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Abstract 
We describe the results of developing the Gemstone object- 
oriented database server, which supports a model of objects 
similar to that of Smalltalk-80. We begin with a summary of the 
goals and requirements for the system: an extensible data model 
that captures behavioral semantics, no artificial bounds on the 
number or size of database objects, database amenities (con- 
currency. transactions, recovery. associative access, authoriza- 
tion) and an interactive development environment. Object- 
oriented languages. Smalltalk in particular, answer some of these 
requirements. We discuss satisfying the remaining requirements 
in an object oriented context. and report briefly on the status of 
the development efforts. This paper is directed at an audience 
familiar with object-oriented languages and their implementation. 
but perhaps unacquainted w~th the difficulties and techniques of 
database system development. It updates the original report on 
the project [CMJ, and expands upon a more recent art~cle [MDP). 

1.  Introduction 

The GemStone database system is the result of a develop- 
ment project started three years ago at Servio Our goal was to 
merge object-oriented language concepts with those of database 
systems. Gemstone provides an object-oriented database 
language called OPAL. which is used for data definition, data 
manipulation and general computation. 

Conventional record-oriented database systems, such as 
commercial relational systems. often reduce application develop- 
ment time and improve data sharing among applications. How- 
ever, these DBMSs are subject to the limitations of a finite set of 
data types and the need to normalize data [Ea, Si]. In contrast. 
object-oriented languages offer flexible abstract data-typing facili- 
ties, and the ability to encapsulate data and operations via the 
message metaphor. Smalltalk-80 is an example of a completely 
implemented object-oriented system [GR. Kr]. 

Our premise is that a combination of object-oriented 
language capabilities with the storage management lunctions 01 a 

traditional data management system will result in a system that 
offers further reductions in application development efforts. The 
extensible data-typing facility of the system w~l l  facilitate stor~ng 
information not suited to normalized relations. In add~tion, we 
believe that an object-oriented language can be complete enough 
to handle database design, database access, and applications 
Object-like models have long been popular in CAD [CFHL. EM. 
Ka82. Ka83. LP. MNP. SMF], and seem well suited to support 
programming envtronments [PL], knowledge bases [OK], and 
office information systems [Ah - .  Zd841. Other groups are in the 
process of implementing object model database systems [DKL. 
Ni, ZW]. 

2. Goals and Requirements 

2.1. An Extensible Data Model 

The system must have a data model that supports the definl- 
lion of new data types, rather than constraining programmers to 
use a fixed set of predefined types. New types should also be 
indistinguishable from system-supplied types for the purposes of 
application programming: operations that apply to new types 
should be syntactically similar to the built-in operations on prede- 
fined types. The distinction between data types and data struc- 
tures is important in achieving this goal of extensibility. 

Data structures are made up of atomic values (integers. 
strings, etc.), plus constructors (record, relation, set, tree). A 
dala type is really a collection of operators, the protocol, for 
operating on a particular structure. The underlying structure 
need not be the same as the appearance provided by the proto- 
col. In conventional database systems. the types correspond to 
the structutes. There is usually a fixed set of operations on 
atomic values. such as arithmetic and comparison operations 
Each constructor has a fixed set of operations; for example, a 
record constructor has "set field" and "get field", and a relation 
constructor has "add record", "delete record" and "select record". 
It is not possible to add new operations that appear synlactically 
similar to the built-in operations. Thus the set of data types that 
are directly supported is the same as the set ol data structures 
since nested application of the constructors is not supported. 

Our goal is to model the behavior, not just the structure. of 
entities in the real world [Mo]. Further, we must be able lo pack- 
age behavior with structure to create new data types. To get 
reasonable performance from such a system. the collection of 
constructors must be rich enough that most dala types have fairly 
direct implementations. In particular, we should be able to cap- 
ture many-to-many relationships, collections, and sequences 



directly. For an easily usable system, we should be able to nest 
the struciuring operations to arbitmy levels, and use previously 
defined data types as building blocks for other types. GemStone 
must have system management functions lor monitoring system 
performance, performing backups, recovering from failures, 
adding and removing users, and altering user privileges. 

2.2. Database Amenities 

GemStone is first a database system, so it must provide 
shared access to persistent data in a multi-user environment. It 
should suooort stable storaqe of data objects on disk, while 
providing location transparency to the application programmer on 
the movement of objects between main memory and secondary 
storage. GemStone must provide for ownership of data objects. 
and requests by the owner to authorize sharing with other users. 
Each database session should appear to have complete control 
of a consistent version of the database, even while users are run- 
ning concurrently, and should be provided with a transaction 
mechanism to commit or abort a set of changes atomically. 
Users should be able to request replication of critical data to 
guard against localized media failure. 

GemStone should support auxiliary storage structures that 
provide alternative access paths to data, and should give users 
some control over physical grouping of objects, to improve effi- 
ciency of specific access patterns. Bounds on the number and 
size of data objects should be determined only by the amount of 
secondary storage, not main-memory limitations or artificial res- 
trictions on data definition. Thus. fields in a record should be 
variable-length, with no fixed upper bound. Collections of 
objects, such as arrays and sets, should not have a bound on the 
number of elements. Similarly. the total number of objects in a 
database system should not be arbitrarily limited. Finally, the 
system should handle both small and large objects with reason- 
able efficiency [SSB]. 

2.3. Programming Environment 

We feel that GemStone should provide at least the following 
tools and features for application development: 

1. An interactive interface for defining new database objects, 
writing OPAL routines, and executing ad hoc queries in 
OPAL. . 

2. A windowing package upon which end-user interfaces can be 
built. 

3. A procedural interface to conventional languages, such as C 
and Pascal. 

3. Advantages of an Object-Oriented Model 

During the research stages of the GemStone project, we 
developed a mostly declarative query language that was deficient 
in procedural capabilities. Given the problems with providing pro- 
cedural extensions and educating the marketplace to a com- 
pletely new language, we decided to use an existing object- 
oriented language. Smalltalk-80 [GR], as the basis for product 
development. We have made extensions to Smalltalk in the 
areas of associative access support for queries, basic storage 
structt~res, typing and support for a multi-user environment. In 
the following subsections, we cover the advantages of an object- 
oriented approach as regards modeling and application develop- 
ment. 

3.1. Modeling Power 

GemStone supports modeling of complex objects and rela- 
tionships directly and organizes classes of data items into an 
inheritance hierarchy. A single entity is modeled as a single 

object. not as multiple~tuples spread .m~.pt 
[HL. JSW, LOP. PKLM]. Properties ofeFiiitiesne 
data values, but can be other entities of arbitrary complexity. 
The address component of an employee object need not be just 
a text string. In GemStone it can be a structured object, itself 
having components for street number, street and city, and its own 
defined behavior. (See Figure 1.) GemStone directly supports 
set-valued entities. without the encoding required in the relational 
model. Furthermore. sets can have arbitrary objects as ele- 
ments, and need not be homogenous. We provide the physical 
data independence of relational databases without the limitations 
on modeling power. 
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3.1.1. Object ldentity 

GemStone supports object identity [Ma]. A data object 
retains its identity through arbitrary changes in its own state. 
Entities with information in common can be modeled as two 
objects with a shared subobject containing the common informa- 
tion. Such sharing reduces "update anomalies" that exist in the 
relational data model. In the relational model, the properties of 
an entity must be sufficient to distinguish it from all other entities. 
For one entity to refer to another, there must be some fields that 
uniquely and immutably identify the other entity. (Some exten- 
sions to the relational model incorporate forms of identity [Co, 
Za].) Uniqueness and immutability are ideals seldom present in 
the real world. We may choose to refer to departments by name, 
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but what happens i f  a department's name changes? (We note 
that all 01 our objects %-aSsumei3~ndependent. Knowing thai 
one object is owned by, or depends on, another could be useful 
lor storage management [Gr, Ni. We].) 

3.1.2. Modeling Behavior 

GemStone supports simulation of the behavior of real-world 
entities. Data manipulation commands in conventional systems 
are oriented towards machine representations: "modify field." 
"insert luple." "get next within parent." For an office management 
system, several applications might reserve a room. In a conven- 
tional database system, each application would contain DML 
(data manipulation language) statements to test for room availa- 
blility, insert or change a record to indicate the reservation, and 
perhaps create another record with a reminder to the reserver. 
Changes to the structure of the database may require locating 
and modifying every application that makes use of the database. 
In GemStone. a reserveRoom message can be defined that 
takes a date and a time as parameters, and performs all the 
necessary checks and updates to the database to reserve a 
room. 

The OPAL method that implements a message can execute 
any number of database queries and updates, with many advan- 
tages. Applications are more concise: sending one message 
takes the place of many database operations. The code is more 
reliable, as every application that reserves a room uses exactly 
the same procedure-the method associated with the reserve- 
Room message. The scope of changes required by alterations to 
the structure of a type is limited to the methods for the type. 
Further. messages can protect the integrity of the database. by 
consistency checks in their methods. If all applications that enter 
an item in the room reservation list are required to use the 
reserveRoom message, double-booking of rooms can be fores- 
talled. 

3.1.3. Classes 

The class structure of Gemstone speeds application 
development in several ways. GemStone comes wlth a large 
complement of classes implementing lrequently used data types. 
Class definitions are the analogue to schemes in other database 
systems, but classes also package operations with the structure. 
to encapsulate behavior. Thus the message definition facilities 
along with class mechanism meet the requirement of an extenst- 
ble data model. GemStone includes a h~erarchy of classes. 
Whereas a class helps organize data, the class hierarchy helps 
organize the classes. The subclassing mechanism allows a 
database scheme to capture similarities among various classes 
of entities that are not totally identical in structure or behavior. 
Subclassing also provides a means to handle special cases 
without cluttering up the definition of the normal case [MBW]. 

3.1.4. Associating Types with Objects 

Unlike most programming languages that support abstract 
data types. Smalltalk associates types with values, not the slots 
holding the values. Typing objects rather than names has liabili- 
ties lor query processing. which we consider in the next sect~on. 
We consider some advantages here. 

We hope to enable database designers to model application 
domains they previously may have shied away from because of 
complexity or lack of regular structure. However, modeling an 
enterprise for the first time is a much different undertaking than 
building a database application for an area that has already been 
modeled, but has not yet been computerized. The basic model- 
ing for financial record keeping was done thousands of years 
ago. The structure of the information involved is such that 11 
readily fits into standard record-based data models. A develop- 

ment schedule based on scheme definition, application writing, .. 

database population and debugging is reasonatjk: -WoTs"o~'i--=--' 
CAD task being modeled for the first time, or a database to sup- 
port an expert system. The application area has not been 
modeled before, and there will be many iterations of the data- 
base scheme before the application is mature [ACO, AO, MP]. 
Being able to start writing database routines without completely 
specifying the structure and behavior of every class of entihes 
can be of great advantage. Later, when Ihe model has stabit- 
ized, typing can be associated with fields for integrity or elfi- 
ciency. 

By not associating types with variables, unanticipated cases 
(a company car might be assigned to a department as well as an 
employee) can be more easily handled. A routine (method) 
makes assumptions about the protocol of its arguments, not their 
internal structure. Such routines are robust in the face of new 
classes. If every object responds to the printstring mes- 
sage to return a string representing itself. then we can write an 
OPAL method for Set that prints a string representation of all its 
elements, regardless of their classes. 

3.2. A Unified Language 

OPAL is much more powerful than standard data manipula- 
tion languages. It is computalionally complete, with assignment 
and flow of control constructs. Almost all the computation 
required in an application can be written within OPAL. This abil- 
ity helps avoid the problem of impedance mismatch, where infor- 
mation must pass between two languages that are semantically 
and structurally different. such as a declarative data sublanguage 
and an imperalive general-purpose language. GemStone 
stresses uniformity of access to all system objects and functions. 
using the same mechanisms as for regular data objects. 

4. Turning Smalltalk into a DBMS 

Smalltalk is a single-user. memory-based, single-processor 
system. It does not meet the requirements of a database sys- 
tem. While Srnalltalk provides a powerful user interface and 
many tools for application development, it is oriented to a single 
user workstation. To meet the requirements of a database sys- 
tem the following enhancements have been added. 

4.1. Support of a Multi-User, Disk-Based Environment 

Being disk-based does not mean simply paging main 
memory lo disk as it overflows. The database must be intelligent 
about staging objects between disk and mernory. It should try to 
group objects accessed together onto the same dlsk pages, try to 
anticipate which objects in main memory are likely to be used 
agaln soon, and organize its query processing to minimize d~sk 
traffic. 

Since GemStone data is shared by multiple users, the sys- 
tem must provide concurrent access. Each user should see a 
consistent version of the database. even with other users running 
simultaneously. Since a user may make chqnges that are not 
committed permanently to the database, GemStone must support 
some notion of multiple workspaces, in which proposed changes 
to the dalabase can later be discarded or committed. A related 
requirement is management of multiple name spaces. Srnalltalk 
assumes a single user per image, and so provides a single glo- 
bal name space. Several partially related or unrelaled appllca- 
lions can be under development on a single dalabase at one 
time It is unreasonable to expecl either that users share a sin- 
gle global name space, or, at the other extreme, that user name 
spaces are disjoint. 

Currerit Smalltalk implementations use a single processor for 
both display processing and object management. We expecl 



GemStone to support multipk, i n - t e r a c t i  Hence. fi 
does no1 'see?lff rse --for sekon-dary 
storage management as for display processing at the end-user 
interface. We felt that the storage-management and user- 
interface functions in GemStone must be decoupled to run as 
separate processes on separate processors. 

4.2. Data lntegrity 
Various kinds of failures (program, processor, media) and 

violations (consistency, access, typing) can compromise the vali- 
dity and integrity of a database. A database system must be 
able to cope with failure by restoring the'database to a consistent 
state while minimizing the amount of computation lost. It must 
also prevent violations from occurring. 

By program failure we mean that an application program may 
fail to complete, say, because of a run-time error. If the program 
fails after some updates to the database have been made. the 
database can be left in an unexpected state. Database systems 
provide for multiple updates to be performed atomically (in an 
all-or-nothing manner) through the use of transactions. A tran- 
saction is used to mark a section of processing so that all its 
changes are made permanent (the transaction commits), or none 
are made permanent (the transaction aborts). 

By processor failure, we mean that the processor handling 
GemStone storage management fails. For such failures, the 
database must be kept intact. Recovering from program and pro- 
cessor failure imply that master copies of objects on secondary 
storage must be updated carefully. Additionally, a good database 
system should be robust enough to tolerate additional failures 
during the recovery period. 

By media failure we mean that damage or flaws in the 
secondary storage devices may cause committed data to be lost. 
No strategy can provide complete protection against media 
failure. We wanted GemStone to provide for both periodic 
backup and dynamic replication of sensitive information. By 
dynamic replication, we mean keeping multiple, on-line copies of 
a database, all of which are updated on every transaction. 

Turning to violations, database consistency can be violated if 
transactions from multiple users interleave their updates. Gem- 
Stone must support serializability of transactions: the net effect of 
concurrent transactions on the database must be equivalent to 
some serial execution of those transactions. The integrity of a 
database can also be violated i f  a user accesses data that he or 
she should not be permitted to see. In Smalltalk, all objects are 
available to the user. Gemstone must assign unique ownership 
to every object, and give the owner of an object to power to grant 
access to others. 

lntegrity constraints, such as keys and referential integrity, 
are assertions that a priori exclude certain states of the database. 
It is always a judgment call whether the database system should 
check constraints after each transaction, or whether the applica- 
tion programmer should be responsible for preserving con- 
sistency in each transaction. The lormer course is more reliable, 
but almost always more expensive. At a minimum. the database 
should support constraints that require subparts of an entity or 
collections to belong to a certain class. We note that referential 
integrity comes "lor free" in GemStone. One object refers 
directly to another object, not to a name for that object. The 
reference cannot be created if the other object does not exist. 
Hence, there are no dangling references. 

4.3. Large Object Space 

Gemstone must store both large numbers of objects and 
objects that are large in size. The first Smalltalk-80 implementa- 
tions had a limit of z" objects, zl* instance variables in any object, 

and 2'0 total words of object memory [GRJ. More recent imple- 
mentations raise these limits, but still use the same techniques to 
represent and manage objects [KK]. Large disk-based objects 
require new storage techniques. Some objects will be too large 
to fit in main memory, and must be paged in. 

While virtual-memory implementations page large objects, we 
felt we must get away from linear representations of long objects. 
Requiring objects that span disk pages to be laid out contigu- 
ously in secondary storage (or even virtual memory) will lead to 
unacceptable fragmentation or expensive compaction passes. In 
Smalltalk, to "grow" an object, such as an array, a new, larger 
object is created and the contents of the smaller object are 
copied into it. We want the time required to update or extend an 
object to be proportional to the size of the update or extension, 
not to the size of the object being updated. We also felt that 
Smalltalk's repertoire of basic storage representations was inade- 
quate for supporting large unordered collections. Having to map 
such a collection into an ordered underlying representation 
imposes artificial restrictions. Thus, GemStone needs a basic 
storage type for unordered collections. 

Finally. searching a long collection by a sequential scan will 
give unacceptable performance with a disk-based object. 
Searching for elements should be at most logarithmic in the size 
of the collection, rather than linear. Thus, GemStone should sup- 
port associative access on elements of large collections: It should 
supply storage representations and auxiliary structures to support 
locating an element by its internal state. This requirement rein- 
forces the need for typing on collections and instance variables. 
To index a collection E of employees on the value of the 
s a l a r y  instance variable, the system need assurances that 
every element in E has a s a l a r y  entry. Furthermore, if that 
index is to support range queries on. sa l a ry ,  the systems 
needs a declaration that all s a l a r y  values will be comparable 
according to some total order. 

Along with storage-level support for associative access, 
OPAL must have language constructs that allow associative 
access. 

4.4. Physical Storage Management 

GemStone must provide features for managing the physical 
placement of objects on disk. Smalltalk is a memory-resident 
system, and so there is not much need to say where an object 
goes. The database administrator, or a savvy application pro- 
grammer, should be able to hint to GemStone that certain objects 
are often used together. and so should be clustered on the disk. 
The administrator should be able to take objects off line, say for 
archiving, and bring them back on line later. Finally, as objects 
are never explicitly deleted, the system will be responsible for 
reclaiming the space used by unreferenced objects. (An alterna- 
tive is to assume that a permanent object is never deleted, and 
that objects not referenced in the current state of the database 
should be shifted to archival storage.) 

4.5. Access ~ r o m  Other Systems 

While OPAL goes much further than conventional database 
languages in providing a single language for database application 
programming, we wanted to concentrate our initial efforts on 
storage management issues, rather than user interfaces. Thus. 
Gemstone provides for access to its facilities from other pro- 
gramming languages. We want to support an application 
development environment for OPAL along the lines of the 
Smalltalk programming environment [GR], but we recognize that 
the application development environment may not be the same 
as the environment in which the finished application runs. How- 
ever. we are committed to providing procedural interfaces to C 
and Pascal. - 



5. Our Approach 

This section addresses how we pro;ideb the enhancements 
needed to Smalltalk to make it a database system. We start with 
an overview of the architecture of GemStone. 

5.1. GemStone Architecture 

Figure 2 shows the major pieces of the Gemstone system. 
Stone and Gem correspond roughly to the object memory and 
the virtual machine of the standard Smalltalk implementation 
[GR]. Stone provides secondary storage management. con- 
currency control, authorization. transactions. recovery, and sup- 
port for associative access. Stone also manages workspaces for 
active sessions. Stone uses unique surrogates. called object- 
oriented pointers (OOPS) lo refer to objects. Stone uses an 
object table to map an OOP to a physical location. This level of 
indirection means that objects can easily be moved in memory. 
While the object table can potentially have 2" entries. we expect 
that the portion for objects currently in use by various sessions is 
small enough to fit in main memory. Stone is built upon the 
underlying VMS file system. The data model that Stone provides 
is simpler than the full Gemstone model, and provides only 
operators for structural update and access. An object may be 
stored separately from its subobjects. but Ihe oops for the values 
of an object's instance variables are grouped together. Others 
have considered decomposed representations of objects [Ch-. 
CKJ. 
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compiling OPAL methods into bytecodes and executing that 
code, user authentication, and session control. (OPAL bytecodes 
are similar, but not identical, lo the bytecodes used in Smalltalk.) 
Part of the Gem layer is the virtual image: the collection of OPAL 
classes. methods and objects that are supplied with every Gem- 
Slone system. 

Figure 3 shows the class hierarchy in the current Gemstone 
virtual image. Comparing it to the Smalltalk hierarchy, we have 
removed classes for file access, communication. screen manipu- 
lation and the programming environment. The file classes are 
unnecessary, as we have persistent storage for all GemStone 
objecls. Computalion for screen manipulation needs to happen 
near the end user, and needs fast bytecode execution. Gem- 
Slone is optimized toward mainla~ning large numbers of per- 
sistent objects. rather than fast bytecode execution. The pro- 
gramming environment classes are replaced by a browser appli- 
cation that runs on top of Gemstone. which we describe in a 
later subsection. We have added classes and methods to make 
the data management functions of transaction control. account- 
ing, ownership. authorization, replication, user profiles and index 
creation controllable from within OPAL. 
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. 
The Agent interface is a set of routines to facilitate communi- 

cation from other-programs in other languages-runfiing 06 pro- 
cessors (possibly) remote from Gem. The Agent interface 
currently supports calls from C and Pascal programs running on 
an IBM-PC for session and transaction control, sending mes- 
sages to GemStone objects, executing a sequence of OPAL 
statements, compiling OPAL methods, and error explanation. In 
addition, the Agent provides "structural access" calls, which per- 
form the following functions: 

1. determining an object's size. class, and implementation; 

2. inspecting a class-defining object; 

3. fetching bytes or pointers from an object; 

4. storing bytes or pointers in an object; 
5. creating objects. 

Information passes between the Agent and Gem in the form 
of bytes and Gemstone object pointers. Certain objects have 
predefined object pointers, such as instances of Boolean. 
Charac t e r  and Srnal l Integer .  Instances of F l o a t  and 
s t r i n g  are passed as byte sequences. Instances of other 
classes must be decomposed into instances of the classes men- 
tioned, in order to pass their internal structure between the Agent 
and Gem. However, the identity of any object can be passed 
between the Agent and Gem, regardless of its complexity. The 
idea is to do the computation and manipulation of objects in 
Gem, and only pass data used for display through the Agent to 
the interface routines. 

Gem, Stone and the Agent interface are structured as 
separate processes. Our current mapping of processes to pro- 
cessors has Gem and Stone running on on a VAX under VMS. 
The Agent interface supports communication with Gem from an 
IBM PC. While a Gemstone system has a single Stone process. 
it maintains a separate Gem process for each active user, and 
the Agent interface handles communication on a per-application 
basis. 

5.2. Multiple Users 

Stone supports multiple concurrent users by providing each 
user session with a workspace that contains a shadow copy of 
the object table derived from the most recent committed object 
table, called the shared table. Whenever a session modifies an 
object, a new copy of that object is created, and placed on a 
page that is inaccessible to other sessions. The shadow copy of 
the object table is updated to have the object's OOP map into 
the new page. 

Conceptually, the shadow object table for a workspace is a 
complete copy of the version of the shared table when the ses- 
sion starts. Actually, we do not make a copy all at once. Object 
tables are represented as 6-trees, indexed on OOPS. For a sha- 
dow object table. we need only copy the top node of the commit- 
ted object table. As the objects are changed by a session, the 
shadow object table adds new nodes that are copies of its 
shared object table with the proper changes. Figure 4 shows the 
state of a shadow object table after the alteration of a single 
object. Multiple paths have been copied since several objects 
may have been on the same page as the altered object. 

We chose an optimistic concurrency control scheme: one in 
which access conflicts are checked at commit time, rather than 
prevented from occuring through locking. For each transaction. 
Stone keeps track of which objects the transaction has read or 
written. At commit time, Stone checks for read-write and write- 
write conflicts with transactions that have committed since the 
time the transaction began. If there are no conflicts, the transac- 

tion is allowed lo commit. For a commit, the shadow object table_ 
~ - . . . - . -- - ---.+--v 

of the session-ktre-ated a s  if it were l?Tmspa?e3fon the enfr~es 
that have not been modified, and is overlaid on the most recent 
version of the shared table. Thus, only entries in the shared 
table for objects that have been copied by the session are 
changed. In this way. the changes made by the committing ses- 
sion are merged with those of other transactions that committed 
after the committing session began. If the current transaction 
conflicts with a previously committed transaction (or is aborted by 
the application), the changes in its shadow table are discarded, 
after using the table to reclaim pages used for new copies of 
objects. 

This optimistic scheme ensures that read-only transactions 
never conflict with other transactions. Such a transaction gets a 
consistent copy of the database state, does its reading, and has 
no changes to make to the shared table on commit. Only tran- 
sactions that write can conflict with each other. This scheme 
never deadlocks. as a session experiences no contention with 
other sessions before a commit point. However, it is possible 
that an application that writes a large portion of the database 
may fail to commit any transactions for an arbitrarily long time. 
While shadowing has had some bad press, it seems a natural 
approach to us, given that we have an object table. It avoids 
some extra reads. makes commit and abort simple, and is a 
excellent candidate for w~ite-once memory. since active pages 
are never changed in place. 

5.3. Efficiency Considerations 

One problem with recording all the objects a session reads or 
writes is that the list can grow quite long, and Gemstone will 
spend a lot of time adding entries to such lists. One optimization 
is that certain classes of objects, such as Srnal l Integer .  
Charac te r ,  and Boolean are known to contain only instances 
that cannot be udpated. Thus, such objects need not be 
recorded for concurrency control. Even excluding lhese objects, 
single objects are just too fine a granularity for concurrency con- 
trol. Thus, we introduced the notion of segments, which are logi- 
cal groupings of objects that are the unit of concurrency control in 
Gemstone, much like the segments of Ihe ADAPLEX LDM 
[CFLR]. A segment may contain any number of objects. Gem- 
Stone keeps a list of just the segments read or written by a ses- 
sion, rather than all objects. Also, at a physical level, pages 
respect segment boundaries. Thus the practice of copying all 
objects in a page when one is changed causes no additional con- 
flicts. Segments are visible from within OPAL through the class 
Segment. Users can control placement of objects in segments. 
to group objects to try to avoid conflict. If an application has a 
group of private objects, all those objects and no others can be 
placed together in one segment. At the system level, system 
objects that are shared by many users. but are almost never 
updated (such as the class describing object for a system class) 



can be placed on a single segment, so that accesses to them 
never causes a conflict. 

5.4. Name Spaces 

Multiple name spaces are managed by Gem. The virtual 
image has a class UserProf ile thal is used to represent pro- 
perties of each user that are of interest to the system, such as 
user Id. password, native language and local time zone. A 
UserProfile object also contains a list of dictionaries that are 
used to resolve symbols when compiling OPAL code for that 
user. When an identifier is encountered in OPAL code, and that 
identifier is neither an instance variable nor a class variable, the 
dictionaries are searched in order to find an object corresponding 
to that idenlifier. There may be any number of dictionaries for a 
user, to accommodate various degrees of sharing. For example, 
a programmer's first dictionary may contain objects and classes 
for his or her portion of a project. the second may be for objects 
shared with other programmers workirlg on the same project, and 
the third could contain system objects. Note that symbol resolu- 
tion can be performed at runtime, thus providing for dynamic 
symbol resolution during method execution. 

5.5. Transactions and Recovery 

Most of our approach to transactions has been covered in a 
previous section. To reiterate, every session gets a shadow copy 
of the shared object table when it begins, and installs its shadow 
copy as the shared copy when it successfully commits a transac- 
tion. Further, a session always writes changed and new objects 
into pages that are not accessible to any other transaction before 
commit lime. Thus, aborting a transaction means throwins away 
its shadow object table, and committing means replacing the 
shared table w~th a shadow copy. The only issue that needs 
more elaboration is atomicity-that the changes of a transaction 
are made, seemingly, all at once. As object tables are trees. 
atomicity is not hard to pro~tide. When a shadow table is to 
replace' the shared table, and the shadow table differs from the 
table it is about to replace, the new table can replace the old by 
simply overwriting the root of the shared object table with the root 
of the new object table. (Actually, there is a "root of the dala- 
base" above the root of the object table thal gets overwritten. 
The database root references some other information besides the 
object table, such as a list of active transactions.) Rewriting the 
root is the only place where any part of the shared copy of the 
database is overwritten. 

Recovery from processor failure does not require a great 
amount of additional mechanism over what we have for con- 
currency control. Our unit of recovery is a transaction. Changes 
made by committed transactions are kepl, changes not yet com- 
mltted are lost. Since the shared version of the database is 
never overwritten, we need almost nothing in the way of logs to 
bring the database to a consistent state, since it never leaves 
one. The only tricky part is a processor crash while writing a 
new database root. To handle that eventuality, we keep two 
copies of the root. which reside at a known place. To restore a 
consistent state of the database after the crash, we simply check 
those two pages. If they are different, we copy one that can be 
dclermined to be uncorrupted over the other. The real work on 
recovery is garbage collection: removing detritus of the transac- 
hens that had not committed belore the crash. 

To guard against media failure, we have introduced a struc- 
ture called a reposifory. A repository is the unit of replication, 
and also the unit of storage that can be taken olf line. Most of 
wtial we said before about the database actually pertains to repo- 
sltories Segments partition repositories, and all the objects in a 
segment are stored in the segment's repository. A repository 

may be taken off line, which means all its objects become inac- 
cessible. ~ e ~ o s l t o r y -  IS a n  OPAL class providing internal 
representatives of repositories. A Repository instance can 
respond lo a message replicate, which means two copies of 
the repository will be maintained (at increased cost in lime and 
space), usually on separate external devices. The copies know 
about each other, and if the medium for one fails, the other is still 
available. 

5.6. Authorization 

Segments are also the unit of ownership and authorization. 
Every user has at least one segment, and when he or she 
creates new objects, they go in an owned segment. A user may 
grant read or write permission (write implies read) on a segment 
to other users or groups of users. Such grants must always 
come from the original owner. Read or write permission on a 
segment implies the same permission on all objects asslgned to 
the segment. .User identification is handled by Gem, using 
userId and password from a UserProf ile. 

There are some subtleties of read and write permission in an 
object model. First, having the identity of an object (its OOP) is 
not the same as reading the object. Second, having permission 
on an object does not imply have permission on all its subob- 
iects. So, for example, an Employee object, along with the 
objects that are values for instance variables ernpName, ssNo 
and address could reside in one segment. By putting a 
SalaryHistory object in another segment, authorization can 
be granted to just a portion of an employee's personnel informa- 
tion. Third. name spaces are the first line of defense against 
unauthorized access. If  a user cannot find an object, he or she 
cannot read the object. 

5.7. Large Object Space 

In designing Gemstone, we have tried to always set limits on 
object numbers and sizes so that physical storage limits will be 
encountered first. A Gemstone system can support 2" objects 
(.." counting instances of SrnallInteger) and an object can 
have up to 2'' instance variables. Segments have no upper 
bound on the number of objects they can contain, other than the 
number of objects in the system. 

When an object is larger than a page, the object is broken 
into pieces and organized as a tree spanning several pages. To 
handle large unordered objects (instances of Bag and its subc- 
lasses), we have added a new basic storage structure called a 
non-sequenceable collection (NSC). This structure supports 
adding, removing and testing for membership, along with iteration 
over all the elements. However. NSCs have anonymous 
instance variables, which means their component objects may 
not be referenced by name or index. Large NSCs are also 
stored as trees, but ordered by OOP. In the next section, we 
show how content-based retrieval is supported for an NSC 
oblect. 

A large object can be accessed and updated without bringing 
all the pages of an object into a workspace. The tree structure 
for large objects makes it possible to update pieces of them 
w~lhout rewriting the whole object, much as for the object table 
Since pages of a large object need not be contiguous in secon- 
dary storage, such objects can grow and shrink with no need to 
recopy the entire object. 

5.8. Associative Access and Typing 

We briefly cover some of the language and typing issues 
relating to associative access, along with index structures and 
their maintenance. The fundamental language issue is being 
able to detect opportunities for ustng auxiliary storage structtrres 



In a computationally complete language such as OPAL. it is nei- 
ther necessary or desireable l o  consider using auxiliary structures 
for every database manipulation. Conceivably, we could analyze 
all OPAL methods to detect places where alternative access 
paths might be used. We felt that approach was too complex, 
and instead decided that the programmer must flag opportunities 
to use auxiliary structures. 

OPAL supports the use of indices to speed the evaluation of 
expressions of the form 

aBag se lect :  &lock 

The block has one variable and returns a Boolean. The result 
of the expression is the subset of elements of aBag for which 
aBlock returns true, and resembles the relational selection 
operator in the Cypress data model [Ca]. This statement is 
evaluable in OPAL without indices, but at the cost of examining 
every element in d a g .  Since a block can contain arbitrary 
OPAL expressions, indices are not useful in evaluating every 
expression in a blocck. Hence, for use with indices. we added 
path syntax to the OPAL language. For any variable. we can 
append to it a path composed of a sequence of pieces called 
links, which specify some subpart of an object. For example. 
anEmp.empName.last might access the last name of an 
Employee object. A question arises why sequences of unary 
messages do not suffice to the same thing, such as anEmp 
name last The reason is that we want to support associative 
access at runtime without performing message sends, and so the 
support can come from the Stone level. 

A selection block for associative access can contain an con- 
junction of path comparisons, where a path comparison an 
expression of the form <path expression> <comparator> 

<literal> or <path expression> <comparator> <path expres- 
sion > : 

anEmp.ernpName.last = 'Sanders' 
anEmp.salary > anEmp.dept.manager.sa1ary 

Index use is requested by using set braces in place of brackets 
around the block in a select: message 

empSet select: 
{:anEmp I anEmp.ernpName.lastName = 'Sanders') 

rather than 

empSet select: 
[:anEmp I anEmp.empName.lastName = 'Sanders'] 

The two expressions give the same result, but the first one 
requests OPAL to use an index if available, while the second will 
always be evaluated by iterating through empset. I f  no 
appropriate index exists, then the first expression might still be 
evaluated without the use of message sends if, as discussed 
below, the path is appropriately typed. Otherwise. the first 
expression evaluates using the same method as the second. We 
found it a great help in testing associative access processing to 
have a brute-force way to evaluate selection queries, as a kind of 
a "semantic benchmark" for checking index-based evaluation. 

Another central decision in designing associative access was 
what to index, 'classes or collections? Many applications may 
use instances of the same class, and store them in different col- 

lections (like having several relations on the same scheme [Ha]). 
Ifidexink en fhe class means that applications that do-not use the ' 
index still bear the overhead for instances they use being in the 
index. Further, a classwide index presents authorization prob- 
lems. No one user may have read access to set all the objects 
in the class, so no one is able to request the index be created. 
Also, indexing a collection allows the possibility that instances of 
subclasses be included in a collection that is indexed. Indexing 
on a class basis makes it easier to trace changes lo the state of 
an object that could cause the object to be positioned differently 
within an index. We decided that minimizing cost for programs 
not using an index was the top priority, so we index on collec- 
tions, but other systems have chosen class indexing [ZW]. Addi- 
tionally, if indexing by class, intersecting the result of a lookup 
with a collection may be time consuming with respect to the size 
of the collection. Note that a class can be implemented to keep 
a collection of all instances if desired, and that collection can be 
indexed. 

Indices are created and abandoned by sending messages to 
a Bag or Set object, giving the path to index. For example, if 
empSet is a set of Employee objects, we can request an index 
on empName . last. There are two kinds of indices: identity and 
equality. An identity index supports searching a collection on the 
identity of some subobject of one of the elements, without refer- 
ence to the subobject's state. An equality index supports lookup 
on the basis of the value or internal state of objects, and range 
searches on values. 

The path syntax for associative selections and the kind of 
index desired dictate what typing information is required to sup- 
port indexing. Referring back to the discussion in Section 4.3, to 
have an identity index on a collection using a particular path. we 
must know that the path expression is defined (leads some- 
where) for every object in the collection. For an equality index. 
we must additionally know that the values of the paths for every 
element of the collection are comparable with respect to equality 
and the other comparisons supported by equality indices. OPAL 
provides typing for names and anonymous instance variables. 
For any named instance variable. the value of that variable can 
be constrained to be a kind of a given class. A value is a kind of 
a class if it is an instance of that class or of some subclass 
thereof. For example, we can declare that the empName 
instance variable of class ,Employee must have kind 
PersonName, which means the value can be a PersonName 
instance. or an instance of some subclass, say Titledperson- 
Name. Subclasses of Bag and Set can be restricted in the kind 
of elements their instances may contain. 

Both named and anonymous instance variable typing are 
inherited through the class hierarchy. Additionally, typing can be 
further restricled in a class's subclasses. If in Employee class 
instance variable empName is constrained to PersonNarne , 
then in a subclass of Employee empName can be constrained 
to TitledPersonName. 

In order to create an identity index into empset on 
empname . last , variable empName must be constrained to a 
class in which a variable last is defined. However, it would not 
be necessary for last to be be constrained within that class, for 
the comparisons supported by identity indices need not know the 
structure of employee's last names. In an equality index, 
employee's last names would need to be constrained to a class 
whose instances are totally ordered, in order to provide the com- 
parisons supported by equality indices. The constraint on the 
last link of a path upon which an equality index is built is res- 
tricted to Boolean. Character. DateTirne , Float, 
String, Small integer or subclasses thereof. For 
Boolean, Character and SmallInteger, there is no dis- 



tinction between equality and identity indices. 

In addition lo supporting indexed associative access. lyping 
01 names can be used as an integrity constraint on named varl- 
ables In particular, it can be used to assure that the value of a 
named instance variable will understand a given protocol in all 
objects that are a kind of a given class. 

Indices are implemented as a sequence of index com- 
ponents, one ior each link in the path upon which the index is 
built. Each component is implemented as a B-tree. An index on 
empName . last  into empSet would have two components. one 
from names to employees in e m p s e t  and one from last names 
to names of employees. Common prefixes of indexed paths 
share the index components lhat correspond to the common pre- ' 
fix. For example, an index on empName . f i r s t  would share the 
index component from names to employees with the index on 
empName . last. Additionally. identity indices are implicitly 
created on the path prefixes of an indexed path Creating an 
index on empName. l a s t  implicitly creates an identity index on 
empName . 

Indexing is discussed in further detail elsewhere (MSJ. We 
here mention that the maintenance of indices is a problem that is 
related to that of maintaining referential integrrty coristraints [Da] 
in relational databases, and that Stone manages concurrent 
access to indexing structures since indices are maintained in 
object space. 

5.9. Garbage Collection 

Gem uses reachability informallon to remove temporary 
objects before a transaction commits. Objects that have been 
created during the current transaction and can not be accessed 
transitively from the current stale of some object present in the 
shared object table are temporary. Permanent objects, those 
that have previously been committed. are garbage collected off- 
line using a mark-sweep algorilhm. We believe this preferable lo 
reference countlng in that reference counting would require 
accessing an object every time a reference to it is added or 
removed. 

5.10. Access From Other Systems 

Gemstone does not provide direct access to a human inter- 
face through OPAL. Applications manage the human interface 
through C modules running on a PC. These modules have com- 
plete access to OPAL through the Gemstone C Interface (GCI). 
which is the interface to the agent. The role of the GCI in appli- 
cation development is depicted in Figure 5.  

The OPAL Programmrng Environment (OPE) is a collection 
of Microsoft Windows-compatible applications for the creation of 
OPAL classes and methods. In addition. the OPE provides appti- 
cations for the bulk loading and dumping of Gemstone data- 
bases. The development of a GemStone application consists of 
two parts: first creating Gemstone classes and methods through 
the OPE and then developing a human interface on a PC lhat 
accesses OPAL through the GCI. 

C APPLICATION PROGRHl O P N  COO€ GEMTONF 
(m IOH-PC) ( w & d  r ~ l h  W t  Iml3 m V A X I  DATABASE 

S t r a t u m  dSlm 
mjaco 

FIGURE 5 

6. Fulure Development Plans 

AS with all computer-based systems, performance efficiency 
is a perennial concern. We have two approaches to addressing 
Gemstone's performance efficiency- improving the execution 
model, and improving database functions. Research ol Smalltalk 
virtual machines has demonstrated several techniques for 
improving lheir efficiency [Kr]. Database systems spend most of 
their time in searching and sorting tasks. These functions can be 
improved by better algorithms and better buffer management. 

We also plan to add several features to GemStone. We plan 
to add multiple repositories to allow users to dismount a portion 
of the database and either transport it to another srte or preserve 
it offline. Support for distributed databases will allow mutt~ple 
sites to share a collection of geographically distributed data. As 
our user population increases, we expect users to need 
increased performance efliciency in certain new classes. To sup- 
port this need, we expect to add selected new classes to the set 
of predefined classes. Gemstone currently supports only the 
IBM-PC workstation. We plan to offer interfaces to additional 
workstations such as Lisp and Smalltalk systems. 
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