i l /M' ]  

Consequently, list c o n s  (b,  n i l )  is a subsequence of itself. 

5. Soundness and Completeness of SLDCN 

In discussing the soundness of the SLDCN procedure, I will need to  define the length of a 

successful refutation. This length is defined to  be the number of SLDCN rules invoked during 

the refutation. For example, the length of the refutation for Example 4.1 is 7. This will now be 

used to  prove the following: 

Lemma 6.1: SLDCN(7(9), 0 ) -  r = q when SLDCN(@, a* r) = q. 

Proof: By induction on the length of a refutation. 

(Basis) Assume the length is 1. Then O = true, and SLDCN(@, u o  r) = u o  r = SLDCN(7(@), a). r. 

(Induction) Assume the lemma is true for all refutations of length less than n, and a refutation 
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of phrase 9 under substitution ao  T is of length n. Now consider each possible phrase form: 

19 is a literal L] There must be a variant L' :- cP' of a clause such that  p(L') = p e a e  (L). Then 

SLDCN(L, UOT)  = SLDCN(9', p o a o ~ ) .  The hypothesis holds, so SLDCN(cPO, p e a o r )  = 

SLDCN(<cP'), p w u ) e ~ .  Variables in 9' are distinct from T, so SLDCN(T(cP8), pou)or = 

SLDCN(9 ', p a)  0 T. Also SLDCN((L), a). T = SLDCN(cP ', p a). 7. 

[9 = 9, A a,] Then SLDCN(9, a. T) = SLDCN(9 , SLDCN(Gr, uo 7)). The hypothesis holds, so 

SLDCN(@r, a* T) = SLDCN(l(ar), a)* T, and: 

[9  = 9, V 9z] Then SLDCN(9, ae  T) = SLDCN(cPx, u Q  T), where X E (1, 2). The hypothesis 

holds, so SLDCN(cPx, ao  T) = SLDCN(T(QrX), a). T = SLDCN(<91VcP2), o ) ~  T. 

[ 9  = (3z)9,] Then SLDCN(9, a* r) = SLDCN(p(@,), ao T)-Y, where p = [Y/z]. The hypothesis 

holds, so SLDCN(p(@,), a- 7)-y = SLDCN(r0 p(G1), a). T - y. The variable y is not contained in T, 

so SLDCN(r0 p(9,), a). T - y =. SLDCN(((3z)9,), a). T. 

Several corollaries are now easy t o  prove and will help in the soundness theorem to  come: 

Corollary 6.2: SLDCN(9, a )  = SLDCN(a(@), 0 )  - a. 

Proof: Let a = a-0. 

Corollary 6.3: If SLDCN(cP, a )  = T, then there exists a substitution Q such that  T = q0a.  

Proof: SLDCN(@, a)  = SLDCN(a(9), 0) .  a .  Let Q = SLDCN(o(9), 0 ) .  

I am now ready to  provide proof that  execution of a logic program provides semantics 

identical to  the intended logical interpretation of the program. This is the soundness property: 

Theorem 6.4: SLDCN is sound in that  SLDCN(9, a )  = T implies that  ll 7(@). 
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Proof: By induction on the length of a refutation. 

(Basis) If the length is 1, 9 = true, SLDCN(9, a )  = a ,  and ll b ~ ( t r u c ) .  

(Induction) Assume the theorem is true for all refutations of length less than n, and a refutation 

of phrase 9 under substitution u is of length n. Now consider each possible phrase form: 

[9 is a literal L] There must be a variant L' :- 9' of a clause such tha t  p(L8) = pou(L).  Then 

SLDCN(L, u )  = SLDCN(Q8, pea) = r. The hypothesis holds, so ll k 49'). By lemma 3.3, ll 

4L ' ) .  I now must show that  4 L ' )  = 4L) .  By corollary 4.4, there is a substitution q such tha t  r 

= q O p e a .  So ( L ' )  = I]* poa(L'), and because a contains no variables occurring in L',  

q o  p a  u(L ' )  =. q o  p(L '). Because p(L') = p* u(L),  applying q t o  both sides gives q o  p(L') = 

qopou(L). But q e p o u  = r, so 4 L ' )  = 4 L ) ,  and ll b 4L) .  

[9 = A (P2] Then SLDCN(9, o) = SLDCN(a8, SLDCN(ar, a) )  = 7. The hypothesis holds, so 

ll + p(ar) and ll (ag), where SLDCN(ar, a )  = p. For every substitution q,  ll I= q o  p(Qr), and 

by corollary 5.3, a t  least one substitution q exists such that  q o  p = r. Therefore ll ' (@r)l so 

I= A a2). 
[9 = @, V 9,] Then SLDCN(9, u )  = SLDCN(eX, a )  = r, for X E {I ,  2). The hypothesis holds, 

so n I= 4@*), and n I= 4e1 V e2). 
[@ = (3z)Q.I Then SLDCN(9, a )  = SLDCN(p(QO), u )  - y = 7, where p = [ ~ / z ] .  The hypothesis 

holds, so ll k rep(@').  Since y is not contained in r, II k 7((3z)@'). 

As a result of this theorem, a phrase 9 is deducible from a program ll by SLDCN if there 

is a substitution 7 such tha t  SLDCN(9, 0) = r. r is also called a satisfying substitution for 9. 

To provide a completeness proof, I must first demonstrate that  SLDCN is monotonic. 

Define a partial order on substitutions as follows: u r if and only if there is a substitution q 

such that  u o  I] = 7. 

Lemma 5.5: If SLDCN(9, a )  = r and a' C a ,  then SLDCN(9, a ' )  = r' for r' 7. 

Proof: By induction on the length of a refutation. 

(Basis) If the length is I ,  9 = true. Then SLDCN(true, a )  = u = r. And when u' C a,  
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SLDCN(true, a') = a' = 7'. So r' C 7. 

(Induction) Assume the lemma is true for all refutations of length less than n, and a refutation 

of phrase 9 under substitution a is of length n. Now consider each possible phrase form: 

[@ is a literal L] There must be a variant L'  :- @ '  of a clause in II such tha t  p(L8) = p0u(L) for 

mme substitution p. Then SLDCN(L, a)  = SLDCN(@', poa) = r. Let a = q0a ' .  Then 

SLDCN(L, a') = SLDCN(@', p*tleaO) = r, and r C 7. 

[9 = el A CP2] Then SLDCN(G1AQ2, a )  = SLDCN(eS, SLDCN(Gr, u) = r. Let SLDCN(Qr, a)  = 

p. The hypothesis holds, so SLDCN(ar, a ' )  = p', and SLDCN(QS, p') = r', where p' C p and s' 

C T. Hence, SLDCN(91/\@2, a') = T', and r' C_ s. 

[@ = V (P2] Then SLDCN(@1V92, a )  = SLDCN(Q;(, a )  = 7, where X E (1,2). The hypothesis 

holds, so SLDCN(QX, a ' )  = r', where r' r. SLDCN(Q1VQ2, a ' )  = r', and 7' C r. 

[9 = ( 3 ~ ) 9 ~ ]  Then SLDCN((3z)Q1, a)  = SLDCN(p(al), a )  - y = r, where p = [y/z]. The 

hypothesis holds, so SLDCN(p(el), u') - g = r', where 7' C r. Therefore SLDCN((3z)a1, a') = 

T', and 7' _C 7. 

As a corollary to  monotonicity, the following is easily proved: 

Corollary 6.6: If SLDCN(a(@), 0 )  = 7, then there is a substitution r' such tha t  SLDCN(9, 0) 

= 7' and 7' C r* a. 

Proof: By corollary 5.2, SLDCN(9, a)  = SLDCN(o(Q), @).a = r e  a. And by lemma 5.5, since 0 

G Q, SLDCN($, 0 )  = r O ,  where 7' 5 rO a. 

Using corollary 5.6 now affords proof of completeness of the SLDCN procedure: 

Theorem 6.7: For any ground phrase @ such tha t  II + 9, there is a successful refutation of 9 

under substitution 0. 

Proof: By induction on the structure of the least model M(II). 

(Basis) true E M(ll), and SLDCN(true, 0 )  = 0. 

(Induction) Assume that  for all ground phrases cP1 and cb2 such that  Il and II Q1, there 

are successful refutations of and Q2 under substitution 0. Now consider a phrase 9 for 
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which ll Q, and consider each phrase form: 

[a is a ground literal L] There must be a ground instance p(L' :- 9 ' )  of a clause in Il such that  

p(LO) = L and p(Q') = Q1. Then SLDCN(L, 0 )  = SLDCN(Q8, p). By corollary 5.2, SLDCN(Q', 

p) = SLDCN(p(Q8), 0 ) .  p. The hypothesis holds, and SLDCN(p(@'), 0 ) .  p = T = SLDCN(L, 0 ) .  

[Q = iP1 A 94 By the hypothesis, SLDCN(Qr, 0) = a and SLDCN(@s, 0 )  = r, where {r, s) = (1, 

2). SLDCN(Gs, SLDCN(Qr, 0)) = SLDCN(%, a) = SLDCN(o(@J, 0)40,  by corollary 5.2. Since, 

Q8 is a ground phrase, @(as) = Qs and SLDCN(9,AQ2, 0 )  = r o  a. 

[Q = 9, V a,] By the hypothesis, SLDCN(eX, 0) = r, where X E (1, 2). Then SLDCN(91VG2, 

0 )  = 7. 

[Q = (3z)Q1] Let Q1 = a(@'). By the hypothesis, SLDCN(u(Q'), 0 )  = 7. Then SLDCN((3z)Q0, 

0) = SLDCN(p(G'), 0) - y, where p = [ylz]. By corollary 5.6, SLDCN(p(Q'), 0 )  - y = r', where 

r' r o c .  Hence, SLDCN((3z)Q0, 0 )  = r'. 

6. Negation By Failure 

Standard Horn-clause interpreters usually provide negation in a manner different from 

constructive negation. This section briefly describes their negation and compares i t  with con- 

structive negation. 

In model-theoretic terms, the negated atom -A is a valid consequence of a program Il,  if 

ll A; and IT A if there is some ground instance A '  of A such that  A'  M(ll). 

Due to  the soundness and completeness of the SLDCN procedure, we could expect similar 

results for negated atoms: when SLDCN(l7, A, 0) returns 1, thus failing to  find a satisfying sub- 

stitution, then ll + 4. This implementation of negation is referred t o  as negation by failure. I 

will denote the fact that  a literal L is to  be deduced through negation by failure with not L. 

Hence SLDCN(ll, not L, a )  returns a if SLDCN(ll, L, a )  returns 1. 

It has been found that soundness and (weak) completeness of negation by failure is 

obtained for standard SLD-resolution [AE82]. Unfortunately, these promising results do not 

clearly represent some of the real difficulties involved when using negation. First, there must be 
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some basis for deciding tha t  not L is deducible by negation by failure from program I7 if a refu- 

tation for L does not terminate. In general this cannot be done. So the mundness and com- 

pleteness results do not allow for non-termination. It is also not possible in general to  determine 

a priori that  a given computation will not terminate. A second, and more serious, objection to  

the use of negation by failure is the new meaning imparted to  variables occurring within a 

query not L. 

By the soundness of SLDCN-resolution, when literal L is deducible by SLDCN with a satis- 

fying substitution u, every ground instance of u(L) is in the least model of program J3. However, 

no such search is conducted in order to  determine if not L is deducible. In Example 4.1, deduc- 

tion of query not subsequence (L, cons (a, nil) ) fails, since SLDCN finds satisfying substi- 

tutions [nil/L] and [cons (a, nil) /L] for query subsequence (L, cons (a, nil) ) . The 

query not subsequence (L, cons (a, nil) ) would not have failed had L been instantiated 

t o  cons @,nil), for example. We see for negation by failure SLDCN-resolution no longer 

conducts a search for a satisfying substitution. 

One possible solution is to  employ a safe evaluation strategy. This strategy would delay 

evaluation of any unsafe query not L until L is a ground literal [C78]. Consequently, certain 

queries will flounder: all possible refutations terminate in unsafe queries. Since it is not gen- 

erally possible to  syntactically detect when a query will flounder, syntactic limitations have 

been proposed for logic programs that  guarantee all queries will not flounder [S85]. I feel these 

limitations are too severe for general-purpose programming tasks. 

Even with a safe evaluation strategy, negation by failure presents severe problems to  

development of reliable logic programs. To create reliable software and hardware, i t  is useful to  

think of distinct components as black bozes. This principle can be carried over to  Horn-clause 

programs: the content of each clause may be considered a black box, because we are interested 

only in the overall behavior of each predicate. The presence of negated atoms in conjunction 

with negation by failure semantics destroys the ability to  consider the content of each clause as 
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a black box. Whenever a refutation involves negation by failure, the meaning of the variables 

occurring in the refutation is subtly altered, and the programmer must delve into the contents 

of clauses to discover where negation by failure arose. 

Constructive negation serves as a usable alternative to negation by failure. The pr* 

cedural semantics of negation are unified with the SLDCN procedure. Hence the "black box" 

principle is preserved. Further, the notion of floundered queries no longer arises. Several chal- 

lenges remain for full utilization of constructive negation. First among these challenges is to  

determine if i t  is possible to provide negative definitions for large classes of programs. Second, a 

basis for eliminating logically-inconsistent programs must be established. Fortunately, one idea 

is sufficient to  resolve both problems. This concept, due to  David Maier in a private communi- 

cation, involves extensions of programs. 

7. Conservative Extension of Extended Horn-Clause Programs 

As a principle of predicate logic, any literal is deducible from an inconsistent program 

[E72]. A program is inconsistent if both literals A and 4 are deducible. This principle is 

relevant to  extended Horn-clause programs. An interpretation I is inconsistent if both I A 

and I F  -A for some ground atom A. A program IT is inconsistent if M(IT) is inconsistent. The 

following rule for construction of the least model of a program IT duplicates the results of predi- 

cate logic for inconsistent programs: 

If A,-A E M(ll), then L E M(ll) for any ground literal L in the Herbrand base of IT. 

The Herbrand base of a program IT is the set of all ground literals constructed from predi- 

cate and function symbols occurring within ll. Unfortunately, due to  issues of undecidability, 

detection of inconsistent programs cannot generally be performed. But syntactic restrictions on 

programs eliminate the possibility of constructing syntactically correct inconsistent programs. 

Of course the problem with this approach is that  consistent programs which do not conform to 

the syntactic criteria will not be accepted. 
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The necessary condition for consistency is as follows: 

In a given program, there cannot be a pair of variants A :- iP and "A' :- 9' of clauses 

such that  A and A' are unifiable. 

If this condition is observed for a program ll, there is no possibility of having literals A and -A 

within the least model of n. Hence, II must be consistent. 

Unfortunately, the necessary condition is in many cases too strong, eliminating too many 

programs. In many programs the necessary condition for consistency is violated in the following 

manner: Given a program with a clause defining a predicate p, p(z) :- 9 ,  there will almost 

always be a dual clause: -p(z) :- 9'. Frequently there is a definite symmetry between phrases 9 

and 9'. To exploit this symmetry, the dual clauses of a program can be inferred so that  con- 

sistency of the program is maintained. 

I define a model M' to  be an eztension of a model M if M _C M'. Similarly, a program ll' 

is an extension of a program ll if M(n) C M(II0). An extension ll' of a program is conserva- 

tive if ll ' is consistent whenever ll is consistent. 

For notational convenience, define the total function NOT with one argument, a literal, 

returning a literal, according t o  the following rules: 

NOT(A) = "A. 

NOT(-A) =A. 

where A is an  atom. 

Also, define a binary relation NEG on phrases. Denote by NEG(9) = @' the fact that  

(@,a') E NEG. NEG is the largest relation for which the negation condition holds for all tuples 

in NEG: 

For all consistent interpretations I and phrases 9, I )=  9 implies I F  NEG(9). 

Due to  the maximality of NEG, if I is consistent, and I 9 implies I DC. 9', then NEG(9) = 9', 

and NEG(9') = @. 
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To characterize the negation relation NEG, every tuple in NEG must be an  instance of 

one of the following rules: 

(i) NEG(L) = NOT(L). 

(ii) NEG(9,A02) = NEG(O,) V NEG(02). 

(iii) NEG(OlV02) = NEG(O,) A NEG(a2). 

6.1 NEG((34(@lA@2)) = (Vz)P, --+ NEG(92)1- 

(v) NEG((32)(@1AQ2)) = (V4[92 -* NEG(@l)l- 

(vi) NEG((Vz)(@, -* Q2)) = (3z)P1 A NEG(Q2)1. 

Note that  these rules introduce universal quantification. A brief presentation of the declarative 

semantics of universal quantification is included here. Assume (Vz)(Ol -4 a2)  is a ground 

phrase, and I  is an  interpretation. 

Then I  b (Vz)(O1 -+ 92) if and only if I  k ~ ( 9 ~ )  whenever I  b a(@,) for all substitutions u = 

[tlzl. 

With this brief description of universal quantification, I now provide proof that  every tuple 

in NEG satisfies the negation condition. 

Lemma 7.1: If NEG(9) = 9' is an instance of a rule for the negation relation, then I  b O 

implies I  k a' for all consistent interpretations I. 

Proof: The proof proceeds by induction on the structure of the NEG relation. 

(Basis) Consider a literal L. Assume I  k L. Since I  is consistent, I  k NOT(L), so according to  

rule (i), I F  NEG(L). 

(Induction) Assume the negation condition is maintained for phrases O1 and 92. 

[9 = 0, 9,J k u m e  I  C O. Then I  + Ol and I  e2. Also I F  NEG(O) if I F  NEG(Q1) or I+ 

NEG(Q2), according to  rule (ii). By hypothesis, the negation condition holds, so I F  NEG(9,) 

and I F  NEG(Q2). Hence, I F  NEG(O). 

[O = 9, V 94 Assume I C @. Then I  (= 0, or I  C 02. Also I C NEG(O) if I  C NED(@,) and I  b 
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NEG(Q2), according to  rule (iii). By hypothesis, the negation condition holds, so I  p NEG(eX) 

for X E (1, 2). Hence, I NEG(9). 

[9 - (&)(a1 A e2)] Let NEG(9) = (Vz)(a1 -+ Q2), according to rule (iv). Rule (v) can be han- 

dled similarly. Assume I  k 9. Then, for some substitution a = [tlz], I  k a(@,) and I  k a(@,). 

By the hypothesis, I  a(@,) implies I NEG(a(Q2)). I ( V Z ) ( ~ ~  -+ NEG(*,)) if I k 

NEG(a(Q2)) for every a = [t/z] for which I  ~ ( 9 ~ ) .  We have I ~ ( 9 ~ )  but I  NEG(a(G2)), SO I 

F C:G(*). 

[9 = (V2)(9, + a2)] According to rule (vi), NEG(9) = (3z)(Q1 A NEG(92)). Assume I  9. 

Then I + u(@,) whenever I  /= @(a1), for all a = [t/z]. By the hypothesis, if I u(@~),  then I F  

NEG(a(9,)). And if I k ~ ( 9 ~ )  and I  F NEG(a(Q2)), then I (3z)(Q1 /\ NEG(@,)). Otherwise, I  

p a(Q1) for all substitutions u. Again, I F  NEG(9). 

For computation purposes, the NEG relation must be compressed into a function ncg. 

This is achieved with the following rules for compression of a relation: 

If NEG(9) = a', NEG(9) = W, and 4 9 ' )  = W' for some substitution a ,  then ncg(9) = 

* '. 
Also if NEG(9) = 9', NEG(9) = G", and 9' and W are not unifiable, then neg(9) = 9' 

only. This case requires some method for deciding the appropriate compression. 

An extension function can now be defined that  builds dual definitions from clauses within 

a program. Let EXT be an extension function accepting a program ll and a compressed nega- 

tion function ncg, returning the smallest program I7 ' such that: 

(i) All clauses of II are contained in ll'. 

(ii) If L :- 9 is a clause in l l ,  then NOT(L) :- ncg(9) (the dual definition) is in ll'. 

The extension EXT(II, ncg) preserves the meaning of ll only if ll is compact. Program I7 

is compact if for every clause L :- Q, in ll there is no other clause L '  :- 9' such that  L and' L'  

are unifiable. In the simple case when a program is not compact due to the presence of clauses 

L :- Q, and L :- a ' ,  they may be combined to  form a clause L :- Q V Q'. This reduction does 
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not alter the least model of the program, as demonstrated in lemma 7.2, below. When the heads 

of the clauses are not identical, the problem of combining and separating the definitions is more 

difficult, but solvable. 

Proof that  clauses L :- @ and L :- @' are equivalent to  clause L :- @ V @' is quite simple, 

and is presented next. 

Lemma 7.2: Let Ill = ll U (L :- O, L :- Q'), and n2 = TI U {L :- Q V 9'1, where ll is a pro- 

gram. Then M(nl) = M(l12). 

Proof: The proof is in two parts, each utilizing induction on the structure of the least models, 

demonstrating first inclusion of M(lll) in M(l12) and then inclusion of M(n2) in M(n1). 

M(nl) E M(TI,): 

(Basis) true E M(lll) and true E M(l12). 

(Induction) Assume M(nl) M(n2). Let o be a substitution such that  o(L) :- 4 9 )  and a(L) :- 

a(@') are ground instances. If lll b a(@) or n1 a(@'), then a(L) E M(lll). By the hypothesis, 

n2 I= a(@) or n2 I= u(@ '), SO a(L) E M(n2). 

M P 2 )  G M(nl): 

(Basis) true E M(l12) and true E M(lll). 

(Induction) Assume M(I12) M(lll). If a(L) :- a(@) V a(@') is a ground clause and TI2 b a(@) 

or 112 u('(O'), then o(L) E M(n2). By the hypothesis, Ill a(@) or ill C a(@'), so a(L) E 

M(=l). 

I can now demonstrate why programs must be compact. Assume a program ll contains 

two clauses: 

(i) p :- a. 

(ii) p : - b . 

Clearly, this program is not compact. By lemma 7.2, these clauses have the same effect as the 

single clause: 
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The extension of l7 introduces two new clauses: 

"p :- "a. 

"p :- "b. 

Again using lemma 7.2, these new clauses have the same effect as the single clause: 

"p :- "a V "b. 

Also the extension of clause (i') introduces the new clause: 

"p :- "a A "b. 

Clearly the two definitions of "p do not have the same effect. Thus extension of a non-compact 

program does not preserve its model-theoretic meaning. 

I am now prepared to  state the main result of this section: 

Lemma 7.3: ll' = MT(ZT, neg) is consistent if: 

(i) ll does not contain definitions for true and 'true; 

(ii) The necessary condition for consistency holds for n; 

(iii) ll is compact. 

Proof: By induction on subsets Mi of the least model M(l7 '). 

(Basis) Since true E Mo, and -true Mo, the basis case is consistent. 

(Induction) Assume Mi is consistent for i < n. Inconsistency can be generated within Mn in the 

following ways: 

(Case 1) There is a ground instance -true :- Q of a clause in n '  and Mi Q. But -true :- @ 

cannot be an instance of a clause in l7, since this is prohibited by restriction (i). Also EXT(IZ, 

neg) does not generate this clause, since l7 would then contain a clause of the form true :- @', 

which is also prohibited by restriction (i). 
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(Case 2) There are ground instances L :- O and NOT(L) :- O' of clauses in ll', Mi O and Mi 

O'.  By the necessary condition for consistency, these clauses cannot both be instances of clauses 

in ll. So assume only L :- O is an instance of a clause in ll. Because ll is compact, there is no 

other ground instance of a clause in ll of the form L :- W',  where O" # cP. Hence, it must be 

that  9' = neg(cP). By the definition of the negation function neg, when Mi is consistent, M i k  Q 

implies Mi 9'. By hypothesis, Mi is consistent, so a contradiction occurs: L E M, while 

NOT(L) 6 M,. 

Hence, when a program ll is compact and satisfies the necessary condition for consistency, 

EXT(ll, neg) forms a conservative extension of ll. 

To illustrate the conservative extension of a program, consider the program below: 

Example 7.4 

61 subsequence (nil, M) : - true. 

(ii) subsequence (cons (X, L) , cons (Y, M) ) : - 
eq (X, Y) /\ subsequence (L, M) . 

(iii) subsequence (cons (X, L) , cons (Y, M) ) : - 
subsequence (cons (X , L) , M) . 

(iv) "subsequence (cons (X, L) , nil) : - true. 

This program defines the subsequence predicate as described for example 4.1. The program 

in example 7.4 satisfies the necessary condition for consistency. However, the program is not 

compact, due to the presence of clauses (ii) and (iii). These clauses can be combined to form the 

following clause: 

subsequence (cons (X, L) , cons (Y. M) ) : - 
[eq (X , Y) A subsequence (L . M) I 
V subsequence (cons (X, L) . M) . 

Finally, using the rules characterizing the NEG relation presented above, the program presented 

in example 4.1 results. 
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8. Summary 

This paper serves as an  introduction to  a logic employing constructive negation. I have 

demonstrated the soundness and completeness of this logic. I have also argued that  constructive 

negation fits within the procedural semantics of resolution better than negation by failure. 

Finally, I described the conservative extension of a program. Use of a conservative extension 

not only prevents formulation of inconsistent programs, it also produces negative definitions 

from positive definitions. Elaboration of the properties of the conservative extension EXT(Il, 

ncg) remains to  be done. These properties will rely on a detailed description of the procedural 

semantics of universal quantification. 
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Appendix A. Equivalence of SLDCN and SLD Procedures 

The syntax chosen for extended Horn-clause programs is slightly expanded from the stan- 

dard Horn-clause syntax. Standard Horn-clause syntax does not include the following elements: 

negative literals, 

disjunctive phrases, 

existentially quantified phrases. 

In all other respects the syntactic forms are identical. Likewise, the SLD procedure is identical 

to the SLDCN procedure, absent rules for the elements listed above. Extended Horn-clauses will 

be convenient for describing certain properties of constructive negation. However, i t  is impor- 

tant  to  know if a standard Horn-clause interpreter, using SLD-resolution, can successfully exe- 

cute an extended Horn-clause logic program. This proof is conducted in this section. 

A first step in executing extended logic programs with a standard interpreter is to  

translate extended logic programs into standard logic. This is achieved using a syntactic 

transformation function TRANS, mapping phrases to  phrases. If A is an atom, and at and Q2 

are phrases, the recursive definition of TRANS is a s  fo1lows: 

(i) TRANS[A]=A. 

(ii) TRANS['A] = not(A). 

(iii) TRANS[iP,AiP,] = TRANS[@,] A TRANS[@,]. 

(iv) TRANS[@,V@,J = or(TRANS[@,l, TRANS[Q2]). 

(v) TRANS[(3z)@,] = emuts(TRANS[cP1]). 

TRANS can be extended naturally t o  map over clauses, and finally over an entire program. 

Substitution commutes with translation: TRANS[u(@)] = u(TRANS[a]). 

Execution of translated standard Horn-clause programs by the SLD procedure is achieved 

by introducing the following clauses, together designated later as r: 
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These rules will be used to  perform certain higher-order deductions by the SLD-resolution pro- 

cedure. 

Proof of equivalence between SLD and SLDCN procedures relies on their completeness pro- 

perties. Completeness of SLDCN was demonstrated in the previous section. Completeness of 

SLD has been shown in [EK76]. Let ll be an extended Horn-clause program with the following 

restrictions: 

(i) ll contains no clauses defining the predicates not, eziets, or. 

(ii) Every existentially quantified variable has a distinct name. 

Then let ll' = TFtANS[II] U r. The following theorem demonstrates equivalence of least models 

generated by extended and standard Horn-clause logic programs. 

Lemma A.l: ll k @ if and only if Il' I= TRANS[a(@)], for all ground phrases @, and some sub- 

stitution a. 

Proof: To show that  ll @ implies ll ' k TRANS[a(@)], proceed by induction on the structure of 

the least model M(Il). 

(Basis) true E M(II), and true E M(ll '). 

(Induction) Assume the lemma is true for ground phrases and e2 such that  Il k and II b 

%. Since the translation function TRANS has no effect for atoms and conjunctions, these cases 

are trivial, and will not be considered. 

[@ = -A] Then TRANS[-A] = not(A). II -A when there is a clause -A' :- 9' in ll such tha t  

p(A8) = A, p(@')  = Q1, and ll el. The clause not(A8) :- TRANS(@') is contained in II'. By 

the hypothesis, ll' k TRANS[cP1], so II' k not(A). 

[@ = t V @,I Then TRJWS[@~V@~] = o~~(TRANS[@~],  TFULNS[@~]). II % for X E (1, 2). If 
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X = 1, there is a clause or(Fl,F2) :- F1 in I', and an instance of this clause is O~(TR.ANS[@~, 

TRANS[@,$ :- By the hypothesis, II' C so ll' C O ~ ( T R A N S [ ~ ~ ,  

TRANS[a2]). Similarly for X = 2. 

[@ = (3z)Q1] Then TRANS[(~Z)@~] = cn'ats(TRANS[@l]). ll 9, so ll + a(Q1) for some o = 

[t/z}. There is a clause czists(F) :- F in I', and an instance of this clause is c~iata(TRANS[a(@~)]) 

:- TRANS[o(G1)]. By the hypothesis, ll ' k TRANS[U(@~)J, so n'  k ezi~t.(TRANS[o(9~)]). 

Proof of the converse is achieved in the same manner. 

Theorem A.2: When ll is a program observing the restrictions presented above, 9 is deducible 

from ll by SLDCN if and only if it is also deducible from program TRANS[ll] U I' by SLD. 

Proof: As a consequence of the completeness theorems for SLD and SLDCN, and use of lemma 

A.1. 
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