
A Design Methodology for High-Performance,
General-Purpose VLSI

Dan Hamrne~strom

Roy ~ r a v i t d
Oregon Graduate Center

19600 N.W. von Neumann Dr.
Beaverton, Oregon 97006

Technical Report No. CSIE86-008
June 1986

Abstract

As the size and complexity of high-performance VLSI grows, i t is necessary to
enforce a structured methodology to allow the proper control and abstraction of the various
levels required when designing these devices. In this article we describe a Large Chip
Methodology (LCM) tha t guides the design of complex, high-performance VLSI and provides
a foundation and framework for CAD tool development.

- -

'1ntel Corporation, 2111 NE 25th Ave., Hillsboro, Oregon 97123.

Large Chip Methodology

INTRODUCTION

June 1986

The last decade has seen an explosive increase in the complexity of large scale
integrated circuits. This functionality has led to a set of components tha t offer a large
range of performance and function, and that are revolutionizing electronics and computa-
tion. Unfortunately, our ability to utilize silicon of this density is sorely tested by its com-
plexity. A typical 32-bit microprocessor may have 400,000 devices, logic tha t is described by
several hundred pages of schematics, and a mask design with over 2 million rectangles.
Furthermore, fully automatic synthesis cannot effectively handle these designs.

The question addressed by this article then is, "How does one reliably design highly
optimized VLSI?" Since VLSI design is fundamentally an exercise in complexity manage-
ment, a design methodology is necessary to control this complexity and to provide a struc-
ture for the organization of the design team, the CAD tools that the team uses to do its job,
and a framework for future design evolution.

This article describes a Large Chip Methodology similar to that developed by Intel
as part of the iAPX-432 component family development. Interested readers are referred to
a previous paper (21 describing Intel's Large Chip Methodology.

Our Large Chip Methodology borrows heavily from Software Engineering techniques
tha t have been developed to reliably build large, complex software systems and is based on
the concepts of abstraction, decomposition, and step-wise refinement:

(1) Decomposition is the process of splitting the design into independent modules whose
interfaces can be accurately and succinctly described. These modules can then be
hierarchically combined.

(2) Abstraction is the hiding of unnecessary detail. For example, during the decomposition
process, module interfaces are simplified to where only a small amount of function
(implementation) is visible externally (specification).

(3) Step-wise refinement of the abstracted modules allows the design details to be added in
a controlled and incremental manner. In other words, the design is begun as a set of
abstracted interfaces and iteratively refined until the final, complete design has been
obtained. This process continues hierarchically, until a t the last level of refinement,
the final design is complete.

The Large Chip Methodology, therefore, is a multi-level design hierarchy that
enforces the above techniques in the design process. It is also a mental discipline tha t
becomes a fundamental part of each engineer's thinking.

Another characteristic of the methodology is its continual evolution in response to
changes in design techniques, and CAD and fabrication technologies. By providing a frame-
work and focus for this change, the methodology helps integrate these improvements
smoothly into the design process.

OVERVIEW

The design effort for a complex VLSI component may be broken into several distinct
levels, each level being a step-wise refinement of the previous level. Design generally
proceeds in a top-down fashion with more detail being exposed a t each level. Figure 1

Large Chip Methodology June 1986

shows the design flow of the Large Chip Methodology

Implementation begins with a Product Specification that clearly states the perfor-
mance goals, cost goals, and essential features of the component. An architecture is then
defined tha t meets or exceeds those requirements. For a processor, this definition could
include the instruction set specification, register and memory models, and external pin
definitions. The architecture specification is then transformed into a block or register
transfer level implementation (or microarchitecture) of the state variables (e.g. registers)
and interconnecting data paths needed to implement the architecture. For a micropro-
grammed processor, part of this task would include the microinstruction set definition.
Logic and circuit design follow, resulting in a set of circuit schematics and a list of layout
requirements. Finally, mask generation involves the translation of those schematics into the
rectangles that actually comprise the various mask layers. These rectangles are placed
according to the design rules for the process and result in a data base that is used to create
the mask plates used in chip fabrication.

Each of these implementation levels can be broken into four specific activities:

(1) Synthesis is the design process itself. During synthesis, a designer begins with a
description of the design a t the next higher level and creates a description for the
current level. Synthesis is generally manual, although automated synthesis tools are
appearing.

(2) The description is a computer data base that is a result of the synthesis activity. An
important element of the Large Chip Methodology is that descriptions a t all levels
(except the mask level which is only indirectly behavioral) are executable. For exam-
ple, the description a t the logic design level is a schematic data base tha t can be
transformed into a logic simulation.

(3) Evaluation consists of checking the design against the goals set out by the Product
Specification. The major design constraints evaluated are die size, power consump-
tion, and performance. The evaluation is based on experience and on results obtained
using the executable description of that particular level. For example, a logic simula-
tor may be used to obtain cycle by cycle performance estimates.

(4) Validation, the last activity for a design level, is the key to producing functional die
on the first iteration of silicon. Validation checks that the synthesized design for the
level is functionally correct, or, more precisely, that it has retained the function of the
previous level. Although implementation proceeds in a generally topdown manner,
validation is bottom-up. The layout description is compared to the schematics, the
schematics are compared to the microarchitecture description, and the microarchitec-
ture description is compared to the architecture specification. Also, there are situa-
tions where several levels can be skipped during the validation process; for example, to
close the loop on the entire design process, the architecture description is compared to
the chip itself.

The remainder of the paper examines each activity for each level of the methodol-
ogy. We then examine its evolution, as well as the results of the methodology actually being
used a t Intel that served as a basis for that discussed here.

ARCHITECTURE

Large Chip Methodology June 1986

The first step of any chip design is the specification and description of the chip
architecture. Here we define architecture as the functional interface a s seen by the user of
the chip; this includes the instruction set and the bus interfaces.

Architecture Synthesis

The architecture level design begins with a Product Specification tha t includes a
description of the general attributes of the architecture such a s intended market segments,
and performance and compatibility requirements. The result of architecture synthesis is the
creation of a detailed Architectural Specification and a macrosimulator tha t is an execut-
able description of the architecture.

Architecture synthesis is a difficult process where the architects develop the func-
tional description of the part based on 1) the implementation technology tha t will be
manufacturable when the design process is complete, and 2) the intended applications for
the part being designed. Given a fixed set of resources (silicon area, device density, and
time to market), the architects must select function that , in the long term, will maximize
the applicability and market of the chip. Adding to the difficulty is the fact t ha t no matter
how experienced the design team, not all implementation constraints can be foreseen this
early in the design process. As a result, the architecture level is by no means fixed when
work begins at the next level down; thus requiring iterative improvement on the initially
specified description.

Architecture Description

The primary result of the synthesis process is the macrosimulator, a computer pro-
gram tha t simulates the instruction set of the target architecture. For processor2 chips, the
macrosimulator takes as input/output a physical memory image containing programs for
the target architecture and their data. The simulator then "executes" the programs on the
data, updating the memory image as necessary. Generally, only the architecture externally
visible s tate (such as general purpose registers) is simulated. Architecture invisible (inter-
nal) state is not simulated, thus making the macrosimulator easier t o write and debug, and
execute, while keeping i t independent of the actual implementation of the component.
Occasionally, i t is desirable t o simulate certain internal architecture s tate (e.g. caching) t o
allow more accurate performance estimation.

The macrosimulator's most important characteristics (not necessarily in order of
importance) are:

(1) i t displays the externally visible architecture state;

(2) i t is simple and easy to change - this is important because of the initial instability of
the architecture;

(3) i t has a simple user interface that allows single step, breakpoints, instruction tracing
(of the simulated processor), and observation of all architecturally specified state vari-
ables - these functions are essential, since the initial system software (e.g. compilers
and operating system kernel) will be written and debugged using the macrosimulator;

(4) i t is fast, so tha t software development on the architecture can begin early in the
design cycle;

%pecial purpose chips will sometimes require different types of input/output models, however, for the pur-
poses of this paper, we will assume that the chip being designed is some type of processor that fetches instructions

Large Chip Methodology June 1986

(5)
i t generates approximate performance data;

(6) i t is portable, since execution by different computer systems is desirable; and

(7) i t executes from a standard "physical" memory load image that allows memory images
to be interchangeable with those of the microsimulator and of the chip itself.

Of the above characteristics, the two most important are the performance estima-
tion features and the execution of the standard physical memory load image for the target
architecture. By being able t o estimate performance execution from the macrosimulator,
the macrosimulator becomes not only an important design tool for the microarchitecture
level synthesis, but also an invaluable tool for the evaluation activity a t the architecture
level.

The macrosimulator generates performance numbers via two techniques. First, by
using cycle tablee tha t contain estimated operation times, totals can be obtained for pro-
gram execution. And second, certain on-chip state (e.g. caching) can be simulated and those
times incorporated into the total. It should be noted tha t for internal s tate simulation to
be done easily, the appropriate mechanisms need t o be added to the macrosimulator from
the beginning. Furthermore, this state should be parameter driven a s much as possible t o
allow efficient exploration of the design space. The numbers generated by the macrosimula-
tor are only approximate. However, even though not all state is simulated, our experience
has shown tha t macrosimulator estimated execution times can be within 10% of actual exe-
cution times.

Another major use of the macrosimulator is a s a tool for validating the functional-
ity of this and lower level simulators. Here the ability t o execute a standard load image is
imperative. It allows software development t o begin early in the design process. Combined
with a set of representative benchmarks, the macrosimulator also becomes a valuable design
tool in assessing trade-offs during the microarchitecture synthesis process a t the next level.

Architecture Validation

By executing programs on the macrosimulator, the architecture is validated early in
the software development cycle, thus providing a check of whether the architecture func-
tions as expected by the software development group from their understanding of the Archi-
tecture Specification. Architecture validation also occurs during the microarchitecture vali-
dation process when the two levels are validated against each other.

The Architecture Specification contains algorithmic descriptions of the target
architecture's instructions. It is possible t o automatically use those descriptions t o generate
test programs and results tha t can be used to validate the macrosimulator, though i t is only
practical for simple instructions.

Architecture Evaluation
Chip size and power dissipation are estimated by the chip designers. These esti-

mates are, for the most part, based on the designers' experience. Sometimes i t is known
what large structures (e.g. register files, buffers, ROM, and caching) will exist on the chip
and the sizes of their constituent cells, thus providing additional information. Performance
estimation is also done with the macrosimulator.

and operates on data according t o the fetched instructions.

Large Chip Methodology June 1986

When architecture synthesis is complete, the designers have a precise, executable
description of the function to be implemented, a s well as a knowledge of what operations
are critical t o the performance of the chip. Furthermore, the macrosimulator can be used
to assess trade-offs in the microarchitecture design space a s microarchitecture synthesis
proceeds.

MICROARCHITECTURE

Microarchitecture synthesis can best be thought of a s the process of converting the
high level description of the architecture, into the hardware necessary t o implement it, but
at a Register Transfer Level (RTL) of description. As in architecture synthesis, i t too is a
difficult task requiring the expertise of engineers who have a n in depth understanding of
both computer architecture and hardware system design.

Microarchitecture Synthesis

Microarchitecture design begins with the Architecture Specification and results in a
block level description of the hardware needed to implement the architecture and an execut-
able model of t ha t hardware called a microsimulator.

T o translate an architecture into hardware, the engineers must first understand the
actions tha t must be performed for every operation supported by the architecture, and then
assign the hardware resources necessary to carry out those actions. For example, a
RegisterAdd instruction requires hardware registers t o contain the data, an ALU capable
of executing the add, and a means of moving the da ta between the registers and the ALU.
Once this resource list has been compiled, the engineers can turn their attention to defining
the da ta flow through the chip and the control structures t o support tha t flow. These may
then be combined into an RTL implementation of the architecture tha t describes the
hardware structures (e.g. registers, ALU's, busses, and state machines), the interconnect
between the structures, and the timing of the da ta transfers through the chip.

The RTL description can take many forms during the synthesis process. Initially,
the RTL is a block diagram and a Microarchitecture Specification. The RTL design is then
iteratively refined until an executable algorithmic description, the microsimulator, is
obtained. A microsimulator is a computer program that accurately simulates the internal
operation of the chip. It is more detailed than the macrosimulator but shares many of its
features. Ease of modification, a user interface with a broad range of commands, and the
ability t o execute load images are important features. Fast execution of the microsimula-
tor, however, is the most important and is paramount to the success of the entire methodol-
o w .

Microarchitecture Description

Although the primary output of microarchitectural level design is a working RTL
description (the microsimulator), there are several intermediate steps along the way. The
first of these is the creation of the top level block diagram of the chip on a n engineering
workstation. (See Figure 2 for an example of a simple block diagram.) This block diagram
is also the top level of a hierarchical description of the detailed logic of the chip and consti-
tutes the first step in the decomposition and abstraction process. This block diagram

Large Chip Methodology June 1986

partitions the functionality into several major blocks and defines the interface signals
between the blocks. For the sake of clarity, block-to-block signals are grouped together
instead of drawing each wire individually. Since the block diagram is resident on a worksta-
tion, i t can be automatically converted into the basic format (e.g. global variable declara-
tions, and procedure parameters for the basic block function calls) of the microsimulator.

In addition t o the block diagram, each functional block and interconnect signal is
also documented with a short description of its function and its expected timing. This infor-
mation is then reviewed by the project team and agreed on before the design of the func-
tional blocks begins. This entire process is analogous to the separation of external
specification from internal implementation of software engineering.

To create a microsimulator for the chip, the designers write models for each of the
functional blocks (FUB's) in a general-purpose programming language. Since no hardware
design language is involved, any of the programming constructs available in the language
may be used to create the model. The code for each FUB is not a detailed logic design (e.g.
each register is implemented a s a variable, rather than as multiple instances of a register
bit cell), but control signals, timing, internal signalling protocols, PLA, RAM, and ROM
logic are all modelled t o the bit level. Timing resolution is t o the sub-cycle or phaae level; a

two phase design (PHI and PH2) is executed a t least twice3 per cycle - once during P H I and
once during PH2. An example of the code needed to implement a register is shown below:

loadit := IF (phl=l) AND ((loadreg=l) OR (resetzl)) THEN '1 ELSE '0;
regl := IF loadit THEN databus ELSE regl;

In this example, the register named "regl" is loaded with the contents of the da ta bus
"databus" during phase 1 whenever either of the control signals "loadreg" or "reset" are
asserted.

The code for the various FUBs is then combined t o create a simulation environment.
The microsimulator environments currently in use a t Intel, for example, consist of an event
scheduler and a user interface tha t allows single stepping, breakpoints, and the ability t o
display, trace, o r modify any signal or variable in the model. The scheduler executes the
model at fixed time increments, or can optionally execute a model until i t "relaxes." In
"relaxation" mode, the scheduler executes the model until all of the interface signals have
stabilized, thus minimizing any order dependencies that result from simulating the parallel
operation of hardware on a serial machine.

One technique that is being used to simplify the logic synthesis process at the next
lower level is t o restrict the model writer t o a limited set of well-defined functions or "struc-
tures" at the microsimulator level. Instead of complex conditional expressions to simulate
control signals, a set of standardized structures (e.g. logic gates and register cells) are used.
Logic design then is simply a matter of examining the model code and drawing the
equivalent structure on a schematic. An example of this approach is given below. The
model is equivalent t o the previous example. Although the structured example presented
here appears harder t o follow than the conditional case, i t is more straightforward to
translate since the AND2, OR2 and LATCH structures have direct MOS equivalents.

It is often necessary t o execute two passes of each phase by using "start," (e.g. PHIST) and "end" (e.g.
PHIEND) signals. The use of two passes can solve most code ordering problems. The need for more than two
passes per phase can generally be traced t o serious critical paths where the designer is attempting t o accomplish
too much during a single phase.

Large Chip Methodology June 1986

Most general purpose, structured programming languages support some type of
macro processing and, a s a result, can directly support this structured approach. A macro
is written t o simulate each of the structures, and then instances of the macros in the micro-
simulator code are expanded by the compiler a t compile time to form the executable model.

The two styles presented above show two fundamentally different approaches to
writing a microsimulator. The first provides less detail of the logic design a t the microarchi-
tecture level, and for tha t reason can be produced and debugged more easily. Also, i t has
higher performance than the second approach. Simulator validation technology requires the
execution of large numbers of test suites. The faster the simulator the more effective the
validation. The second approach, on the other hand, greatly reduces the "distance"
between microsimulator description and logic description, thus reducing logic design time
and decreasing the risk on the logic design. However, the price is a slower simulator - a
more detailed simulator is roughly an order of magnitude slower. Both approaches are a
response t o two conflicting goals of the microsimulator: simulation speed and design abstrac-
tion. The resolution of this problem may come from the availability of high-speed logic
simulation engines, since these provide the necessary performance for simulation at the logic
level, thus making the performance goals of the microsimulator less important. Also, we
expect t ha t improved microsimulator source language and compilation techniques will elim-
inate some of the performance disadvantages of the macro-based approach.

It is at the microsimulator level tha t the hierarchy of the design becomes evident.
The models of the major functional blocks are connected by the framework produced from
the top level block diagram. Each of these major functional blocks, in turn, has several
sub-blocks, and these are connected by the frameworks produced from the second level block
diagrams, and so on. The result is a hierarchical simulator t ha t closely matches the
microarchitecture as well a s the physical implementation.

Microarchitecture Validation

The microsimulator is a key tool in the Large Chip Methodology. It not only serves
as the first implementation of the hardware, but also reflects the current s tate of the design
at any time. This is done by making and testing all changes to the design in the microsimu-
lator before updating the schematics and the layout. Because of its closeness t o the
microarchitecture, and its relatively fast execution speed (compared to full logic simulation),
the microsimulator is an ideal tool for validating the hardware implementation against the
architecture specification.

Microarchitecture validation consists of creating a rigorous test suite t ha t checks
tha t the implementation properly executes all the operations specified by the architecture.
Fortunately, many of the test suites generated to validate the macrosimulator may also be
executed here. On the other hand, validation of the microsimulator is more difficult than
validation of the macrosimulator because the microsimulator executes about 1000 times
slower. As a result, there are significantly fewer simulated cycles available.

There are no suitable formal techniques or algorithms tha t guarantee complete
functional equivalence between the macro and microsimulators. However, by being able t o
arbitrarily execute identical load images, the results of executing particular programs on
each simulator can be accurately and automatically checked by comparing memory images.
By the time the macrosimulator is complete, a large set of small and some large programs
are usually available for execution by the architecture. These programs are then executed

Large Chip Methodology June 1986

on the microsimulator and their results compared to identical macrosimulator runs. By
having a full time group of engineers devoted to "architecture validation," this process can
be quite effective. In any event, it is impossible to over-validate the simulator, and valida-
tion should continue through the entire hardware implementation phase.

Microarchitecture Evaluation

Since the microsimulator is the first detailed description of the chip, i t is also used
to obtain information about the physical realization of the design. As mentioned earlier, the
microsimulator accurately describes both the block-to-block interconnect and the major
data and control structures on the chip. This information can be used to complete a prel-
iminary chip plan and derive first pass power and area estimates. In addition, the timing
resolution provided by the microsimulator produces accurate information that verifies the
assumptions made in the Architecture Specification.

The microsimulator serves as both a working implementation of the chip that is
available months before the actual silicon, and as a functional reference to which the vari-
ous design descriptions (including the actual silicon) are compared. Because it simulates the
individual control signals and data paths and is accurate to the phase level, it can produce
the stimulus for the logic simulator and component test bed, and can even be used to pro-
duce the test vectors for a VLSI tester. For chips that have microcoded macroinstructions,
the microsimulator also becomes a microcode debug and validation vehicle.

LOGIC

Logic design involves, for all the functional blocks in the microarchitecture, the
conversion of the microsimulator models into gate level schematics.

Logic Design Synthesis
Ideally, the design process should proceed serially from RTL simulator to logic

schematics, but this is generally not the case. The level of detail required to create an
accurate microsimulator forces the engineer to consider logic implementation details as the
RTL model is being written. Thought must be given, for example, to the logical implemen-
tation of a register so that the proper control signals can be produced in the microsimula-
tor. Likewise, logic tha t can lead to potential critical circuit paths must be avoided. As a
result, an engineer writing a microsimulator model usually works with both preliminary
logic designs and the code used to simulate it in the microsimulator.

Even with a highly structured microsimulator, detailed logic synthesis is still
required, though the design space for this synthesis is more constrained. Several examples of
this synthesis are:

(1) Registers, busses, etc. are represented by a single variable in the microsimulator.
These must be expanded into multiple instances of the appropriate cells.

(2) Control signals, as a rule, are implemented as positive-asserted signals using AND-OR
structures in the microsimulator. These must be converted to their equivalent
NAND-NOR implementations.

Large Chip Methodology June 1986

(3) Phase traps are not always explicitly represented in the model. They must be inserted
into the schematics where necessary.

(4) Large structures such as PLA's and ROM's are modelled a t a functional level. The
appropriate buffers and drivers must be added to the schematics.

Once the models have been expanded, the design team reviews the results and looks
for common structures such as decoders, register cells, counters, etc. These common func-
tions are combined where possible and a set of "standard" gates and cells are selected and
the logic design completed for them. Sometimes minor changes to the design can eliminate
duplicate effort, resulting in a significant reduction in the total design effort. The logic
schematics are then entered on an engineering workstation. The hierarchy established by
the block diagrams and microsimulator is preserved and refined in the schematics, resulting
in a single logic schematic tree for the chip.

Logic Design Description
The description for the logic design level is a set of hierarchical, gate level schemat-

ics. In MOS the relationship between logic and circuit design requires that the logic data
base be represented as a circuit data base. This is possible with a set of design tools that
can hierarchically abstract many commonly occurring circuits such as logic gates. This
means tha t the circuit design is described by the same data base that is used by the logic
design. Although default device sizes may appear on the schematics, the final device sizes
are added during the circuit design phase of the process, so the logic designers do not con-
cern themselves with accurate sizing a t this stage of the design. (Hence, these schematics
are often referred to as "unsized"). The schematic data base is actually a network descrip-
tion of the chip tha t can be formatted and transferred from the workstation to other com-
puters for logic and circuit simulation.

Logic Design Validation
An important validation task is the checking of the logic schematics to the micro-

simulator. By automatically comparing the layout to the schematics and the schematics to
the validated microsimulator, the probability of producing highly functional chips on the
first stepping is significantly increased.

Logic validation is done by simulating the logic design with a switch-level MOS
logic simulator [7]. This type of simulator does a good job of modelling the bi-directional
operation of MOS transistors and yields more accurate results than more traditional logic
simulators.

The schematics are first grouped into Logic Simulation Units (LSU's). Each LSU
consists of a group of related schematics that operate more or less independently, have a
well defined interface (usually an LSU is a sub-block in the hierarchy) and are easily accessi-
ble from the external pins. A hand written test suite4 is then generated for each LSU and
debugged on the microsimulator. The test suites are written so that as many devices in the
LSU as possible are toggled during the test run, and that as many faults as possible in the
LSU are sensitized and made observable a t the external pins. This requirement means that
the tests developed for logic validation can form the basis of the component characteriza-
tion and sort tests. Minimal acceptable coverage for any test is tha t every node in the

'In a processor the tests are either macrocode or microcode that can be brought on chip during execution.
For other more special purpose chips, the test suite can be a variety of stimulus response vectors.

Large Chip Methodology June 1986

circuit be toggled, but the tests are invariably expanded until the degree of coverage is
higher. Intel is developing a set of tools that help assess fault coverage for a variety of
MOS faults.

Once the test suite is debugged, the microsimulator is used to generate both the
stimulus to the LSU and the expected results. This is possible because the microsimulator
explicitly models all signals that cross the boundaries separating the schematics. These
stimuli and expected result data are then reformatted and the test is run on the logic simu-
lator. The logic simulator outputs and microsimulator outputs for the LSU being tested are
then compared to check tha t they match exactly. The network to be simulated is generated
from the schematic data base stored in the workstation.

Logic Design Evaluation

The set of logic schematics for a chip are the first detailed representation of the
individual devices of the design. The devices and their interconnections are final, however,
some adjustment of device sizes is still required. While the microsimulator can be used for
rough chip planning activities, the logic schematics are necessary for detailed chip planning
to proceed and for the first accurate drawn/** device estimates to be obtained.

Once the schematics for a major functional block are completed, a detailed block
plan is derived. This block plan shows all the interconnect and preliminary positioning of
the devices. If the technology permits and area constraints are severe, a coarse-grain block
plan can be produced with an auto-place/route tool using the schematic data base as input,
otherwise manual techniques must be used. When block plans have been completed for all
the major functional blocks they are assembled into a detailed chip plan tha t is also used to
derive rough speed estimates on manually identified critical paths.

CIRCUITS

Circuit design is the process of altering device sizes of the unsized logic schematics
to insure the chip operates according to its electrical specifications. Although most of the
major circuit synthesis is done during the logic design phase when creating the pre-designed
cells, there is still much work to be done in checking critical paths and adjusting device
sizes. The result is a set of schematics that are correctly "sized" for the frequency and
electrical requirements of the chip.

Circuit Synthesis

Circuit synthesis begins with the development of a standard set of cell designs for
use during logic synthesis. This set consists of a large variety of standard logic gates (e.g.
NAND, NOR, XOR) of various inputs and sizes, as well as special cells such as RAM, PLA
(one and two phase), and various types of bus drivers and receivers. The design of these
cells occurs early in the design cycle of the chip and helps establish coordination between
the chip designers and the technology group responsible for the process with which the chip
will be fabricated. By doing preliminary design, the circuit designers experience the various
strengths and limitations of the process itself and can often influence the development of

/** These are cells actually hand drawn by the mask designers.

-10-

Large Chip Methodology June 1986

process design rules.

The interaction with the process development group continues throughout the
design cycle. This is important since a state-of-the-art chip will generally be using a new
process for which there is limited manufacturing experience and the continual risk of small
changes in design rules. The effect of these rule changes must be appraised and incor-
porated into the chip design.

Some of the design of the chip is done with standard cells. However, in any high-
performance device there is always special logic (e.g. arithmetic function units) tha t requires
custom designed circuitry. This constitutes the next phase of circuit design, and occurs con-
currently with the logic design effort.

The last phase of the circuit synthesis process involves the fine-tuning of the entire
design to guarantee that the slowest path on the chip can be executed in the target clock
period of the chip under adverse temperature and voltage conditions. This phase is dis-
cussed in the circuit validation/evaluation section.

Circuit Description

The logic and circuit descriptions are described by a single circuit level data base.
This means tha t it is not necessary to do a separate functional level validation of the cir-
cuit design, since this is done as a part of the logic validation process. Exceptions to this
are analog circuits (e.g. a sense amplifier) which cannot be adequately checked during logic
validation.

Circuit Validation/Evaluation

Evaluation of the circuit design level has three major goals: first, t o guarantee that
the delays in all circuit paths on the chip are within the specified clock time plus engineer-
ing tolerance to attain sufficient yield; second, to guarantee tha t there are no fatal circuit
design problems; and third, to guarantee that the power dissipation of the chip is within the
specified norms.

When checking circuit speed, the primary circuit evaluation tool is the circuit simu-
lator. SPICElike programs can be used to do circuit simulations of small portions of the
chip. Special purpose circuitry (e.g. a high-performance carry-save adder) is always circuit-
simulated to guarantee correct function and device sizing. This is easy to do for highly visi-
ble, special purpose logic, but is impractical for the entire chip. Some technique must be
available for identifying non-obvious critical paths as candidates for further simulation.
Consequently, tools are being developed that evaluate all paths in a design unit and then
estimate the path delays based on device sizing, metal path lengths, and capacitive loading

131.
Normally, circuit path delay tools need only be applied to those paths that cross

one or more major boundaries, since the shorter paths (those within a single block) are gen-
erally known by the unit designer. Once the critical paths have been identified these paths
can often be fixed via logic changes, but eventually the designer must resort to circuit simu-
lation for the most stubborn paths.

The second activity involves the identification of illegal circuit combinations, for
example, a dynamic gate which is fed by a signal that is also dynamic in the same phase.
Many of these problems will be discovered during logic validation and circuit design walk-
throughs; however, an automated means (e.g. a circuit design rule checker) is needed to

Large Chip Methodology June 1986

identify illegal combinations. Circuit debug tools such as this are now being developed a t
Intel.

The last task is that of power dissipation estimation. When most of the circuits for
the large arrays (ROM, RAM, and PLAs), and bus and pin drivers have been designed, the
designers can make a rough estimate of the power dissipation for the chip.

MASK DESIGN

Mask design involves the translation of the sized schematic set into the graphics
data base used to create the masks that are used during fabrication of the chip, For most
general purpose, high volume VLSI, this job is done by a group of expert mask designers.

Mask Design Synthesis

Mask design activity does not begin with the sized schematic set, but is an ongoing
process starting early in the design cycle. Once a set of design rules is released for the pro-
cess being used to build the chip, preliminary work can be done on general purpose struc-
tures such as RAM and register cells. These initial layouts are used both to gain experience
with the process and to serve as a library of structures used to build the chip. The layouts
are also used to derive data on parasitic capacitances so that the operation of critical cir-
cuit paths can be accurately characterized by the circuit simulator.

As the sized schematic set becomes available, the emphasis shifts from cell layout to
detailed chip planning and device entry. First, detailed layout plans for all the major func-
tional blocks on the chip are combined into a composite plan of the entire chip. This plan
serves as a reference during the mask design process. The sized schematics are then
translated into their device equivalents in keeping with the design rules for the process.
Techniques such as auto-place/route and standard cells can be used occasionally to speed
up this effort, though their applicability is highly dependent on the required optimization (of
circuit speed and/or silicon area) of the target area. Once all the devices are entered, the
data base for the entire chip is assembled and automatically checked for both design rule
violations and connectivity errors across major block boundaries, and the graphical data for
the various layers is converted to the format used by the mask vendor to produce the
masks.

Mask Design Description
The mask design description is a geometrical graphics data base for each of the

layers of the chip. This description is entered and manipulated on a graphics workstation
with computation-intensive activities such as design rule checking and connectivity
verification taking place in batch mode on mainframe computers networked to these works-
tations. Data entry is via a digitizing pad and keyboard with visual output being directed
to a high resolution color monitor. Large plotters are used to create a permanent record of
the layout for checking purposes.

Mask Design Validation

Large Chip Methodology June 1986

Mask design validation consists of design rule checking and connectivity verification.
Both of these are handled by sophisticated computer programs that can extract behavioral
descriptions from the physical descriptions of the layout. Design rule checking (DRC) is
done by breaking the mask design into the polygons that comprise the devices and compar-
ing these polygons (and their interactions) with the design rules for the process. For exam-
ple, a design rule may specify the minimum spacing between two metal lines. The DRC pro-
gram first breaks the layout into polygons and then checks all instances of adjacent metal
for compliance to this rule. The polygon data base can also be used for the next validation
step, connectivity verification.

Since i t is not cost-effective to evaluate all aspects of the design a t every level, the
particular validation/verification effort a t each level is oriented towards discovering the
most common and most serious errors that occur a t that level. At the mask design level,
the most common error is connectivity mismatch; consequently, a t Intel a complete set of
automatic connectivity verification tools have been developed [8]. In connectivity
verification, the polygons are assembled into MOS devices and a connectivity graph of the
entire area being verified is generated. This new data base is checked for shorts and opens,
and is eventually compared for equality to a similar connectivity graph generated from the
sized schematic data base (logic/circuits description). This is the next link in the validation
process, checking whether the layout matches the sized schematics.

Mask Design Evaluation

Once the layout has been completed, the precise characteristics of the chip (such as
die size and parasitic capacitances) are known. This information can be used to verify the
assumptions made during logic and circuit design. Several new tools are recently available
tha t automatically extract resistance and capacitance information from the mask design
data base. A tool such as this closes one of the major gaps in the Large Chip Methodology,
which is the identification of candidate circuit simulation paths. As these tools become
operational, it should be possible on the first stepping to produce functional die tha t also
meet the electrical specifications and performance goals.

RESULTS

A Large Chip Methodology, similar to that described here, has been in use a t Intel
since 1980. Since then, most of the VLSI processor and peripheral chips following the
methodology have shown high functionality in early steppings. For example, the 43204 (Bus
Interface Unit for the iAPX-432 system with roughly 62,000 devices) and the 43205 (Memory
Controller Unit with roughly 82,000 devices) were logically functional on their first iteration
and 43205 samples were actually shipped from this first silicon.

Although both of these chips were functional, they contained circuit design errors
tha t limited their usefulness. In the 43204, one of the internal phase clocks was driven to a
portion of the chip by a single diffusion. The chip passed the connectivity verification
because diffusion provided the connection even though the intended metal line was missing.
The problem was corrected with a single mask change and the second iteration was sam-
pled.

The 43205 had an unintentional feedback path that prevented one of its queues
from operating properly a t conditions other than 5 volts and 5.0 MHz. This problem was
not detected by the logic simulator as it was caused by the bi-directional nature of MOS

Large Chip Methodology June 1986

transistors, and the logic simulator in use a t the time modelled MOS transistors as uni-
directional switches. Intel has since adopted a switch-level logic simulator to avoid similar
problems. That and several other circuit problems were fixed and the second iteration was
fully functional over the entire operating range.

EVOLUTION

The methodology described here is adequate for today's technology, however, con-
tinued evolution is necessary to track technological change. There are many factors that
influence design methodology evolution, these include:

(1) Technology push. It is the consensus of most researchers in silicon technology that
commercial CMOS can be reliably manufactured down to between 0.25 and 0.1
micron. This level should be reached by the end of the century and will lead to chips
with roughly one billion devices 141.

(2) Powerful, high-performance logic and circuit simulation hardware. These simulators
will be constructed from special purpose hardware or from general-purpose, highly
parallel machines such as Intel's iPSC (hypercube multiprocessor).

(3) More intelligent CAD technology. CAD software will continue to evolve as work con-
tinues in the areas of standard cell and procedural layout systems as well as silicon
compilation.

(4) Powerful, single user workstations based on next generation 32-bit microprocessor
technology. Individual design stations are now available that are more powerful than
the midrange computers previously shared by entire groups of designers.

Though it is difficult to assess the exact effect that these and other factors will have
on methodology evolution, it is our feeling that the following changes are possible.

(1) A major result will be highly integrated CAD environments, with unified data struc-
tures and user interfaces.

(2) Design environments will be two-tiered, with the individual workstations providing the
most support for the designers, and large, powerful, batch-oriented central systems
providing circuit and logic simulation support as well as global connectivity and design
rule verification. Central computational and file services will be shared by many
workstations [5,6].

(3) Though complete silicon compilation is not yet an option for the general-purpose,
high-volume chips discussed here, intelligent CAD tools will automate ever larger por-
tions of the design process. Likewise, as we pass the million devices per chip barrier,
designs will, out of architectural necessity become even more regular, which in turn
will lend itself to automated lay-out.

Logic validation will remain a problem in the near term, since it is our belief that
formal verification techniques will not exist in the next five to ten years tha t can efficiently
verify a chip with one million devices. However, we believe that the designers can keep
abreast of technological expansion by:

(1) Improved test generation methodology. The application of software testing metho-
dologies and interactive automatic test generation programs will improve our ability
to create effective test suites.

Large Chip Methodology June 1986

(2) High-performance logic simulation. Better test suites coupled with high performance
hardware based logic simulation of a million or more devices [I] will improve
confidence in the logic validation of very large chips.

(3) Logic oriented microsimulation. Though it is unclear what the performance and capa-
city trends of logic simulation engines will be over the next ten years, it is likely that
most of the validation activities will fall t o these systems, thus freeing the microsimu-
lator to become a design aid. Currently, our microsimulators represent a high level of
abstraction because of the performance requirements of RTL validation. However, if
most of the validation load can be assumed by high performance RTL/logic simulation
engines, then microsimulator performance is less important and the design abstraction
capabilities of the simulator may become more desirable.

(4) More modular design. Continued emphasis on decomposition and modular design will
allow designers to control design complexity in the next generation of devices. Modu-
lar design will also be supported by a variety of CAD tools created to ease this modu-
larization process.

One advantage to a formal methodology is that it provides a framework for evolu-
tion so tha t it can adapt to handle the next generation of chip development. The Large
Chip Methodology provides just such a framework for CAD tool evolution. Figure 3 shows a
two dimensional matrix, where each row corresponds to a design level and each column to
an activity, with a CAD tool or set of tools for each entry. Some entries have tools that
totally automate that activity for a given level (e.g. mask level connectivity verification),
and some entries have no real tools (e.g. architecture synthesis). This matrix is invaluable
in identifying weaknesses in a methodology and the needs for next generation CAD tools.

SUMMARY

The Large Chip Methodology is based on the notion that VLSI design is an exercise
in complexity management, and hence, such techniques as hierarchical decomposition,
abstraction, and step-wise refinement must be used. In addition, it is a general unifying
force for the entire design process and serves as a framework within which CAD tools are
developed. The existing methodology a t Intel, on which our proposed methodology is based
has achieved impressive results and is an invaluable part of most chip design and planning
processes. As VLSI complexity increases, the methodology will continue to adapt and con-
form to the available technologies in work stations, tools, fabrication processes, and
automated synthesis techniques.

REFERENCES

[I] T. Blank, "A Survey of Hardware Accelerators used in Computer-Aided Design,"
VLSI Design, August 1984, pp. 21-39.

PI W. W. Lattin, J. A. Bayliss, D. L. Budde, J. R. Rattner and W. S. Richardson, "A
Methodology for VLSI Chip Design," Lambda, Second Quarter 1981, pp. 34-44.

Large Chip Methodology June 1986

[31 J. Mar and Y. P. Wei, "Performance Verification of Circuits," Proc. .?let Deeign
Automation Conjerence, June 1984, pp. 479-483.

141 J. D. Meindl, "Limits on ULSI," Proc. VLSI 85, Tokyo, JAPAN, August 1985.

[5] S. Nachtsheim, "The Intel Design Automation System," Proc. &let Design
Automation Conjerence, June 1984, pp. 454465.

Is] K. Sherhart, M. Vershel and J. Owen, "The Engineering Design Environment,"
Proc. 21at Design Automation Conference, June 1984, pp. 466-472.

[71 K. Tham, R. Willoner and D. Wimp, "Functional Design Verification by Multi-
Level Simulation," Proc. 21st Design Automation Conference, June 1984, pp. 473-
478.

[81 T. Wagner, "Hierarchical Layout Verification," Proc. 21st Design Automation
Conference, June 1984, pp. 484-489.

(Fig. 1)

(F i g . 2)

I
R ~ h i tec tuw Uacmsiwlato

Hicllosimrla tor

I
Hicmmhi tecture Hicrosinulato

logic tirmlator
Logic

. Logic Design silrulator

C i ~ u i t
~icmsirmlatar Cillcuit Design sinulator
Test U e c t a ~ Path dlay Anal. .

eus,DRC '
Layout DRC

L CVI;

i W ~ K

(F i g . 3)

