
Constructive Negation in Horn-Clause Programs

Clzjford Walinsky

Technical Report No. CS/E 86-003

April, 1986

Technical Report CS/E 86-009 April, 1986

Constructive Negation in Horn-Clause Programs

Clifford Walinsky
Oregon Graduate Center

Beaverton, OR 97006
(503) 690-1 121

Abstract A natural mechanism for incorporating negation within Horn-clause programs is
presented. Logic programs utilizing constructive negation provide negative as well as positive
definitions of predicates. Constructive negation possesses several advantages over the negation
mechanism used in standard Horn-clause programs: negation by failure. Important properties of
constructive negation are presented. Though negative definitions can be provided by the pro-
grammer, a method for inference of negative definitions is described. The inference scheme also
precludes production of inconsistent programs.

Constructive Negation

1. Introduction

In this paper I will investigate a sub-class of general logic programs, called extended Horn-

clause programs. This sub-class is similar to standard Horn-clause programs in many respects.

A key difference is the introduction of constructive negation. This mechanism for providing

negation is very different from the usual implementation of negation in standard Horn-clause

logic [S85]. However, a Horn-clause logic interpreter can execute programs containing construc-

tive negation.

This paper is organized as follows: Section 2 introduces the syntax of extended Horn-clause

programs. Sections 3 and 4 describe the declarative and procedural semantics of extended

Horn-clause programs. Section 5 demonstrates that the declarative and procedural semantics

are in fact equivalent by proving soundness and completeness. Section 6 compares constructive

negation with the usual implementation of negation, negation by failure. Extended Horn-clause

programs can be inconsistent. To prevent this, inference of a conservative extension is described

in section 7. Section 8 describes opportunities for further research. Finally appendix A shows

that standard Horn-clause interpreters can execute extended Horn-clause programs.

2. Syntax of Extended Horn-Clause Programs

In this section I will describe the syntactic structure of Horn-clause programs with con-

structive negation. Such programs will be referred to as eztended Horn-clause programs. The

syntax is very close to standard Horn-clause logic [CM81].

A term is either a variable, or a structure of the form Atl, ..., t,), where each ti is a term

(when n = 0, the term is a constant). An atom is of the form p(tl, ..., t,), where p is a predicate

name and each ti is a term. A negative atom is expressed as -A, where A is an atom. A literal

is either an atom or a negative atom. Extended Horn-clause programs are composed of clauses.

Each clause is of the form L :- a, where L is a literal and is a phrase. If and are

phrases, x is a variable, and L is a literal, each phrase is of the form:

Corrrrtructive Negation

Conjunction: O1 /\ O2

Disjunction: O1 V O2

Existential: (3%) O1

Literal: L

A variable z is global within a clause L :- Q if z occurs within L. A variable z is bound

within the phrase (3z)Q. A clause L :- cP is closed if every variable in cP is either global or

bound. Henceforth, all program clauses are assumed to be closed.

At this point, the notation of. substitutions will be introduced. A substitution is a total

function mapping expressions to expressions. Every substitution can be denoted by a set of

pairs [el/zl, ..., en/zJ, where each ei is an expression, and all variables zi are distinct. Applica-

tion of a substitution a to an expression is defined inductively by:

a a(z) = e if a contains a pair e/z; otherwise, a(z) = z.

4Ae1, ..., en)) = Au(eJ,... ,4en)).

Composition of substitutions is defined by: ao r(e) = a(l(e)). The empty substitution 0 is the

identity for composition. Expressions e and e ' are unifiable with substitution a if a(e) = a(e ').

A difference operator is also defined: a - z = (e/y E a and y # z]. Substitutions cannot

affect bound variables. If Q is a quantifier, a((Qz)e) = (Qz)uO(e), where a' = a - z. A substitu-

tion is a renaming if the substitution is of the form [yl/zl,...,yn/zJ, where every vi is a variable.

a(L :- a) is an instance of a clause L :- cP if a = [tl/zll...ltn/~n]l and each zi is a global vari-

able. A ground expression contains no variables. a(L :- O) is a ground instance of a clause L :-

O if a(L :- @) is a ground clause. a(L :- cP) is a variant of a clause L :- O if a is a renaming sub-

stitution.

Constructive Negation

3. Declarative Semantics of Extended Horn-Clause Programs

As with general first-order predicate logic, a model-theoretic meaning can be ascribed to

each extended Horn-clause program. An interpretation is a set of ground literals. For the

declarative semantics of extended Horn-clauses alone, every interpretation must contain the dis-

tinguished atom true. I will denote the fact that a phrase 9 is a valid consequence under

interpretation I by I + 9. Ib @ when I + u(@) for every ground instance a(@) of a. Given tha t

@ is a ground phrase, Q, is such tha t I F 9 according to the following recursive definition:

Q is a literal, and 9 E I.

9 = (3z)@,, and there is a substitution a = [t/z], with t a ground term, such that I

a(+,).

An interpretation I is true of a ground clause L :- 9 if I k L when I k 9. Interpretation I is

true of a non-ground clause L :- 9 if I is true of every ground instance of L :- 9. Finally,

interpretation I is true of a program ll if I is true of each clause in ll. An interpretation true

of a program ll is a model of ll.

For any program ll there is a class of models of l l , E(l7). A distinguished member of this

class is the least model, nE(n) , which is contained in all members of C(ll). Existence and

uniqueness of the least model is demonstrated below.

Lemma 3.1: For every program l l , the following is true:

(i) nE(l l) is a model.

(ii) nZ(ll) is the smallest model of ll.

Proof:

(i) Say tha t n E (n) is not a model. There must be a ground instance L :- 9 of a clause in ll

such tha t n E (n) + @ and nC(ll) L. But for all models M, if M k @, then M + L. So nC(n)

C o ~ r u c t i v e Negation

+ L, and nX(ll) must be a model.

(ii) Say there is a model M' and ground literal L such that L 6 M' and L E nC(ll). There must

be a ground instance L :- Q of a clause in II such that nC(Il) Q. So M + Q for all models M

and M + L. Hence M' is not a model.

The definition of the least model provides a non-effective characterization. An equivalent

definition places a structure on the least model. Define the least model to be the smallest

interpretation satisfying the inductive criteria below:

Mo(ll) = {true}.

L E Mn(ll) if L :- Q is a ground instance of a clause in ll and M i l l) Q for some i < n.

Define M(n) to be the limit of the Mn: There is some finite number N for which M(ll) = %(II)

= %+JJI) for all non-negative integers k.

In a standard way, I will now show that M(II) is equivalent to nC(II).

Lemma 3.2: For every program ll, nX(n) = M(ll).

Proof: The proof is in two parts, first demonstrating M(n) nZ(ll), then demonstrating nE(lI)

E M(W.

M(ll) C nE(ll): This inclusion is demonstrated by induction on the subsets Mi of M(l7).

(Basis) true E Mo, and true E M for all M E C(ll).

(Induction) Assume Mi C nE(ll) for all i < n. If L E Mn, there is a ground instance L :- Q of a

clause in II such that Mi k Q for some i. By the hypothesis M 9 for all M E C(I2). Since

every M E C(II) is a true interpretation of ll, L E M.

nE(II) M(ll): I now show that for all phrases Q such that M + 9, there is a minimum integer

i such that Mi + Q.
(Basis) If Q, = true, then i = 0.

(Induction) Assume that for phrases Ql and Q2, Mi C a1 and M . Q2. Also assume that M k
3

for all M E X(ll). Now examine each of the phrase forms:

[@ is a literal L] Since M + Q for all models M E C(ll), there must be a ground instance L :- Q1

Constructive Negation

of a clause in ll such that M + O1 for all M. Then Mi /= O1 by hypothesis, and MGtl L.

[Q = O1 A 02] Since M /= Q for all models M E C(II), M k cPl and M b Q2. By hypothesis, Mi +
el and Mi C 02. If i > j, then Mi C a2, so Mi + O1 A 02.

[O = O1 V QJ Since M k O for all models M E C(ll), M k % for X E (1, 21, and all M. By

hypothesis Mk %, for k E {i , 31. So Mk b a, V a,.

[Q = (3z)cP1] Since M + O for all models M E C(II), M u(al) for some u = [tlz], and all M. By

hypothesis, Mi u(Q1), so Mi (3z)01.

Let IT O denote the fact that phrase (9 is a valid consequence of the least model, M(ll).

The following lemma will be used in the soundness and completeness proofs to come.

Lemma 3.3: If L :- O is a clause in program ll, and ll k 7(O) for some substitution 7, then IT

7(L).

Proof: For every substitution q such that q o T(@) is a ground instance, ll q e r(Q). By definition

of M(IT), IT+ q e 7(L). Since this is true of all substitutions q , ll 7(L).

4. Procedural Semantics of Extended Horn-Clause Programs

Having described the intended connection between logic programs and logic, in this section

I will describe the actual execution of logic programs. The procedure for executing a standard

Horn-clause logic program is called SLD-resolution pK76], which is a variation of the resolution

procedure [R65]. Programs are evaluated with a similar procedure that I will call SLD-

resolution with constructive negation (or SLDCN-resolution). SLDCN can be described by an

algorithm accepting three arguments: a program, a phrase, and a substitution. When initiated,

SLDCN is provided the empty substitution. Successful execution of the SLDCN procedure

returns a substitution. When unsuccessful, SLDCN either terminates, returning 1, or does not

terminate. I will denote the fact that SLDCN returns substitution 7 when given a program n, a

phrase O and a substitution u by SLDCN(ll,Q,u) = T (when program II is understood, this argu-

ment is omitted). The computation procedure of SLDCN is described by the following recursive

Constructive Negation

rules:

SLDCN(@, 1) = 1.

SLDCN(@,AQ2, a) = SLDCN(QB, SLDCN(Q ,a)), where {r, s) = {1,2), and r # s.

SLDCN(@,V@,, a) = r if SLDCN(Or, a) = T; otherwise SLDCN(Os, a) if SLDCN(Qr, a) =

L, again where {r, s) = (1, 21, and r # s.

SLDCN((3z)@, a) = SLDCN(p(@), a) - y, where p = [y/z] and y is a variable not contained

in a or @.

SLDCN(L, a) = SLDCN(@, pea) (L is a literal) if there is a variant L' :- @ of a clause in

ll such tha t p(L') = pea(L) and L' :- Q has no variables in common with a or L; other-

wise L.
This rule involves use of the unification algorithm b65].

The values r and s used in these rules are not necessarily constant. Values of r and s can be

any tha t will lead to successful termination of SLDCN, as if chosen by an oracle. In this paper

I will assume the SLDCN procedure relies on such an oracle. By contrast, the Prolog language

specifies the values for r and s to be constants 1 and 2, respectively. Consequently, execution of

the Prolog interpreter may not terminate in cases when successful execution could be achieved.

To demonstrate this definition of SLDCN, assume that ll contains the clauses:

Constructive Negation

Example 4.1

(i) eq(a,a) :- true.

(ii) eq (b, b) : - true.

(iii) "eq(a,b) :-true.

(iv) "eq(b, a) : - true.

(4 subsequence (nil, M) : - true.

(vi) subsequence (cons (X, L) , cons (Y, M)) : -
[eq (X , Y) A subsequence (L , M)]
V subsequence (cons (X, L) , M) .

(vii) subsequence (cons (X, L) , nil) : - "true.

(v) "subsequence (cons (X, L) , ni 1) : - true.

(ix) "subsequence (nil, M) : - "true.

(x) "subsequence (cons (X, L) , cons (Y, M)) : -
["eq (X, Y) V "subsequence (L, M)]

"subsequence (cons (X, L) , M) .

This program defines a predicate subsequence (L, M) , which is intended to be true when list

L is a subsequence of list M. An empty list is represented by the term nil. A nonempty list is

represented by the term cons(h,t) where h, the head of the list, is an element from the domain

{a b), and t, the tail of the list, is also a term representing a list. The following expressions

are equivalent, providing a refutation of subsequence (U, cons (b, nil))

Constructive Negation

SLDCN(subsequence (U, c o n s (b , n i 1)) ,0)

Unification with a variant of clause (vi):
= SLDCN({ [eq (X, Y) A subsequence (L ' , M')]

V subsequence (cons (X, L ') , M')),
[cons (X, LO)/U, b /Y, n i l /M'])

Use of the SLDCN rule for V:
= SLDCN([eq (X, Y) /\ subsequence (L' , M') 1,

[cons (X, L') /U, b /Y, n i l /M'])

Use of the SLDCN rule for A:
= SLDCN(subsequence (L ' , M') , SLDCN(eq (X, Y) ,

[cons (X. L') /U, b/Y, nil/M']))

Unification with a variant of clause (ii):
= SLDCN(subsequence (L ' , M') , SLDCN(true,

[cons (b .L ') /U, b /X, b/Y, nil/M']))

Use of the SLDCN rule for true:
= SLDCN(subsequence (L ' , M') ,

[cons (b ,L8) /U, b/X, b/Y, n i l /M'])

Unification with a variant of clause (v):
= SLDCN(true,

[cons (b, n i l) /U, n i l / L O , M'/MW , b/X, b /Y, n i l /MO])

Use of the SLDCN rule for true:
= [c o n s (b , n i l) / U , n i l / L ' , M'/M1', b/X, b/Y, n i l /M']

Consequently, list c o n s (b, n i l) is a subsequence of itself.

5. Soundness and Completeness of SLDCN

In discussing the soundness of the SLDCN procedure, I will need to define the length of a

successful refutation. This length is defined to be the number of SLDCN rules invoked during

the refutation. For example, the length of the refutation for Example 4.1 is 7. This will now be

used to prove the following:

Lemma 6.1: SLDCN(7(9), 0) - r = q when SLDCN(@, a* r) = q.

Proof: By induction on the length of a refutation.

(Basis) Assume the length is 1. Then O = true, and SLDCN(@, u o r) = u o r = SLDCN(7(@), a). r.

(Induction) Assume the lemma is true for all refutations of length less than n, and a refutation

Consfructive Negation

of phrase 9 under substitution ao T is of length n. Now consider each possible phrase form:

19 is a literal L] There must be a variant L' :- cP' of a clause such that p(L') = p e a e (L). Then

SLDCN(L, UOT) = SLDCN(9', p o a o ~) . The hypothesis holds, so SLDCN(cPO, p e a o r) =

SLDCN(<cP'), p w u) e ~ . Variables in 9' are distinct from T, so SLDCN(T(cP8), pou)or =

SLDCN(9 ', p a) 0 T. Also SLDCN((L), a). T = SLDCN(cP ', p a). 7.

[9 = 9, A a,] Then SLDCN(9, a. T) = SLDCN(9 , SLDCN(Gr, uo 7)). The hypothesis holds, so

SLDCN(@r, a* T) = SLDCN(l(ar), a)* T, and:

[9 = 9, V 9z] Then SLDCN(9, ae T) = SLDCN(cPx, u Q T), where X E (1, 2). The hypothesis

holds, so SLDCN(cPx, ao T) = SLDCN(T(QrX), a). T = SLDCN(<91VcP2), o) ~ T.

[9 = (3z)9,] Then SLDCN(9, a* r) = SLDCN(p(@,), ao T)-Y, where p = [Y/z]. The hypothesis

holds, so SLDCN(p(@,), a- 7)-y = SLDCN(r0 p(G1), a). T - y. The variable y is not contained in T,

so SLDCN(r0 p(9,), a). T - y =. SLDCN(((3z)9,), a). T.

Several corollaries are now easy t o prove and will help in the soundness theorem to come:

Corollary 6.2: SLDCN(9, a) = SLDCN(a(@), 0) - a.

Proof: Let a = a-0.

Corollary 6.3: If SLDCN(cP, a) = T, then there exists a substitution Q such that T = q0a.

Proof: SLDCN(@, a) = SLDCN(a(9), 0) . a . Let Q = SLDCN(o(9), 0) .

I am now ready to provide proof that execution of a logic program provides semantics

identical to the intended logical interpretation of the program. This is the soundness property:

Theorem 6.4: SLDCN is sound in that SLDCN(9, a) = T implies that ll 7(@).

Conmtructive Negation

Proof: By induction on the length of a refutation.

(Basis) If the length is 1, 9 = true, SLDCN(9, a) = a , and ll b ~ (t r u c) .

(Induction) Assume the theorem is true for all refutations of length less than n, and a refutation

of phrase 9 under substitution u is of length n. Now consider each possible phrase form:

[9 is a literal L] There must be a variant L' :- 9' of a clause such tha t p(L8) = pou(L). Then

SLDCN(L, u) = SLDCN(Q8, pea) = r. The hypothesis holds, so ll k 49'). By lemma 3.3, ll

4L ') . I now must show that 4 L ') = 4L) . By corollary 4.4, there is a substitution q such tha t r

= q O p e a . So (L ') = I]* poa(L'), and because a contains no variables occurring in L',

q o p a u(L ') =. q o p(L '). Because p(L') = p* u(L), applying q t o both sides gives q o p(L') =

qopou(L). But q e p o u = r, so 4 L ') = 4 L) , and ll b 4L) .

[9 = A (P2] Then SLDCN(9, o) = SLDCN(a8, SLDCN(ar, a)) = 7. The hypothesis holds, so

ll + p(ar) and ll (ag), where SLDCN(ar, a) = p. For every substitution q, ll I= q o p(Qr), and

by corollary 5.3, a t least one substitution q exists such that q o p = r. Therefore ll ' (@r)l so

I= A a2).
[9 = @, V 9,] Then SLDCN(9, u) = SLDCN(eX, a) = r, for X E {I , 2). The hypothesis holds,

so n I= 4@*), and n I= 4e1 V e2).
[@ = (3z)Q.I Then SLDCN(9, a) = SLDCN(p(QO), u) - y = 7, where p = [~ / z] . The hypothesis

holds, so ll k rep(@'). Since y is not contained in r, II k 7((3z)@').

As a result of this theorem, a phrase 9 is deducible from a program ll by SLDCN if there

is a substitution 7 such tha t SLDCN(9, 0) = r. r is also called a satisfying substitution for 9.

To provide a completeness proof, I must first demonstrate that SLDCN is monotonic.

Define a partial order on substitutions as follows: u r if and only if there is a substitution q

such that u o I] = 7.

Lemma 5.5: If SLDCN(9, a) = r and a' C a , then SLDCN(9, a ') = r' for r' 7.

Proof: By induction on the length of a refutation.

(Basis) If the length is I , 9 = true. Then SLDCN(true, a) = u = r. And when u' C a,

Constructive Negation

SLDCN(true, a') = a' = 7'. So r' C 7.

(Induction) Assume the lemma is true for all refutations of length less than n, and a refutation

of phrase 9 under substitution a is of length n. Now consider each possible phrase form:

[@ is a literal L] There must be a variant L' :- @ ' of a clause in II such tha t p(L8) = p0u(L) for

mme substitution p. Then SLDCN(L, a) = SLDCN(@', poa) = r. Let a = q0a ' . Then

SLDCN(L, a') = SLDCN(@', p*tleaO) = r, and r C 7.

[9 = el A CP2] Then SLDCN(G1AQ2, a) = SLDCN(eS, SLDCN(Gr, u) = r. Let SLDCN(Qr, a) =

p. The hypothesis holds, so SLDCN(ar, a ') = p', and SLDCN(QS, p') = r', where p' C p and s'

C T. Hence, SLDCN(91/\@2, a') = T', and r' C_ s.

[@ = V (P2] Then SLDCN(@1V92, a) = SLDCN(Q;(, a) = 7, where X E (1,2). The hypothesis

holds, so SLDCN(QX, a ') = r', where r' r. SLDCN(Q1VQ2, a ') = r', and 7' C r.

[9 = (3 ~) 9 ~] Then SLDCN((3z)Q1, a) = SLDCN(p(al), a) - y = r, where p = [y/z]. The

hypothesis holds, so SLDCN(p(el), u') - g = r', where 7' C r. Therefore SLDCN((3z)a1, a') =

T', and 7' _C 7.

As a corollary to monotonicity, the following is easily proved:

Corollary 6.6: If SLDCN(a(@), 0) = 7, then there is a substitution r' such tha t SLDCN(9, 0)

= 7' and 7' C r* a.

Proof: By corollary 5.2, SLDCN(9, a) = SLDCN(o(Q), @).a = r e a. And by lemma 5.5, since 0

G Q, SLDCN($, 0) = r O , where 7' 5 rO a.

Using corollary 5.6 now affords proof of completeness of the SLDCN procedure:

Theorem 6.7: For any ground phrase @ such tha t II + 9, there is a successful refutation of 9

under substitution 0.

Proof: By induction on the structure of the least model M(II).

(Basis) true E M(ll), and SLDCN(true, 0) = 0.

(Induction) Assume that for all ground phrases cP1 and cb2 such that Il and II Q1, there

are successful refutations of and Q2 under substitution 0. Now consider a phrase 9 for

Constructive Negation

which ll Q, and consider each phrase form:

[a is a ground literal L] There must be a ground instance p(L' :- 9 ') of a clause in Il such that

p(LO) = L and p(Q') = Q1. Then SLDCN(L, 0) = SLDCN(Q8, p). By corollary 5.2, SLDCN(Q',

p) = SLDCN(p(Q8), 0) . p. The hypothesis holds, and SLDCN(p(@'), 0) . p = T = SLDCN(L, 0) .

[Q = iP1 A 94 By the hypothesis, SLDCN(Qr, 0) = a and SLDCN(@s, 0) = r, where {r, s) = (1,

2). SLDCN(Gs, SLDCN(Qr, 0)) = SLDCN(%, a) = SLDCN(o(@J, 0)40, by corollary 5.2. Since,

Q8 is a ground phrase, @(as) = Qs and SLDCN(9,AQ2, 0) = r o a.

[Q = 9, V a,] By the hypothesis, SLDCN(eX, 0) = r, where X E (1, 2). Then SLDCN(91VG2,

0) = 7.

[Q = (3z)Q1] Let Q1 = a(@'). By the hypothesis, SLDCN(u(Q'), 0) = 7. Then SLDCN((3z)Q0,

0) = SLDCN(p(G'), 0) - y, where p = [ylz]. By corollary 5.6, SLDCN(p(Q'), 0) - y = r', where

r' r o c . Hence, SLDCN((3z)Q0, 0) = r'.

6. Negation By Failure

Standard Horn-clause interpreters usually provide negation in a manner different from

constructive negation. This section briefly describes their negation and compares i t with con-

structive negation.

In model-theoretic terms, the negated atom -A is a valid consequence of a program Il, if

ll A; and IT A if there is some ground instance A ' of A such that A' M(ll).

Due to the soundness and completeness of the SLDCN procedure, we could expect similar

results for negated atoms: when SLDCN(l7, A, 0) returns 1, thus failing to find a satisfying sub-

stitution, then ll + 4. This implementation of negation is referred t o as negation by failure. I

will denote the fact that a literal L is to be deduced through negation by failure with not L.

Hence SLDCN(ll, not L, a) returns a if SLDCN(ll, L, a) returns 1.

It has been found that soundness and (weak) completeness of negation by failure is

obtained for standard SLD-resolution [AE82]. Unfortunately, these promising results do not

clearly represent some of the real difficulties involved when using negation. First, there must be

Constructive Negation

some basis for deciding tha t not L is deducible by negation by failure from program I7 if a refu-

tation for L does not terminate. In general this cannot be done. So the mundness and com-

pleteness results do not allow for non-termination. It is also not possible in general to determine

a priori that a given computation will not terminate. A second, and more serious, objection to

the use of negation by failure is the new meaning imparted to variables occurring within a

query not L.

By the soundness of SLDCN-resolution, when literal L is deducible by SLDCN with a satis-

fying substitution u, every ground instance of u(L) is in the least model of program J3. However,

no such search is conducted in order to determine if not L is deducible. In Example 4.1, deduc-

tion of query not subsequence (L, cons (a, nil)) fails, since SLDCN finds satisfying substi-

tutions [nil/L] and [cons (a, nil) /L] for query subsequence (L, cons (a, nil)) . The

query not subsequence (L, cons (a, nil)) would not have failed had L been instantiated

t o cons @,nil), for example. We see for negation by failure SLDCN-resolution no longer

conducts a search for a satisfying substitution.

One possible solution is to employ a safe evaluation strategy. This strategy would delay

evaluation of any unsafe query not L until L is a ground literal [C78]. Consequently, certain

queries will flounder: all possible refutations terminate in unsafe queries. Since it is not gen-

erally possible to syntactically detect when a query will flounder, syntactic limitations have

been proposed for logic programs that guarantee all queries will not flounder [S85]. I feel these

limitations are too severe for general-purpose programming tasks.

Even with a safe evaluation strategy, negation by failure presents severe problems to

development of reliable logic programs. To create reliable software and hardware, i t is useful to

think of distinct components as black bozes. This principle can be carried over to Horn-clause

programs: the content of each clause may be considered a black box, because we are interested

only in the overall behavior of each predicate. The presence of negated atoms in conjunction

with negation by failure semantics destroys the ability to consider the content of each clause as

Constructive Negation

a black box. Whenever a refutation involves negation by failure, the meaning of the variables

occurring in the refutation is subtly altered, and the programmer must delve into the contents

of clauses to discover where negation by failure arose.

Constructive negation serves as a usable alternative to negation by failure. The pr*

cedural semantics of negation are unified with the SLDCN procedure. Hence the "black box"

principle is preserved. Further, the notion of floundered queries no longer arises. Several chal-

lenges remain for full utilization of constructive negation. First among these challenges is to

determine if i t is possible to provide negative definitions for large classes of programs. Second, a

basis for eliminating logically-inconsistent programs must be established. Fortunately, one idea

is sufficient to resolve both problems. This concept, due to David Maier in a private communi-

cation, involves extensions of programs.

7. Conservative Extension of Extended Horn-Clause Programs

As a principle of predicate logic, any literal is deducible from an inconsistent program

[E72]. A program is inconsistent if both literals A and 4 are deducible. This principle is

relevant to extended Horn-clause programs. An interpretation I is inconsistent if both I A

and I F -A for some ground atom A. A program IT is inconsistent if M(IT) is inconsistent. The

following rule for construction of the least model of a program IT duplicates the results of predi-

cate logic for inconsistent programs:

If A,-A E M(ll), then L E M(ll) for any ground literal L in the Herbrand base of IT.

The Herbrand base of a program IT is the set of all ground literals constructed from predi-

cate and function symbols occurring within ll. Unfortunately, due to issues of undecidability,

detection of inconsistent programs cannot generally be performed. But syntactic restrictions on

programs eliminate the possibility of constructing syntactically correct inconsistent programs.

Of course the problem with this approach is that consistent programs which do not conform to

the syntactic criteria will not be accepted.

Constructive Negation

The necessary condition for consistency is as follows:

In a given program, there cannot be a pair of variants A :- iP and "A' :- 9' of clauses

such that A and A' are unifiable.

If this condition is observed for a program ll, there is no possibility of having literals A and -A

within the least model of n. Hence, II must be consistent.

Unfortunately, the necessary condition is in many cases too strong, eliminating too many

programs. In many programs the necessary condition for consistency is violated in the following

manner: Given a program with a clause defining a predicate p, p(z) :- 9 , there will almost

always be a dual clause: -p(z) :- 9'. Frequently there is a definite symmetry between phrases 9

and 9'. To exploit this symmetry, the dual clauses of a program can be inferred so that con-

sistency of the program is maintained.

I define a model M' to be an eztension of a model M if M _C M'. Similarly, a program ll'

is an extension of a program ll if M(n) C M(II0). An extension ll' of a program is conserva-

tive if ll ' is consistent whenever ll is consistent.

For notational convenience, define the total function NOT with one argument, a literal,

returning a literal, according t o the following rules:

NOT(A) = "A.

NOT(-A) =A.

where A is an atom.

Also, define a binary relation NEG on phrases. Denote by NEG(9) = @' the fact that

(@,a') E NEG. NEG is the largest relation for which the negation condition holds for all tuples

in NEG:

For all consistent interpretations I and phrases 9, I)= 9 implies I F NEG(9).

Due to the maximality of NEG, if I is consistent, and I 9 implies I DC. 9', then NEG(9) = 9',

and NEG(9') = @.

Constructive Negation

To characterize the negation relation NEG, every tuple in NEG must be an instance of

one of the following rules:

(i) NEG(L) = NOT(L).

(ii) NEG(9,A02) = NEG(O,) V NEG(02).

(iii) NEG(OlV02) = NEG(O,) A NEG(a2).

6.1 NEG((34(@lA@2)) = (Vz)P, --+ NEG(92)1-

(v) NEG((32)(@1AQ2)) = (V4[92 -* NEG(@l)l-

(vi) NEG((Vz)(@, -* Q2)) = (3z)P1 A NEG(Q2)1.

Note that these rules introduce universal quantification. A brief presentation of the declarative

semantics of universal quantification is included here. Assume (Vz)(Ol -4 a2) is a ground

phrase, and I is an interpretation.

Then I b (Vz)(O1 -+ 92) if and only if I k ~ (9 ~) whenever I b a(@,) for all substitutions u =

[tlzl.

With this brief description of universal quantification, I now provide proof that every tuple

in NEG satisfies the negation condition.

Lemma 7.1: If NEG(9) = 9' is an instance of a rule for the negation relation, then I b O

implies I k a' for all consistent interpretations I.

Proof: The proof proceeds by induction on the structure of the NEG relation.

(Basis) Consider a literal L. Assume I k L. Since I is consistent, I k NOT(L), so according to

rule (i), I F NEG(L).

(Induction) Assume the negation condition is maintained for phrases O1 and 92.

[9 = 0, 9,J k u m e I C O. Then I + Ol and I e2. Also I F NEG(O) if I F NEG(Q1) or I+

NEG(Q2), according to rule (ii). By hypothesis, the negation condition holds, so I F NEG(9,)

and I F NEG(Q2). Hence, I F NEG(O).

[O = 9, V 94 Assume I C @. Then I (= 0, or I C 02. Also I C NEG(O) if I C NED(@,) and I b

Constructive Negation

NEG(Q2), according to rule (iii). By hypothesis, the negation condition holds, so I p NEG(eX)

for X E (1, 2). Hence, I NEG(9).

[9 - (&)(a1 A e2)] Let NEG(9) = (Vz)(a1 -+ Q2), according to rule (iv). Rule (v) can be han-

dled similarly. Assume I k 9. Then, for some substitution a = [tlz], I k a(@,) and I k a(@,).

By the hypothesis, I a(@,) implies I NEG(a(Q2)). I (V Z) (~ ~ -+ NEG(*,)) if I k

NEG(a(Q2)) for every a = [t/z] for which I ~ (9 ~) . We have I ~ (9 ~) but I NEG(a(G2)), SO I

F C:G(*).

[9 = (V2)(9, + a2)] According to rule (vi), NEG(9) = (3z)(Q1 A NEG(92)). Assume I 9.

Then I + u(@,) whenever I /= @(a1), for all a = [t/z]. By the hypothesis, if I u(@~), then I F

NEG(a(9,)). And if I k ~ (9 ~) and I F NEG(a(Q2)), then I (3z)(Q1 /\ NEG(@,)). Otherwise, I

p a(Q1) for all substitutions u. Again, I F NEG(9).

For computation purposes, the NEG relation must be compressed into a function ncg.

This is achieved with the following rules for compression of a relation:

If NEG(9) = a', NEG(9) = W, and 4 9 ') = W' for some substitution a , then ncg(9) =

* '.
Also if NEG(9) = 9', NEG(9) = G", and 9' and W are not unifiable, then neg(9) = 9'

only. This case requires some method for deciding the appropriate compression.

An extension function can now be defined that builds dual definitions from clauses within

a program. Let EXT be an extension function accepting a program ll and a compressed nega-

tion function ncg, returning the smallest program I7 ' such that:

(i) All clauses of II are contained in ll'.

(ii) If L :- 9 is a clause in l l , then NOT(L) :- ncg(9) (the dual definition) is in ll'.

The extension EXT(II, ncg) preserves the meaning of ll only if ll is compact. Program I7

is compact if for every clause L :- Q, in ll there is no other clause L ' :- 9' such that L and' L'

are unifiable. In the simple case when a program is not compact due to the presence of clauses

L :- Q, and L :- a ' , they may be combined to form a clause L :- Q V Q'. This reduction does

Constructive Negation

not alter the least model of the program, as demonstrated in lemma 7.2, below. When the heads

of the clauses are not identical, the problem of combining and separating the definitions is more

difficult, but solvable.

Proof that clauses L :- @ and L :- @' are equivalent to clause L :- @ V @' is quite simple,

and is presented next.

Lemma 7.2: Let Ill = ll U (L :- O, L :- Q'), and n2 = TI U {L :- Q V 9'1, where ll is a pro-

gram. Then M(nl) = M(l12).

Proof: The proof is in two parts, each utilizing induction on the structure of the least models,

demonstrating first inclusion of M(lll) in M(l12) and then inclusion of M(n2) in M(n1).

M(nl) E M(TI,):

(Basis) true E M(lll) and true E M(l12).

(Induction) Assume M(nl) M(n2). Let o be a substitution such that o(L) :- 4 9) and a(L) :-

a(@') are ground instances. If lll b a(@) or n1 a(@'), then a(L) E M(lll). By the hypothesis,

n2 I= a(@) or n2 I= u(@ '), SO a(L) E M(n2).

M P 2) G M(nl):

(Basis) true E M(l12) and true E M(lll).

(Induction) Assume M(I12) M(lll). If a(L) :- a(@) V a(@') is a ground clause and TI2 b a(@)

or 112 u('(O'), then o(L) E M(n2). By the hypothesis, Ill a(@) or ill C a(@'), so a(L) E

M(=l).

I can now demonstrate why programs must be compact. Assume a program ll contains

two clauses:

(i) p :- a.

(ii) p : - b .

Clearly, this program is not compact. By lemma 7.2, these clauses have the same effect as the

single clause:

Constructive Negation

The extension of l7 introduces two new clauses:

"p :- "a.

"p :- "b.

Again using lemma 7.2, these new clauses have the same effect as the single clause:

"p :- "a V "b.

Also the extension of clause (i') introduces the new clause:

"p :- "a A "b.

Clearly the two definitions of "p do not have the same effect. Thus extension of a non-compact

program does not preserve its model-theoretic meaning.

I am now prepared to state the main result of this section:

Lemma 7.3: ll' = MT(ZT, neg) is consistent if:

(i) ll does not contain definitions for true and 'true;

(ii) The necessary condition for consistency holds for n;

(iii) ll is compact.

Proof: By induction on subsets Mi of the least model M(l7 ').

(Basis) Since true E Mo, and -true Mo, the basis case is consistent.

(Induction) Assume Mi is consistent for i < n. Inconsistency can be generated within Mn in the

following ways:

(Case 1) There is a ground instance -true :- Q of a clause in n ' and Mi Q. But -true :- @

cannot be an instance of a clause in l7, since this is prohibited by restriction (i). Also EXT(IZ,

neg) does not generate this clause, since l7 would then contain a clause of the form true :- @',

which is also prohibited by restriction (i).

Constructive Negation

(Case 2) There are ground instances L :- O and NOT(L) :- O' of clauses in ll', Mi O and Mi

O'. By the necessary condition for consistency, these clauses cannot both be instances of clauses

in ll. So assume only L :- O is an instance of a clause in ll. Because ll is compact, there is no

other ground instance of a clause in ll of the form L :- W', where O" # cP. Hence, it must be

that 9' = neg(cP). By the definition of the negation function neg, when Mi is consistent, M i k Q

implies Mi 9'. By hypothesis, Mi is consistent, so a contradiction occurs: L E M, while

NOT(L) 6 M,.

Hence, when a program ll is compact and satisfies the necessary condition for consistency,

EXT(ll, neg) forms a conservative extension of ll.

To illustrate the conservative extension of a program, consider the program below:

Example 7.4

61 subsequence (nil, M) : - true.

(ii) subsequence (cons (X, L) , cons (Y, M)) : -
eq (X, Y) /\ subsequence (L, M) .

(iii) subsequence (cons (X, L) , cons (Y, M)) : -
subsequence (cons (X , L) , M) .

(iv) "subsequence (cons (X, L) , nil) : - true.

This program defines the subsequence predicate as described for example 4.1. The program

in example 7.4 satisfies the necessary condition for consistency. However, the program is not

compact, due to the presence of clauses (ii) and (iii). These clauses can be combined to form the

following clause:

subsequence (cons (X, L) , cons (Y. M)) : -
[eq (X , Y) A subsequence (L . M) I
V subsequence (cons (X, L) . M) .

Finally, using the rules characterizing the NEG relation presented above, the program presented

in example 4.1 results.

Constructive Negation

8. Summary

This paper serves as an introduction to a logic employing constructive negation. I have

demonstrated the soundness and completeness of this logic. I have also argued that constructive

negation fits within the procedural semantics of resolution better than negation by failure.

Finally, I described the conservative extension of a program. Use of a conservative extension

not only prevents formulation of inconsistent programs, it also produces negative definitions

from positive definitions. Elaboration of the properties of the conservative extension EXT(Il,

ncg) remains to be done. These properties will rely on a detailed description of the procedural

semantics of universal quantification.

Constructive Negation

Appendix A. Equivalence of SLDCN and SLD Procedures

The syntax chosen for extended Horn-clause programs is slightly expanded from the stan-

dard Horn-clause syntax. Standard Horn-clause syntax does not include the following elements:

negative literals,

disjunctive phrases,

existentially quantified phrases.

In all other respects the syntactic forms are identical. Likewise, the SLD procedure is identical

to the SLDCN procedure, absent rules for the elements listed above. Extended Horn-clauses will

be convenient for describing certain properties of constructive negation. However, i t is impor-

tant to know if a standard Horn-clause interpreter, using SLD-resolution, can successfully exe-

cute an extended Horn-clause logic program. This proof is conducted in this section.

A first step in executing extended logic programs with a standard interpreter is to

translate extended logic programs into standard logic. This is achieved using a syntactic

transformation function TRANS, mapping phrases to phrases. If A is an atom, and at and Q2

are phrases, the recursive definition of TRANS is a s fo1lows:

(i) TRANS[A]=A.

(ii) TRANS['A] = not(A).

(iii) TRANS[iP,AiP,] = TRANS[@,] A TRANS[@,].

(iv) TRANS[@,V@,J = or(TRANS[@,l, TRANS[Q2]).

(v) TRANS[(3z)@,] = emuts(TRANS[cP1]).

TRANS can be extended naturally t o map over clauses, and finally over an entire program.

Substitution commutes with translation: TRANS[u(@)] = u(TRANS[a]).

Execution of translated standard Horn-clause programs by the SLD procedure is achieved

by introducing the following clauses, together designated later as r:

Conetructive Negation

These rules will be used to perform certain higher-order deductions by the SLD-resolution pro-

cedure.

Proof of equivalence between SLD and SLDCN procedures relies on their completeness pro-

perties. Completeness of SLDCN was demonstrated in the previous section. Completeness of

SLD has been shown in [EK76]. Let ll be an extended Horn-clause program with the following

restrictions:

(i) ll contains no clauses defining the predicates not, eziets, or.

(ii) Every existentially quantified variable has a distinct name.

Then let ll' = TFtANS[II] U r. The following theorem demonstrates equivalence of least models

generated by extended and standard Horn-clause logic programs.

Lemma A.l: ll k @ if and only if Il' I= TRANS[a(@)], for all ground phrases @, and some sub-

stitution a.

Proof: To show that ll @ implies ll ' k TRANS[a(@)], proceed by induction on the structure of

the least model M(Il).

(Basis) true E M(II), and true E M(ll ').

(Induction) Assume the lemma is true for ground phrases and e2 such that Il k and II b

%. Since the translation function TRANS has no effect for atoms and conjunctions, these cases

are trivial, and will not be considered.

[@ = -A] Then TRANS[-A] = not(A). II -A when there is a clause -A' :- 9' in ll such tha t

p(A8) = A, p(@') = Q1, and ll el. The clause not(A8) :- TRANS(@') is contained in II'. By

the hypothesis, ll' k TRANS[cP1], so II' k not(A).

[@ = t V @,I Then TRJWS[@~V@~] = o~~(TRANS[@~], TFULNS[@~]). II % for X E (1, 2). If

Constructive Negation

X = 1, there is a clause or(Fl,F2) :- F1 in I', and an instance of this clause is O~(TR.ANS[@~,

TRANS[@,$:- By the hypothesis, II' C so ll' C O ~ (T R A N S [~ ~ ,

TRANS[a2]). Similarly for X = 2.

[@ = (3z)Q1] Then TRANS[(~Z)@~] = cn'ats(TRANS[@l]). ll 9, so ll + a(Q1) for some o =

[t/z}. There is a clause czists(F) :- F in I', and an instance of this clause is c~iata(TRANS[a(@~)])

:- TRANS[o(G1)]. By the hypothesis, ll ' k TRANS[U(@~)J, so n' k ezi~t.(TRANS[o(9~)]).

Proof of the converse is achieved in the same manner.

Theorem A.2: When ll is a program observing the restrictions presented above, 9 is deducible

from ll by SLDCN if and only if it is also deducible from program TRANS[ll] U I' by SLD.

Proof: As a consequence of the completeness theorems for SLD and SLDCN, and use of lemma

A.1.

Constructive Negation

References

[AE82] Apt & van Emden, "Contributions to the Theory of Logic Programming," JACM, 29(3),

pp. 841-862, 1982.

[C78] Clark, "Negation as Failure", in Logic and Data Basee, Gallaire & Minker (eds.), Plenum

Press, New York, pp. 55-76, 1978.

[CM81] Clocksin & Mellish, Programming in Prolog, Springer-Verlag, New York, 1981.

[E72] Enderton, A Mathematical Introduction to Logic, Academic Press, New York, 1972.

[EK76] van Emden & Kowalski, "The Semantics of Predicate Logic as a Programming

Language," JACM, 23(4), pp. 733-742, 1976.

[R65] Robinson, "A Machine-Oriented Logic Based on the Resolution Principle," JACM, 12(1),

pp. 23-41, 1965.

IS851 Shepherdson "Negation as Failure 11," Journal of Logic Programming, 2(3), pp.185-202,

1985.

