
Development of an Object-Oriented DBMS

David Maier
Jacob Stein
Allen Otis

Alan Purdy

Technical Report CS/E86-005
15 April 1986

Revised June, 1988

Oregon Graduate Center
19600 S.W. von Neumann Drive
Beaverton, Oregon 97006-1999

Presented at the 1986 ACM Conference on Object-Oriented Programming Systems, Languages
and Applications.

Development ot an Object-Oriented DBMS

David Maicr
Jacob Stcin

Servio Logic Dcvclopment Corp.
and Oregon Graduate Center

Allen Otis
Alan Purdy

Scrvio Logic Development Corp.
15025 S.W. Kol l Parkway. l a

Beavcrton, Oregon 97006
(503) 644-4242

Abstract
We describe the results of developing the Gemstone object-
oriented database server, which supports a model of objects
similar to that of Smalltalk-80. We begin with a summary of the
goals and requirements for the system: an extensible data model
that captures behavioral semantics, no artificial bounds on the
number or size of database objects, database amenities (con-
currency. transactions, recovery. associative access, authoriza-
tion) and an interactive development environment. Object-
oriented languages. Smalltalk in particular, answer some of these
requirements. We discuss satisfying the remaining requirements
in an object oriented context. and report briefly on the status of
the development efforts. This paper is directed at an audience
familiar with object-oriented languages and their implementation.
but perhaps unacquainted w~th the difficulties and techniques of
database system development. It updates the original report on
the project [CMJ, and expands upon a more recent art~cle [MDP).

1. Introduction

The GemStone database system is the result of a develop-
ment project started three years ago at Servio Our goal was to
merge object-oriented language concepts with those of database
systems. Gemstone provides an object-oriented database
language called OPAL. which is used for data definition, data
manipulation and general computation.

Conventional record-oriented database systems, such as
commercial relational systems. often reduce application develop-
ment time and improve data sharing among applications. How-
ever, these DBMSs are subject to the limitations of a finite set of
data types and the need to normalize data [Ea, Si]. In contrast.
object-oriented languages offer flexible abstract data-typing facili-
ties, and the ability to encapsulate data and operations via the
message metaphor. Smalltalk-80 is an example of a completely
implemented object-oriented system [GR. Kr].

Our premise is that a combination of object-oriented
language capabilities with the storage management lunctions 01 a

traditional data management system will result in a system that
offers further reductions in application development efforts. The
extensible data-typing facility of the system w~l l facilitate stor~ng
information not suited to normalized relations. In add~tion, we
believe that an object-oriented language can be complete enough
to handle database design, database access, and applications
Object-like models have long been popular in CAD [CFHL. EM.
Ka82. Ka83. LP. MNP. SMF], and seem well suited to support
programming envtronments [PL], knowledge bases [OK], and
office information systems [Ah - . Zd841. Other groups are in the
process of implementing object model database systems [DKL.
Ni, ZW].

2. Goals and Requirements

2.1. An Extensible Data Model

The system must have a data model that supports the definl-
lion of new data types, rather than constraining programmers to
use a fixed set of predefined types. New types should also be
indistinguishable from system-supplied types for the purposes of
application programming: operations that apply to new types
should be syntactically similar to the built-in operations on prede-
fined types. The distinction between data types and data struc-
tures is important in achieving this goal of extensibility.

Data structures are made up of atomic values (integers.
strings, etc.), plus constructors (record, relation, set, tree). A
dala type is really a collection of operators, the protocol, for
operating on a particular structure. The underlying structure
need not be the same as the appearance provided by the proto-
col. In conventional database systems. the types correspond to
the structutes. There is usually a fixed set of operations on
atomic values. such as arithmetic and comparison operations
Each constructor has a fixed set of operations; for example, a
record constructor has "set field" and "get field", and a relation
constructor has "add record", "delete record" and "select record".
It is not possible to add new operations that appear synlactically
similar to the built-in operations. Thus the set of data types that
are directly supported is the same as the set ol data structures
since nested application of the constructors is not supported.

Our goal is to model the behavior, not just the structure. of
entities in the real world [Mo]. Further, we must be able lo pack-
age behavior with structure to create new data types. To get
reasonable performance from such a system. the collection of
constructors must be rich enough that most dala types have fairly
direct implementations. In particular, we should be able to cap-
ture many-to-many relationships, collections, and sequences

directly. For an easily usable system, we should be able to nest
the struciuring operations to arbitmy levels, and use previously
defined data types as building blocks for other types. GemStone
must have system management functions lor monitoring system
performance, performing backups, recovering from failures,
adding and removing users, and altering user privileges.

2.2. Database Amenities

GemStone is first a database system, so it must provide
shared access to persistent data in a multi-user environment. It
should suooort stable storaqe of data objects on disk, while
providing location transparency to the application programmer on
the movement of objects between main memory and secondary
storage. GemStone must provide for ownership of data objects.
and requests by the owner to authorize sharing with other users.
Each database session should appear to have complete control
of a consistent version of the database, even while users are run-
ning concurrently, and should be provided with a transaction
mechanism to commit or abort a set of changes atomically.
Users should be able to request replication of critical data to
guard against localized media failure.

GemStone should support auxiliary storage structures that
provide alternative access paths to data, and should give users
some control over physical grouping of objects, to improve effi-
ciency of specific access patterns. Bounds on the number and
size of data objects should be determined only by the amount of
secondary storage, not main-memory limitations or artificial res-
trictions on data definition. Thus. fields in a record should be
variable-length, with no fixed upper bound. Collections of
objects, such as arrays and sets, should not have a bound on the
number of elements. Similarly. the total number of objects in a
database system should not be arbitrarily limited. Finally, the
system should handle both small and large objects with reason-
able efficiency [SSB].

2.3. Programming Environment

We feel that GemStone should provide at least the following
tools and features for application development:

1. An interactive interface for defining new database objects,
writing OPAL routines, and executing ad hoc queries in
OPAL. .

2. A windowing package upon which end-user interfaces can be
built.

3. A procedural interface to conventional languages, such as C
and Pascal.

3. Advantages of an Object-Oriented Model

During the research stages of the GemStone project, we
developed a mostly declarative query language that was deficient
in procedural capabilities. Given the problems with providing pro-
cedural extensions and educating the marketplace to a com-
pletely new language, we decided to use an existing object-
oriented language. Smalltalk-80 [GR], as the basis for product
development. We have made extensions to Smalltalk in the
areas of associative access support for queries, basic storage
structt~res, typing and support for a multi-user environment. In
the following subsections, we cover the advantages of an object-
oriented approach as regards modeling and application develop-
ment.

3.1. Modeling Power

GemStone supports modeling of complex objects and rela-
tionships directly and organizes classes of data items into an
inheritance hierarchy. A single entity is modeled as a single

object. not as multiple~tuples spread .m~.pt
[HL. JSW, LOP. PKLM]. Properties ofeFiiitiesne
data values, but can be other entities of arbitrary complexity.
The address component of an employee object need not be just
a text string. In GemStone it can be a structured object, itself
having components for street number, street and city, and its own
defined behavior. (See Figure 1.) GemStone directly supports
set-valued entities. without the encoding required in the relational
model. Furthermore. sets can have arbitrary objects as ele-
ments, and need not be homogenous. We provide the physical
data independence of relational databases without the limitations
on modeling power.

ssNo

Address

Salary

3.1.1. Object ldentity

GemStone supports object identity [Ma]. A data object
retains its identity through arbitrary changes in its own state.
Entities with information in common can be modeled as two
objects with a shared subobject containing the common informa-
tion. Such sharing reduces "update anomalies" that exist in the
relational data model. In the relational model, the properties of
an entity must be sufficient to distinguish it from all other entities.
For one entity to refer to another, there must be some fields that
uniquely and immutably identify the other entity. (Some exten-
sions to the relational model incorporate forms of identity [Co,
Za].) Uniqueness and immutability are ideals seldom present in
the real world. We may choose to refer to departments by name,

Employee

f lrst

last

PersonName 1
f

Strin

Strin

1 1 1223333

StreetAddress 1

street
Alameda

cl ty

45558

but what happens i f a department's name changes? (We note
that all 01 our objects %-aSsumei3~ndependent. Knowing thai
one object is owned by, or depends on, another could be useful
lor storage management [Gr, Ni. We].)

3.1.2. Modeling Behavior

GemStone supports simulation of the behavior of real-world
entities. Data manipulation commands in conventional systems
are oriented towards machine representations: "modify field."
"insert luple." "get next within parent." For an office management
system, several applications might reserve a room. In a conven-
tional database system, each application would contain DML
(data manipulation language) statements to test for room availa-
blility, insert or change a record to indicate the reservation, and
perhaps create another record with a reminder to the reserver.
Changes to the structure of the database may require locating
and modifying every application that makes use of the database.
In GemStone. a reserveRoom message can be defined that
takes a date and a time as parameters, and performs all the
necessary checks and updates to the database to reserve a
room.

The OPAL method that implements a message can execute
any number of database queries and updates, with many advan-
tages. Applications are more concise: sending one message
takes the place of many database operations. The code is more
reliable, as every application that reserves a room uses exactly
the same procedure-the method associated with the reserve-
Room message. The scope of changes required by alterations to
the structure of a type is limited to the methods for the type.
Further. messages can protect the integrity of the database. by
consistency checks in their methods. If all applications that enter
an item in the room reservation list are required to use the
reserveRoom message, double-booking of rooms can be fores-
talled.

3.1.3. Classes

The class structure of Gemstone speeds application
development in several ways. GemStone comes wlth a large
complement of classes implementing lrequently used data types.
Class definitions are the analogue to schemes in other database
systems, but classes also package operations with the structure.
to encapsulate behavior. Thus the message definition facilities
along with class mechanism meet the requirement of an extenst-
ble data model. GemStone includes a h~erarchy of classes.
Whereas a class helps organize data, the class hierarchy helps
organize the classes. The subclassing mechanism allows a
database scheme to capture similarities among various classes
of entities that are not totally identical in structure or behavior.
Subclassing also provides a means to handle special cases
without cluttering up the definition of the normal case [MBW].

3.1.4. Associating Types with Objects

Unlike most programming languages that support abstract
data types. Smalltalk associates types with values, not the slots
holding the values. Typing objects rather than names has liabili-
ties lor query processing. which we consider in the next sect~on.
We consider some advantages here.

We hope to enable database designers to model application
domains they previously may have shied away from because of
complexity or lack of regular structure. However, modeling an
enterprise for the first time is a much different undertaking than
building a database application for an area that has already been
modeled, but has not yet been computerized. The basic model-
ing for financial record keeping was done thousands of years
ago. The structure of the information involved is such that 11
readily fits into standard record-based data models. A develop-

ment schedule based on scheme definition, application writing, ..

database population and debugging is reasonatjk: -WoTs"o~'i--=--'
CAD task being modeled for the first time, or a database to sup-
port an expert system. The application area has not been
modeled before, and there will be many iterations of the data-
base scheme before the application is mature [ACO, AO, MP].
Being able to start writing database routines without completely
specifying the structure and behavior of every class of entihes
can be of great advantage. Later, when Ihe model has stabit-
ized, typing can be associated with fields for integrity or elfi-
ciency.

By not associating types with variables, unanticipated cases
(a company car might be assigned to a department as well as an
employee) can be more easily handled. A routine (method)
makes assumptions about the protocol of its arguments, not their
internal structure. Such routines are robust in the face of new
classes. If every object responds to the printstring mes-
sage to return a string representing itself. then we can write an
OPAL method for Set that prints a string representation of all its
elements, regardless of their classes.

3.2. A Unified Language

OPAL is much more powerful than standard data manipula-
tion languages. It is computalionally complete, with assignment
and flow of control constructs. Almost all the computation
required in an application can be written within OPAL. This abil-
ity helps avoid the problem of impedance mismatch, where infor-
mation must pass between two languages that are semantically
and structurally different. such as a declarative data sublanguage
and an imperalive general-purpose language. GemStone
stresses uniformity of access to all system objects and functions.
using the same mechanisms as for regular data objects.

4. Turning Smalltalk into a DBMS

Smalltalk is a single-user. memory-based, single-processor
system. It does not meet the requirements of a database sys-
tem. While Srnalltalk provides a powerful user interface and
many tools for application development, it is oriented to a single
user workstation. To meet the requirements of a database sys-
tem the following enhancements have been added.

4.1. Support of a Multi-User, Disk-Based Environment

Being disk-based does not mean simply paging main
memory lo disk as it overflows. The database must be intelligent
about staging objects between disk and mernory. It should try to
group objects accessed together onto the same dlsk pages, try to
anticipate which objects in main memory are likely to be used
agaln soon, and organize its query processing to minimize d~sk
traffic.

Since GemStone data is shared by multiple users, the sys-
tem must provide concurrent access. Each user should see a
consistent version of the database. even with other users running
simultaneously. Since a user may make chqnges that are not
committed permanently to the database, GemStone must support
some notion of multiple workspaces, in which proposed changes
to the dalabase can later be discarded or committed. A related
requirement is management of multiple name spaces. Srnalltalk
assumes a single user per image, and so provides a single glo-
bal name space. Several partially related or unrelaled appllca-
lions can be under development on a single dalabase at one
time It is unreasonable to expecl either that users share a sin-
gle global name space, or, at the other extreme, that user name
spaces are disjoint.

Currerit Smalltalk implementations use a single processor for
both display processing and object management. We expecl

GemStone to support multipk, i n - t e r a c t i Hence. fi
does no1 'see?lff rse --for sekon-dary
storage management as for display processing at the end-user
interface. We felt that the storage-management and user-
interface functions in GemStone must be decoupled to run as
separate processes on separate processors.

4.2. Data lntegrity
Various kinds of failures (program, processor, media) and

violations (consistency, access, typing) can compromise the vali-
dity and integrity of a database. A database system must be
able to cope with failure by restoring the'database to a consistent
state while minimizing the amount of computation lost. It must
also prevent violations from occurring.

By program failure we mean that an application program may
fail to complete, say, because of a run-time error. If the program
fails after some updates to the database have been made. the
database can be left in an unexpected state. Database systems
provide for multiple updates to be performed atomically (in an
all-or-nothing manner) through the use of transactions. A tran-
saction is used to mark a section of processing so that all its
changes are made permanent (the transaction commits), or none
are made permanent (the transaction aborts).

By processor failure, we mean that the processor handling
GemStone storage management fails. For such failures, the
database must be kept intact. Recovering from program and pro-
cessor failure imply that master copies of objects on secondary
storage must be updated carefully. Additionally, a good database
system should be robust enough to tolerate additional failures
during the recovery period.

By media failure we mean that damage or flaws in the
secondary storage devices may cause committed data to be lost.
No strategy can provide complete protection against media
failure. We wanted GemStone to provide for both periodic
backup and dynamic replication of sensitive information. By
dynamic replication, we mean keeping multiple, on-line copies of
a database, all of which are updated on every transaction.

Turning to violations, database consistency can be violated if
transactions from multiple users interleave their updates. Gem-
Stone must support serializability of transactions: the net effect of
concurrent transactions on the database must be equivalent to
some serial execution of those transactions. The integrity of a
database can also be violated i f a user accesses data that he or
she should not be permitted to see. In Smalltalk, all objects are
available to the user. Gemstone must assign unique ownership
to every object, and give the owner of an object to power to grant
access to others.

lntegrity constraints, such as keys and referential integrity,
are assertions that a priori exclude certain states of the database.
It is always a judgment call whether the database system should
check constraints after each transaction, or whether the applica-
tion programmer should be responsible for preserving con-
sistency in each transaction. The lormer course is more reliable,
but almost always more expensive. At a minimum. the database
should support constraints that require subparts of an entity or
collections to belong to a certain class. We note that referential
integrity comes "lor free" in GemStone. One object refers
directly to another object, not to a name for that object. The
reference cannot be created if the other object does not exist.
Hence, there are no dangling references.

4.3. Large Object Space

Gemstone must store both large numbers of objects and
objects that are large in size. The first Smalltalk-80 implementa-
tions had a limit of z" objects, zl* instance variables in any object,

and 2'0 total words of object memory [GRJ. More recent imple-
mentations raise these limits, but still use the same techniques to
represent and manage objects [KK]. Large disk-based objects
require new storage techniques. Some objects will be too large
to fit in main memory, and must be paged in.

While virtual-memory implementations page large objects, we
felt we must get away from linear representations of long objects.
Requiring objects that span disk pages to be laid out contigu-
ously in secondary storage (or even virtual memory) will lead to
unacceptable fragmentation or expensive compaction passes. In
Smalltalk, to "grow" an object, such as an array, a new, larger
object is created and the contents of the smaller object are
copied into it. We want the time required to update or extend an
object to be proportional to the size of the update or extension,
not to the size of the object being updated. We also felt that
Smalltalk's repertoire of basic storage representations was inade-
quate for supporting large unordered collections. Having to map
such a collection into an ordered underlying representation
imposes artificial restrictions. Thus, GemStone needs a basic
storage type for unordered collections.

Finally. searching a long collection by a sequential scan will
give unacceptable performance with a disk-based object.
Searching for elements should be at most logarithmic in the size
of the collection, rather than linear. Thus, GemStone should sup-
port associative access on elements of large collections: It should
supply storage representations and auxiliary structures to support
locating an element by its internal state. This requirement rein-
forces the need for typing on collections and instance variables.
To index a collection E of employees on the value of the
s a l a r y instance variable, the system need assurances that
every element in E has a s a l a r y entry. Furthermore, if that
index is to support range queries on. sa l a ry , the systems
needs a declaration that all s a l a r y values will be comparable
according to some total order.

Along with storage-level support for associative access,
OPAL must have language constructs that allow associative
access.

4.4. Physical Storage Management

GemStone must provide features for managing the physical
placement of objects on disk. Smalltalk is a memory-resident
system, and so there is not much need to say where an object
goes. The database administrator, or a savvy application pro-
grammer, should be able to hint to GemStone that certain objects
are often used together. and so should be clustered on the disk.
The administrator should be able to take objects off line, say for
archiving, and bring them back on line later. Finally, as objects
are never explicitly deleted, the system will be responsible for
reclaiming the space used by unreferenced objects. (An alterna-
tive is to assume that a permanent object is never deleted, and
that objects not referenced in the current state of the database
should be shifted to archival storage.)

4.5. Access ~ r o m Other Systems

While OPAL goes much further than conventional database
languages in providing a single language for database application
programming, we wanted to concentrate our initial efforts on
storage management issues, rather than user interfaces. Thus.
Gemstone provides for access to its facilities from other pro-
gramming languages. We want to support an application
development environment for OPAL along the lines of the
Smalltalk programming environment [GR], but we recognize that
the application development environment may not be the same
as the environment in which the finished application runs. How-
ever. we are committed to providing procedural interfaces to C
and Pascal. -

5. Our Approach

This section addresses how we pro;ideb the enhancements
needed to Smalltalk to make it a database system. We start with
an overview of the architecture of GemStone.

5.1. GemStone Architecture

Figure 2 shows the major pieces of the Gemstone system.
Stone and Gem correspond roughly to the object memory and
the virtual machine of the standard Smalltalk implementation
[GR]. Stone provides secondary storage management. con-
currency control, authorization. transactions. recovery, and sup-
port for associative access. Stone also manages workspaces for
active sessions. Stone uses unique surrogates. called object-
oriented pointers (OOPS) lo refer to objects. Stone uses an
object table to map an OOP to a physical location. This level of
indirection means that objects can easily be moved in memory.
While the object table can potentially have 2" entries. we expect
that the portion for objects currently in use by various sessions is
small enough to fit in main memory. Stone is built upon the
underlying VMS file system. The data model that Stone provides
is simpler than the full Gemstone model, and provides only
operators for structural update and access. An object may be
stored separately from its subobjects. but Ihe oops for the values
of an object's instance variables are grouped together. Others
have considered decomposed representations of objects [Ch-.
CKJ.

FIGURE 2

IBY-PC
l

A p p l i c a t i o n :I
I I I I

NETWORK SOFTWARE I 1
I LAN

Gem sits atop Stone. and elaborates Stone's storage mpde!
Into the full Gemstone model. Gem a l ~ a a d d s ~ - a p a b i f i T i e ' s ~
compiling OPAL methods into bytecodes and executing that
code, user authentication, and session control. (OPAL bytecodes
are similar, but not identical, lo the bytecodes used in Smalltalk.)
Part of the Gem layer is the virtual image: the collection of OPAL
classes. methods and objects that are supplied with every Gem-
Slone system.

Figure 3 shows the class hierarchy in the current Gemstone
virtual image. Comparing it to the Smalltalk hierarchy, we have
removed classes for file access, communication. screen manipu-
lation and the programming environment. The file classes are
unnecessary, as we have persistent storage for all GemStone
objecls. Computalion for screen manipulation needs to happen
near the end user, and needs fast bytecode execution. Gem-
Slone is optimized toward mainla~ning large numbers of per-
sistent objects. rather than fast bytecode execution. The pro-
gramming environment classes are replaced by a browser appli-
cation that runs on top of Gemstone. which we describe in a
later subsection. We have added classes and methods to make
the data management functions of transaction control. account-
ing, ownership. authorization, replication, user profiles and index
creation controllable from within OPAL.

Object
Assoc~at~on

SymbolAssoccallon
Behav~or

Class
Melaclass

Boolean
Collcct~on

SequenceableCollect~on
Array

Invar~antArray
Repos~tory

Strlng
lnvar~antstr~ng

Symbol
Bag

Set
Dlct~onary

SymbolDlct~onary
LanguageD~ct~onary

SymbolSel
UserProf~teSet

ComplledMethod
Magnllude

Character
DaleT~me
Number

Float
Integer

Smalllnleger
MethodContext

Block
SelecllonBlock

Segment
Stream

Positor~abicSfrcam
ReadSlream
WrlleStream

System
Undcf~nedOblect
UserProflle

.
The Agent interface is a set of routines to facilitate communi-

cation from other-programs in other languages-runfiing 06 pro-
cessors (possibly) remote from Gem. The Agent interface
currently supports calls from C and Pascal programs running on
an IBM-PC for session and transaction control, sending mes-
sages to GemStone objects, executing a sequence of OPAL
statements, compiling OPAL methods, and error explanation. In
addition, the Agent provides "structural access" calls, which per-
form the following functions:

1. determining an object's size. class, and implementation;

2. inspecting a class-defining object;

3. fetching bytes or pointers from an object;

4. storing bytes or pointers in an object;
5. creating objects.

Information passes between the Agent and Gem in the form
of bytes and Gemstone object pointers. Certain objects have
predefined object pointers, such as instances of Boolean.
Charac t e r and Srnal l Integer . Instances of F l o a t and
s t r i n g are passed as byte sequences. Instances of other
classes must be decomposed into instances of the classes men-
tioned, in order to pass their internal structure between the Agent
and Gem. However, the identity of any object can be passed
between the Agent and Gem, regardless of its complexity. The
idea is to do the computation and manipulation of objects in
Gem, and only pass data used for display through the Agent to
the interface routines.

Gem, Stone and the Agent interface are structured as
separate processes. Our current mapping of processes to pro-
cessors has Gem and Stone running on on a VAX under VMS.
The Agent interface supports communication with Gem from an
IBM PC. While a Gemstone system has a single Stone process.
it maintains a separate Gem process for each active user, and
the Agent interface handles communication on a per-application
basis.

5.2. Multiple Users

Stone supports multiple concurrent users by providing each
user session with a workspace that contains a shadow copy of
the object table derived from the most recent committed object
table, called the shared table. Whenever a session modifies an
object, a new copy of that object is created, and placed on a
page that is inaccessible to other sessions. The shadow copy of
the object table is updated to have the object's OOP map into
the new page.

Conceptually, the shadow object table for a workspace is a
complete copy of the version of the shared table when the ses-
sion starts. Actually, we do not make a copy all at once. Object
tables are represented as 6-trees, indexed on OOPS. For a sha-
dow object table. we need only copy the top node of the commit-
ted object table. As the objects are changed by a session, the
shadow object table adds new nodes that are copies of its
shared object table with the proper changes. Figure 4 shows the
state of a shadow object table after the alteration of a single
object. Multiple paths have been copied since several objects
may have been on the same page as the altered object.

We chose an optimistic concurrency control scheme: one in
which access conflicts are checked at commit time, rather than
prevented from occuring through locking. For each transaction.
Stone keeps track of which objects the transaction has read or
written. At commit time, Stone checks for read-write and write-
write conflicts with transactions that have committed since the
time the transaction began. If there are no conflicts, the transac-

tion is allowed lo commit. For a commit, the shadow object table_
~ - . . . - . -- - ---.+--v

of the session-ktre-ated a s if it were l?Tmspa?e3fon the enfr~es
that have not been modified, and is overlaid on the most recent
version of the shared table. Thus, only entries in the shared
table for objects that have been copied by the session are
changed. In this way. the changes made by the committing ses-
sion are merged with those of other transactions that committed
after the committing session began. If the current transaction
conflicts with a previously committed transaction (or is aborted by
the application), the changes in its shadow table are discarded,
after using the table to reclaim pages used for new copies of
objects.

This optimistic scheme ensures that read-only transactions
never conflict with other transactions. Such a transaction gets a
consistent copy of the database state, does its reading, and has
no changes to make to the shared table on commit. Only tran-
sactions that write can conflict with each other. This scheme
never deadlocks. as a session experiences no contention with
other sessions before a commit point. However, it is possible
that an application that writes a large portion of the database
may fail to commit any transactions for an arbitrarily long time.
While shadowing has had some bad press, it seems a natural
approach to us, given that we have an object table. It avoids
some extra reads. makes commit and abort simple, and is a
excellent candidate for w~ite-once memory. since active pages
are never changed in place.

5.3. Efficiency Considerations

One problem with recording all the objects a session reads or
writes is that the list can grow quite long, and Gemstone will
spend a lot of time adding entries to such lists. One optimization
is that certain classes of objects, such as Srnal l Integer .
Charac te r , and Boolean are known to contain only instances
that cannot be udpated. Thus, such objects need not be
recorded for concurrency control. Even excluding lhese objects,
single objects are just too fine a granularity for concurrency con-
trol. Thus, we introduced the notion of segments, which are logi-
cal groupings of objects that are the unit of concurrency control in
Gemstone, much like the segments of Ihe ADAPLEX LDM
[CFLR]. A segment may contain any number of objects. Gem-
Stone keeps a list of just the segments read or written by a ses-
sion, rather than all objects. Also, at a physical level, pages
respect segment boundaries. Thus the practice of copying all
objects in a page when one is changed causes no additional con-
flicts. Segments are visible from within OPAL through the class
Segment. Users can control placement of objects in segments.
to group objects to try to avoid conflict. If an application has a
group of private objects, all those objects and no others can be
placed together in one segment. At the system level, system
objects that are shared by many users. but are almost never
updated (such as the class describing object for a system class)

can be placed on a single segment, so that accesses to them
never causes a conflict.

5.4. Name Spaces

Multiple name spaces are managed by Gem. The virtual
image has a class UserProf ile thal is used to represent pro-
perties of each user that are of interest to the system, such as
user Id. password, native language and local time zone. A
UserProfile object also contains a list of dictionaries that are
used to resolve symbols when compiling OPAL code for that
user. When an identifier is encountered in OPAL code, and that
identifier is neither an instance variable nor a class variable, the
dictionaries are searched in order to find an object corresponding
to that idenlifier. There may be any number of dictionaries for a
user, to accommodate various degrees of sharing. For example,
a programmer's first dictionary may contain objects and classes
for his or her portion of a project. the second may be for objects
shared with other programmers workirlg on the same project, and
the third could contain system objects. Note that symbol resolu-
tion can be performed at runtime, thus providing for dynamic
symbol resolution during method execution.

5.5. Transactions and Recovery

Most of our approach to transactions has been covered in a
previous section. To reiterate, every session gets a shadow copy
of the shared object table when it begins, and installs its shadow
copy as the shared copy when it successfully commits a transac-
tion. Further, a session always writes changed and new objects
into pages that are not accessible to any other transaction before
commit lime. Thus, aborting a transaction means throwins away
its shadow object table, and committing means replacing the
shared table w~th a shadow copy. The only issue that needs
more elaboration is atomicity-that the changes of a transaction
are made, seemingly, all at once. As object tables are trees.
atomicity is not hard to pro~tide. When a shadow table is to
replace' the shared table, and the shadow table differs from the
table it is about to replace, the new table can replace the old by
simply overwriting the root of the shared object table with the root
of the new object table. (Actually, there is a "root of the dala-
base" above the root of the object table thal gets overwritten.
The database root references some other information besides the
object table, such as a list of active transactions.) Rewriting the
root is the only place where any part of the shared copy of the
database is overwritten.

Recovery from processor failure does not require a great
amount of additional mechanism over what we have for con-
currency control. Our unit of recovery is a transaction. Changes
made by committed transactions are kepl, changes not yet com-
mltted are lost. Since the shared version of the database is
never overwritten, we need almost nothing in the way of logs to
bring the database to a consistent state, since it never leaves
one. The only tricky part is a processor crash while writing a
new database root. To handle that eventuality, we keep two
copies of the root. which reside at a known place. To restore a
consistent state of the database after the crash, we simply check
those two pages. If they are different, we copy one that can be
dclermined to be uncorrupted over the other. The real work on
recovery is garbage collection: removing detritus of the transac-
hens that had not committed belore the crash.

To guard against media failure, we have introduced a struc-
ture called a reposifory. A repository is the unit of replication,
and also the unit of storage that can be taken olf line. Most of
wtial we said before about the database actually pertains to repo-
sltories Segments partition repositories, and all the objects in a
segment are stored in the segment's repository. A repository

may be taken off line, which means all its objects become inac-
cessible. ~ e ~ o s l t o r y - IS a n OPAL class providing internal
representatives of repositories. A Repository instance can
respond lo a message replicate, which means two copies of
the repository will be maintained (at increased cost in lime and
space), usually on separate external devices. The copies know
about each other, and if the medium for one fails, the other is still
available.

5.6. Authorization

Segments are also the unit of ownership and authorization.
Every user has at least one segment, and when he or she
creates new objects, they go in an owned segment. A user may
grant read or write permission (write implies read) on a segment
to other users or groups of users. Such grants must always
come from the original owner. Read or write permission on a
segment implies the same permission on all objects asslgned to
the segment. .User identification is handled by Gem, using
userId and password from a UserProf ile.

There are some subtleties of read and write permission in an
object model. First, having the identity of an object (its OOP) is
not the same as reading the object. Second, having permission
on an object does not imply have permission on all its subob-
iects. So, for example, an Employee object, along with the
objects that are values for instance variables ernpName, ssNo
and address could reside in one segment. By putting a
SalaryHistory object in another segment, authorization can
be granted to just a portion of an employee's personnel informa-
tion. Third. name spaces are the first line of defense against
unauthorized access. If a user cannot find an object, he or she
cannot read the object.

5.7. Large Object Space

In designing Gemstone, we have tried to always set limits on
object numbers and sizes so that physical storage limits will be
encountered first. A Gemstone system can support 2" objects
(.." counting instances of SrnallInteger) and an object can
have up to 2'' instance variables. Segments have no upper
bound on the number of objects they can contain, other than the
number of objects in the system.

When an object is larger than a page, the object is broken
into pieces and organized as a tree spanning several pages. To
handle large unordered objects (instances of Bag and its subc-
lasses), we have added a new basic storage structure called a
non-sequenceable collection (NSC). This structure supports
adding, removing and testing for membership, along with iteration
over all the elements. However. NSCs have anonymous
instance variables, which means their component objects may
not be referenced by name or index. Large NSCs are also
stored as trees, but ordered by OOP. In the next section, we
show how content-based retrieval is supported for an NSC
oblect.

A large object can be accessed and updated without bringing
all the pages of an object into a workspace. The tree structure
for large objects makes it possible to update pieces of them
w~lhout rewriting the whole object, much as for the object table
Since pages of a large object need not be contiguous in secon-
dary storage, such objects can grow and shrink with no need to
recopy the entire object.

5.8. Associative Access and Typing

We briefly cover some of the language and typing issues
relating to associative access, along with index structures and
their maintenance. The fundamental language issue is being
able to detect opportunities for ustng auxiliary storage structtrres

In a computationally complete language such as OPAL. it is nei-
ther necessary or desireable l o consider using auxiliary structures
for every database manipulation. Conceivably, we could analyze
all OPAL methods to detect places where alternative access
paths might be used. We felt that approach was too complex,
and instead decided that the programmer must flag opportunities
to use auxiliary structures.

OPAL supports the use of indices to speed the evaluation of
expressions of the form

aBag se lect : &lock

The block has one variable and returns a Boolean. The result
of the expression is the subset of elements of aBag for which
aBlock returns true, and resembles the relational selection
operator in the Cypress data model [Ca]. This statement is
evaluable in OPAL without indices, but at the cost of examining
every element in d a g . Since a block can contain arbitrary
OPAL expressions, indices are not useful in evaluating every
expression in a blocck. Hence, for use with indices. we added
path syntax to the OPAL language. For any variable. we can
append to it a path composed of a sequence of pieces called
links, which specify some subpart of an object. For example.
anEmp.empName.last might access the last name of an
Employee object. A question arises why sequences of unary
messages do not suffice to the same thing, such as anEmp
name last The reason is that we want to support associative
access at runtime without performing message sends, and so the
support can come from the Stone level.

A selection block for associative access can contain an con-
junction of path comparisons, where a path comparison an
expression of the form <path expression> <comparator>

<literal> or <path expression> <comparator> <path expres-
sion > :

anEmp.ernpName.last = 'Sanders'
anEmp.salary > anEmp.dept.manager.sa1ary

Index use is requested by using set braces in place of brackets
around the block in a select: message

empSet select:
{:anEmp I anEmp.ernpName.lastName = 'Sanders')

rather than

empSet select:
[:anEmp I anEmp.empName.lastName = 'Sanders']

The two expressions give the same result, but the first one
requests OPAL to use an index if available, while the second will
always be evaluated by iterating through empset. I f no
appropriate index exists, then the first expression might still be
evaluated without the use of message sends if, as discussed
below, the path is appropriately typed. Otherwise. the first
expression evaluates using the same method as the second. We
found it a great help in testing associative access processing to
have a brute-force way to evaluate selection queries, as a kind of
a "semantic benchmark" for checking index-based evaluation.

Another central decision in designing associative access was
what to index, 'classes or collections? Many applications may
use instances of the same class, and store them in different col-

lections (like having several relations on the same scheme [Ha]).
Ifidexink en fhe class means that applications that do-not use the '
index still bear the overhead for instances they use being in the
index. Further, a classwide index presents authorization prob-
lems. No one user may have read access to set all the objects
in the class, so no one is able to request the index be created.
Also, indexing a collection allows the possibility that instances of
subclasses be included in a collection that is indexed. Indexing
on a class basis makes it easier to trace changes lo the state of
an object that could cause the object to be positioned differently
within an index. We decided that minimizing cost for programs
not using an index was the top priority, so we index on collec-
tions, but other systems have chosen class indexing [ZW]. Addi-
tionally, if indexing by class, intersecting the result of a lookup
with a collection may be time consuming with respect to the size
of the collection. Note that a class can be implemented to keep
a collection of all instances if desired, and that collection can be
indexed.

Indices are created and abandoned by sending messages to
a Bag or Set object, giving the path to index. For example, if
empSet is a set of Employee objects, we can request an index
on empName . last. There are two kinds of indices: identity and
equality. An identity index supports searching a collection on the
identity of some subobject of one of the elements, without refer-
ence to the subobject's state. An equality index supports lookup
on the basis of the value or internal state of objects, and range
searches on values.

The path syntax for associative selections and the kind of
index desired dictate what typing information is required to sup-
port indexing. Referring back to the discussion in Section 4.3, to
have an identity index on a collection using a particular path. we
must know that the path expression is defined (leads some-
where) for every object in the collection. For an equality index.
we must additionally know that the values of the paths for every
element of the collection are comparable with respect to equality
and the other comparisons supported by equality indices. OPAL
provides typing for names and anonymous instance variables.
For any named instance variable. the value of that variable can
be constrained to be a kind of a given class. A value is a kind of
a class if it is an instance of that class or of some subclass
thereof. For example, we can declare that the empName
instance variable of class ,Employee must have kind
PersonName, which means the value can be a PersonName
instance. or an instance of some subclass, say Titledperson-
Name. Subclasses of Bag and Set can be restricted in the kind
of elements their instances may contain.

Both named and anonymous instance variable typing are
inherited through the class hierarchy. Additionally, typing can be
further restricled in a class's subclasses. If in Employee class
instance variable empName is constrained to PersonNarne ,
then in a subclass of Employee empName can be constrained
to TitledPersonName.

In order to create an identity index into empset on
empname . last , variable empName must be constrained to a
class in which a variable last is defined. However, it would not
be necessary for last to be be constrained within that class, for
the comparisons supported by identity indices need not know the
structure of employee's last names. In an equality index,
employee's last names would need to be constrained to a class
whose instances are totally ordered, in order to provide the com-
parisons supported by equality indices. The constraint on the
last link of a path upon which an equality index is built is res-
tricted to Boolean. Character. DateTirne , Float,
String, Small integer or subclasses thereof. For
Boolean, Character and SmallInteger, there is no dis-

tinction between equality and identity indices.

In addition lo supporting indexed associative access. lyping
01 names can be used as an integrity constraint on named varl-
ables In particular, it can be used to assure that the value of a
named instance variable will understand a given protocol in all
objects that are a kind of a given class.

Indices are implemented as a sequence of index com-
ponents, one ior each link in the path upon which the index is
built. Each component is implemented as a B-tree. An index on
empName . last into empSet would have two components. one
from names to employees in e m p s e t and one from last names
to names of employees. Common prefixes of indexed paths
share the index components lhat correspond to the common pre- '
fix. For example, an index on empName . f i r s t would share the
index component from names to employees with the index on
empName . last. Additionally. identity indices are implicitly
created on the path prefixes of an indexed path Creating an
index on empName. l a s t implicitly creates an identity index on
empName .

Indexing is discussed in further detail elsewhere (MSJ. We
here mention that the maintenance of indices is a problem that is
related to that of maintaining referential integrrty coristraints [Da]
in relational databases, and that Stone manages concurrent
access to indexing structures since indices are maintained in
object space.

5.9. Garbage Collection

Gem uses reachability informallon to remove temporary
objects before a transaction commits. Objects that have been
created during the current transaction and can not be accessed
transitively from the current stale of some object present in the
shared object table are temporary. Permanent objects, those
that have previously been committed. are garbage collected off-
line using a mark-sweep algorilhm. We believe this preferable lo
reference countlng in that reference counting would require
accessing an object every time a reference to it is added or
removed.

5.10. Access From Other Systems

Gemstone does not provide direct access to a human inter-
face through OPAL. Applications manage the human interface
through C modules running on a PC. These modules have com-
plete access to OPAL through the Gemstone C Interface (GCI).
which is the interface to the agent. The role of the GCI in appli-
cation development is depicted in Figure 5.

The OPAL Programmrng Environment (OPE) is a collection
of Microsoft Windows-compatible applications for the creation of
OPAL classes and methods. In addition. the OPE provides appti-
cations for the bulk loading and dumping of Gemstone data-
bases. The development of a GemStone application consists of
two parts: first creating Gemstone classes and methods through
the OPE and then developing a human interface on a PC lhat
accesses OPAL through the GCI.

C APPLICATION PROGRHl O P N COO€ GEMTONF
(m IOH-PC) (w & d r ~ l h W t Iml3 m V A X I DATABASE

S t r a t u m dSlm
mjaco

FIGURE 5

6. Fulure Development Plans

AS with all computer-based systems, performance efficiency
is a perennial concern. We have two approaches to addressing
Gemstone's performance efficiency- improving the execution
model, and improving database functions. Research ol Smalltalk
virtual machines has demonstrated several techniques for
improving lheir efficiency [Kr]. Database systems spend most of
their time in searching and sorting tasks. These functions can be
improved by better algorithms and better buffer management.

We also plan to add several features to GemStone. We plan
to add multiple repositories to allow users to dismount a portion
of the database and either transport it to another srte or preserve
it offline. Support for distributed databases will allow mutt~ple
sites to share a collection of geographically distributed data. As
our user population increases, we expect users to need
increased performance efliciency in certain new classes. To sup-
port this need, we expect to add selected new classes to the set
of predefined classes. Gemstone currently supports only the
IBM-PC workstation. We plan to offer interfaces to additional
workstations such as Lisp and Smalltalk systems.

7. Acknowledgements

The authors would like to thank the following people for thew
contributions to the Gemstone project: Ken Almond, quality and
change control; Robert Bretl. Stone object manager; John Bruno,
browser: Maureen Drury, virtual image; Jack Falk. docurnenta-
tion; Lynn Gallinat. virtual image; Larry Male, OPE editor; Daniel
Moss. PC:VAX commun~cations; Bruce Schuchardt. OPE imple-
menlation, bulk,loader and dumper; Harold Willarns. Gem irnple-
mentation; Monty Williams, quality and support implementatton;
Mike Nastos, documentation and bug hunt~ng; Rick Nelson, VAX
system manager; 0 . Jason Penney. Stone implementation, pro-
cess scheduler; Mun Tuck Yap. Gem object manager. PC,VAX
communications.

8. Bibliography and Trademarks

[Ah+] Ahlsen. M., A. Bjornerstedt. S. Br~tts, C. Hutten, and L
Suderland, An architecture for object management in
OIS, ACM TOOIS 2:3, July 1983.

[ACO] Albano. A., L. Cardelli, and R. Orsini. Galileo: a
strongly-typed interactive conceptual language. ACM
TODS 10:2, June 1985.

[AO] Albano. A,. and R. Orsini, A prototyping approach to
database applications development. Database
Engineering 7:4. December 1984.

[Ca] Catell, R.G.. Design and implementation of a
relationship-entity-datum model. Xerox CSL 83-4. May
1983.

[Ch -1 Chan. A,. A. Danberg. S. FOX. W -T. K. Lin, A. Nori.
and D Ries. Storage and access structures to support
a semantic data model. Proc. Conference on Very
Large Databases. Seplember 1982

[CFLR] Chan. A.. S.A. Fox. W.-T. K. Lin, and D. R~es. Deslqn
ol an ADA compatible local database manaqcr (LDM).
TR CCA 81-09, Computer Corporation ol Arner~ca.
November 198 1 .

[CFHL]

[Col

[CKl

[CMI

IDal

PKLI

IDKI

IEal

[EM1

[GRI

[Grl

[Hal

[HJl

[HLI

IJSWI

Chu, K.C., J.P. Fishburn, P. Honeyman. and Y.E. Liem.
Vdd : a VLSl design database, Engineering Design
Application Proceedings from SlGMOD Database
Week, May 1983.

Codd. E.F.. Extending the database relational model to
capture more meaning, ACM TODS 4:4. December
1979,

Copeland, G., and S.N. Koshafian, A decomposition
storage model, Proc. ACMlSlGMOD International
Conference on the Management of Data. 1985.

Copeland. G.. and 0. Maier, Making Smalltalk a data-
base system. Proc. ACMISIGMOD international
Conference on the Management of Data, 1984.

Date. C.J., An Intoduction to Database Systems,
Volume 2. Addison-Wesley. 1983.

Derret. N.. W. Kent, and P. Lynbaek. Some aspects of
operations in an object-oriented database, Database
Engineering 8:4, December 1985.

Dolk. D.R.. and B.R. Konsynski, Knowledge representa-
tion for model management systems. IEEE Transac-
tions on Software Engineering, 10:6, November 1984.

Eastman, C.M.. System facilities for CAD databases.
Proc. IEEE 17th Design Automation Conference, June
1980.

Emond. J.C., and G. Marechad. Experience in building
ARCADE, a computer aided design system based on a
relational DBMS, Engineering Design Applicafion
Proceedings from SlGMOD Database Week. May
1983.

Goldberg, A.. and D. Robson. Smalltalk-80: The
Language .and Its Implementation, Addison-Wesley.
1983.

Gray, M.. Databases for computer-aided design. In New
Applications of Databases, G.Garadarin, E. Gelenbe
eds.. Academic Press. 1984.
Haynie, M.N., The relational!network hybrid data model
for desiqn automation databases, Proc. IEEE 18th
Design Automation Conference, 198 1.

Hewitt. C.. and P. de Jong, Open systems, In On Con-
ceptual Modelling: Perspectives from Artificial Intelti-
gence, Databases and Programming Languages. M.L.
Brodie. J. Mylopoulos. J.W. Schmidt eds., Springer-
Verlag. 1984.

Haskin, R.L., and R.A. Lorie, On extending the func-
tions of a relational database system. Proc.
ACM.:SIGMOD International Conference on the
Management of Data. 1982.

Johnson, H.R.. J.E. Schweilzer, and E.R. Warkentire. A
DBMS facility for handling structural engineering enti-
ties. Engineering Design Application Proceedings from
SlGMOD Database Week, May 1983.

[KKI

[Ka82]

[Ka83]

[Krl

[LPI

[LOPI

[Ma1

[MOP1

IMP1

IMSl

[MNPI

[Mol

[MBWl

[Nil

[PKLMJ

[PLI

IS11

Kaehler, T., and G. Krasner. LOOM - large object-
orienfe'd memory for Smalltalk-80 systems. In [Kr].

Katz. R.H.. A database approach for managing VLSl
design data, Proc. IEEE 9th Design Automation Con-
ferenceafl . 1982.

Katz, R.H., Managing the chip design database, /EEE
Computer. 16:12. December 1983.

Krasner, G.. Smalltalk-80: Bits of History, Words of
Advice, Addison-Wesley. 1983.

La ~ ro i x , M., and A. Pirotte. Data structures for CAD
object description, Proc. IEEE 18th Design Automation
Conference. 1981.

Lorie, R.. and W. Plouffe. Complex objects and their
use in design transactions. Engineering Design Appli-
cation Proceedings from SlGMOD Database Week.
May 1983: '

MacLennan, B.J.. A view of object oriented program-
ming, Naval Postgraduate School NPS52-83-00 1.
February 1983.

Maier. D.. A. Otis, and A. Purdy. Object-oriented data-
base development at Servio Logic, Database Engineer-
ing 18:4, December 1985.

Maier, D., and D. Price, Data model requirements for
engineering applications, Proc. lnternational Workshop
on Expert Database Systems, 1984

Maier, D., and J. Stein, Indexing in an object-oriented
DBMS, manuscript in preparation.

McLeod. D., K. Narayanaswamy, and K.V. Bapa Rao.
An approach to infomation management for CAD.,VLSI
applications. Engineering Design Application Proceed-
ings from SlGMOD Database Week, May 1983.

Morgenstern. M., Active Databases as a paradign for
enhanced computing environments, Proc. Conference
on Very Large Databases.1983.

Mylopoulos, J.. P.A. Bernstein, and H.K.T. Wong, A
language facility for designing database-intensive appli-
cations. ACM TODS 5:2. June 1980.

Nierstrasz. O.M.. Hybrid: a unified object-oriented sys-
tem, Database Engineering 8:4, December 1985.

Plouffe. W.. Kim, W., R. Lorie, and D. McNabb, A data-
base system for engineering design, Database
Engineering 7:2, June 1984.

Powell, MS.. and M.A. Linton. Database support for
programming environments, Engineering Design Appli-
cation Proceedings from SIGMOD Database Week,
May 1983.

Siddle. T.W., Weaknesses of commercial data base
management systems in engineering applications. Proc.
IEEE 1 7th Design Automation Conference. ,June 1 980.

Spooner. D.L.. M.A. Milican, and 0.6. Falz. Modelling
mechanical CAD data with dala abslraclions and
object-oriented techniques, Proc. 2nd International
Conference on Data Engineering, February 1986.

Slemple. 0.. T. Sheard, and R. Bunker. Abstract data
types in dalabses: specification rnanipulalion and
access. Proc. 2nd International Conference on Data
Engineering. February 1986.

Weisner, S.P.. An object-oriented prolocol for managing
data. Database Engineering, 8:4. December 1985.

Zaniolo. C.. The database language GEM. Proc.
ACMISIGMOD lnternatronal Conference on the
Management of Data. May 1983.

Zdonik, S.B., Object management systems concepts.
Proc. ACM SlGOA Conference on Office information
Systems. 1984.

Zdonik. S.B.. Object managemenl syslems for design
environments. Database Engineering 8:4, December
1985.

Zdontk, S.B.. and P. Wegner. Towards object-oriented
database environments. Brown Univeristy TR, 1985.

Trademarks

Smalltalk-80 is a lrademark of Xerox Corporation
UNlX is a trademark of ATBT Bell Laboratories
VAX and VMS are lrademarks of Digital Equipment Corp.
Microsoft and Windows are lrademarks of M~crosoft Corp.
IBM-PC is a trademark of IBM Corp.
ADA is a trademark of Ihe Department of Defense
Gemstone is a lrademark of Servio Logic Development Corp

