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Abstract 

As the size and complexity of high-performance VLSI grows, i t  is necessary to  
enforce a structured methodology to allow the proper control and abstraction of the various 
levels required when designing these devices. In this article we describe a Large Chip 
Methodology (LCM) tha t  guides the design of complex, high-performance VLSI and provides 
a foundation and framework for CAD tool development. 
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Large Chip Methodology 

INTRODUCTION 

June 1986 

The last decade has seen an explosive increase in the complexity of large scale 
integrated circuits. This functionality has led to  a set of components tha t  offer a large 
range of performance and function, and that  are revolutionizing electronics and computa- 
tion. Unfortunately, our ability to utilize silicon of this density is sorely tested by its com- 
plexity. A typical 32-bit microprocessor may have 400,000 devices, logic tha t  is described by 
several hundred pages of schematics, and a mask design with over 2 million rectangles. 
Furthermore, fully automatic synthesis cannot effectively handle these designs. 

The question addressed by this article then is, "How does one reliably design highly 
optimized VLSI?" Since VLSI design is fundamentally an exercise in complexity manage- 
ment, a design methodology is necessary to  control this complexity and to  provide a struc- 
ture for the organization of the design team, the CAD tools that  the team uses to  do its job, 
and a framework for future design evolution. 

This article describes a Large Chip Methodology similar to  that  developed by Intel 
as part of the iAPX-432 component family development. Interested readers are referred to  
a previous paper (21 describing Intel's Large Chip Methodology. 

Our Large Chip Methodology borrows heavily from Software Engineering techniques 
tha t  have been developed to reliably build large, complex software systems and is based on 
the concepts of abstraction, decomposition, and step-wise refinement: 

(1) Decomposition is the process of splitting the design into independent modules whose 
interfaces can be accurately and succinctly described. These modules can then be 
hierarchically combined. 

(2) Abstraction is the hiding of unnecessary detail. For example, during the decomposition 
process, module interfaces are simplified to  where only a small amount of function 
(implementation) is visible externally (specification). 

(3) Step-wise refinement of the abstracted modules allows the design details to  be added in 
a controlled and incremental manner. In other words, the design is begun as a set of 
abstracted interfaces and iteratively refined until the final, complete design has been 
obtained. This process continues hierarchically, until a t  the last level of refinement, 
the final design is complete. 

The Large Chip Methodology, therefore, is a multi-level design hierarchy that  
enforces the above techniques in the design process. It is also a mental discipline tha t  
becomes a fundamental part of each engineer's thinking. 

Another characteristic of the methodology is its continual evolution in response to  
changes in design techniques, and CAD and fabrication technologies. By providing a frame- 
work and focus for this change, the methodology helps integrate these improvements 
smoothly into the design process. 

OVERVIEW 

The design effort for a complex VLSI component may be broken into several distinct 
levels, each level being a step-wise refinement of the previous level. Design generally 
proceeds in a top-down fashion with more detail being exposed a t  each level. Figure 1 
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shows the design flow of the Large Chip Methodology 

Implementation begins with a Product Specification that  clearly states the perfor- 
mance goals, cost goals, and essential features of the component. An architecture is then 
defined tha t  meets or exceeds those requirements. For a processor, this definition could 
include the instruction set specification, register and memory models, and external pin 
definitions. The architecture specification is then transformed into a block or register 
transfer level implementation (or microarchitecture) of the state variables (e.g. registers) 
and interconnecting data paths needed to  implement the architecture. For a micropro- 
grammed processor, part of this task would include the microinstruction set definition. 
Logic and circuit design follow, resulting in a set of circuit schematics and a list of layout 
requirements. Finally, mask generation involves the translation of those schematics into the 
rectangles that  actually comprise the various mask layers. These rectangles are placed 
according to  the design rules for the process and result in a data base that  is used to  create 
the mask plates used in chip fabrication. 

Each of these implementation levels can be broken into four specific activities: 

(1) Synthesis is the design process itself. During synthesis, a designer begins with a 
description of the design a t  the next higher level and creates a description for the 
current level. Synthesis is generally manual, although automated synthesis tools are 
appearing. 

(2) The description is a computer data base that is a result of the synthesis activity. An 
important element of the Large Chip Methodology is that descriptions a t  all levels 
(except the mask level which is only indirectly behavioral) are executable. For exam- 
ple, the description a t  the logic design level is a schematic data base tha t  can be 
transformed into a logic simulation. 

(3) Evaluation consists of checking the design against the goals set out by the Product 
Specification. The major design constraints evaluated are die size, power consump- 
tion, and performance. The evaluation is based on experience and on results obtained 
using the executable description of that  particular level. For example, a logic simula- 
tor may be used to  obtain cycle by cycle performance estimates. 

(4) Validation, the last activity for a design level, is the key to  producing functional die 
on the first iteration of silicon. Validation checks that  the synthesized design for the 
level is functionally correct, or, more precisely, that  it  has retained the function of the 
previous level. Although implementation proceeds in a generally topdown manner, 
validation is bottom-up. The layout description is compared to  the schematics, the 
schematics are compared to  the microarchitecture description, and the microarchitec- 
ture description is compared to the architecture specification. Also, there are situa- 
tions where several levels can be skipped during the validation process; for example, to  
close the loop on the entire design process, the architecture description is compared to  
the chip itself. 

The remainder of the paper examines each activity for each level of the methodol- 
ogy. We then examine its evolution, as well as the results of the methodology actually being 
used a t  Intel that  served as a basis for that discussed here. 

ARCHITECTURE 
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The first step of any chip design is the specification and description of the chip 
architecture. Here we define architecture as the functional interface a s  seen by the user of 
the chip; this includes the instruction set and the bus interfaces. 

Architecture Synthesis 

The architecture level design begins with a Product Specification tha t  includes a 
description of the general attributes of the architecture such a s  intended market segments, 
and performance and compatibility requirements. The result of architecture synthesis is the 
creation of a detailed Architectural Specification and a macrosimulator tha t  is an  execut- 
able description of the architecture. 

Architecture synthesis is a difficult process where the architects develop the func- 
tional description of the part based on 1) the implementation technology tha t  will be 
manufacturable when the design process is complete, and 2) the intended applications for 
the part being designed. Given a fixed set of resources (silicon area, device density, and 
time to  market), the architects must select function that ,  in the long term, will maximize 
the applicability and market of the chip. Adding to  the difficulty is the fact t ha t  no matter 
how experienced the design team, not all implementation constraints can be foreseen this 
early in the design process. As a result, the architecture level is by no means fixed when 
work begins at the next level down; thus requiring iterative improvement on the initially 
specified description. 

Architecture Description 

The primary result of the synthesis process is the macrosimulator, a computer pro- 
gram tha t  simulates the instruction set of the target architecture. For processor2 chips, the 
macrosimulator takes as  input/output a physical memory image containing programs for 
the target architecture and their data.  The simulator then "executes" the programs on the 
data,  updating the memory image as necessary. Generally, only the architecture externally 
visible s tate  (such as general purpose registers) is simulated. Architecture invisible (inter- 
nal) state is not simulated, thus making the macrosimulator easier t o  write and debug, and 
execute, while keeping i t  independent of the actual implementation of the component. 
Occasionally, i t  is desirable t o  simulate certain internal architecture s tate  (e.g. caching) t o  
allow more accurate performance estimation. 

The macrosimulator's most important characteristics (not necessarily in order of 
importance) are: 

(1) i t  displays the externally visible architecture state; 

(2) i t  is simple and easy to  change - this is important because of the initial instability of 
the architecture; 

(3) i t  has a simple user interface that  allows single step, breakpoints, instruction tracing 
(of the simulated processor), and observation of all architecturally specified state  vari- 
ables - these functions are essential, since the initial system software (e.g. compilers 
and operating system kernel) will be written and debugged using the macrosimulator; 

(4) i t  is fast, so tha t  software development on the architecture can begin early in the 
design cycle; 

%pecial purpose chips will sometimes require different types of input/output models, however, for the pur- 
poses of this paper, we will assume that the chip being designed is some type of processor that  fetches instructions 
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(5) 
i t  generates approximate performance data;  

(6) i t  is portable, since execution by different computer systems is desirable; and 

(7) i t  executes from a standard "physical" memory load image that  allows memory images 
to  be interchangeable with those of the microsimulator and of the chip itself. 

Of the above characteristics, the two most important are the performance estima- 
tion features and the execution of the standard physical memory load image for the target 
architecture. By being able t o  estimate performance execution from the macrosimulator, 
the macrosimulator becomes not only an  important design tool for the microarchitecture 
level synthesis, but also an invaluable tool for the evaluation activity a t  the architecture 
level. 

The macrosimulator generates performance numbers via two techniques. First, by 
using cycle  tablee tha t  contain estimated operation times, totals can be obtained for pro- 
gram execution. And second, certain on-chip state (e.g. caching) can be simulated and those 
times incorporated into the total. It should be noted tha t  for internal s tate  simulation to  
be done easily, the appropriate mechanisms need t o  be added to the macrosimulator from 
the beginning. Furthermore, this state should be parameter driven a s  much as possible t o  
allow efficient exploration of the design space. The numbers generated by the macrosimula- 
tor are only approximate. However, even though not all state is simulated, our experience 
has shown tha t  macrosimulator estimated execution times can be within 10% of actual exe- 
cution times. 

Another major use of the macrosimulator is a s  a tool for validating the functional- 
ity of this and lower level simulators. Here the ability t o  execute a standard load image is 
imperative. It allows software development t o  begin early in the design process. Combined 
with a set of representative benchmarks, the macrosimulator also becomes a valuable design 
tool in assessing trade-offs during the microarchitecture synthesis process a t  the next level. 

Architecture Validation 

By executing programs on the macrosimulator, the architecture is validated early in 
the software development cycle, thus providing a check of whether the architecture func- 
tions as  expected by the software development group from their understanding of the Archi- 
tecture Specification. Architecture validation also occurs during the microarchitecture vali- 
dation process when the two levels are validated against each other. 

The Architecture Specification contains algorithmic descriptions of the target 
architecture's instructions. It  is possible t o  automatically use those descriptions t o  generate 
test programs and results tha t  can be used to validate the macrosimulator, though i t  is only 
practical for simple instructions. 

Architecture Evaluation 
Chip size and power dissipation are estimated by the chip designers. These esti- 

mates are, for the most part,  based on the designers' experience. Sometimes i t  is known 
what large structures (e.g. register files, buffers, ROM, and caching) will exist on the chip 
and the sizes of their constituent cells, thus providing additional information. Performance 
estimation is also done with the macrosimulator. 

and operates on data according t o  the fetched instructions. 
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When architecture synthesis is complete, the designers have a precise, executable 
description of the function to  be implemented, a s  well as  a knowledge of what operations 
are critical t o  the performance of the chip. Furthermore, the macrosimulator can be used 
to  assess trade-offs in the microarchitecture design space a s  microarchitecture synthesis 
proceeds. 

MICROARCHITECTURE 

Microarchitecture synthesis can best be thought of a s  the process of converting the 
high level description of the architecture, into the hardware necessary t o  implement it, but 
at a Register Transfer Level (RTL) of description. As in architecture synthesis, i t  too is a 
difficult task requiring the expertise of engineers who have a n  in depth understanding of 
both computer architecture and hardware system design. 

Microarchitecture Synthesis 

Microarchitecture design begins with the Architecture Specification and results in a 
block level description of the hardware needed to implement the architecture and an  execut- 
able model of t ha t  hardware called a microsimulator. 

T o  translate an  architecture into hardware, the engineers must first understand the 
actions tha t  must be performed for every operation supported by the architecture, and then 
assign the hardware resources necessary to carry out those actions. For example, a 
RegisterAdd instruction requires hardware registers t o  contain the data,  an  ALU capable 
of executing the add, and a means of moving the da ta  between the registers and the ALU. 
Once this resource list has been compiled, the engineers can turn their attention to  defining 
the da ta  flow through the chip and the control structures t o  support tha t  flow. These may 
then be combined into an  RTL implementation of the architecture tha t  describes the 
hardware structures (e.g. registers, ALU's, busses, and state machines), the interconnect 
between the structures, and the timing of the da ta  transfers through the chip. 

The RTL description can take many forms during the synthesis process. Initially, 
the RTL is a block diagram and a Microarchitecture Specification. The RTL design is then 
iteratively refined until an executable algorithmic description, the microsimulator, is 
obtained. A microsimulator is a computer program that  accurately simulates the internal 
operation of the chip. It is more detailed than the macrosimulator but shares many of its 
features. Ease of modification, a user interface with a broad range of commands, and the 
ability t o  execute load images are important features. Fast execution of the microsimula- 
tor, however, is the most important and is paramount to the success of the entire methodol- 
o w .  

Microarchitecture Description 

Although the primary output of microarchitectural level design is a working RTL 
description (the microsimulator), there are several intermediate steps along the way. The 
first of these is the creation of the top level block diagram of the chip on a n  engineering 
workstation. (See Figure 2 for an example of a simple block diagram.) This block diagram 
is also the top level of a hierarchical description of the detailed logic of the chip and consti- 
tutes the first step in the decomposition and abstraction process. This block diagram 
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partitions the functionality into several major blocks and defines the interface signals 
between the blocks. For the sake of clarity, block-to-block signals are grouped together 
instead of drawing each wire individually. Since the block diagram is resident on a worksta- 
tion, i t  can be automatically converted into the basic format (e.g. global variable declara- 
tions, and procedure parameters for the basic block function calls) of the microsimulator. 

In addition t o  the block diagram, each functional block and interconnect signal is 
also documented with a short description of its function and its expected timing. This infor- 
mation is then reviewed by the project team and agreed on before the design of the func- 
tional blocks begins. This entire process is analogous to  the separation of external 
specification from internal implementation of software engineering. 

To create a microsimulator for the chip, the designers write models for each of the 
functional blocks (FUB's) in a general-purpose programming language. Since no hardware 
design language is involved, any of the programming constructs available in the language 
may be used to  create the model. The code for each FUB is not a detailed logic design (e.g. 
each register is implemented a s  a variable, rather than as multiple instances of a register 
bit cell), but control signals, timing, internal signalling protocols, PLA, RAM, and ROM 
logic are all modelled t o  the bit level. Timing resolution is t o  the sub-cycle or phaae level; a 

two phase design (PHI and PH2) is executed a t  least twice3 per cycle - once during P H I  and 
once during PH2. An example of the code needed to implement a register is shown below: 

loadit := IF (phl=l)  AND ((loadreg=l) OR (resetzl)) THEN '1 ELSE '0; 
regl := IF loadit THEN databus ELSE regl; 

In this example, the register named "regl" is loaded with the contents of the da ta  bus 
"databus" during phase 1 whenever either of the control signals "loadreg" or "reset" are 
asserted. 

The code for the various FUBs is then combined t o  create a simulation environment. 
The microsimulator environments currently in use a t  Intel, for example, consist of an  event 
scheduler and a user interface tha t  allows single stepping, breakpoints, and the ability t o  
display, trace, o r  modify any signal or variable in the model. The scheduler executes the 
model at fixed time increments, or can optionally execute a model until i t  "relaxes." In 
"relaxation" mode, the scheduler executes the model until all of the interface signals have 
stabilized, thus minimizing any order dependencies that  result from simulating the parallel 
operation of hardware on a serial machine. 

One technique that  is being used to  simplify the logic synthesis process at the next 
lower level is t o  restrict the model writer t o  a limited set of well-defined functions or "struc- 
tures" at the microsimulator level. Instead of complex conditional expressions to  simulate 
control signals, a set of standardized structures (e.g. logic gates and register cells) are used. 
Logic design then is simply a matter of examining the model code and drawing the 
equivalent structure on a schematic. An example of this approach is given below. The 
model is equivalent t o  the previous example. Although the structured example presented 
here appears harder t o  follow than the conditional case, i t  is more straightforward to  
translate since the AND2, OR2 and LATCH structures have direct MOS equivalents. 

It is often necessary t o  execute two passes of each phase by using "start," (e.g. PHIST) and "end" (e.g. 
PHIEND) signals. The use of two passes can solve most code ordering problems. The need for more than two 
passes per phase can generally be traced t o  serious critical paths where the designer is attempting t o  accomplish 
too much during a single phase. 



Large Chip Methodology June 1986 

Most general purpose, structured programming languages support some type of 
macro processing and, a s  a result, can directly support this structured approach. A macro 
is written t o  simulate each of the structures, and then instances of the macros in the micro- 
simulator code are expanded by the compiler a t  compile time to  form the executable model. 

The two styles presented above show two fundamentally different approaches to  
writing a microsimulator. The first provides less detail of the logic design a t  the microarchi- 
tecture level, and for tha t  reason can be produced and debugged more easily. Also, i t  has 
higher performance than the second approach. Simulator validation technology requires the 
execution of large numbers of test suites. The faster the simulator the more effective the 
validation. The second approach, on the other hand, greatly reduces the "distance" 
between microsimulator description and logic description, thus reducing logic design time 
and decreasing the risk on the logic design. However, the price is a slower simulator - a 
more detailed simulator is roughly an order of magnitude slower. Both approaches are a 
response t o  two conflicting goals of the microsimulator: simulation speed and design abstrac- 
tion. The resolution of this problem may come from the availability of high-speed logic 
simulation engines, since these provide the necessary performance for simulation at the logic 
level, thus making the performance goals of the microsimulator less important. Also, we 
expect t ha t  improved microsimulator source language and compilation techniques will elim- 
inate some of the performance disadvantages of the macro-based approach. 

It  is at the microsimulator level tha t  the hierarchy of the design becomes evident. 
The models of the major functional blocks are connected by the framework produced from 
the top level block diagram. Each of these major functional blocks, in turn, has several 
sub-blocks, and these are connected by the frameworks produced from the second level block 
diagrams, and so on. The result is a hierarchical simulator t ha t  closely matches the 
microarchitecture as  well a s  the physical implementation. 

Microarchitecture Validation 

The microsimulator is a key tool in the Large Chip Methodology. It  not only serves 
as  the first implementation of the hardware, but also reflects the current s tate  of the design 
at any time. This is done by making and testing all changes to  the design in the microsimu- 
lator before updating the schematics and the layout. Because of its closeness t o  the 
microarchitecture, and its relatively fast execution speed (compared to  full logic simulation), 
the microsimulator is an  ideal tool for validating the hardware implementation against the 
architecture specification. 

Microarchitecture validation consists of creating a rigorous test suite t ha t  checks 
tha t  the implementation properly executes all the operations specified by the architecture. 
Fortunately, many of the test suites generated to  validate the macrosimulator may also be 
executed here. On the other hand, validation of the microsimulator is more difficult than 
validation of the macrosimulator because the microsimulator executes about 1000 times 
slower. As a result, there are significantly fewer simulated cycles available. 

There are no suitable formal techniques or algorithms tha t  guarantee complete 
functional equivalence between the macro and microsimulators. However, by being able t o  
arbitrarily execute identical load images, the results of executing particular programs on 
each simulator can be accurately and automatically checked by comparing memory images. 
By the time the macrosimulator is complete, a large set of small and some large programs 
are usually available for execution by the architecture. These programs are then executed 
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on the microsimulator and their results compared to  identical macrosimulator runs. By 
having a full time group of engineers devoted to  "architecture validation," this process can 
be quite effective. In any event, it is impossible to  over-validate the simulator, and valida- 
tion should continue through the entire hardware implementation phase. 

Microarchitecture Evaluation 

Since the microsimulator is the first detailed description of the chip, i t  is also used 
to  obtain information about the physical realization of the design. As mentioned earlier, the 
microsimulator accurately describes both the block-to-block interconnect and the major 
data and control structures on the chip. This information can be used to  complete a prel- 
iminary chip plan and derive first pass power and area estimates. In addition, the timing 
resolution provided by the microsimulator produces accurate information that  verifies the 
assumptions made in the Architecture Specification. 

The microsimulator serves as both a working implementation of the chip that  is 
available months before the actual silicon, and as a functional reference to  which the vari- 
ous design descriptions (including the actual silicon) are compared. Because it  simulates the 
individual control signals and data paths and is accurate to the phase level, it  can produce 
the stimulus for the logic simulator and component test bed, and can even be used to  pro- 
duce the test vectors for a VLSI tester. For chips that  have microcoded macroinstructions, 
the microsimulator also becomes a microcode debug and validation vehicle. 

LOGIC 

Logic design involves, for all the functional blocks in the microarchitecture, the 
conversion of the microsimulator models into gate level schematics. 

Logic Design Synthesis 
Ideally, the design process should proceed serially from RTL simulator to  logic 

schematics, but this is generally not the case. The level of detail required to  create an 
accurate microsimulator forces the engineer to  consider logic implementation details as the 
RTL model is being written. Thought must be given, for example, to  the logical implemen- 
tation of a register so that  the proper control signals can be produced in the microsimula- 
tor. Likewise, logic tha t  can lead to  potential critical circuit paths must be avoided. As a 
result, an  engineer writing a microsimulator model usually works with both preliminary 
logic designs and the code used to  simulate it in the microsimulator. 

Even with a highly structured microsimulator, detailed logic synthesis is still 
required, though the design space for this synthesis is more constrained. Several examples of 
this synthesis are: 

(1) Registers, busses, etc. are represented by a single variable in the microsimulator. 
These must be expanded into multiple instances of the appropriate cells. 

(2) Control signals, as  a rule, are implemented as positive-asserted signals using AND-OR 
structures in the microsimulator. These must be converted to  their equivalent 
NAND-NOR implementations. 
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(3) Phase traps are not always explicitly represented in the model. They must be inserted 
into the schematics where necessary. 

(4) Large structures such as PLA's and ROM's are modelled a t  a functional level. The 
appropriate buffers and drivers must be added to the schematics. 

Once the models have been expanded, the design team reviews the results and looks 
for common structures such as decoders, register cells, counters, etc. These common func- 
tions are combined where possible and a set of "standard" gates and cells are selected and 
the logic design completed for them. Sometimes minor changes to  the design can eliminate 
duplicate effort, resulting in a significant reduction in the total design effort. The logic 
schematics are then entered on an engineering workstation. The hierarchy established by 
the block diagrams and microsimulator is preserved and refined in the schematics, resulting 
in a single logic schematic tree for the chip. 

Logic Design Description 
The description for the logic design level is a set of hierarchical, gate level schemat- 

ics. In MOS the relationship between logic and circuit design requires that  the logic data 
base be represented as a circuit data base. This is possible with a set of design tools that  
can hierarchically abstract many commonly occurring circuits such as logic gates. This 
means tha t  the circuit design is described by the same data base that  is used by the logic 
design. Although default device sizes may appear on the schematics, the final device sizes 
are added during the circuit design phase of the process, so the logic designers do not con- 
cern themselves with accurate sizing a t  this stage of the design. (Hence, these schematics 
are often referred to  as "unsized" ). The schematic data base is actually a network descrip- 
tion of the chip tha t  can be formatted and transferred from the workstation to  other com- 
puters for logic and circuit simulation. 

Logic Design Validation 
An important validation task is the checking of the logic schematics to  the micro- 

simulator. By automatically comparing the layout to  the schematics and the schematics to  
the validated microsimulator, the probability of producing highly functional chips on the 
first stepping is significantly increased. 

Logic validation is done by simulating the logic design with a switch-level MOS 
logic simulator [7]. This type of simulator does a good job of modelling the bi-directional 
operation of MOS transistors and yields more accurate results than more traditional logic 
simulators. 

The schematics are first grouped into Logic Simulation Units (LSU's). Each LSU 
consists of a group of related schematics that  operate more or less independently, have a 
well defined interface (usually an LSU is a sub-block in the hierarchy) and are easily accessi- 
ble from the external pins. A hand written test suite4 is then generated for each LSU and 
debugged on the microsimulator. The test suites are written so that as many devices in the 
LSU as possible are toggled during the test run, and that as many faults as possible in the 
LSU are sensitized and made observable a t  the external pins. This requirement means that  
the tests developed for logic validation can form the basis of the component characteriza- 
tion and sort tests. Minimal acceptable coverage for any test is tha t  every node in the 

'In a processor the tests are either macrocode or microcode that can be brought on chip during execution. 
For other more special purpose chips, the test suite can be a variety of stimulus response vectors. 
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circuit be toggled, but the tests are invariably expanded until the degree of coverage is 
higher. Intel is developing a set of tools that  help assess fault coverage for a variety of 
MOS faults. 

Once the test suite is debugged, the microsimulator is used to  generate both the 
stimulus to  the LSU and the expected results. This is possible because the microsimulator 
explicitly models all signals that cross the boundaries separating the schematics. These 
stimuli and expected result data are then reformatted and the test is run on the logic simu- 
lator. The logic simulator outputs and microsimulator outputs for the LSU being tested are 
then compared to  check tha t  they match exactly. The network to  be simulated is generated 
from the schematic data base stored in the workstation. 

Logic Design Evaluation 

The set of logic schematics for a chip are the first detailed representation of the 
individual devices of the design. The devices and their interconnections are final, however, 
some adjustment of device sizes is still required. While the microsimulator can be used for 
rough chip planning activities, the logic schematics are necessary for detailed chip planning 
to  proceed and for the first accurate drawn/** device estimates to  be obtained. 

Once the schematics for a major functional block are completed, a detailed block 
plan is derived. This block plan shows all the interconnect and preliminary positioning of 
the devices. If the technology permits and area constraints are severe, a coarse-grain block 
plan can be produced with an auto-place/route tool using the schematic data base as input, 
otherwise manual techniques must be used. When block plans have been completed for all 
the major functional blocks they are assembled into a detailed chip plan tha t  is also used to  
derive rough speed estimates on manually identified critical paths. 

CIRCUITS 

Circuit design is the process of altering device sizes of the unsized logic schematics 
to  insure the chip operates according to its electrical specifications. Although most of the 
major circuit synthesis is done during the logic design phase when creating the pre-designed 
cells, there is still much work to  be done in checking critical paths and adjusting device 
sizes. The result is a set of schematics that are correctly "sized" for the frequency and 
electrical requirements of the chip. 

Circuit Synthesis 

Circuit synthesis begins with the development of a standard set of cell designs for 
use during logic synthesis. This set consists of a large variety of standard logic gates (e.g. 
NAND, NOR, XOR) of various inputs and sizes, as well as special cells such as RAM, PLA 
(one and two phase), and various types of bus drivers and receivers. The design of these 
cells occurs early in the design cycle of the chip and helps establish coordination between 
the chip designers and the technology group responsible for the process with which the chip 
will be fabricated. By doing preliminary design, the circuit designers experience the various 
strengths and limitations of the process itself and can often influence the development of 

/** These are cells actually hand drawn by the mask designers. 

-10- 
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process design rules. 

The interaction with the process development group continues throughout the 
design cycle. This is important since a state-of-the-art chip will generally be using a new 
process for which there is limited manufacturing experience and the continual risk of small 
changes in design rules. The effect of these rule changes must be appraised and incor- 
porated into the chip design. 

Some of the design of the chip is done with standard cells. However, in any high- 
performance device there is always special logic (e.g. arithmetic function units) tha t  requires 
custom designed circuitry. This constitutes the next phase of circuit design, and occurs con- 
currently with the logic design effort. 

The last phase of the circuit synthesis process involves the fine-tuning of the entire 
design to  guarantee that  the slowest path on the chip can be executed in the target clock 
period of the chip under adverse temperature and voltage conditions. This phase is dis- 
cussed in the circuit validation/evaluation section. 

Circuit Description 

The logic and circuit descriptions are described by a single circuit level data base. 
This means tha t  it  is not necessary to  do a separate functional level validation of the cir- 
cuit design, since this is done as a part of the logic validation process. Exceptions to  this 
are analog circuits (e.g. a sense amplifier) which cannot be adequately checked during logic 
validation. 

Circuit Validation/Evaluation 

Evaluation of the circuit design level has three major goals: first, t o  guarantee that 
the delays in all circuit paths on the chip are within the specified clock time plus engineer- 
ing tolerance to  attain sufficient yield; second, to  guarantee tha t  there are no fatal circuit 
design problems; and third, to guarantee that the power dissipation of the chip is within the 
specified norms. 

When checking circuit speed, the primary circuit evaluation tool is the circuit simu- 
lator. SPICElike programs can be used to  do circuit simulations of small portions of the 
chip. Special purpose circuitry (e.g. a high-performance carry-save adder) is always circuit- 
simulated to  guarantee correct function and device sizing. This is easy to  do for highly visi- 
ble, special purpose logic, but is impractical for the entire chip. Some technique must be 
available for identifying non-obvious critical paths as candidates for further simulation. 
Consequently, tools are being developed that evaluate all paths in a design unit and then 
estimate the path delays based on device sizing, metal path lengths, and capacitive loading 

131. 
Normally, circuit path delay tools need only be applied to those paths that  cross 

one or more major boundaries, since the shorter paths (those within a single block) are gen- 
erally known by the unit designer. Once the critical paths have been identified these paths 
can often be fixed via logic changes, but eventually the designer must resort to  circuit simu- 
lation for the most stubborn paths. 

The second activity involves the identification of illegal circuit combinations, for 
example, a dynamic gate which is fed by a signal that  is also dynamic in the same phase. 
Many of these problems will be discovered during logic validation and circuit design walk- 
throughs; however, an automated means (e.g. a circuit design rule checker) is needed to  
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identify illegal combinations. Circuit debug tools such as this are now being developed a t  
Intel. 

The last task is that of power dissipation estimation. When most of the circuits for 
the large arrays (ROM, RAM, and PLAs), and bus and pin drivers have been designed, the 
designers can make a rough estimate of the power dissipation for the chip. 

MASK DESIGN 

Mask design involves the translation of the sized schematic set into the graphics 
data base used to  create the masks that  are used during fabrication of the chip, For most 
general purpose, high volume VLSI, this job is done by a group of expert mask designers. 

Mask Design Synthesis 

Mask design activity does not begin with the sized schematic set, but is an ongoing 
process starting early in the design cycle. Once a set of design rules is released for the pro- 
cess being used to  build the chip, preliminary work can be done on general purpose struc- 
tures such as RAM and register cells. These initial layouts are used both to  gain experience 
with the process and to  serve as a library of structures used to  build the chip. The layouts 
are also used to  derive data on parasitic capacitances so that  the operation of critical cir- 
cuit paths can be accurately characterized by the circuit simulator. 

As the sized schematic set becomes available, the emphasis shifts from cell layout to  
detailed chip planning and device entry. First, detailed layout plans for all the major func- 
tional blocks on the chip are combined into a composite plan of the entire chip. This plan 
serves as a reference during the mask design process. The sized schematics are then 
translated into their device equivalents in keeping with the design rules for the process. 
Techniques such as auto-place/route and standard cells can be used occasionally to speed 
up this effort, though their applicability is highly dependent on the required optimization (of 
circuit speed and/or silicon area) of the target area. Once all the devices are entered, the 
data base for the entire chip is assembled and automatically checked for both design rule 
violations and connectivity errors across major block boundaries, and the graphical data for 
the various layers is converted to the format used by the mask vendor to  produce the 
masks. 

Mask Design Description 
The mask design description is a geometrical graphics data base for each of the 

layers of the chip. This description is entered and manipulated on a graphics workstation 
with computation-intensive activities such as design rule checking and connectivity 
verification taking place in batch mode on mainframe computers networked to  these works- 
tations. Data entry is via a digitizing pad and keyboard with visual output being directed 
to  a high resolution color monitor. Large plotters are used to create a permanent record of 
the layout for checking purposes. 

Mask Design Validation 
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Mask design validation consists of design rule checking and connectivity verification. 
Both of these are handled by sophisticated computer programs that  can extract behavioral 
descriptions from the physical descriptions of the layout. Design rule checking (DRC) is 
done by breaking the mask design into the polygons that comprise the devices and compar- 
ing these polygons (and their interactions) with the design rules for the process. For exam- 
ple, a design rule may specify the minimum spacing between two metal lines. The DRC pro- 
gram first breaks the layout into polygons and then checks all instances of adjacent metal 
for compliance to  this rule. The polygon data base can also be used for the next validation 
step, connectivity verification. 

Since i t  is not cost-effective to  evaluate all aspects of the design a t  every level, the 
particular validation/verification effort a t  each level is oriented towards discovering the 
most common and most serious errors that  occur a t  that  level. At the mask design level, 
the most common error is connectivity mismatch; consequently, a t  Intel a complete set of 
automatic connectivity verification tools have been developed [8]. In connectivity 
verification, the polygons are assembled into MOS devices and a connectivity graph of the 
entire area being verified is generated. This new data base is checked for shorts and opens, 
and is eventually compared for equality to  a similar connectivity graph generated from the 
sized schematic data base (logic/circuits description). This is the next link in the validation 
process, checking whether the layout matches the sized schematics. 

Mask Design Evaluation 

Once the layout has been completed, the precise characteristics of the chip (such as 
die size and parasitic capacitances) are known. This information can be used to  verify the 
assumptions made during logic and circuit design. Several new tools are recently available 
tha t  automatically extract resistance and capacitance information from the mask design 
data base. A tool such as this closes one of the major gaps in the Large Chip Methodology, 
which is the identification of candidate circuit simulation paths. As these tools become 
operational, it  should be possible on the first stepping to  produce functional die tha t  also 
meet the electrical specifications and performance goals. 

RESULTS 

A Large Chip Methodology, similar to  that  described here, has been in use a t  Intel 
since 1980. Since then, most of the VLSI processor and peripheral chips following the 
methodology have shown high functionality in early steppings. For example, the 43204 (Bus 
Interface Unit for the iAPX-432 system with roughly 62,000 devices) and the 43205 (Memory 
Controller Unit with roughly 82,000 devices) were logically functional on their first iteration 
and 43205 samples were actually shipped from this first silicon. 

Although both of these chips were functional, they contained circuit design errors 
tha t  limited their usefulness. In the 43204, one of the internal phase clocks was driven to  a 
portion of the chip by a single diffusion. The chip passed the connectivity verification 
because diffusion provided the connection even though the intended metal line was missing. 
The problem was corrected with a single mask change and the second iteration was sam- 
pled. 

The 43205 had an  unintentional feedback path that  prevented one of its queues 
from operating properly a t  conditions other than 5 volts and 5.0 MHz. This problem was 
not detected by the logic simulator as it  was caused by the bi-directional nature of MOS 



Large Chip Methodology June 1986 

transistors, and the logic simulator in use a t  the time modelled MOS transistors as uni- 
directional switches. Intel has since adopted a switch-level logic simulator to  avoid similar 
problems. That  and several other circuit problems were fixed and the second iteration was 
fully functional over the entire operating range. 

EVOLUTION 

The methodology described here is adequate for today's technology, however, con- 
tinued evolution is necessary to  track technological change. There are many factors that  
influence design methodology evolution, these include: 

(1) Technology push. It is the consensus of most researchers in silicon technology that  
commercial CMOS can be reliably manufactured down to  between 0.25 and 0.1 
micron. This level should be reached by the end of the century and will lead to chips 
with roughly one billion devices 141. 

(2) Powerful, high-performance logic and circuit simulation hardware. These simulators 
will be constructed from special purpose hardware or from general-purpose, highly 
parallel machines such as Intel's iPSC (hypercube multiprocessor). 

(3) More intelligent CAD technology. CAD software will continue to evolve as work con- 
tinues in the areas of standard cell and procedural layout systems as well as silicon 
compilation. 

(4) Powerful, single user workstations based on next generation 32-bit microprocessor 
technology. Individual design stations are now available that  are more powerful than 
the midrange computers previously shared by entire groups of designers. 

Though it is difficult to assess the exact effect that  these and other factors will have 
on methodology evolution, it  is our feeling that the following changes are possible. 

(1) A major result will be highly integrated CAD environments, with unified data struc- 
tures and user interfaces. 

(2) Design environments will be two-tiered, with the individual workstations providing the 
most support for the designers, and large, powerful, batch-oriented central systems 
providing circuit and logic simulation support as well as global connectivity and design 
rule verification. Central computational and file services will be shared by many 
workstations [5,6]. 

(3) Though complete silicon compilation is not yet an option for the general-purpose, 
high-volume chips discussed here, intelligent CAD tools will automate ever larger por- 
tions of the design process. Likewise, as we pass the million devices per chip barrier, 
designs will, out of architectural necessity become even more regular, which in turn 
will lend itself to  automated lay-out. 

Logic validation will remain a problem in the near term, since it  is our belief that  
formal verification techniques will not exist in the next five to ten years tha t  can efficiently 
verify a chip with one million devices. However, we believe that  the designers can keep 
abreast of technological expansion by: 

(1) Improved test generation methodology. The application of software testing metho- 
dologies and interactive automatic test generation programs will improve our ability 
to  create effective test suites. 
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(2) High-performance logic simulation. Better test suites coupled with high performance 
hardware based logic simulation of a million or more devices [I] will improve 
confidence in the logic validation of very large chips. 

(3) Logic oriented microsimulation. Though it is unclear what the performance and capa- 
city trends of logic simulation engines will be over the next ten years, it  is likely that  
most of the validation activities will fall t o  these systems, thus freeing the microsimu- 
lator to  become a design aid. Currently, our microsimulators represent a high level of 
abstraction because of the performance requirements of RTL validation. However, if 
most of the validation load can be assumed by high performance RTL/logic simulation 
engines, then microsimulator performance is less important and the design abstraction 
capabilities of the simulator may become more desirable. 

(4) More modular design. Continued emphasis on decomposition and modular design will 
allow designers to  control design complexity in the next generation of devices. Modu- 
lar design will also be supported by a variety of CAD tools created to  ease this modu- 
larization process. 

One advantage to  a formal methodology is that it  provides a framework for evolu- 
tion so tha t  it  can adapt to  handle the next generation of chip development. The Large 
Chip Methodology provides just such a framework for CAD tool evolution. Figure 3 shows a 
two dimensional matrix, where each row corresponds to  a design level and each column to 
an activity, with a CAD tool or set of tools for each entry. Some entries have tools that  
totally automate that  activity for a given level (e.g. mask level connectivity verification), 
and some entries have no real tools (e.g. architecture synthesis). This matrix is invaluable 
in identifying weaknesses in a methodology and the needs for next generation CAD tools. 

SUMMARY 

The Large Chip Methodology is based on the notion that  VLSI design is an exercise 
in complexity management, and hence, such techniques as hierarchical decomposition, 
abstraction, and step-wise refinement must be used. In addition, it  is a general unifying 
force for the entire design process and serves as a framework within which CAD tools are 
developed. The existing methodology a t  Intel, on which our proposed methodology is based 
has achieved impressive results and is an invaluable part of most chip design and planning 
processes. As VLSI complexity increases, the methodology will continue to  adapt and con- 
form to  the available technologies in work stations, tools, fabrication processes, and 
automated synthesis techniques. 
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