
QUICKTALK:
A Smalltalk-80 Dialect for Dehing

Primitive Methoda

Mark B. Ballard
David Maier

Allen Wirfs-Brock

Oregon Graduate Center
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999

Technical Report CS/E86-004
April, 1986

QUICKTALK:
A Smalltalk-80 Dialect for Defining

Primitive Met hods

Mark B. Ballard
David Maier

Oregon Graduate Center

Allen Wirfs-Brock
Computer Research Lab
Tektronix, Inc. 5Ck662

P O Box 500
Beaverton, OR 97077

(503) 627-6195

ABSTRACT

QUICKTALK is a dialect of Smalltalk-80 that can be compiled directly into native machine
code, instead of virtual machine bytecodes. The dialect includes "hints" on the class of
method arguments, instance variables, and class variables. We designed the dialect to
describe primitive Smalltalk methods. QUICKTALK achieves improved performance over
bytecodes by eliminating the interpreter loop on bytecode execution, by reducing the number
of message send/returns via binding some target methods a t compilation, and by eliminating
redundant class checking. We identify changes to the Smalltalk-80 system and compiler to
support the dialect, and give performance measurements.

1. INTRODUCTION

Some problems require experimentation or prototyping to discover a n acceptable pro-
grammed solution. User-interface design is one such problem, since a person's behavior in
using the interface is so difficult to predict. Programming languages and programming
environments have varying degrees of flexibility t o support prototyping. Some languages
support prototyping better than others by requiring less specification from the programmer.
FORTRAN, a t one extreme, requires sufficient programmer specification so tha t everything
can be bound at compile time, including all storage allocation. Pascal binds all procedure
calls and all the types of variables but does provide for the dynamic allocation of data items.
Lisp, at the other extreme, has no compile-time typing or binding of procedures. Its flexibil-
ity even allows a program to construct a function and evaluate i t during execution.

Smalltalk, in the spirit of Lisp, binds procedure names to procedure implementations
during execution. Unlike Lisp however, values are given abstract types rather than just
representation types and thus allow the interpreter t o catch inappropriate function applica-
tions at the abstract-type level. With delayed binding of procedures in Smalltalk, a pro-
grammer can change one part of the application program without recompiling the whole pro-
gram. Smalltalk encourages a programmer to concentrate on the behavior of objects rather
than structure. Specialized behavior and increased structure can be factored incrementally
with subclassing. As the application matures, the need for flexibility decreases. The pro-
grammer can specify his task more precisely and would be willing t o trade flexibility for
efficiency. The programmer may want t o state types of variables and move some procedure
bindings and type checking to compile time in order t o get a faster execution of the applica-
tion. The idea of QUICKTALK is t o allow the programmer t o gain efficiency in a mature
application by typing variables in frequently used procedures.

2. SMALLTALK AND PRIMITIVES

We assume the reader is familiar with the Smalltalk-80' system, and implementation
techniques for i t , as described in Goldberg and Robson [GoR83] and Krasner [Kra83]. In this
section we restate some of the properties of the Smalltalk virtual machine tha t are of impor-
tance t o the QUICKTALK strategy.

The Smalltalk-80 system is specified by a stack-oriented virtual machine. Source
methods are translated by the system compiler into compiled methods, which contain
sequences of eight-bit instructions, called bytecodes, for the virtual machine. The Smalltalk
interpreter executes the bytecodes. The interpretation of most bytecodes involves an evalua-
tion stack. Bytecodes can be grouped into those tha t push objects onto the evaluation stack,
store (and sometimes pop) objects from the stack, send messages, return from a method, or
jump to a bytecode within a method.

The interpreter usually responds to a send bytecode, sometimes called a message send,
by interpreting a compiled method associated with the message name. The send bytecode
causes a significant change t o the s tate of the interpreter. The sending method places the
receiver and arguments on the evaluation stack, then requests a message send. The state of
the sending method is remembered in the method context so tha t the sending method may be
resumed upon return from the send. A method can be suspended between any two bytecodes;
t ha t is, between any two instructions of the virtual machine. A frequent source of suspension
is the unsuccessful search for a method to correspond with a message selector in the attempt
to interpret a send bytecode. In this case, an error is reported, and the execution of the
compiled method containing the errant send bytecode is suspended.

'Smalltalk-80 is a trademark of Xerox Corporation.

April 1986

Some methods, called primitive-calling (PC) methods invoke a primitive routine* in
native machine code, in addition to Smalltalk source code. Primitive routines give Smalltalk
the ability t o create objects, evaluate expressions, provide access t o some virtual machine
structures, and are used t o optimize some critical methods.

A system primitive-calling (SPC) method has a primitive section and a failure section.
The primitive section simply references a system-supplied primitive routine by number. The
failure section consists of regular Smalltalk code to be performed if the primitive fails. An
SPC method has its failure section compiled to a regular compiled method, except t ha t a
reference number for t o a system-supplied primitive routine is included. Figure 1 shows the
SPC method for the message selector +, which references a system-supplied primitive routine
number 1. A primitive routine fails when i t is called with arguments tha t i t was not
designed to handle, such as a n argument of the wrong class. The failure section handles
these exceptional cases.

A send bytecode that invokes a compiled SPC method is interpreted by first trying the
primitive routine. If the primitive routine completes successfully, i t replaces the receiver and
arguments on the evaluation stack by the result of the routine. If the primitive routine fails,
control returns t o the interpreter, which interprets the bytecodes for the failure section of
the compiled SPC method. The failure section must execute in a n environment as if the
primitive routine was not attempted. Thus, a primitive must not create side effects until i t
has determined tha t its preconditions for successful completion have been met.

Smalltalk programmers would like to write their own primitive methods t o improve
the performance of their applications. They would like t o write these primitive methods
without having t o .know details of the virtual machine interpreter, such a s the meaning of
values in the registers and special memory locations, or of the native machine code. The
QUICKTALK compiler supplies a tool for them to do so. With the QUICKTALK compiler
comes the ability t o compile critical sections of a Smalltalk application t o native code so
tha t they will run much more efficiently than if interpreted by the virtual machine. Users
can write their own user PC methods whose primitive section is written in QUICKTALK,
rather than invoking one of a fixed set of system-supplied primitive routines.

3. PERFORMANCE BOTTLENECKS AND THE QUICKTALK APPROACH

The following three assumptions (Hag831 about Smalltalk methods and the Smalltalk
interpreter motivate our expectations of performance improvements by compiling user

Class: SmallInteger

+ rNumber
"Add the receiver t o &Number and answer the result iT it is a SmallInteger.

Otherwise fail the primitive and try tbe superclrss method."

t super + rNumber

Flgure 1 s A System Primitive-Calling Method

?rimitive routines are described in [GoR83, Cbapter 281.

QUICKTALK

primitive-calling (UPC) methods. First, the overhead for delayed binding of messages to
methods is high since each procedure call requires an associative lookup in a dictionary of
methods (or possibly a hierarchy of dictionaries). Second, each bytecode of the virtual
machine must be decoded by the interpreter. And third, every primitive operation must
check the types of its arguments.

Many methods send messages to only the existing compiled P C methods, and none t o
regular compiled methods. A large portion of methods have arguments and results of the
same class for nearly every call of the method. Thus, many methods could have their mes-
sage selectors bound to methods during compilation. QUICKTALK is designed t o handle
such methods tha t call only P C methods and whose arguments are from the same class for
nearly every call. A primitive section for a UPC method can be written in QUICKTALK,
which is a Smalltalk subset with types added. By providing types, the QUICKTALK com-
piler can eliminate the dynamic lookup for methods used within the primitive section. The
compiler can find the correct methods once, thus saving the method search during execution.
In addition, the type information makes many class checks unnecessary.

The QUICKTALK dialect adds type declarations for method arguments as well as
instance variable and class variables used in the method.' It restricts the use of block expres-
sions to a set of control structures. The selectors tha t can be used in QUICKTALK also are
restricted.

The problems of adding staticly typed UPC methods t o Smalltalk without violating
the dynamic type security already provided are many. First, the user primitive routine can
be called from an untyped environment. Therefore, the routine must check tha t i t is called
with arguments of the right type. For structured objects, only those components actually
used in the method should be type-checked. For example, a UPC method tha t expects a n
array of integers and is looking for the index of the first element equal t o zero should not
care tha t a non-integer element might occur after the zero.

Second, types have an abstract component, tha t is, the operations allowed on them,
and a representation component. For example, the string type in Smalltalk provides the
message at: t o access a component character by position number. A string is not actually
represented as as array of character objects, but as an array of bytes. Some UPC methods
might be able t o ignore the character objects and operate directly on the byte representa-
tion. QUICKTALK must provide a way for a UPC methods to declare its intention to
operate on the representation of an object. Thus, a particular string object could be treated
as an array of bytes, so t ha t at: would return a byte.

Third, QUICKTALK type declarations are meant t o be "hints" or "expectations".
The primitive section of the UPC method is meant t o handle a majority of its invocations,
while providing a failure section for arguments of the wrong type. A failed primitive should
be side-effect free. Simple type checking (a structural test) might not guarantee the success-
ful completion of a primitive. For example, type checking can not detect t ha t the sum of
two SmallIntegers will not overflow. Having QUICKTALK guarantee an undo facility seems
too expensive, so the responsibility for restoring state if changes are made rests with the p r e
grammer.

Fourth, one must decide what t o type. In QUICKTALK, types are associated with
arguments t o a method and variables used within the method rather than typing the
instance variables of a class [MOP851 . Restricting a method to operate on objects of a
specified type seemed to be a better way to localize and isolate the constraints imposed by
types on a Smalltalk application. Consistent with typing methods rather than the instance
variables of a class, the object-accessing selectors are typed.

q h e current implementation does not handle class variables.

April 1986

Fifth, most types a re equivalent t o Smalltalk classes. For reasons of eficient type
checking, instances of a subclas are not considered to be of the same type as instances of its
parent class. Sixth, block expressions are not considered values in QUICKTALK and are
thus not typed. The complexity introduced by treating functions as values does not seem
justified for a language intended to write primitives.

QUICKTALK is designed for writing primitive routines tha t can not be suspended.
Therefore, the interpreter of a QUICKTALK method need not provide a mapping from its
execution environment to tha t defined by the Smalltalk virtual machine.

Although the focus of this research was on incremental typing of Smalltalk, a major
performance advantage of compiling user-defined primitive methods is the elimination of the
interpreter loop on bytecode execution. In the Tektronix Smalltalk interpreter, for example,
decoding and dispatching a bytecode takes a minimum of five machine instructions, or
between 3-4 microseconds while the semantic action requires only 1 microsecond [Wir85] .

4. RELATED WORK

Work related t o QUICKTALK can be divided into three areas: adding optional typing
to Smalltalk, compiling Smalltalk, and improving the performance of interpreted Smalltalk.
The goals of proposals for adding types t o Smalltalk include improving program readability
and documentation as well as improving code efficiency.

4.1. Typing Smalltalk
Borning and Ingalls (BoI8lj concentrate on adding a type system t o Smalltalk t o s u p

port compile-time checking and thus adding machine-checkable documentation t o programs.
They think of types as abstracting classes, although types can be parameterized; e.g. "Collec-
tion of: X'. In their proposal, they add t o the Smalltalk language explicit type declarations
to method arguments and returned values. The compiler infers the types of temporary vari-
ables. They use the explicit declarations t o check tha t messages within the method have
acceptable arguments, t ha t only objects of the correct type will be assigned t o variables, and
tha t a n object of the correct type will be returned. Suzuki [Suz81] infers types in the
absence of declarations. His types are unions of Smalltalk classes. Types are associated
with variables; methods map a Cartesian product of types to types. He wanted to design
tools t o supply type declaration to current Smalltalk programs. He does not attempt t o han-
dle parameterized types. Suzuki and Terada [SuT84] decided tha t many type inferences
were not tight enough t o allow efficient code generation. They introduce type expressions for
variables, method arguments, and blocks tha t will allow them to bind some messages to
methods a t compilation. They allow union types, which means some messages require a case
selection of methods based on the class of the receiver. They do not handle parameterized
types.

4.2. Compiling Smalltalk
Hagmann [Hag83], adds a class declaration to method arguments; the class tha t is

expected in the majority of method activations. Thus, his types are "hints" or "preferences".
For methods where preferred classes are declared, he produces two compiled methods; the
standard compiled method and a machine-code version. If the machine-code version should
encounter a value tha t does not match the preferred class, then the execution must be con-
tinued in the standard compiled method. He must deal with the possibility tha t his methods
can be interrupted and suspended. Mappings between the machine-code version and the
standard compiled method must be supported for the Smalltalk debugger t o work properly.
Larus and Bush [LaB83] propose applying source-tesource transformations on non-
polymorphic Smalltalk methods. They require class declarations for variables and libraries

QUICKTALK

of method rewrites. If the class of a receiver of a message is known, then the method associ-
ated is known and can be substituted. Their major performance improvement comes from
telescoping the message send tree, foregoing some type checking, and array bounds checking.

4.3. Improving Smalltalk Performance
Deutsch [DeS84] suggested many techniques for improving the efficiency of interpreting

Smalltalk. First, he discovered tha t 95% of all sends, a s measured from each point of send-
ing, execute the same method a s the previous send from tha t point. Therefore, Deutsch p r e
posed inline caching of the last method lookup for each send bytecode to reduce this over-
head. Second, he allocated method contexts (activation records) on a linear stack, only pro-
moting them to standard Smalltalk objects when necessary. Third, he suggested tha t the
bytecodes could be dynamically expanded into their equivalent native code and optimized in
native code. Using this technique for arbitrary Smalltalk means he, like Hagmann, must
support mappings between the native code and the bytecodes.

6. QUICKTALK LANGUAGE DEFINITION

This section describes the QUICKTALK dialect a s i t differs from Smalltalk-80. The
subsections introduce the UPC method format, the typing discipline, the control structures,
and the message selectors t ha t are permitted in the dialect.

5.1. UPC Method Format
A UPC method follows the structure of a SPC method, tha t is, a single message selec-

tor followed by a primitive section and a failure section. The primitive section is delimited
by set braces. See Figure 2 for an example UPC method with the sections annotated.

Notice tha t the type declaration statements (defined in the next section) appear among the
QUICKTALK statements within the user-primitive section. Also, notice tha t the primitive
section and the failure section each has its own set of temporary variables.

example: argl and: arg2 "message selector"

upcTemp "primitive section temporary"
argl declare: SmallInteger. "type declaration" 1
arg2 declare: SmallInteger.
upcTemp t argl < arg2.
t upcTemp

1 I primitive section

TaiiureTemp "Tailure section temporary"
failureTemp t argl < arg2. I failure section
t failureTemp

Ffgure 2: Example UPC Method

April 1980

5.2. Typing
In QUICKTALK, types are used to discriminate which instance of a polymorphic

operator applies. For example, a + can mean either of the following two operators:

+ Smallhteger X SmallInteger -+ SmallInteger
+ Float x Float + Float

All method arguments and class variables used in the primitive section of a UPC method
must have declared types. In addition, the value returned by object-accessing selectors must
be typed. The types of temporary variables are inferred when assigned the value of a n
expression tha t can be typed.

Types of identifiers (method arguments and class variables), and objectaccessing
selectors are declared by the messages in Figure 3. The declaration messages may appear a s
statements anywhere in the user-primitive section before the use of the declared symbol.
The message declare: declares an identifier tha t will denote only objects of the given class.
(Subclasses are disallowed, except for Object). For example,

x declare: Point.

declares the identifier z will denote an object of class Point. The exception for class Object
allows a method to accept an arbitrary object when its type is not needed by any operations.

The message declareInterna1: declares an intent t o treat the object denoted by the
identifier in terms of its internal representation rather than its external interface when inter-
preting messages sent t o the object. Some objects tha t look externally like a n Array of
Characters or a n Array of Boolean are represented internally a s lists of numbers or bit
strings rather than lists of references. The writer of a primitive may need t o exploit the
internal representation of objects for efficiency. For example,

y declareInterna1: ByteArray.

declares the identifier y will denote an object which is represented as a ByteArray.
The message declareArrayOf: is used to declare t ha t a n identifier denotes a n Array

whose elements a re of a single class. For example,

a declareArrayOf: SmallInteger

declares the identifier a t o be an Array of SmallInteger elements.
The messages declareAcceea:inClass: and declareAccess:inClass:forFieldNamed:

are used to type the value returned by an instance variable selector. For example,

#origin declareAccess: Point inclass: Rectangle forFieldNamed: origin.

declares t ha t the message origin returns the instance variable named origin of type Point

<ident> declare: < c l w >
<ident> deelareInternrlr <representstion>
<ident> declareArrayOi: <class>

Ftyre S: Type-declaring and Object-accessing Selectors

QUICKTALK

when applied t o any object of the class Rectangle. When the message name is the same as
tha t of the instance variable name, the declaration above can be abbreviated to:

#origin declareAccess: Point inclass: Rectangle

The messages declareUpdateInCless: and declareUpdateInCl~:forFieldNamed: are
used t o identify a selector used t o update an instance variable of a class. For example,

#origin: declareUpdateInClass: Rectangle forFieldNamed: origin

Again, if the field name is not specified, i t defaults to the name of the selector.
The various declarations determine the way types are checked. All identifiers

declared to be of a particular class, t o have an internal representation, or t o be Array are
checked upon entry. Element8 of Array's are checked upon extraction, EK) elements not
extracted will never be checked. Object-accessing selectors declared with either declareAc-
cess: message invoke methods that check the type of the value they return. QUICKTALK
selectors (defined in the next section) invoke methods tha t do not check the types of their
arguments but must check the type of the value returned.

Only the pseudcwariables, self, nil, true, jalae are allowed in QUICKTALK user primi-
tive sections. The type of self is assumed to be the same as the class containing the method
definition unless i t is declared otherwise.

6.3. Blocks
A block expressions in Smalltalk describes an object representing a deferred sequence

of actions. A QUICKTALK method may use blocks only with the selectors identified in Fig-
ure 4. These blocks and selectors supply the Smalltalk programmer with the standard condi-
tional and looping control structures.

6.4. Selectors
Figures 5, 6, and 7 (and Figure 3 on type-declaring and object-accessing selectors) con-

tain the set of all selectors tha t can be used in W C methods.' The Greek letters in the
figures a re type variables. Thus,

basic&: (Array of: a) x SmallInteger -+ a

means tha t the selector basicAt: can be applied with a SmallInteger argument t o an Array
of objects of any type a and will return a n object of type a. These typed selectors are the
only selectors t ha t QUICKTALK allows.

<Boo]> llTruer <Block>
<Bool> If'Falser <Block>
<Boo]> 1lTruer <Block> 1fFalser <Block>
<Bool> IiFalse: <Block> lrrruec <Block>
<Bool> and: <Block>
< B o o b or: <Block>

<SmallInteger> tor <SmallInteger> do: <BlockWithOneArgument>
Flgure 4: Primitive Blocks

P l o a t i n g point selectors have not been implemented.

April 1986

Smdllntegtr X SmaIlInteger + SmallInteger
Float X Float -+ Float
... similarly for -, /

SmallIntegtr X SmallInteger +Boolean
Float x Float -, Boolean
Character x Character -+ Boolean
... similarly lor >, <-, >-

Float X Float -+ Boolean
a X a + Boolean (interpreted an identity except Float)
... dmilarly for --
SmallInteger X SmallInteger -+ SmallInteger
... similarly lor blthnd:, bltOrt , //, \\

F i g u r e 61 Compiler-Known Selectors - Arithmetic selectors

@ SmallInteger X SmdlInteger + Point
@ Float x Float -+ Point

b a l e A t r ByteArray x SmallInteger -+ Smalllnteger
basfeAtt (Array of: a) X SmallInteger -+ a

baslcAtxput: ByteArray X SmallInteger X SrnallInteger 4 SmallInteger
baslcAtrputr (Array of: a) X SmallInteger X a -+ a

basScSlze a 4 SmallInteger
I- a x a + Boolean

F l g u r e br Compiler-Known Selectors - Non-Arithmetic

fallI1Falw Boolean + (csuaes control change)
f a l l I fT rue Boolean + (causes control change)

F lgu re 71 Compiler-Known Selectors - Additional

Figure 7 lists messages that are novel with QUICKTALI< in addition t o those in Fig-
ure 3. The selectors failIR'rue and failIfFalsc allow a UPC method to fail after computing
an arbitrary predicate.

6.6. Side Effects
A UPC method must determine tha t its preconditions for success have been met

before i t can update arguments or global objects. Upon failure, the failure section of a PC
method must execute in an environment a s if the primitive routine had not been tried.
Responsibility for insuring tha t the primitive leaves its environment unchanged upon failure

QUICKTALK

rests solely with the programmer.

6. SYSTEM DESIGN

This section describes design decisions and changes made t o the Smalltalk-80 system
t o support UPC methods.

6.1. Interfaces
The user defines his UPC methods through the Smalltalk system browser, the stan-

dard interface to class and message definitions. The compiler is invoked on the UPC method
by the same mechanism as for a regular source method. Upon unsuccessful compilation of
the primitive section of a UPC method, the compiler indicates why i t failed. The QUICK-
TALK compiler can fail in all the ways the current compiler fails. In addition, a syntacti-
cally correct primitive section might not be compiled if an expression can not be typed, a
temporary variable is assigned with conflicting types, or a message selector appears t ha t is
not among the ones allowed for QUICKTALK.

6.2. Smalltalk Compiler

6.2.1. Storing Primitive Compiled Methods
A new dictionary, called the primitive method dictionary (PMD), has keys tha t are

selectors of the messages available in QUICKTALK. Since the same selector can refer t o
different methods based on the types of its arguments, the dictionary's values are sets of
primitive method deecriptions. A primitive method description has the selector, receiver type,
argument types, and return type, plus a selector and arguments, which, when sent t o the
code generator, will return machine code. The PMD currently holds the primitive method
descriptions for the selectors tha t the QUICKTALK compiler allows plus the descriptions of
any declared object-accessing selectors.

6.2.2. Changes to System Parser
The standard Smalltalk parser, after handling the message selector in a method,

checks for a primitive section. This check has been generalized t o handle either a system-
primitive section (in angle brackets) or a user-primitive section (in set braces). A modified
parser handles the user-primitive section. That parser must maintain a new temporary-
variable name environment and create a separate parse tree. The standard parser creates a
parse tree whose root node, called the method root, holds the number of a system primitive, if
the method being parsed is a P C method. In the case of a UPC method, the new parser gen-
eralizes this instance variable t o be a primitive-method root tha t heads the primitive parse
tree. Each node of a primitive parse tree has an additional instance variable for its type,
which is assigned in a pass of the primitive parse tree before code generation. The node
types are used to decide which primitive method description in the PMD is meant by a selec-
tor.

6.2.5. Changes to Code Generation
The first pass of the primitive parse tree produces a compiled method nearly identical

t o the standard system compiled method. Bytecodes are generated as a linearized intermedi-
a t e form of the parse tree. (See Figure 8.)

In a standard Smalltalk compiled method, send bytecodes reference their selectors as
symbols stored in the literal frame. In a compiled UPC method, for the QUICKTALK sec-
tion, send bytecodes reference their selectors stored as primitive-method descriptions. For
example, in Figure 8, the send bytecode (numbered 17) references the primitive method
description for a character comparison. Each bytecode in the compiled method is expanded

April 1988

...
15: pushSelf

Bytecodes 16: pushconstant: $A
17: send: >- Character x Character + Boolean
18: jurnpFalae: 23

...
rn0ve.w
m0ve.w
sub.w
bgt.s
rn0ve.w
bra
rn0ve.w

sub.w

beq

(receiver), freeReg
6+LiteralOBset(myHeader), anotherReg
IreeReg, anotherReg
l f
#trueOop, anotherReg
2f
#falseOop, anotherReg

Flgure 8: Code Generation

t o equivalent native code. Each send is expanded t o inline code found in its primitive-
method description. The native code uses unallocated registers t o simulate the primitive
routine's evaluation stack. The hardware stack of the native machine is used to spill regis
ters. Register receiver of the native machine points t o the message receiver on the evalua-
tion stack, and is used t o access the receiver and method arguments. Register myHeader
points t o the head of the primitive routine being executed, providing access the literals of the
primitive routine. Finally, the assembler code is assembled t o object code, which then
replaces the bytecodes of the primitive routine.

6.3. Compiled Methods
A compiled UPC method consists of two objects; a compiled method for the failure

section and a user-defined primitive routine. The user-defined primitive routine is the
machine-code version of the primitive section and is referenced from the compiled method.

QUICKTALK

6.4. Interpreter
The interpreter has a new Smalltalk primitive (137) that knows how t o find the object

reference t o a user-defined primitive routine stored in a compiled method. The primitive
finds the offset in the user-defined primitive routine where the native code begins, and begins
executing there, passing (a) the top of interpreter stack, so the primitive routine can find its
receiver and arguments, and (b) the header of the primitive routine, so the routine can find
its literals. Upon completion, the primitive routine returns control t o primitive 137, passing
back a return code indicating failure or the number of object pointers to pop from the inter-
preter stack, and a return value for primitive 137 to push on the interpreter stack. Upon
failure of the primitive routine, primitive 137 jumps to the part of the interpreter tha t knows
how t o start the failure section.

6.5. Debugger
The normal Smalltalk debugger was not modified. These new primitive Smalltalk

methods are unobservable in the same way tha t normal primitives are not observable. Since
QUICKTALK is a subset of Smalltalk, one can debug the logic of QUICKTALK methods by
transforming them back t o Smalltalk. This transformation consists of providing in the class
Object a method tha t is just a n-op for each of the declaration messages, commenting out
the failure section, and removing the set braces delimiting the QUICKTALK section. The
resulting Smalltalk method should have the same meaning as the QUICKTALK method.

7. EXPERIMENTAL RESULTS

T o measure the improvements in speed gained with UPC methods, some example
methods have been compiled by the current QUICKTALK compiler and executed by a
modified Smalltalk interpreter%hat knows about UPC methods. The source methods for the
experiment may be found in Figure 9 and in the Appendix. QUICKTALK methods decrease
execution time but increase the amount of space needed to represent compiled methods. Fig-
ures 10 and 11 a t the end of this section quantify the tradeoff for the example methods. The
source for the methods may be found in the Appendix. The execution times reported used
the Smalltalk timing facility. The object Time is sent the message millisecondsToRun:,
whose argument is a block containing the expression t o be timed. Within tha t block, a mes-
sage executes repeatedly the expression of interest i t surrounds in order t o get a valid meas-
urement. This to:do: time has been subtracted from the reported timing figures. The
difference in time required for the lookup of these timed methods in its method dictionary is
believed to be of negligible importance. Each method should reside in the method cache
after the initial lookup. Thus the difference in lookup, if any, would be amortized over each
iteration. The speedup factor is the time required t o execute the regular Smalltalk method
divided by the time required to execute the UPC method.

The speedup factors for the dot product of arrays, substring searching, and substring
replacement methods depended on the size of the problem. A percentage of the execution
time difference is due t o a one-time setup, and the rest depends upon the size of the objects
involved. The results reported are for problems sizes near the asymptotic speedup.

7.1. Character Teeting
Figure 9 compares a Smalltalk method and a QUICKTALK method for testing if a

character is uppercase. The UPC method executes faster for two reasons. First, the sends
for the Boolean tests are eliminated and, second, the comparison can be done with the
character's object pointer instead of extracting the ASCII representation a s defined in the
Smalltalk class Character. The timing results reveal a 12.8 speedup factor. Running the

q h e interpreter was Version X1.6e Experiment < Fri Sep 6 1985 > running on a Tektronix 4404 WlCkbssed

April 1986

Chaw Cbsmckr
R e N u Method

b U p p e r c y
Answer whether tbe receiver is sa uppercue letter."

t mu >- U aad: (rcU <- a1
Uwr Primitive-Calling Method

newLUppercvc
"Anrrer wbether the receiver m UI uppercue latter."

I
I

t mu>- U and: [MU <-
1

r U error: 'newIsUpperc.rc failed'

timing experiment where $A is tested for uppercase increased the UPC method execution
times very slightly but only reduced the speedup factor t o 11.9. The normal Smalltalk com-
piler compromises the meaning of the and: message by assuming the receiver is of the class
Boolean. The block evaluation of and: is compiled t o truth-valued jump bytecodes.
Without this optimization in the Smalltalk-80 compiler, the QUICKTALK method demon-
strates a 21.4fold speedup.

7.2. Iterative Sum
The aumFrom:to: method compares a Smalltalk method with a QUICKTALK

method t o add all the integers in a n interval to the message receiver. The experiment
demonstrates a 22-fold speedup for integer addition with the compiled iterative control struc-
ture to:do:. Half of the speed up is due to eliminating the block e v a l ~ a t i o n . ~ The rest is due
to eliminating bytecode decoding and simplifying the increment of the loop control variable.

7.3, In teger Poht Addi t ion
The next test compares a Smalltalk method with a QUICKTALK method + for

Points. The Smalltalk method is more general than the QUICKTALK method, since i t can
accept any argument t ha t can be coerced t o a Point by the message -Point, and the Points
can have coordinates t ha t are a kind of Number. The QUICKTALK method, in contrast, is
designed t o handle only a Point argument whose coordinates are SmallIntegers. The experi-
ment demonstrates a minor 1.38-fold speedup due t o eliminating bytecode decoding. The
large code expansion results from the inline type checking and the inline object allocation.
Thus, the code expansion could be moderated with a small increase in execution time by
jumping t o a subroutine.

7.4. Dot Product
Next, we compare a Smalltalk method with a QUICKTALK method tha t answers the

sum of the products of corresponding elements of two vectors with SmallInteger elements.
The experiment demonstrates a 5.Gfold speedup due to converting the to:do: block evalua-
tion t o a simple loop and by specializing the at: accessing message to the Array's basicAt:.

workstation with two megabytes or memory.

q h e Smalltalk method was rewritten t o use a whlleTruec message which optimized the block evrluation t o
jump instructions. This method ran twice as fast aa the Smalltalk method with tordor.

QUICKTALK

7.6. Substring Search
Next we compare the standard Smalltalk system method for finding a substring of a

given string with an equivalent QUICKTALK method. The experiment demonstrates a
5.13-fold speedup. As before, the speedup is mainly due t o eliminating the to:do: block
evaluation. In addition, the messages size and iaEmpty are specialized to basicsize and
at: t o basicAt:.

7.6. String Replacement
Our final experiment compares a Smalltalk P C method, a QUICKTALK method, and

a Smalltalk method. Each method destructively replaces characters in a range of the receiv-
ing string using a range of elements in the replacement string. The Smalltalk P C method
uses a system primitive whose functionality can be easily expressed in Smalltalk but is pro-
vided as a primitive for performance. The experiment demonstrates a 0.038-fold speedup of
the QUICKTALK UPC method compared with the handcoded primitive, t ha t is, about 26
times slower. The handcoded primitive takes advantage of knowing tha t Array elements are
stored in sequential memory copying memory from one Array t o the other. The QUICK-
TALK method accesses both Arrays one element a t a time and checks bounds on each
access. A 3.31-foId speedup results compared with the equivalent Smalltalk method.

name UPC method regular method expansion factor
lsuppercase 111 bytes 19 bytes 5.84
sumFromrtor 133 bytes 27 bytes 4.93
1ntPlus: 511 bytes 20 bytes 25.55
myDotr 435 bytes 34 bytes 12.79
myFindStrlngr 965 bytes 76 bytes 12.70

myReplaceFromr 469 bytes 45 bytes 10.42
handcoded primitive 266 bytes

Flgure 10: Code Expansion

April 1986

iterationa UPC regular speed-up factor.
bUppercase loo0 65 830 12.77

loo00 649 8314 12.81

rumFrom 100 81 1799 22.21
loo0 807 17573 21.78

IntPlus lo00 211 291 1.38
loo00 2179 2999 1.38

myDot 1000 (1838 34381 8.01
10000 68356 342751 5.01

myFlndStrlng loo0 15187 77882 8.13

Ftgure 11: Timing

8. LIMITATIONS AND FUTURE WORK

The following sections summarize limitations in the design of QUICKTALK. We pro-
pose extensions tha t have been ordered beginning with those we feel most important. The
quality of code produced by the compiler must not be degraded by adding features t o the
dialect, since the major motivation for writing a primitive is performance.

8.1. Limitation of Approach
The most severe constraint in the design of QUICKTALK is tha t imposed by main-

taining the semantics of primitives as transactions whose execution can not be suspended
and whose effects are not visible upon failure. On the other hand, not supporting suspensions
makes QUICKTALK attractive from the engineering viewpoint. A mapping does not need to
be provided between suspended QUICKTALK methods and the bytecodes of the Smalltalk
virtual machine.

A second limitation lies in the amount of performance improvement one should expect
from a QUICKTALK compiler. Recall the QUICKTALK method for replacing a substring of
a string. The current, very naive, QUICKTALK compiler generated code for this method
which compared most unfavorably with the equivalent handcoded primitive. I t would be
hard, though not impossible, t o construct a compiler sufficient t o recognize the block memory
move and thus approach the speed of the handcoded primitive.

8.2. Float Operations
Adding floating-point operations will complete the arithmetic. We expect t o get much

performance improvement here. QUICKTALK should be able t o use a native-machine-
dependent representation of floating-point numbers, converting t o the Smalltalk form for
returned values. For example, computing the dot product of two arrays of floating-point

QUICKTALK

numbers should perform much faster in a QUICKTALK primitive than in an equivalent
Smalltalk method.

8.3. Creation of Objecta
User-defined primitives need t o create objects for internal use and t o return computed

objects t o the calling environment. With object creation comes the possibility t ha t the gar-
bage collector might interrupt a user-defined primitive routine and move any object in
memory. Most insidiously, the primitive routine itself is an object and might be moved by
the garbage collector. Thus, if the primitive routine wishes to call any interpreter subrou-
tines, like object creation, a simple return address mechanism for returning t o the primitive
method is not sufficient.

8.4. Robust Compiler
A robust compiler should be able t o explain its failures t o compile. It should fail when

the UPC method is syntactically incorrect or mistyped. The compiler could suggest changes
tha t would allow it to complete. Of course, QUICKTALK code should have the same seman-
tics a s the Smalltalk code. If the code tha t QUICKTALK generated for system primitives
used in user-defined primitives was copied from the same source a s the interpreter's primi-
tive, then maintaining equivalent semantics would be more easily guaranteed.

8.5. Improved Code Generation
A significant improvement in code size and speed was gained by simulating the

evaluation stack inside the compiler and using the 68010's registers. More sophisticated
techniques could uncover further optimizations. For example, the compiler could identify
redundant bounds checks on an Array access. Thus, the reported code expansions should be
understood as an upper bound and the speedup factors a lower bound on what is readily
achievable.

8.6. Inline Insertion vs. Subroutines
Currently, QUICKTALK only generates inline code. It should be able t o share com-

mon support routines, such as object allocation. New QUICKTALK methods should be able
t o call existing UPC methods. This ability requires the concept of an activation record for
the primitive and there might be a different argument passing mechanism. The compiler
could then make the spaceltime tradeoff of jumping to a subroutine or copying the subrou-
tine inline. The UPC method writer should be aware of the ramifications of a primitive
method preventing interrupts from being serviced and should use care. UPC methods requir-
ing intensive computation might lock out a user from his terminal.

Keeping a dictionary of methods that are dependent upon each other is not necessary
until user-defined primitives can reference other user-defined primitives. A t tha t time, dic-
tionaries of dependencies of compiled primitive methods on types of instance variables, class
variables, and other primitive methods argument types must be maintained. A technique for
lazy recompilation could be used so as not to degrade the interactive programming environ-
ment when a change to a method requires recompilation of its dependents.

8.7. UPC Methods with Union Types
Some UPC methods would be more conveniently expressed if they were allowed to

operate on arguments each of which might come from a set of classes. For example, a
method t o add two Points should be able to accept Points with Smallhteger or Float coordi-
nates. The type system could be generalized t o allow union types. With a more general type
system, the compiler would be responsible for generating the case selection.

April 1986

8.8. Summary
The QUICKTALK dialect of Smalltalk-80 can be viewed as a n experiment in adding a

notion of static typing t o a dynamically typed language. The dialect is designed t o describe
primitive Smalltalk methods. Improved performance over bytecodes is achieved by eliminat-
ing the interpreter loop on bytecode execution, by reducing the number of message
send/returns via binding some target methods a t compilation, and by eliminating redundant
class checking.

QUICKTALK

REFERENCES

For a more complete description of QUICKTALK, see the thesis by Ballard [Ba186].

[AhU79] Aho, A. V. and Ullman, J. D., Principles of Compiler Design, Addison-Wesley,
Reading, MA, 1979.

Pa1861 Ballard, M. B., "QUICKTALK: A Smalltalk-80 Dialect for Defining Primitive
Methods," Master's Thesis, Oregon Graduate Center, Dept. of CS&E, Beaverton,
OR, Apr. 1986.

[BoI81] Borning, A. H. and Ingalls, D. H. H., "A Type Declaration and Inference System for
Smalltalk," 81-08-02a, U. of Washington, Seattle, WA, Nov. 1981.

[CiP83] Citrin, W. and Ponder, C., "Implementing a Smalltalk Compiler," CS292R,
University of California, Berkeley, CA, Mar. 1983.

[DeS84] Deutsch, L. P. and Schiffman, A. M., "Efficient Implementation of the Smalltalk-80
System," 11th Annual ACM Symp. on Prin. of Programming Languages, Jan. 1984,
pp. 297-302.

[GoR83] Goldberg, A. and Robson, D., Smalltalk-80, The Language and Its Implementation,
Addison-Wesley, Reading, MA, 1983.

[Hag831 Hagmann, R., "Preferred Classes: A Proposal for Faster Smalltalk-80 Execution,"
Smalltalk-80 Bits of History, Words of Advice, Reading, MA, 1983, pp. 323-330.

[Ing78] Ingalls, D. H. H., "The Smalltalk-76 Programming System Design and
Implementation," 5th Annual ACM Symp. on Prin. of Programming Languages, Jan.
1978, pp. 915.

[Kra83] G. Krasner, ed., Smalltalk-80 Bits of History, Words of Advice, Addison-Wesley,
Reading, MA, 1983.

[LaB83] Larus, J. and Bush, W., "Classy: A Method for Efficiently Compiling Smalltalk,"
CS292R, University of California, Berkeley, CA, Mar. 1983.

[MOP85]Maier1 D., Otis, A. and Purdy, A., "Object-Oriented Database Development a t
Servio Logic," Database Engineering, vol. 8(Dec. 1985), pp. 58-65.

[Rob851 Roberts, G., "An Experimental Type Declaration and Type Checking System for
Smalltalk-80," M.Sc. project, Queen Mary College, University of London, London,
England, Oct. 1985.

[Suz81] Suzuki, N., "Inferring Types in Smalltalk," 8th Annual ACM Symp. on Prin. of
Programming Languages, Jan. 1981, pp. 187-199.

[SuT84] Suzuki, N. and Terada, M., "Creating Efficient Systems for Object-Oriented
Languages," 11th Annual ACM Symp. on Prin. o j Programming Languages, Jan.
1984, pp. 290-296.

[Wir85] Wirfs-Brock, A., "The Design of a High-Performance Smalltalk Implementation,"
Nikkei Electronics , June 3, 1985, pp. 233-245. (in Japanese).

April 1086

APPENDIX

Clan: Character
R e g u l u Method

bUpperc y
Annrer whether the receiver m an upperewe ktkr."
wU >- U and: [r U <- 81

User PrimitivbCsUing Method

n s w b U p p c r c u e
"Answer whether the receiver m an uppercue ktkr."

t
t wu >I tA and: [r U <- a]

1
r U error: 'newLUppercue failed'

Clur: Smr l lh tepr
R e d u Method

s u m F r o m : ~ t u t to: mtop
Add to the receiver the mm of the i n t e g n betreen start and stop; indurive"
I sum I
N m mu.
r t u t to: rtop do: 1 :index !mm - mm + index].
t rum

U w r Pr imi t ivaCdl ing Method

mySumFrya : r t u t tO: otop
Add to the receiver the sum of the integers between start and stop; inclusive"

{
: m m l
start declare: S m a f i t e p r .
stop declare: SmaUInte~r .
N m mu.
atart to: stop do: I :index I mm - m m + index].
t sum

1
f wU 8urnFrom: d a r t 60: stop

C1.n: Point
R e d u Method

+ d e l t a -
Answer a new Point that b the mm of the receiver and delta (which ia a Point or Number)."
I deltd'oint
deltd'oint - delta u P d n t .
f x + deltd'oiot x @ (y + deltd'oint y)

U e r Pr imi t ivaCdUng Method

In tPIu : deltaPoint
"Answer a new Point that ir the mm of the receiver and deltfloint.
Both points should have Smalllntepr coordinates.'

{
x declare: Smallhteger.
y declare: SmaIlIntegr.
deltd'oint declare: Point.
x dec1arcAccuc Smallhteger inClur: Poiot forFieldNamed: #x.
y declardcceu: Smalllnteer inclan: Point forFieldNamed: #y.
f (X + (deltd'oint x)) @ (y + (deltd'oint y))

Transcript rhar: * i n t P l ~ ~ uwr primitive callin8 method failed'.
f nlf + delt.Poiot

QUICKTALK

c1.lr: Arrw
Rc.ulu Method

dot: &.;y
"Anmer the mm d corresponding elewntr of aU sad &ray."
l m m l
rum c 0.
1 co: MU rue do: (:index I sum - mm + ((mu ai: index) (-ray at: index))].
t m m

U ~ c r Primitive-Cdlial: Method

-Dot: 8nArr.y
"hewer the m m d carerpooding SrnaUlnteger e k w n t r d r U and .nArray."

{
l m m l
r U declarLArr*yOl: QnullInteger.
m h a y deelareArrsyOf: Smdlaieger.
~m + 0.
1 (O: r U buicSue do: [:index I mm + mm + ((rU buieAt: hdex) (s h y buicAt: index))).
t m m

1
Transcript l o w : 'myDot u r i primitive calling maihod faikd'.
t nu dot: .nAnay

Clm: String
Regular Method

h d S t r i n ~ : ~ r u b S t r ntutin&kt: n t u t
Anmer the index of mbStriog w i t h i the receiver. darting

a t start. If the receiver dot, n d contain mbStrhg, s m e r 0."
I .Character index 1
mbString isEmpty ifTrue: If 4.
aCharacier c mbString firrt.
d a r t (o: nu rue - mbstring rue + 1 do:

(dartindex I
(rU at: atartindex) - aCharuter ifTrue:

(i d u - 1.
[(rlf at: dartlndex+indu-1) =

(subString at: hdex)] rhieTrue:
[index - mbString sire ifTrue: 11 atartindex].
indu - indu+l])l.

1 0
Uaer Primitive-C8Uing Method

m y F i ~ & t ; b nubstring r tu t lngAt : stut
h r r e r the index d mbstring w i t h i the receiver, darting

a t start. If the receiver d o a not contain mbstring, anrrer 0."
{

I charRep indu 1
rlf declareinternal: ByteArrw.
mbstring declareinternal: B y t h a y .
d a r t declare: Smalllntepr.
mbString buicSie - 0 illtue: [f 01.
charRep - mbString buieht: 1.
d u t to: nU buicSie - mbString b u i d i e + 1 do:

I:darthdex I
(rU buicAt: atartldex) - eharRep VI'rue:

/index * 1.
[(mu b.*cAi: dartldex+index-1) -

(mbStrhg buieAt: index)) whileTrue:
l idex - rubstring basicSue i m u e : (f #tartindex].
i n d u - bdex+l)]].

t o

Transcript rhw: 'findStrin~#tartingAt: u r r primitive caUing method failed'.
^aU f i n d s t r b ~ mubString startingAt: start

April 1986

~ e p l u e f r o m : . C u t lo: stop 4 t h : replacement r t u t l n d t : m p S t u t
'Tbb datrudivety nplaecr elsments from start to stop in the receiver
starting a t indu, repstart, in the collection, replacement. Anmer bbe
receiver. Tbe range erron cauw the primitive to hil..

<pr&iti*c: 106>
mper replanfrom: r t u t (o: stop with: rapbeemant .tartingAt: repstar(

User PrlmltivvaCdltly Method

myRcplueFrom: a t u t tm #Cop with: mplmcement a tu t in f l r : +rp5tut

'This dwtroetbely replam ekmcota from atart to r(op h the receiver
etut ing a t index, repstart, b the string, rephcewnt. h e r the
receiver."

t
1 index repoff I
mlf decluek~ternal: E b t h r a y .
star$ declsre: SmaUInte~r .
etop declare: S m d n t e p r .
repkcemor declareInterna1: m d r r a y .
rapstart declare: SmaUIntepr.
r epor - r e p s t u t - atart.
i n d u - start - 1.
[(i d u - indu + 1) <-.top]

whiTrue: I r U buicAt: indu put: (raplacement buicA(: rap08 + indu)]
I

Tnnecript #how: 'replam: lucr primitive alling wthod failed'.

Regular Non-Prlmltlra Method

f r i l tdReplueFrom: r t u t tm stop with: rep luernen t r tut in@t: mpSt&
T b h dartructivcly replacu elements from #tart to stop in the recaiver
starting a t index, repstart, in the #bring, replacement. Annrer tbc
receiver."
I i n d u repoll I
repoff - repsiart - start.
index c Itart - 1.
[(index - index + 1) <- stop]

whikTrue: [r U at: h d u put: (replacement d: npOU + irdarr))

QUICKTALK

