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Abstract 

The efficient realization using current technology of Very Large Connection Net- 
works (VLCN) with more than a billion connections requires tha t  these networks have a 
high degree of communication locality. A network exhibits local i ty  of  communica t ion ,  if 
most of its processing elements connect to  other physically adjacent processing elements in 
any reasonable mapping of the elements onto a planar surface. Real neural networks exhi- 
bit significant locality, yet most connectionist/neural network models have little. In this 
report, a network model is developed based on communication theory. This model is then 
used to  analyze the connectivity requirements of simple association. Several techniques 
based on communication theory are presented tha t  improve the robustness of the network in 
the face of sparse, local interconnect structures. Also discussed are some potential problems 
when information is distributed too widely. 

' This work was supported in part by the Semiconductor Research Corporation contract no. 86-10-097, and 
jointly by the Office of Naval Research and Air Force Office of Scientific Research contract no. NO0014 87 K 0259. 
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1. INTRODUCTION 

February 19, 1988 

Neural networks models have been proposed as a new paradigm of cognitive pro- 

cessing FeB82, Ham86, HMT86, RuM861. These networks exhibit massive parallelism and 

fault-tolerance and for these reasons offer the possibility of significant increases in 

cost/performance for systems that  do speech and vision analysis a t  the person-machine 

interface. They operate by generating multiple, parallel hypotheses of their input and then 

relaxing to  a single, best-match hypothesis (interpretation of input). This mode of operation 

allows biological neural networks to  exhibit cognitive processing times of hundreds of mil- 

liseconds from unreliable components (neurons) whose switching times are in the tens of mil- 

liseconds. 

An early example of this work was the Perceptron. It was shown that  a single level 

(row) of Perceptrons was limited in the type of pattern recognition tasks it  could perform 

[MiP69] (which is not surprising, since one cannot compute much with one level of computer 

logic either), but efficient multi-level learning algorithms for perceptron-like networks were 

not obvious a t  the time. 

Recently, a variety of techniques have been proposed by several researchers to  do 

multi-level learning. The most prominent have been Barto's statistical learning [Bar85], the 

Boltzmann machine [HSA84], Fukushima's multi-level pattern recognition networks [FM183], 

Grossberg's adaptive networks [CaG86, CoG83, Gro80, Gro821, and the programming of 

multi-level networks by the back propagation of error by Rumelhart et al. [RHW85]. 

Independently, David Parker produced his own version of back-propagation [Par85]. 

Kohonen has studied extensively both linear and non-linear associative networks, as well as 

self-organizing versions of these networks [Koh84]. In addition, there has been research into 

more abstracted networks such as those of Feldman and his group a t  the University of 

Rochester, the most notable of that work are the studies of connectionist vision and 
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evidential reasoning [ShF85]. A summary of connectionist and parallel distributed process- 

ing research is presented by Rumelhart and McClelland [RuM86]. Another important per- 

spective on learning algorithms is coming from the neurobiological community as they 

develop more abstracted, "functional" models of biological structures. An excellent example 

of this work is tha t  of Gary Lynch, Rick Granger, and their colleagues a t  the University of 

California a t  Irvine Lyn861. 

Connectionist/neural network researchers are learning to  program networks that 

exhibit a broad range of cognitive behavior. Unfortunately, existing computer systems are 

limited in their ability to  emulate such networks efficiently. Consequently, the Cognitive 

Architecture Project (CAP) a t  the Oregon Graduate Center is studying the implementation 

of special purpose VLSI architectures for the emulation of a very large neural networks. 

The goal of CAP is to  build an ULSI (Ultra-Large-Scale-Integrated2) neurocomputer. 

Such a system will be able to  handle networks with thousands of nodes and millions of con- 

nections a t  rates faster than real time (biologically equivalent processing time). The 

manufacturing costs for such a system will be a few thousand dollars. It is our strong belief 

that  such systems are necessary if neural networks are to be used in everyday applications. 

The cost of emulating a network, whether with special purpose, highly parallel 

silicon-based architectures, or with traditional parallel architectures, is directly proportional 

to the number of connections in the network. This number tends to  increase geometrically 

as the number of nodes increases. Even with large, massively parallel architectures such as 

ours, connections take time and silicon area (which is directly proportional to  cost). Many 

existing neural network models scale up poorly, precluding large implementations. For 

Here we use ULSI t o  mean a ultra large silicon die size. Traditional microprocessor technology allows a 
die size of up t o  one square centimeter, beyond which, yield (the number of good dice per wafer) drops drastically 
due t o  inherent silicon fabrication faults, making a larger die size uneconomical. Due t o  the fault tolerance of 
neural networks, a significantly larger die should be cost-effective and may eventually encompass an entire wafer. 
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example, the number of connections in a Hopfield [Hop821 associative network scales up as 

the square of the number of network nodes. In its current formulation, this exponential 

increase in connections also holds for the Grossberg/Carpenter [CaG86] adaptive resonance 

network (ART). Most network models consist of either near total recursive connectivity (as 

with Hopfield) or a layered, feedforward network that  has total connectivity of all nodes in 

a layer to  all nodes in the next layer. As we scale networks to  the large sizes required for 

real applications, these connectivity requirements significantly impact the implementation 

efficiency of the networks. 

A second area of concern for self-programming networks is the scalability of learn- 

ing time. A larger network has an even larger number of weights to  program and a larger 

solution space to  search. Unless some mechanism is added for controlling the solution space, 

the learning time increases exponentially too. For example, Barto [personal communication] 

believes that  the learning time for stochastic learning automata [BSASS], as currently for- 

mulated, increases geometrically with the size of the network. 

An example of this scalability problem can be seen by studying the back- 

propagation learning technique. Back-propagation networks generally are connected in a 

layered, feed-forward network, where each node in a level is connected (synapses with) every 

node in the succeeding level. When implementing back-propagation in VLSI, these feed- 

forward connections can be done efficiently using a broadcast technique (each node in the 

level broadcasts its values to all the nodes in the next level). However, when back pro- 

pagating the error, point-to-point communication is required, since the error term for a par- 

ticular node is the product of the forward weight and the error term of the forward node, 

which is unique for each connection [BHM]. Forward communication of signal can be done 

in O(n) operations (where n is the number of nodes), but the backward communication of 

error in the worst case requires O(n2) operations! 
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There has been little study of these scaling issues and their impact on physical 

implementation. There was only a single paper a t  the 1987 International Conference on 

Neural Networks that  dealt with connectivity issues: Somani and Penla [Sop871 addressed 

the performance of Hopfield networks with sparse, random connectivity. At the most recent 

AAAI conference Ballard discussed a modular back-propagation technique [Ba187]. 

We have chosen standard CMOS over more exotic technologies for implementing our 

architectures, because it  has functional density, simplicity, reliability, and low cost, advan- 

tages that  when taken together are unmatched by any other technology. In addition, 

CMOS is a mature, available technology that  has benefited from the intense market pres- 

sures for memories and microprocessors. 

CMOS VLSI has many characteristics tha t  match well the characteristics of 

Connectionist/Neural Networks: 

a )  VLSI and neural networks are both asynchronous; 

b) VLSI and neural networks are both massively parallel; and 

c) VLSI is faulty, but neural networks are fault-tolerant. 

But a major problem arises because: 

d) VLSI is planar with 2 (or 3) levels of metal interconnect (we only consider metal here, 

since for the most part we are interested in long connections). These metal wires must 

observe certain inter-wire distance constraints that  limit the total number of direct 

metal connections that  can be made, thus creating an  interconnection structure with a 

few high-bandwidth connections. Neural networks, on the other hand, have a large 

number of low-bandwidth connections, which is particularly true in associative pro- 

cessing where only a fraction of all connections are used a t  any one time. So even 

though neurons themselves are large compared to transistors, their axon and dendritic 

processes are much smaller than current or projected metal lines, and these processes 
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can be packed tightly in a three dimensional space. Taken together these characteris- 

tics constitute a serious mismatch between silicon and biological neural systems. 

1.1. How to Solve the Connectivity Problem 

The first decision that  must be made when emulating large neural networks in VLSI 

is to  determine the "virtualization granularity," that is, the degree of virtualization of net- 

work nodes and connections. A node or connection is said to  virtual if it  is multiplexed by 

physical hardware. In the direct or non-virtual approach, there is no sharing of hardware 

by multiple connections or nodes. The degree of sharing is the virtualization granularity. 

The neural network to  be emulated can be visualized as a large, multidimensional, 

directed graph, called the c-graph. The physical network that  emulates the neural network 

can be visualized as a group of processing elements that  signal each other through physical 

interconnection structures. This network also forms a graph structure called the p-graph. 

Because of the fine granularity of the c-graph, the processors (the nodes in the p-graph) may 

have a range of size or physical granularity. The c-graph is generally larger than the p- 

graph, and when the c-graph is mapped to  the p-graph, a subset of the c-graph is emulated 

by each physical processor (a node in the p-graph). 

At one end of the spectrum, we have one processor tha t  emulates the entire c-graph, 

one connection a t  a time. Near, but not a t  this end of the spectrum are various multipro- 

cessor implementations, such as the Intel iPSC hypercube system, and TRW ADAPT Mark 

III. At the other end of the spectrum are the "direct" implementations, where each physical 

processor emulates one node in the c-graph and each metal line is an edge in the c-graph. 

The neurochips built a t  Bell Labs and Carver Mead's silicon retina are examples of direct 

implementation. And of course one can imagine a large number of intermediate implemen- 

tations between these two extremes. 
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One of our goals is to  find the optimal point on this spectrum. The location of this 

point is highly application and technology dependent and is a result of the cornrnunication 

locality of the c-graph. Communication locality will be defined more formally below, but 

informally one can imagine a "virtual" communication network tha t  consists of c-graph 

nodes called connection nodes or CNs. This network is mapped onto a physical network 

consisting of physical processors or PNs (physical processor nodes). In a spatially local con- 

nection network, most connections from one CN to  another need only traverse a relatively 

small physical distance for a "good" mapping of the connection network onto a lower 

dimensional physical network of PNs. That  is, most of a CN's connections are to  CNs 

resident on the same PN, or to  PNs that  are local neighbors to  its PN, with only a few con- 

nections to  more distant CNs. 

The spatial aspect of communication locality allows the construction of efficient 

busing structures. The temporal aspect allows the efficient multiplexing (or sharing) of 

those structures by a number of "virtual" connections. We have developed a variety of 

techniques for efficiently multiplexing scarce VLSI communication resources [BaH86] that  

take advantage of this locality. An important characteristic for efficient implementation is 

tha t  the connection or virtual network exhibit spatial and temporal locality. Such locality 

is essential if the network is to  scale to  very large numbers of elements. 

1.2. Biological Networks 

There is much evidence that  real neural networks also exhibit locality [Mou77]. 

Because of metabolic and genetic costs, it is likely that  nature tends to  use only as many 

connections as necessary for required functionality and reliability. There are a number of 

possible reasons for sparse connectivity3: 
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(1) Redundancy of input data. Sensory input data (in particular auditory and visual) is 

both spatially and temporally redundant. Since neural systems reflect the environ- 

ment in which they operate, we expect that  significant connectivity reduction results 

from the influence of such mutual information wcK85]. 

(2) Selective attention and limited short-term memory. Biological systems can only 

consciously attend to a few simultaneous stimuli, thus limiting the degree of eimul- 

taneous interconnectivity. 

(3) Abstraction. Nervous systems have the ability (which is more pronounced in higher 

order mammals) to  abstract or "chunk" groups of concepts into a new concept; this 

convergence of information performs an  encoding tha t  reduces inter-module 

bandwidth requirements [Bar85, Wic791. 

(4) Functional Decomposition. Despite the regularity and distribution of processing, 

research has shown distinct functional areas within all nervous systems. The best 

example of this has been in the decomposition of the visual and auditory processing 

areas in primates [RoD85]. 

( 5 )  Limited Degrees of Freedom. Most motor control systems have some restrictions to  

arbitrary degrees of freedom thus localizing control and feedback information by res- 

tricting the number of possible output combinations [ArS72]. 

An excellent example of constrained connectivity is in the visual subsystem in the 

monkey, from the retina through the lateral geniculate nucleus to  the striate cortex, and 

then through the visual areas V1, V2 and V4 [DSM85]. These subunits are structured as 

levels of units, where each level consists of many parallel interacting cells. It  appears 

(though it has not been proven) that each cell in a level has a limited receptive field of the 

cells from the previous level. These receptive fields appear to  be fairly small in the lower 

levels of the network, slowly becoming more encompassing (directly and indirectly) as one 
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ascends the hierarchy. The presumed computational process is one of parallel hierarchical 

feature extraction, until a t  the upper level a few large, complex, and position independent 

structures are recognized. Several neural network models, such as those of Fukushima 

[FMI83,Fuk84], exhibit this type of structure. Linsker [Lin86a,Lin86b,Lin86c] has shown 

that  given a Hebbian-like learning rule, multiple hierarchical layers of neurons with Gaus- 

sian distributed receptive fields will organize themselves into on-center, off-surround con- 

structs in the lower levels and ocular dominance columns in the upper layers, similar to  that  

of the visual system. 

In this paper, a technique is presented for analyzing the effects of locality on the 

process of association. These networks use a more complex CN similar to  the higher-order 

learning units of Maxwell et al. wGL86a,MGL86b]. 

2. NETWORK MODEL 

This section presents a model for and analysis of a single layer (row) of CNs (Con- 

nection Nodes), which may be a component of a much larger system. A technique is 

presented for analyzing the performance of a CN in a level versus its input connectivity. 

For the networks under consideration, this per level trade-off is independent of the general 

functionality of the network. The general approach of our research is to  first develop a set 

of analytic tools in this restricted context, and then augment their capabilities to  handle 

more general connectivity versus function issues. 

Each such level in a multilevel network is fed by a previous level, and feeds a 

succeeding level. This model is similar to  the multi-level networks of Rumelhart et al., 

Grossberg, and Fukushima. The inputs to  a particular level may come only from the previ- 

ous level as in feedforward networks, or they could also be recurrent or feedback 
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connections from the succeeding level or from other CNs in the same level. Figure 1 shows 

an example of a feedforward network. 

Each CN has a number of functional sites requiring multiple inputs, where input 

values are combined together to  produce a single site value, these values are then summed 

and passed through a non-linear sigmoid function to produce an output value. The func- 

tional sites that  I have chosen correspond to  the r-codons of Marr War701. R-codons, as 

will be discussed in more detail below, allow us to  trade-off local computation for non-local 

communication by capturing information on higher-order correlations in the input space. 

Non-local (to other distant CNs) communication requirements are reduced and locality is 

increased when fewer, more "abstracted," units of information need be communicated. In 

other words, fewer "bits" are necessary if those that are communicated are used more 

efficiently. 

One simplifying assumption I have made is that these networks are static and do 

not perform dynamic learning, that  is, the connection weights are "compiled" once before 

the system is run. This assumption simplified the analysis, but will be abandoned in future 

-- - 

Vin Vou t 

Figure 1 - A Multi-level Network with Feedforward Connections 
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research, since it  is also important to  understand the effect increased locality has on learn- 

ing time. 

A relaxation mechanism has been added which is similar to  Marr's War701. To 

relax the network, a threshold value is input into each summation unit. There is one global 

threshold value for each level of CNs (an entire system in the case of auto-associative net- 

works). The threshold is set to a value that  maintains a constant number of CNs above 

threshold. There is much discussion in the literature about such competitive noise suppres- 

sion or quenching. Marr postulates such a system in both the cerebellar and cerebral corti- 

cal models, and Grossberg's networks utilize sophisticated noise suppression mechanisms. 

This relaxation mechanism is a form of lateral inhibition, which provides the feedback 

essential to  noise filtering. Grossberg has argued eloquently for competitive interaction in 

neural network models for noise suppression and code stabilization in dynamic networks. 

Any one familiar with the dynamics encountered in electronics and control engineering will 

feel intuitively comfortable with this notion. 

Each level in the network is performing association on an input vector and produc- 

ing an  output vector: 

Definition 1: A level (slab) of CNs takes an input vector from an input vector space, 

and generates an output vector into an output vector space. Each CN takes input from the 

input space and outputs an element of the output space, therefore a level is only a single 

row of CNs. Let NI be the number of elements in an  input vector, and No, be the number 

of CNs (each CN has one output) in the level. The elements of the vectors are assumed to  

be positive real values between 0 and 1 inclusive. 

Definition 2: There is a set of MI, NI-bit learned input vectors, Z;. E hi. Each vector 

consists of NI elements, zii e{O,l), and where l<i<MI and l<j<NI.  Associated with each 

MI 
input vector is a probability, pi, where x p i = l .  There is also a set of Mo, No-bit learned 

i s1  
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output vectors, x;.EAo. Each vector consists of No elements, yiiE{O,l), and where 

l<i<Mo and l<j<No. 

Definition 9: The distance, dh[T',S12] between two vectors, S; and T2 of N elements, 

where each element, sij, is a positive real value, is defined as 

When the sij are single bits, then dh is just the Hamming distance between the two 

vectors. More complex, "higher-order," or structured distance measures are possible, but 

this measure is sufficient for the purposes of this paper. 

Definition 4: Association is a mapping, A ,  of elements in the set of learned input 

vectors, AI to  elements in the set of learned output vectors, Ao, i.e., A:%--+y, where x €AI,  

and y €Ao. Associated with each learned vector x is a generalization region of vectors, 2, 

such that  A : z - + y ,  ~ € 2 .  

The appearance of an arbitrary input vector causes the system to  generate the out- 

put vector associated with the learned vector in whose generalization region the input vec- 

tor belongs. Though not necessarily true in practice, it  is assumed here that the set of gen- 

eralization regions covers the entire input vector space. Golden presents a complex, proba- 

bilistic form of this definition for general neural network functionality [Go186]. 

Definition 5: An equipotential association is an associative mapping where the 

regions are contiguous and surround each learned vector. The region boundaries are 

equidistant from each learned vector, based on dh, between all pairs of learned input vec- 

tors. The regions thus generated form polytopes surrounding the input learned vectors. 

This definition of association, where the input and output vectors spaces are 

different, is often called heteroassociation. It is also possible to  define an association from a 
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vector space onto itself. 

Definition 6: An auto-associative mapping is an association where NI=No and 

AI=Ao. 

The general model of association presented here is just a simple mathematical map- 

ping from a domain of objects (the input vector space) to  a range of objects3 (the output 

vector space). The important characteristic of this mapping is the existence of the generali- 

zation regions. The ability to  generalize is an important abstraction, and one that  is 

difficult to  implement on traditional sequential computers, since it  often requires a complete 

search of the domain of learned vectors. Expert systems also perform a similar kind of map- 

ping, but due to  their discrete nature, most rule systems (even those based on fuzzy logic) do 

not have the flexibility in setting the region boundaries as is possible with large, multi-level 

connection networks. 

Definition 7: The input noise, CII, is the expected dh between an  input vector and 

the intended vector. The output noise, no, is the expected distance between network output 

and the learned output vector associated with the closest learned input vector. The infor- 

mation gain, GI, is 

This definition of association says nothing about where the boundaries are placed. 

However, when dealing with a single level of CNs, equipotential association is assumed, since 

a single level of CNs can only implement a subset of all possible equipotential associations. 

Association as defined here encompasses most neural network and connectionist models. 

many real networks the mapping is actually from a region in the domain t o  a different (usually smaller) 
region in the range - a "more-to-fewer" mapping. Though the distance must be reduced in all cases, it need not 
go t o  zero, some output noise is common in many neural network models. 
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Association, incidentally, can be defined independently of neural models; 

connectionist/neural networks are just highly parallel, fault tolerant implementations that 

associate in O(1) time! 

In multi-level learning networks, the input to  output mappings and the boundaries 

between the regions can be complex. Also, these systems require many learning trials while 

the system explores and sets the boundaries. Simpler categorical learning such as that  of 

Carpenter and Grossberg's ART (Adaptive Resonance Theory) [CaG86] network can learn 

the association boundaries much more quickly, since the boundaries are simpler. Fast adap- 

tation is also a characteristic of the Nestor model [RCE82], which operates by large granu- 

lar boundary movement. 

Since most learning networks utilize association as defined here (even if it  is a sub- 

part of a more complex structure, such as in Grossberg's networks), it  is used as the base 

functionality for the network model. Consequently, the connectivity results presented here 

are applicable to  most other models. 

The network model is now defined, a single CN is shown Figure 2. 

Definition 8: A recursive neural network, called a c-graph is a graph structure, 

I'(V,E,C), where 

There is a set of CNs, V, that can take a range of positive real values, vi between 0 

and 1. There are Nv in the set. 

There is a set of codons, E ,  that  can take a range of positive real values, eij (for 

codon j of CN i), between 0 and 1. There are N, codons dedicated to  each CN (the 

output of each codon is only used by its local CN), so there are a total of NvNc codons 

in the network. For simplicity, it  is assumed that N, is the same for each CN. 
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Figure 2 - A Single Connection Node (CN) 

cijke C is a set of connections, of CNs to  codons, l<i,k<N,, and l < j < N c ,  cijk can 

take two values {0,1) indicating the existence of a connection from CN k to  codon j 

of CN i. 

Nc 
The connection matrix, C, is three dimensional. The matrix, 0, where cfik= .U cijk 

j =I 

is two dimensional and provides general inter-CN connectivity information. 

Definition 9: The CN receptive field for CN i is the set of CNs from which CN i 

takes input, tha t  is, the set k where cfik=l. The size of the CN receptive field for CN i is 

Definition 10: The codon receptive field for codon j of CN i consists of the set of 

CNs from which codon i , j  takes input, that is, the set k where cijk=l The codon size is the 

N" 
size of the codon receptive field for codon j of CN i is f, (i, j)= cijk . 

k =l 
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Minksy and Papert piPC591 in their influential book on perceptrons defined the 

order and diameter of a perceptron. These definitions are similar to  codon size and CN 

receptive field size respectively. In this paper it  is assumed that  all codon receptive field 

sizes are constant, tha t  is, tj i, j, f = f,  ( i ,  j), and that  the CN receptive field sizes are con- 

stant, that  is, tj i, f,=f,(i). Note, 15 f,< f, by definition. Later, a network interconnect 

cost measure will be defined over receptive fields that  depends on a physical interpretation 

of network structure. 

Definition 11: The value of CN i is 

The function, F, is a continuous non-linear, monotonic function, such as the sigmoid func- 

tion. 

Network computation has been assumed to  operate in the domain of real numbers. 

Later in this paper we will assume quantized input and output (generally binary), though 

real arithmetic is used internally. Silicon implementations will use either digital arithmetic, 

which can be defined as real arithmetic with quantization noise, or analog arithmetic, which 

is continuous, but is not exactly real arithmetic either. 

F is a thresholding or "squishing" function. The purpose of the thresholding func- 

tion is to  add "gain" to  the network elements. This gain is important in enhancing the 

noise filtering and decision making properties of the network. 

In conjunction with the non-linear output function, a variable threshold can be 

defined that  maximizes signal to  noise: 

Definition 12: The global network threshold 19 is set to maximize the following objec- 

tive function: 
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Where Va is the set of size a of CNs st tj vie V, and tj vj  E Vz, v i 2 v j ,  and V=V,-V;. 

That  is, Va is the subset of the set a of CNs with the largest outputs, where a is 

the activation level or duty cycle (the average number of activated CNs). Since the CN out- 

put is a sigmoid function, the above objective function always has a maximum for a given 8. 

The objective function specified here implies a centralized computation of 8, but, in multi- 

level networks, clusters of overlapping inhibitory regions can be used as a decentralized 

approximation. 

A network with the activation level set to  1 is a classic winner-take-all network with 

a localized representation as discussed by Feldman and Ballard [FeB82]. When the activa- 

tion level is set to  some number greater than one, then a distributed representation pin841 

results, "winners-take-all", where each CN may participate in more than one representa- 

tion. 

Definition 15: Define a mapping, D( i , j ,T ) -+~ ,  where 2 is an NI element input vector 

and ?J is the f , ( i , j )  element input vector of codon ij of CN i. Codon ij's output is eij. 

That  is, has as elements those elements of T where cijk=l, tj k. 

Different input vectors may map to  the same codon vectors, e.g., D(i,j,T)-+?J and 

D(i,j,q-+?, where z#z. The codon values eij are determined as follows. 

Definition 14: Let ?(m) be input vector m of the M learned input vectors AI for 

CN i .  For codon ij  of CN i ,  let Tij be the set of f,-dimensional vectors such that 

t;ti(m) E Tij, and D(i ,  j,?(m))--c~j(m). That  is, each vector, tij(m) in the set of vectors Tij 

consists of those elements of Z(m) in codon ij's receptive field. 
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The variable 1 indexes the L vectors of Tii. The number of distinct vectors in Tii 

may be less than M,  since, though the q m )  are distinct, the subsets, zi(m),  need not be, 

since there is a possible many to  one mapping of the Z' vectors of AI onto each vector 7, 

tha t  is, L S M .  

Let X1 E Al be the subset of vectors in A,, where v i= l  (CN i is supposed to  output 

a I), and X(' E AI be those vectors where vi=O, then define 

n4(1) = sire-of D(i , j ,qj(m)) st vi=q t I 
for q=O,l, and m that  map this I. That  is, n$(l) is the number of Fvectors that  map 

into qi(l) where vi=O and n&l) is the number of t vectors that map into qi(l), where vi=l. 

The information certainty of a codon for a vector xj(l) is defined as 

(HCii(l)=O when both tal, nO=O.) The output of codon i j ,  eii, is the maximum-likelihood 

decoding 

eii = HCii(P). (7) 

That is, where HC indicates the likelihood of v i = l  when a vector Z'that maps to  f is input, 

and P is tha t  vector YP)  where min[dh(~l'),jJ"] tj I ,  D(i,j,Z')-T, and T' is the current 

input vector. In other words, t is that  vector (of the set of subset learned vectors that  

codon ij sees) that is closest (using distance measure dh) to  (the subset input vector). 

There can be a different output eii for each compressed vector in codon ij's receptive field. 

The value of a codon is the "most-likely" output according to  its inputs. For exam- 

ple, when there is no code compression a t  a codon, eii=l exactly, if the closest (in dh) sub- 

vector in the receptive field of the codon belongs to  a learned vector where the CN is to  out- 

put a 1 (and output a 0 if it  is closest to  a learned vector that  requires a 0). 
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c ( Programming" a codon involves instructing it  on the likelihood of the various input vectors 

it  can see in its receptive field. 

To help illustrate this information loss during code compression, an example is 

presented. Imagine the following mapping of learned input vectors to  a CN, and the associ- 

ated CN outputs: 

x CN input vector CN output 
012345 

x(0) = 011010 v(0) = 0 
x(1) = 101100 v(1) = 1 
x(2) = 001100 v(2) = 1 
x(3) = OOOO11 v(3) = 0 

Assume that  codon has a fan-in of 2 and takes as input bits 0 and 5 of the input field. The 

r a n d  HC for the codon are 

t(0) = 00 maps x(0) and x(2) HC(0) = .5 
t(1) = 01 maps x(3) HC(1) = 0 
t(2) = 10 maps x(1) HC(2) = 1 
t(3) = 11 no x HC(3) = 0 

The codons implement nearest-neighbor classification, which has an error rate that 

has been shown by Cover and Hart [CoH67] to  be, for an arbitrary number of categories, 

within a factor of 2 of the ideal Bayesian error rate. Bayesian classification could be used, 

but simulations showed only a small performance improvement. 

In this paper it  is assumed that the vector mapping for each codon is computed 

statically prior to  network operation. Marr's model for the cerebral cortex (upon which 

much of this model is based) performed dynamic learning (feature extraction) of the input 

vector set. It did so by extracting significant information from the learned vector set. It is 

clear that  future connectivity analysis must contend with dynamic learning. 
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It is not the intent of this paper to  propose that  codon networks as described here 

should become the basis of connectionist and neural networks. The importance of this 

model derives from its mathematical properties tha t  make it  amenable to  communication 

theoretic analysis. The behavior predicted by these models can then be approximated arbi- 

trarily closely by more traditional higher-order networks. 

To measure cost/performance, measures of cost and of performance are required. 

Cost is defined in section 3.3. For a measure of performance, network capacity is used. 

Definition 15: The capac i t y  of a network is the maximum number of learned vector 

to  output vector mappings such that the information gain, GI ,  is strictly positive (>O). 

The capacity of the network depends on a variety of factors and parameters such as 

the locality, number of codons, and receptive field size. There are several possible perfor- 

mance measures. They are network fault-tolerance, settling time, and capacity. Fault- 

tolerance can be determined by deleting random connections and examining a t  the resulting 

capacity. Consequently, fault-tolerance, though a crucial characteristic of connection net- 

works, is not considered further in this report; it  will be covered in more detail in future 

reports. The time required for the network to  stabilize tends to  be constant and indepen- 

dent of the size of the network, therefore, in the remainder of this paper, I will measure net- 

work performance solely on the basis of network capacity. 

3. COMMUNICATION ANALOGY 

Given the simple network model (for a single level) described in the previous section, 

the next question is how does one measure the trade-off between connectivity and capacity? 

What are the best values for the network parameters to  maximize network performance in 

the face of sparse interconnect? To answer this question analytically, we need a model of 
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the association process. Since the problem of sparse interconnect is one of information 

transfer between different elements, it  seemed natural to  use communication theoretic tech- 

niques to  analyze network performance. 

The analysis of neural networks the last few years has proceeded in two directions 

simultaneously. Two approaches are the structured, and the unetructured. The grandfa- 

thers of structured analyses were McCulloch and Pitts WcC651, who analyzed neural net- 

works as logical computing devices, and although some interesting theory resulted, their 

analytic tools were inadequate for handling the complexities of the nervous system. One 

reason for this is that  neural function is the result of the mass action of large groups of neu- 

rons, creating emergent functionality that  is not amenable to  highly structured analysis. 

More recently, unstructured approaches have been proposed that  consider networks 

as amorphous groups of identical elements and use statistical theories such as the therm* 

dynamics of spin glasses to  understand collective functionality. Hopfield's work [Hop821 is a 

classic example of this approach. However, researchers have begun to  realize that  real 

neural systems may be more structured than the thermodynamic approaches can handle. 

Feldman has noted that  what is needed are theories that  are not amorphous like the gas 

models, but are more structured like those of molecular biology. 

Consequently, the search is on for tha t  middle ground. The Boltzmann machine of 

Hinton, Sejnowski, and Ackley [HSA84] and the Harmony theory of Smolensky [Smo86] are 

attempts to apply thermodynamic principles to  more structured systems. The work of 

Grossberg [Gro86] and Kohonen [Koh84] is not statistical in nature, but they do successfully 

analyze large groups of cooperating neural elements in restricted domains. In this paper, 

another analysis technique, Communication Theory, is applied to  neural networks. This 

theory is fundamentally probabilistic, but does deal with the structured aspects of these sys- 

tems. It is not intended as "the" ultimate tool for neural network analysis, but rather as 
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another tool in the growing arsenal of techniques and strategies for describing and coping 

with neural system function. The main goal of this paper is to  propose communication 

theory as a viable technique for dealing with fundamental issues of network interconnec- 

tivity. 

Consider a single CN. Assume that  the CN's output value space, contains two 

values, 0 and 1. Therefore, the CN must decide whether the input it  sees belongs to  the 

class of "0" codes, those codes for which i t  remains off, or the class of "1" codes, those codes 

for which it  becomes active. The inputs it  sees constitute a subset of the input vectors for 

the level of CNs to  which the CN belongs. It is also assumed that the CN is an  ideal 1-NN 

(Nearest Neighbor) classifier or feature detector, that is, given a particular set of learned 

vectors, the CN will classify an arbitrary input according to  the class of the nearest (using 

dh as a measure of distance) learned vector (as in equipotential association). This situation 

is equivalent to  the case where there is a single CN that  has a single codon whose receptive 

field size equals tha t  of the CN (f ,= f,). 

Imagine a sender who wishes to  send one bit of information over a noisy channel. 

The sender has a probabilistic encoder that  choses a code word (learned vector) according 

to  some probability distribution. The receiver knows this code set, though it has no 

knowledge of which bit is being sent. Noise then is added to the code word during its 

transmission over the channel. This operation is analogous to  applying a vector to  a 

network's inputs, where the vector lies within some learned vector's region. This "noise" is 

represented by the distance (dh) between the input vector and the associated learned vector. 

The code word sent over the channel consists of those bits that  are seen in the 

receptive field of the CN being modeled. In the associative mapping of input vectors to  out- 

put vectors, each CN must respond with the appropriate output (0 or 1) for the associated 

learned output vector. Therefore, the CN as defined above is a decoder tha t  estimates in 
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which class the received code word belongs4. This is a classic block encoding problem, where 

increasing the field size is equivalent to  increasing code length. And, as the receptive field 

size increases, the performance of the decoder improves in the presence of noise. Using com- 

munication theory then, the trade-off between interconnection costs as they relate to  field 

size and the functionality of a CN as i t  relates to the correctness of its decision making pro- 

cess (output errors) can be characterized. 

As the receptive field size of a CN increases, so does the redundancy of the input, 

though this is dependent on the particular codes being used for the learned vectors, since 

there are situations where increasing the field size provides no additional information. It 

will be shown below that  for randomly selected codes, there is a point of diminishing 

returns, where each additional bit provides ever less reduction in output error. And, for 

multi-codon CNs, the error can actually increase in some situations by adding connectivity. 

Another factor is tha t  interconnection costs increase exponentially with field size. The 

result of these two trends is a cost performance measure that  has a single global maximum 

value. In other words, given a set of learned vectors and their probabilities, and a set of 

interconnection costs, a "best" receptive field size can be determined. 

The rest of this section is devoted to the analysis of a single CN. In the first subsec- 

tion, a communication model is developed and communication theory applied to  a CN with 

a single codon with no code compression. 

4 F o r  each CN, the intended output  (0 or 1) can be thought of a s  the original bit  that  was t o  be sent over 
the  channel, where the  input learned vector represents a n  encoding of that  bit.  
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3.1. Single Codon, With No Code Compression 

In this section it is shown that a single neural element with a single codon and with 

no code compression can be modelled exactly as a communication channel. Each network 

CN is assumed to  have a single codon whose receptive field size is equal to  that of the recep- 

tive field size of the CN, i.e., f , = f , .  This codon operates as a 1-NN classifier. 

Figure 3 shows a communication channel. The operation of the channel is as fol- 

lows. A bit is input into the channel encoder, which selects a random code of length N and 

transmits tha t  code over the channel. The receiver then, using nearest neighbor 

classification, decides if the original message was either a 0 or a 1. 

Let M be the number of code words used by the encoder, which corresponds to  MI;  

Mo is always 2 for a single CN (assuming binary output). The rate6 then indicates the den- 

sity of the code space. 

encoder transmitter receiver I decoder 
I 

I 
I 
I 
I 
I 

noisy I 

I CN 

Figure 3 - A Communication Channel 

In the definitions given here, and the theorems below the notation of Gallager [Gal681 is used. Many of 
the definitions and theorems are also from Gallager. 

I 

I 
I D  
I 
I D 
I 
I D 

channel 

D sender receiver 
D 

D 

D 
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Definition 16: The rate, R ,  of a communication channel is 

The derivations in later sections use a related measure: 

Definition 17: The code utilization, b, is the number of learned vectors assigned to a 

particular code or 

b is essentially unbounded, since MI may be significantly larger than 2N'. When b s l  then 

there is no code compression, likewise when b > l ,  then code compression occurs that  causes 

information loss. For single codon analysis, NI = f , ,  the receptive field size of the codon. 

In the analysis of single CN performance, a binary output is assumed. All loga- 

rithms are to  the base 2 (log2). The reader should note that  all theory developed here can 

be extended to  values of any discrete granularity. 

When modelling a codon as a communication channel, then the maximum rate, R, is 

not related to  the actual information content of the channel (which is a t  most one bit), but 

to  the density of the code space. For this reason, the channel error (as is shown below) must 

be adjusted accordingly. The actual code word sent over the channel is the subset of the 

selected learned vector that the particular codon in question sees in its receptive field. The 

performance of the codon is directly related to any information loss tha t  occurs due to  code 

compression. (Code compression has a similar effect to  exceeding the capacity of the 

transmission channel.) 

The error due to  code compression is a random variable that  depends on the 

compression rate and the a priori probabilities, therefore, it  will be different with different 

learned vector sets and codons within a set. As code utilization approaches and becomes 
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greater than 1, code compression occurs more often and decode error is unavoidable. 

Increasing the block size generally increases the decoder's performance. However, 

when the channel capacity is exceeded, increasing block size does not help. When the code 

utilization increases, which is what happens when the number of learned vectors increases, 

the effect is similar, though the analysis is somewhat different. The remainder of this sub- 

section assumes that  there is no compression, the next subsection then examines CN perfor- 

mance with compression. 

Let q be the vector output of the encoder, and the input to  the channel, where each 

element of Z;. is either a 1 or 0. Let 3 be the vector output of the channel, and the input to  

the decoder, where each element is either a 1 or a 0. 

In a real communication channel, the code word is sent sequentially one bit a t  a 

time. In the CN model, the CN's receptive field receives the code word in parallel, but it  is 

analyzed as if it  had been received serially, by assuming a memoryless channel. 

Definition 18: A memoryless channel is assumed, therefore, the channel transition 

probabilities, that  is, the probability of receiving a vector given that the mth code word 

was transmitted, is 

The channel noise in the system is incorporated into the transition probabilities. 

Definition 19: The mazimum likelihood decoding rule is where, given 3, chose m' for 

which 
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A decoding rule is a mapping (association) from the set of jl vectors into a set of 

output codes. In the case of a CN, there are only two output codes, 0 or 1. When the 

source produces code word m, Z*, is transmitted, then an error occurs if the received code is 

in the set of vectors %tha t  the decoder does not map to  m .  

Definition 20: If the set of % that  map to m is Ym, then the set of vectors tha t  do 

not map to  m is the complement Y:. Given that  message m was sent, the probability of a 

decoding error is defined as 

If the probability that  m is sent is pm, then the probability of a decoding error can be 

defined as 

Because of the difficulty of computing these bounds for specific codes, the noisy 

channel communication theorem was proved for randomly selected codes [Ga168,ShW49]. 

For a random code of length N ,  the bits of the code are chosen randomly. Consequently, 

the bounds shown here are for randomly chosen codes rather than optimally selected codes. 

This means that  there are codes that  do better and codes tha t  do worse than the stated 

bound. The codes encountered in connectionist and neural systems, though containing 

structure, will have random tendencies, so the assumption of randomly chosen codes is more 

realistic here than in communication theory where codes are often hand optimized for a par- 

ticular application. 

Definition 21: If each bit of the code is chosen independently, then the overall p r e  

bability of a single code word, lif, of length N is defined by 
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where Q(i) is the single bit probability assignment. 

The Noisy Channel Coding Theorem is now presented for the general case where the 

individual M input codes are to  be distinguished. The result is then extended to  a CN, 

where, even though M input codes are used, the CN need only distinguish those codes where 

it  must output a 1 and those where it  must output a 0. The first theorem is from Gallager 

(5.6.1) [Ga168]: 

Theorem 1: Let PN(J'/Z') be the transition probability assignment for sequences of 

length N 2 1  on a discrete channel. Let QN(Z) be an arbitrary probability assignment on 

the input sequences and, for a given number, M>2, of code words of block length N, con- 

sider the ensemble of codes in which each word is selected independently with the probabil- 

ity measure QN(T). Suppose that  an arbitrary message m, l < m < M  enters the encoder and 

tha t  maximum-likelihood decoding is employed. Then the average probability of a decoding 

error over this ensemble of codes is bounded, for any choice of p, O<p<l, by 

The above theorem can be rewritten by considering (N,R) block codes where 

M - ~ < ~ ~ ~ L M .  The theorem and proof are also from Gallager (5.6.2) [Ga168]. 

Theorem 2: Let a discrete memoryless channel have transition probabilities PN(j/k) 

and, for any positive integer N and positive number R ,  consider the ensemble of (N,R) 

block codes in which each letter of each code word is independently selected according to  

the probability assignment Q(k). Then, for each message m, l < m L  eNR , and all p,  I 1  
O<p<l, the ensemble average probability of decoding error using maximum-likelihood 
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These results are now adjusted for our special case. 

Theorem 3: For a single CN, the average channel error rate for random code vectors 

Pe 12q(l-q)Pe,rn 

where q=Q(k) tj k is the probability of a 1 bit. 

Proof: The probability that  the CN is to  output a 1 is q .  The probability that  an 

error occurred is I=',,,. However, an error moves the decoder to  another random output, 

which has probability q of still giving the correct output, and 1-q of incorrect output. 

Therefore, the probability of an error, when the correct output is 0 and 1, is: 

For q=0.5, this reduces to P,  2 0 .5Pe , ,  . 

The results given thus far cover a wide range of communication channel models. A 

more easily computable expression can be derived by recognizing some of the restrictions 

inherent in the CN model. Assume that all channel code bits are equally likely6, that  is, 

Q(k)=q, k, that  the error model is the BSC (Binary Symmetric Channel), see Figure 4, 

"his assumption violates the assumption of structure in the input data  stream. The incorporation of such 
higher order structure is beyond the scope of this  paper. 
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and that  the errors are identically distributed and independent, where each bit has the 

same probability, 6, of being in error (a 0 to  a 1 transition or a 1 to a 0 transition) indepen- 

dent of its position in the code word, and of the code word itself. With these restrictions 

the relationships described by Theorem 3 can be simplified: 

The bound of theorem 2 can be simplified by letting, Q(0)=q=0.5, Q(1)=1-q=0.5, 

P(0/0)=1-6, P(0/1)=6, P(1/0)=6, P(l/l)=l-6. Maximizing p gives the tightest bounds: 

For the BSC assumed here, the minimum value for equation 17 is obtained when 

p=l, and 

In this section it  was assumed that a CN had a single codon. From this assumption, 

results from communication theory could be applied. Though it is useful as an  absolute 

upper bound on CN performance, modifications are necessary to  extend this analysis to  

more realistic CNs that  have larger numbers of smaller codons. 

E 

Figure 4 - A Binary Symmetric Channel 
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Before turning to  the analysis of a CN with multiple codons, the effect that  

compression (aliasing due to  limited receptive field size) has on the error bounds derived 

above are characterized. 

3.2. Single-Codon with Code Compression 

The implementation complexity of a codon grows exponentially with the size of the 

codon, which limits its practical size. An alternative is to  approximate the single codon 

function of a single CN with many small, overlapped codons, improving the 

cost/performance of the decoding process. As codons get smaller, their receptive field size 

becomes smaller relative to  the number of CNs in the network. When this happens there is 

code compression, or vector aliasing, that  introduces error into the decoding process. Net- 

works can overcome this error by using multiple redundant codons with overlapping recep- 

tive fields. 

In this section the error rate of a single codon is studied as its receptive field size is 

reduced (while maintaining the vector size, N, and the number of learned vectors, M, con- 

stant). The next section then examines the behavior of a group of multiple small codons in 

a single CN, and compares that CN's error rate to  the ideal CN with a single large codon. 

Compression occurs when two code words requiring different decoder output share 

the same representation (within the receptive field of the codon). Recall that  HCij(l) is the 

information certainty for vector I a t  codon j of CN i: 

The learned vectors are random, hence for any single I, the nl(l) (dropping the ij 

subscripts for convenience) are random variables that  can be modelled as a Bernoulli sum of 

a set of binary trials. Recall that  the receptive field size of the codon is f,. One can 
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imagine then that  there are 2'' containers, one for each vector that  the codon could poten- 

tially respond to, and that  there are MI tokens, one for each learned vector. There are two 

kinds of tokens: 1 and 0. The 1-tokens correspond to  those vectors where the codon is sup- 

posed to  output a 1 and the 0-tokens to  those that  require a 0. A 1-token is placed into a 

certain container when the subfield, Dij(l), of a learned vector matches tha t  of a certain 

container. So, n1 is the number of 1-tokens, and no the number of 0-tokens. 

Since vectors are selected randomly, the number of tokens of each type in a con- 

tainer is a random variable and corresponds to a sequence of Bernoulli trials, where each 

token is a binary sample. The 1-tokens are chosen according to  probability q ,  the 0-tokens 

to  probability, 1-q. Assume that all containers are uniform, i.e., nl(l)=nl, tj I, where the 

number of balls in the container is just the average code utilization, 8 ,  which is suitable 

when M is larger than f , .  For the remainder of this paper, b as defined here is used as an 

estimate for the degree of code compression. The actual b may vary slightly from container 

to  container and hence some code compression is possible even when b<1.  

On the average when the code utilization, b ,  is >I, then there is code compression 

and the bounds of the previous section do not apply. Likewise, when b < 1 ,  there is little or 

no compression and the bounds derived here do not apply. 

Define p l ( k )  as the probability that there will be k 1-tokens out of the b total 

tokens in the container, 

= [;]qk(l-q)b-k 

for any k, Osk<b. 

When a vector is received, the codon operates as in the case without compression by 

finding the closest, "best-match" (according to  the measure of Definition 3), non-empty 

"container" that matches the vector field it  sees. The codon then outputs the HC (ratio of 

1 tokens to  all tokens in the container) associated with the container. If there is a single 
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codon, then the CN output is 1 if H C 2 0 . 5  and 0 if HC<0.5. 

If the number of samples is large, then a normal distribution can be used as an 

approximation to  a binomial distribution for p l ( k ) .  In addition, the decoder is given one 

extra bit of information, it  knows the type (1 or 0)  of the majority tokens in the container, 

since in the networks defined in this paper, the codon itself has that information. This 

means that  the codon, though not always correct, is correct the majority of the time. If it  

always assumes the majority carrier, in the long run, the percentage of incorrect guesses will 

be equal to  the number of minority tokens in the container. Consequently, every time a 

vector is decoded by the codon, chose a p, (according to a half Gaussian distribution, Figure 

5), which is the decode error due to code compression a t  the codon, corresponding to  the 

random selection of a container. An expression for the mean compression error, E, is now 

derived. 

PC 

Figure 5 - Half Gaussian Approximation 
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Let Bk(b,q) be the expression for the probability tha t  k 1-tokens have occurred in a 

group of b tokens, or 

Bk(b 1 ~ )  = (:)qk(l-ob-k P4) 
Define Ek(b) as the error that occurs due to compression, if there are k 1-tokens in a con- 

tainer, or 

Then 

By changing the indices, a normal approximation to  the binomial distribution, Bk(b,q) can 

be used to  obtain: 

where a=Vbq(1-q). A closed form solution is possible, by using the following identity 

giving 

The codon first decodes the vector and finds the most-likely container, i t  then deter- 

mines the error due to  compression. 
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Theorem 4: For a BSC model where q=0.5, the codon receptive field is f,, the code 

utilization is b ,  and the channel bits are selected randomly and independently, the probabil- 

ity of a codon decoding error when b > l  is approximately 

I I pCda 5 (I-# F ~ -  (i-(i-t) c)))1.5 

and when b <1 

Pcdn 5 exp -fe -log 2 [ (0 .EiK+0.5Gr]-R]]  I [  
Proof: The proof follows from the bounds in the previous section, and the fact that  

if all code words are used ()>I) ,  then the decode error for a single word is (1-ryc. 

These bounds are approximate, but as the simulations discussed below indicate, they 

are reasonably predictive. As b gets large, the variance gets small and approaches 0.5 

asymptotically. It is obvious that  the performance of a single codon degrades rapidly in the 

presence of even small amounts of compression. For this reason, I now turn to  the use of 

multiple small codons within a single CN as a means to  overcome the error, that  is due to  

compression, of a single codon. 

3.3. Multiple Codons with Code Compression 

The use of multiple small codons is more efficient than a few large codons, but there 

are some fundamental performance constraints. When a codon is split into two or more 

smaller codons (and the original receptive field is subdivided accordingly), there are several 

effects to  be considered. First, the error rate of each new codon increases due to  a decrease 

in receptive field size (the codon's block code length). This change increases the error rate 

per codon. 
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The second effect is tha t  the code utilization, 8 ,  will increase for each codon, since 

the same number of learned vectors is mapped into a smaller receptive field. This change 

also increases the error rate per codon. As the individual codon receptive fields get smaller, 

this error increases rapidly. For higher-order input codes, there is an added error that  

occurs when the order of the individual codons is decreased. Such higher-order information 

can be captured by adding multiple levels, but the analysis of that  is beyond the scope of 

this study. 

The third effect is the mass action of large numbers of codons. Even though indivi- 

dual codons may be in error, if the majority are correct, then the CN will have correct out- 

put. This change decreases the total error rate. Key questions then are, How many codons 

are need to  maintain a given CN decode error rate as the size and complexity of each codon 

is reduced?, and, What are the cost-performance trade-offs? 

Assume that  each CN has some ordinal number of codons, c, where c > l .  The 

union of the receptive fields for these codons is the receptive field for the CN. There are no 

restrictions on the degree of overlap of the various codon receptive fields within or between 

CNs. For a CN with a large number of codons such overlap will generally be random and 

uniformly distributed. I am assuming that  the transmission errors seen by the receptive 

fields are independent. This is somewhat unrealistic, but i t  significantly simplifies the com- 

putation of CN error; for small error rates and large numbers of codons it  is a reasonable 

assumption, 

I am interested in what happens to  the codon decode error due to  compression 

(ignoring transmission error for the time being) when a codon is replaced by two or more 

smaller codons covering the same receptive field. This process can continue until there are 

only 1-codons, which, incidentally, is analogous to most current neural models. For a multi- 

ple codon CN, assume that  each codon votes a 1 or 0. The summation unit then totals this 
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information and outputs a 1 if the majority of codons vote for a 1, etc. The network model 

presented in section 2 uses the information uncertainty, HC as the codon output, t o  simplify 

analysis, this graded codon output is ignored. The probability of voting is p , ,  which is itself 

a random variable. The decode operation can be modelled as follows. First, each codon is 

sampled and a p, selected according to  the half-Gaussian distribution of the previous sec- 

tion. Then a token is selected from two types, "error" and "correct," according to  the pro- 

bability p, and placed into a container. The CN's output is correct if the majority of the 

tokens are correct. 

To simplify the analysis further, use the mean & as computed in the previous sec- 

tion, which assumes a large amount of compression, and a large number of samples, there- 

fore, & will be close to  q, and there will be only a small variance around q. Once again 

this is a Bernoulli sample of a binary event, and since c will generally be large, it  can be 

approximated with a gaussian distribution. The probability of a CN error due to  compres- 

sion then is just 

PC incorporates the last two effects of moving to  multiple smaller codons. Substitut- 

ing into the equation given in the previous section gives the total error probability (per bit), 

Pc r~( f ,  1: 

P c N ( ~  c ) = P e  ( f  c )+PC-Pe (f c )Pc (34) 

where P , ( f , )  is the single codon (no compression) bound per codon. The receptive field size 

per codon (not per CN) is f , .  

As is shown in the next section. the cost of a codon increases exponentially with its 

receptive field size, therefore, smaller codons are preferred. However, things look dismal for 

the small codon, since P, rapidly approaches q ,  where the codon provides no information to  
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the CN, thus reducing information gain. This effect can be offset to  some degree by adding 

ever more codons, but there are other problems. 

Consequently, for networks that perform association as defined in this paper, the 

connection weights rapidly approach a single uniform value as the size of the network 

grows. In information theoretic terms, the information content of those weights approaches 

zero as the compression increases. Why then do simple non-conjunctive networks (1-codon 

equivalent) work a t  all? Since one of the main goals of this paper is to understand the 

behavior of associative network models as the size of the network increases, this is an 

important issue. Nervous systems obviously scale, so what architectural characteristics 

allow them to  overcome the problems stated here? 

In the next section I define connectivity cost constraints and show that  the answer 

to  the first question is that  the general associative structures defined here do n o t  scale cost- 

effectively and more importantly that  there are limits to  the degree of distribution of infor- 

mation. The answer to  the second question will be discussed near the end of this paper, and 

a detailed treatment will be given in follow on papers. These architectural characteristics 

are the result of the fundamental information theoretic bounds tha t  constrain network con- 

nectivity patterns. 

3.4. Connectivity Costs 

Our goal is to  build a physical computer system that emulates these networks, 

therefore, it  is important to  characterize the trade-offs between network performance and 

cost, in particular as it  relates to  the parameters that  be controlled, such as CN and codon 

receptive field size, codon size, and numbers of codons. 
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The cost measure is directly related to  the physical implementation where the con- 

nection network, r, is mapped to  an array of physical processors configured into a 2- 

dimensional grid. 

Definition 22: A processor connectivity graph or p-graph, B(U,Cp) ,  consists of a set 

of Np processors, U, and a directed interconnection graph described by Cp. 

The p-graph describes the interconnection structure that  the processors in the grid 

(of by elements) use to  communication with one another. We have defined the 

p-graph as being directed, when, in many implementations, physical interconnection struc- 

tures are generally bidirectional. However, for most technologies, it  is much more expensive 

in space and time to  turn around physically long interconnect. Also, symmetrical connec- 

tivity can be approximated by letting Cp = c:, that is, for every connection from P&- to  

PNj, there is a connection from PNj to  PN:. 

Definition 23: The c-graph distance, d,(C,i,j), between two CNs, vi and vj in the 

connection graph, C, is the number of directed edges in the Network graph that must be 

traversed to  reach i from j. 

Definition 24: Define a mapping B:I'--+el which maps the CNs of the c-graph, r, to 

the processor array, 8. This is a possibly many to  one mapping of CNs to  PNs, and of the 

edges in the c-graph to  paths of the p-graph. 

The c-graph then is a virtual network that  is emulated by a physical network. For 

the research presented here, a simple one to one mapping of CNs to  PNs is assumed, though 

many real implementations will generally map multiple CNs per P N  [BaH86]. 

Definition 25: The p-graph mapped distance, dp(C,B,i,j), between two c-graph CNs, 

vi and vj for a mapping B is the number of p-graph edges required when following the 

directed path from the P N  where CN i resides to  the P N  where CN j resides. 
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Definition 26: Given a graph, I'(V,C,E), ri(n) is the number of CNs reachable in 

exactly n edge traversals from CN i .  The average reachability function, RB(n) for the graph 

then is 

where N is the total number of CNs in the graph. 

Definition 27: The locality, L(oE), of a connection graph, I?, is the inverse function of 

R ,  written R-l. In other words, L d n )  is the probability of a connection to  a CN a dis- 

tance, n interprocessor hops away: 

A mapping independent definition of locality is possible, by mapping the c-graph 

onto itself. 

It  is much easier to  assess costs if some implementation medium is assumed. I have 

chosen standard silicon, since it  is relatively straightforward to  estimate costs and since it  is 

our preferred technology. Silicon provides a two dimensional surface where CN's and codons 

take up area according to  the size of their receptive fields. In addition, there is area 

devoted to  metal lines that interconnect the CNs. A specific VLSI technology need not be 

assumed, since the comparisons are all relative, thus keeping CNs, codons, and metal in the 

proper proportions, according to  a standard metal width, m, (which also includes the inter- 

metal pitch). It is assumed that  m, levels7 of metal are possible. 

'In an aggressive state of the art CMOS processes, m, is about 2 micrometers and ml is 3. 

-39- 
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Multi-dimensional implementation costs, as  would be found in optical or 3- 

dimensional VLSI, could easily be factored into these analyses, but I have chosen 2- 

dimensional silicon, since that  is the initial implementation technology chosen by the Cogni- 

tive Architecture Project for reasons of ease of use, low cost, flexibility, and availability. 

Although the implementations being considered by the Cognitive Architecture Pro- 

ject assume the sharing of most metal lines by several "virtual" connections via multiplex- 

ing, it  is assumed in this analysis that each metal line is dedicated to  a connection, where 

there is one P N  per CN and that  the p-graph and c-graph are isomorphic. 

In the previous section I established the relationship of network performance in 

terms of the transmission error rate, E ,  and the network capacity, M. In this section I 

derive an implementation cost, which is total silicon area, A .  A can then be used to derive 

a cost/performance figure that  can be traded off with such factors as codon size, receptive 

field size, etc. Transmission delay is not factored into the performance figures, since increas 

ing metal length increases inter-PN interconnect area and is reflected in A ,  and perfor- 

mance is being measured8 only in terms of network capacity. 

There are two components to  the total area: ACN, the area for each CN, and AMr, 

the area of the metal interconnect between CNs per CN. ACN only considers the area for 

the CN logic. The metal area for local, intra-CN interconnect is considered to  be much 

smaller than tha t  of the codon processing hardware. The area per CN then is roughly 

A~~ = n ~ ~ m e K  (37) 

where ncN is the receptive field size for the CN, and m, the number of vectors tha t  each 

codon can distinguish, for b > l ,  m,=2jc, where c is the number of codons, and f, is the 

C 
receptive field size per codon, nCN=fcP. K is a constant reflecting the relative 

Rs 

In our experience and that of many others in the field, that stabilization time is more or less independent 
of the number CNs in the network, so network settling time is not a useful performance measure. 
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''conductor per unit area", and is a function of ml and m,. Rs is the intra-CN synapse 

redundancy, that  is, the ratio of inputs to  synapses (e.g., when Rs=l each CN input is used 

once a t  the CN, when Rs=2 each input is used on the average a t  two sites of a single CN). 

Only ml levels of metal are possible, therefore if there is a large number of connec- 

tions between widely distributed CNs, then the inter-CN area that  is devoted to  non-local 

interconnect grows rapidly. 

Theorem 5: Assuming a rectangular unbounded grid of CNs (all CNs are equi-distant 

from their four nearest neighbors), where each CN has a square receptive field of CNs that  

is 2 0  squares on a side, the number of "wires" or connections, W, passing through a single 

square between four CNs (assuming an  unbounded grid of CNs in all directions) is 

Proof: The above relationship can be determined geometrically. Imagine a single 

square of the grid, each CN a t  the corner has an arc tha t  subtends 90 degrees of a square 

that  is the CN's receptive field. The area of that  square is (D+I )~ .  The total number of 

connections due to  the four CNs surrounding the square is four times that ,  minus one row of 

D CNs along the edge (needed due to  the discrete nature of the calculation and the desire to 

not count CNs along the edges twice), which gives 4 [ ( ~ + 1 ) ~ - ~ ] .  

Proceeding outward from the square one perimeter of CNs a t  a time, there are 12 

CNs in the second perimeter, 20 in the next, etc. or (8d+4) for each, where d is the distance 

from the center square, l<d<D-3. The number of connections that  pass through the 

square to  each of these CNs is directly proportional to  the area of square, since CNs are dis- 

tributed evenly in this area, subtended by an angle between the target CN and the end of 

receptive field, as is shown in Figure 7. This area is equal to  the area of this quadrant of 

the receptive field, ( ~ + 1 ) ~  minus the triangle on each side (B and C) and the triangle (D) of 
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Figure 7 - Interconnection Calculation 

area between the target CN and the square. The area of B and C is where 
2  

the height is (D+l), and the base equals ( D + l ) d  . The angle a t  the CN is the cos-' of 
d+1 

4. Since the angle is the same, the base is to  ( D + l )  as d  is to  d + l .  Finally, the small 
d+l  

1 triangle has base equal to  % and the height is G ( d + - )  - this is worst case and is for a 
2 

triangle from a corner CN on the perimeter, CNs along the side will have somewhat less, so 

the bound is not exact (within a factor of %). 

Corollary 6: With a square receptive field of 2 0  CNs on a side, the number of con- 

nections, W, tha t  pass through a single square (with one CN a t  each corner) is 
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Proof: By ignoring lower order terms and assuming D>>1, we get for the right hand 

side 

which is approximately equal to  D3. 

To find the area of a square, it  is assumed that ,  since there are approximately W 

W 
signals passing through the square (entering and leaving), there are - signals leaving each 

2 

side. The metal area of the square then is 

Let the receptive field size (in total connections to  the CN) be n c ~ ,  

The total area, A ,  then is 

A = O(n3) (44) 

The total metal interconnect area increases as the cube of the per CN fan-in, and this is for 

a network with maximum locality! 

Another option is to place all CNs along a diagonal, which gives n2 area. However, 

this technique only works for a bounded number of CNs. Also, it  is a different computa- 

tional model, where dendritic computation is spread over a very large area which does not 

match all network models. The theorem proven here covers an infinite plane of CNs each 

with a bounded receptive field with more localized computation. Hybrid techniques may be 

able to  break the n3 to  some degree, but that is highly algorithm/implementation depen- 

dent. 
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There is one major simplifying assumption here, and tha t  is, that  each CN's recep- 

tive field contains the nearest CNs on the plane. This is obviously not true in biological sys- 

tems and will not be true in their silicon counterparts. However, since I am using random 

vectors, with independently, identically distributed elements, the "where" of the connections 

is not as important as their number. In future research more highly structured input will be 

used and there the structure of the connections becomes important. A broader, more diffuse 

interconnect (while maintaining a constant receptive field size) would increase metal area 

and performance. Likewise, such a model is closer to  real systems. These types of connec- 

tivity patterns have not been characterized adequately here. For this paper it  is assumed 

that only a few of a CN's connections come from outside the closest CNs, and tha t  this 

number is small, so that these non-local connections do not greatly change the computed 

values of metal interconnect area. 

4. SINGLE CN SIMULATION 

Table I lists the analytic results for a single CN. j ,  is the receptive field size of the 

CN, c is the number of codons, Rs is the input redundancy (the ratio of inputs to  connec- 

tions, Rs>l), j ,  is the order of each codon, A is the total areag cost in units of ml/rn,, and 

m is that  number of learned vectors where Pcn=c, that  is, the maximum number of learned 

vectors (maximum capacity) where the information gain goes to  zero. For this example, 

~=0.1. The general character of the results did not change significantly as E was increased 

to  0.5 and these are not shown here. 

O A is derived from a. simplified version of equation 38. 
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As can be seen by the table, increasing the CN7s receptive field size greatly improves 

the performance (allows larger m ) ,  but there is also an  increasing cost, which increases fas- 

ter than the performance! Another observation is that  redundancy is quite effective as a 

means for increasing the effectiveness of a CN with constrained connectivity. Though not 

modelled here, there are some limits to  Rs, since it  can reach a point where the intra-CN 

connectivity approaches that  of inter-CN for some situations. An order of magnitude 

increase in cost-effectiveness ( A l m )  is possible by increasing both order and redundancy. 

A surprising effect is that ,  as  expected, increasing the order of a CN increases the 

CN7s performance (capacity), but not from f,=l to  2 ,  where performance actually 

decreases. What happens is that  the number of codons is decreased by 112 and the error 

introduced is much greater than tha t  obtained by increasing the order of the codons from 

f , = l  t o  f ,=2 .  As the order increases past 2, the error correcting capability of large codons 

increases faster than the error due to  fewer codons. Because of the random, unstructured 

f ,  Rs f, 
256 1 4.00 
256 1 2.00 
256 1 1.00 
256 2 4.00 
256 2 2.00 
256 2 1.00 
256 3 4.00 
256 3 2.00 
256 3 1.00 
4092 1 4.00 
4092 1 2.00 
4092 1 1.00 
4092 2 4.00 
4092 2 2.00 
4092 2 1.00 
4092 3 4.00 
4092 3 2.00 
4092 3 1.00 

Table I - Analytic Bounds for 
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nature of the input data space, one would expect that there is little higher-order informa- 

tion to  take advantage of. Systems with highly structured input da ta  should show 

significant improvement with higher-order codons (even j ,  =2). 

In order to  verify the derived bounds, I also wrote a discrete event simulation of a 

CN, which used a random set of learned vectors, and where the CN's codons were pro- 

grammed according to  the model presented in section 2.0. Learned vectors were chosen ran- 

domly and subjected to  random noise, €. The CN then attempted to  categorize each input 

into two major groups (CN output = 1 and CN output = 0). The categorization error is the 

output noise. Table 11 presents the results of a comparison between the analytic bounds and 

the simulation. Rs=l for all simulations. SimPcn is the simulated CN output error, and 

EstPcn is the estimated or analytic CN output error (using the bounds derived in section 

For the most part the analytic bounds agree with the simulation, though they tend 

to  be optimistic in underestimating the error. These differences can be easily explained by 

the simplifying assumptions that  were made to  make the bounds mathematically tractable. 

The next question then is what is the effect of connectivity variation when grouping CNs 

Table I1 - 

c 6 f, m SimPcn EstPcn 
32 0.00 1 16 0.083123 0.018000 
32 0.10 1 16 0.112889 0.128000 
32 0.40 1 16 0.236964 0.384000 
32 0.00 2 32 0.083123 0.064000 
32 0.10 2 32 0.144383 0.106000 
32 0.40 2 32 0.368711 0.374000 
64 0.00 1 16 0.016711 0.016000 
64 0.10 1 16 0.030368 0.048000 
64 0.40 1 16 0.122627 0.376000 
64 0.00 2 32 0.016711 0.006000 
64 0.10 2 32 0.049372 0.034000 
64 0.40 2 32 

Comparison of Analytic and Simulated CN, R=l  
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into larger systems? A detailed study of larger systems is beyond the scope of this paper, 

but a simulation of a simple recursive, auto-associative network was done. 

5. MULTIPLE C N  SIMULATION 

Assume a single layer of CNs that are connected recursively such that  the outputs 

for all CNs input to  each CN. The result is a simple finite-state-machine. If the network 

exhibits positive information gain, then it  will eventually stabilize. Such a network per- 

forms auto-association in a manner similar to  Hopfield. 

For bit vectors, auto-association is where a network stabilizes to  the closest learned 

vector in terms of Hamming distance. Because there are asymmetrical connections, stan- 

dard network stability proofs based on energy models ([Fe185]) do not apply. But, it  can be 

shown that  if there is always information gain, then a recursively connected system using 

random CN update always stabilizes. 

The simulator for this model has several stages. In the first stage a connectivity 

graph is built. Here the user specifies the CN receptive field size (I tried both stochastic and 

deterministic connection selection with little difference in results). Next a set of learned 

vectors is created (these vectors are totally random, tha t  is, no higher order structure is 

added). The connectivity graph and the learned vectors are used to  program the codons 

(according to  the model of section 2.0). This entire structure is then read into the simula- 

tor. The simulation is operated like a finite-state machine in that  the CNs are initialized to  

some vector (a learned vector with added noise). The system runs sequentially, updating all 

CNs each clock, until it  stabilizes, the output of the CNs of the previous clock being used as 

CN input in the next clock. 
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Synchronous update is more efficient than asynchronous update. Unfortunately, sys- 

tems with synchronous update often fall into limit cycles. But this happened so rarely that  

synchronous update was used exclusively. One update of all CNs (to obtain a new set of 

outputs) is called a cyc l e .  Settling time was almost always 1-3 cycles, in fact, in the hun- 

dreds of simulation runs, independent of network size, there were less than ten runs that  

required more than three cycles. This performance forcefully illustrates the O ( 1 )  search 

behavior of parallel distributed models. 

Table 111 shows the results for two small networks. Both networks have 64 CNs. 

The activation level indicates the expected number of 1's in the learned vectors - a lower 

percentage indicates a more localized representation. The r a d i u s  is one half of the number 

of CNs in a CN7s receptive field; j ,  is the order of the codons; s e l e c t  is the expected number 

of codons, out of all possible codons, that  were used (for j , = l  all possible codons are taken, 

but for f , > l ,  due to  the increased number of possibilities, only 0.3 of all codons were used 

(these were selected randomly). error is the output noise, an input noise of 0.1 was used. 

There were 8 randomly chosen vectors in the training set. 

The results show the affects discussed earlier, tha t  is, by increasing the order, per- 

formance can be improved (since the information gain is increased). And, by increasing 

order and decreasing receptive field size, we can maintain performance for reduced connec- 

tivity, allowing us to  trade-off non-local communication for local computation. Also, the 

higher order network is less sensitive to  compression, which is shown by the fact that  

Activation n radius select error 
50% 1 32 1 .O 0.32 
12.5% 1 32 1 .O 0.15 
50% 2 10 0 .3  0.09 
12.5% 2 10 0 .3  0.08 

Table 111 - Recursive Network Simulation, 64 CNs 
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increasing the degree of distribution (by increasing the activation level) has less of an effect. 

Note tha t  if we apply our cube law to  the receptive field size, the total connectivity costs 

for the second and third networks were reduced by about 33=27. 

The network performance is quite poor (except in the most favorable case, it  adds 

noise to  the input). One reason is that  this network (the largest I could simulate easily on 

our VAX) was too small for our bounds to  hold (there were too few codons). But the main 

reason was that  the receptive field size was smaller than the input vector length. Since the 

input vectors were randomly selected, there was little higher-order information that  could 

be used by the codons to  decode correctly. It takes little compression to  essentially discon- 

nect two CNs whose receptive fields do not overlap. As a result, the collective network per- 

formance in the face of limited interconnect is even poorer than the single CN models 

predict. 

6. DISTRIBUTED VS. LOCALIZED 

Throughout this paper, it  has been tacitly assumed that  representations are distri- 

buted across a number of CNs, and that  any single CN participates in a number of 

representations. In a local representation each CN represents a single concept or feature. It 

is the distribution of representation that makes the CN's decode job difficult, since distribu- 

tion is the cause of the code compression problem. 

There has been much debate in the connectionist/neuromodelling community as to  

the advantages and disadvantages of each approach; the interested reader is referred to  

Hinton [Hin84] and Baum et al. [BMW86]. Some of the results derived here are relevant to  

this debate. As the distribution of representation increases, the compression per CN 

increases accordingly. It was shown above that the mean error in a codon's response quickly 



Connectivity Analysis February 19, 1988 

approaches 0.5, independent of the input noise. This result also holds a t  the CN level. For 

each individual CN, this error could be offset by adding more CNs. But adding more CNs is 

expensive and tends to  eliminate one of the arguments in favor of distributed representa- 

tions, tha t  is, the multi-use advantage, where fewer CNs are needed because of more com- 

plex, redundant encodings. As the degree of distribution increases the required connectivity 

and the code compression increases, so the information content of the individual weights 

goes to  zero (as they all approach 0.5). 

My hope is tha t  with the tools developed here, I will be able to  show that  the best 

representations for hierarchical/modular organizations will use representations tha t  are par- 

tially distributed and partially localized. 

7. SUMMARY AND CONCLUSIONS 

In this paper a single CN (node) performance model was developed tha t  was based 

on Communication Theory. Likewise, an implementation cost model was derived. 

The communication model introduced the codon as a higher-order decoding element 

and showed that  for small codons (much less than total CN fan-in, or convergence) code 

compression, or vector aliasing, within the codon's receptive field is a severe problem for 

large networks. As code compression increases, the information added by any individual 

codon to  the CN's decoding task rapidly approaches zero. 

The cost model showed that  for 2-dimensional silicon, the area required for inter- 

node metal connectivity grows as the cube of a CN's fan-in. 

The combination of these two trends indicates that  past a certain point, which is 

highly dependent on the probability structure of the learned vector space, increasing the 



Connectivity Analysis February 19, 1988 

fan-in of a CN (as is done, for example, when the distribution of representation is increased) 

yields diminishing returns in terms of total cost-performance. Though the rate of diminish- 

ing returns can be decreased by the use of redundant, higher-order connections. 

One aspect of this paper (which can be viewed as fortunate or unfortunate depend- 

ing on your point of view) is that  it  raises more questions than it  answers. The treatment of 

multiple CNs with limited receptive field size operating in a larger network was for the most 

part missing, since I feel that  it  is important to  understand the single CN first, before we 

move to  larger networks. 

The next step is to  apply these techniques to  ensembles of nodes (CNs) operating in 

a competitive learning or feature extraction environment. 
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