
The Filter - A Paradigm for Interfaces

Raimund K. Ege
Oregon Graduate Center

Technical Report No. CSE86-011
September 1986

Abstract

Interfaces play a crucial role in today's computer technology. Much effort is spent to
design and program user interfaces. This paper describes a new approach to this area of research
that is based on the concept of separating the presentation from the data, and describing the
presentation declaratively. The source and view of data are then related using constraints to
control the interface between them. Source and view objects are strongly typed to allow con-
struction of higher-level interfaces from composition of lower-level units.

This paper introduces the basic concepts of object, constraint and filter and shows how
they can be used to describe an interface. The syntax and semantics of the object and filter type
definition is given and related to the theory. Objects and filters are built from basic atoms using
constructors, inheritance and constraints. The critical issues in a possible implementation are
described. The paper concludes with ideas on how to build an interface specification tool based
on the filter paradigm and illustrates a geometric theorem as sample interface to a data struc-
ture.

1. Introduction

Interfaces are a crucial part of any computer, not only between users and the computer,
but also between programs running in a computer system or between different components of a
computer system. The quality of an application is partly judged by the quality of the user
interface. Significant effort is spent on designing and programming the interface part of any
application. This research is aimed a t reducing this effort. One goal is t o provide the designer
with a method or model t o produce interfaces that are acceptable t o the user in respect t o style,
usability and efficiency. Another goal is t o reduce programming by automatically generating
interfaces and re-using parts of existing interfaces. We are not proposing a particular style of
interfaces, but a new abstraction for building interfaces.

Object-oriented Systems

In a n object-oriented environment a n application is represented by objects. These objects
communicate with each other and with the user of the application. An important step towards
efficient user-interface design was made when i t was realized tha t interface and application
should be decoupled. Thus the interface is also represented by objects. This research is con-
cerned with workstations tha t are able t o display a great range of objects using high-resolution
bitmap displays. The user perceives the objects presented t o him on the screen and interacts
with them by using the input devices of a modern workstation. Interface objects and applica-
tion objects are related. For example, the user sees a graphical representation of a tree, how-
ever the application knows of the tree as a nested collection of records. Conceptually, the tree
exists only once and has many aspects. Each participant in such a system looks a t an object in
the universe and models i t in his own world. In the tree example, the user looks a t a graphical
image of the tree consisting of bits on the bitmap display, the application program views the
tree in terms of bytes and addresses of memory. We can picture tha t abstraction as looking a t
an object in the universe through telescopes using different filters. Figure 1.1 illustrates this
conceptual model. User and application each have their own view of the universe.

To define an interface according to this metaphor we could initially specify the object in
the universe and the filtering mechanisms for both participants in the interface. The
specification of the object would be very elaborate because in describing the object we have to

1. Introduction

Viewing

Figure 1.1: Conceptual model.

consider all the perspectives from which we ever want to look a t it. The filtering mechanisms,
however, would simply pass through a portion of the object information without change.
Instead, the approach we are taking is to define the two objects that result from the filtering.
The object in the universe disappears and the two filtering mechanisms are combined into one.
So, instead of having the user and the application look a t the same object using a filtering tech-
nique (Figure 1.1), we define two separate objects, one in the user's reality and one in the
application's reality, which are connected via a control mechanism (Figure 1.2). We could call
the control mechanism a 'channel' [Kay 831 or a 'mediator' [Goldberg 851, but because we want
to reflect the original idea of filtering aspects of an object in the universe into the reality of the
interface, we name it 'filter'.

Constructing Filters

Our notion of an interface has three parts as illustrated in Figure 1.2. Two objects,
source and view, are connected by a filter. The source and view are objects that can be part of
the application's or the user's object space. The filter component relates the two objects. It

w view

Figure 1.2: Filter paradigm.

The Fil ter - A Paradigm fo r Inferfaces

constrains the source and view objects to be representations of a conceptual object tha t has
them as two different views. Both objects belong to their respective environment, which could
be the memory of a program in an application or the user's display screen. In general, a filter
can connect any two objects. Bigger filters can be constructed from smaller filters using inter-
mediate objects or sharing subparts of larger objects. Thus we can build filters from subfilters,
but the result is still a fi lter connecting a source and view object. If either object is changed the
fi lter has to enforce the conceptual equality. If the application changes the data in the memory
of the program, this change has to be reflected on the screen. If the user expresses a change to
the representation on the screen, the memory of the program is updated.

In contrast, consider a screen editor. The data on the screen (view) reflects the contents
of a file stored somewhere on a disk (source). The communication protocol between the two
objects, screen view and disk file, is well defined. The disk file is displayed initially, the user
updates his screen view and finally the new version is saved back to the disk file. Here the
equality of the two objects is not maintained a t all times. The constraint enforcement is
separated into two phases, one a t the beginning of the editing session and one a t the end.
Another example is a spreadsheet program where relations between objects (numbers) can be
expressed by equations. Subsequent numbers can be defined in terms of previously defined
numbers. In common spreadsheet programs changes are only forwarded in one direction through
the equations. In our notion, changes on either side of the equation are reflected on the other
side.

This paper represents the first step towards the goal of automatic generation of interac-
tive displays using the filter paradigm. It defines a filter specification language. Future
research will be aimed a t implementing this language using constraint satisfaction techniques
and a t an interactive tool to specify interfaces graphically. In the next section we describe
related ideas and distinguish our approach from the ongoing research in the field. Section 3
introduces the basic concepts, which are objects, constraints and filters. Section 4 gives syntax
and semantics for the object and filter specification language. Section 5 discusses the issues that
concern the implementation of a prototype interface with filters. We conclude this paper with
ideas on how to build an interface specification tool based on the filter paradigm. In the appen-
dix we describe an implementation of a geometric theorem using our filter paradigm.

2. Related Work

The goal of this research is to provide a high-level specification of interfaces and a good
model for modular construction of displays that will allow automatic generation of interactive
displays. The areas that are involved in seeking a solution are:

- interface design and specification
- displaying objects in an object-oriented environment
- constraint languages and satisfaction systems.

In designing any interface, we have to realize the two major issues of communicability,
which is how the user can express his wishes, and perceptibility, which is how the user perceives
the data presented to him [Bornique 851. Thus, an interface will have two components. Viewing
an interfaces as a two-way street, a user interface management system can implement a media-
tor to control an input and output pipe [Takala 851. Editing can be used as an abstraction of
user interaction [Scofield 851. Also, there are semantic issues to be observed. Using the Vienna
Development Method, a group a t University of Stuttgart [Studer 841 defined dialog concepts not
only in terms of windows, menus, etc., but also for interactive concepts such as user input, error

2. Related Work

handling and undo operations. Several other theoretical approaches using algebraic techniques
can be used to specify user interfaces and interaction axiomatically [Chi 851.

Our approach was guided by experience with the Smalltalk model-view-controller (W C)
paradigm [Goldberg 831. This paradigm employs the idea that all data are kept by a model.
The presentation is kept in a view and a controller handles the interaction. As mentioned in
the first section, this arrangement makes it necessary that the model knows about any aspect
from which it can be observed. Programming experience has shown that this paradigm is hard
to follow. The Smalltalk Interaction Generator (SIG) tried to add a declarative interface on
top of the MVC mechanism [Nordquist 85, Maier 861. Objects need type information to guide
an automatic display. The Incense system p y e r s 831 uses type information supplied by a com-
piler to display objects. The user can influence the display format but cannot update through
this system. The display function in Allegro [Ege 841 also deals with viewing database informa-
tion using the scheme of a network database system.

Constraints are used to specify relations and dependencies in a secalled a c t i v e database
interface system [Morgenstern 831. Other systems use constraints as their major construct, such
as ThingLab [Borning 791, which allows constraints to be expressed in a graphical manner. An
early system that employed constraints to express graphical relations was Sketchpad [Suther-
land 631. The language Ideal, used in typesetting graphical pictures, is based on constraints and
demonstrates their power and usefulness1 p a n Wyk 821. Bertrand [Leler 861 is a language that
can specify and generate constraint satisfaction systems. It has been demonstrated that it can
be used to build graphics constraint languages.

3. Basic Concepts

As described in the first section of this paper, our filter paradigm employs objects, con-
straints and filters. In an object-oriented system objects represent entities tha t we want to
model. These objects have structure that are defined by their types. Constraints can be defined
for an object and between objects. A filter is an object that represents a constraint that is
defined between two objects of specific types. Objects can be connected by filters to form an
interface. Objects in such an interface are called source and v i e w objects. The source object is
displayed by the v i e w object when the interface is used for displays, but we can use filters to
construct other interfaces. Section 3.1 gives an introductory example. Sections 3.2, 3.3 and 3.4
explain the basic concepts of object, constraint and filter and give examples. Section 3.5 covers
the introductory example in more detail.

3.1. QuadArrayMirror Example

As introductory example, let us consider objects that are QuadArrays. A QuadArray is a
tree-like data structure. Each node in the structure has either four subnodes or is a leaf node.
A text string is attached to each node as a label. As interfaces can be constructed between any
types of objects, we want to construct an interface between two objects of type QuadArray.
The task of the interface is to act as a mirror, reflecting one object to the other. The text
labels a t the nodes and the structure of the QuadArrays are to be reversed. We start out to
define a subpart of the interface that reverses a text string. Each label on one side of the

' Figures 1.1, 3.3, 4.10 and 5.4 of this paper were produced using Ideal. The implementation of some
graphical objects described in Section 5.2 is similar to Ideal.

The Filter - A Paradigm for Interfaces

interface needs to be related to the corresponding label on the other side of the interface in
terms of text reversal. We call such a relationship a filter in general, and TextMirror filter for
this specific relation. This relationship can be expressed as a constraint. The constraint is not
static. If the label on one side is changed, the other label is changed accordingly, preserving the
mirror interface. If the QuadArrays on either side of the interface consist of only one node, this
TextMirror filter would be a correct implementation of our interface, if the nodes containing the
labels are otherwise identical. If subnodes are added to the QuadArray, the filter has to allow
TextMirror subfilters for the label of the subnodes. TextMirror filters then connect the label of
the first subnode of one side to the label of the fourth subnode of the other side, etc. By con-
structing an interface for QuadArrays that have one sublevel from TextMirror filters, we have
created a new filter. The new filter not only holds information on which nodes are connected to
which other nodes, but also knows the structure of the connections. The concept of adding four
more TextMirror subfilters for each sublevel can now be applied recursively to define the desired
interface as a QuadArrayMirror filter.

Figure 3.1 illustrates this example as it was implemented in Smalltalk2. The QuadArray

QuadArray Mirror

madam i'm
adam madam

- -

Figure 3.1: QuadArrayMirror interface.

- -

See Section 5 on implementation.

3. Basic Concepts

objects are displayed using the SIG system [Nordquist 851. Two QuadArrays are visible. We
look a t them from the top. The node in the middle is the top node and is surrounded by its sub-
nodes. The subnodes are again QuadArrays that can have subnodes.

This examples illustrates that , in order to create interfaces, we need information about
the type of the objects that participate, that objects can be related using constraints, and that
higher-level interfaces can be constructed from filters.

3.2. Objects

Objects are present a t the two sides of a filter. If the interface is more complex, objects
can also serve as intermediates in a chain of sub-interfaces. We want to define types for
objects. Types are needed because the filters need information about the structure of the eource
and view objects, and because we want to check the type of an object when we use i t to com-
pose filters to create larger interfaces. The type is defined in terms of attributes an object has.
The attributes can be of any known type. Following the syntax of well-formed terms [Ait-Kaci
841, we call attributes addreaeea. We distinguish between atomic objects, which are of an atomic
type such as integer, boolean, character, and structured types, which are formed from atomic
types using the structural constructors set, array, condition and recursion. Addresses for a type
can be defined explicitly. In addition a type inherits all addresses from all its subsuming types.
Conditions can be placed on addresses to ensure well-formedness of a type.

An example object type is QuadArray (Figure 3.2). It contains three addresses: label,
elemente and subarray. They denote the constituent types TextString, Integer and array of
QuadArray. We assume that the type TextSt r ing is already defined. All types include the
value NIL, which expresses the fact that the address is undefined. In the example, this value
can be used to terminate the recursion. The iteration in the eubarray address uses the address
elements to express the iteration factor. The elemente address is also used in the const ra in t
statement, which constrains the value held a t this address to be the integer constant 4.

An important notion is subtyping. Subtypes can be defined implicitly by using the same
and more addresses as an existing object type, or explicitly by inheriting addresses from another
object type. This inheritance leads to a type hierarchy, which can be useful when determining
which objects can be plugged together in filters to form an interface. If object types belong to a
type lattice (Figure 3.3), then a filter that is defined for a specific object type can also be
applied to all its subtypes. The symbols ' T ' and 'I ' denote the top and bottom in the type
hierarchy. Ait-Kaci describes algorithms to compute upper and lower bounds in a type hierar-
chy [Ait-Kaci 841. As an example, consider an interface that is built from a filter that is defined
for a view object of type DisplayMedium. The filter constrains a source object to be displayed

Object Type QuadArray
label --, TextString
elements --, Integer
subarray [elements] --, Quadhray
constraint IntegerIdentity (elements, 4)

end

Figure 3.2: QuadArray object type.

The Filter - A Paradigm for Interfaces

DisplayMedium DisplayText Path

Form Paragraph TextList Line Arc

Figure 3.3: Type lattice for display classes in Smalltalk.

on the DisplayMedium. The DisplayMedium is only an abstraction for different subtypes. So,
we expect this filter to display the same source object on a view object of type Displayscreen,
which is a subtype of DisplayMedium.

3.3. Constraints

Constraints are the backbone and the basic building tool in our filter paradigm. We
have to distinguish three areas where we use constraints. First, filters represent constraints and
are used to express interfaces. Second, constraints are used to place conditions on objects as
part of the object type definition. Third, complex constraints, for e.g. arithmetic, can be solved
using an external constraint satisfaction system.

Our filter paradigm is based on the idea that we constrain the participating objects rela-
tive to each other. We provide a model to structure this relation between the aource and view
objects. The QuadArrayMirror filter (see Section 3.1) illustrates how to construct a mirror
interface by decomposing the overall mirror constraint into subfilters. Thus, a way to imple-
ment the filter paradigm would be to compile the filter description into a constraint. This con-
straint can be solved and maintained using existing constraint satisfaction systems [Borning 79,
Leler 861. In viewing the interface description as an overall constraint, we can allow interpreta-
tion, compilation and optimization of the interface. The constraints also help us in discussing
the semantics of the interface.

3. Basic Concepts

Constraints are also used to express conditions that an object must fulfill. For example
the object QuadArray (see Figure 3.2) has exactly four subnodes. But we could also impose
more complex restrictions on an object and an object can restrict addresses that i t has inher-
ited. As an example, consider the Cursor subtype of Form (see Figure 3.3). In its type definition
it restricts the display bitmap to have height and width 16. This mechanism is very helpful
when defining types.

The basic building block in our paradigm is a filter atom. The QuadArrayMirror filter

used the TextMirror subfilter, which is built from CharacterIdentityAtom filter atoms3. We do
not expect that all interfaces can be decomposed to identity subfilters. Thus, we provide an
interface to a constraint satisfaction system4. For example, if we want to describe graphical
objects, we need arithmetic constraints to express basic positional relationships. To define a
point as the middle of a line between two other points we need to solve the constraint:

Middle = (PointOne + PointTwo) / 2.

In the appendix we give details of how this constraint can be implemented.

3.4. Filters
The filter represents a constraint that has to be maintained between two objects. The

filter is defined for specific types of objects and is identified by its type name. The QuadArray-
Mirror filter example in Section 3.1 illustrates how we can decompose an interface using filters.
The TextMirror subfilter is itself defined in terms of atomic subfilters. We have to distinguish
filter atoms, which have to be provided, and higher-level filters, which are constructed from
filter atoms or other constructed filters. We will refer to constructed filters as filter packs.

Our filter specification languages provides constructors to declare filter packa. The set
constructor declares several arbitrary subfilters. The iteration constructor declares a number of
identical subfilters. The condition constructor declares a subfilter if an expression is true.
Recursion allows us to declare subfilters recursively. Each constructor establishes subfilters and
also keeps information on how the subfilters are related. A subfilter is established by giving its
type name and associating aource and view objects to it. Associating source and view objects to
a subfilter is done by passing references to the subfilters.

In general, we can distinguish end-to-end and side-by-side subfilter combination. In end-
to-end construction, the filter is composed from two subfilters. The view object of the first
subfilter and the source object of the second subfilter agree on a common intermediate object.
Figure 3.4 shows a filter pack tha t constructs an identity filter for integers from two filter atoms
(IntegerCharacterAtom and CharacterIntegerAtom), which serve as conversion filters between
an integer and a character object6. The intermediate object is of type character. The make
statement tells what subfilters to instantiate and how to relate their sources and views in order
to instantiate a PseudoIdentity filter. Note that the filter definition introduces a local variable
that constitutes the connecting object. The resulting filter is not exactly an identity filter
because the intermediate object is of type character. The integer to character conversion filter
atom restricts the participating integer numbers to one digit. Figure 3.5 diagrams the filter
pack using end-teend construction.

In side-by-side construction the filter is composed from a set of two or more subfilters.
The view object of the first subfilter and the view object of the second subfilter are part of the

'Equality filter atoms are described in Section 4.3.1.

See Section 4.3.3 on constraint filter atoms.

See Section 4.3.2 on conversion filter atoms

The Filter - A Paradigm for Interfaces

Filter Type PseudoIdentity (source : Integer , view : Integer)
var

c + Character
make set of

IntegerCharacterAtom (source , c)
CharacterIntegerAtom (c , view)

end

Figure 3.4: PseudoIdentity using character intermediate object.

Figure 3.6: PseudoIdentity as a filter pack.

view object of the constructed filter pack. Analogously, the source objects are part of the source
object of the filter pack. Figure 3.6 and 3.7 illustrate the NumberString filter. It is defined for
objects of type Dual and Pair. The object type Dual defines a n array of two characters. The
object type Pair defines two integers digits. One integer represents the first digit of a number,
the other the second, which are concatenated into a string representing the whole number. The
filter is built from two instances of the IntegerCharacterAtom filter atom, which was also used
in the last example. The IntegerCharacterAtoms are instantiated with references to their
source and view objects tha t are part of the source and view objects of the NumberString filter.

3.5. QuadArrayMirror revisited

Using the object type definition of QuadArray from Figure 3.2, we now give a more
detailed description of the QuadArrayMirror interface example. This filter is constructed, using
the set constructor, from a TextMirror subfilters and four QuadArrayMirror subfilters. Figure
3.8 illustrates the filter definition. The set of statement establishes one subfilter for the label
subparts of the source and view objects, and a conditional subfilter constructor for the subar-
rays. The condition constructor establishes the iteration subfilter constructor only if one of the
subarrays of source and view is not NIL. The iteration construct establishes QuadArrayMirror

'We assume for this discussion that the TextMirror subfilter is already defined.

- 9 -

3. Basic Concepts

Object Type Dual Object Type Pair
field [2] + Character first + Integer

end second + Integer
end

Filter Type NumberString (source : Pair , view : Dual)
make set of

IntegerCharacterAtom (source.first , view.field[l])
IntegerCharacterAtom (source.second , view.field[2])

end

Figure 3.6: Object a n d filter type definition for NumberString.

Figure 3.7: NumberString filter.

Filter Type QuadhrayMirror (source : QuadArray , view : Quadhray)
var factor -+ Integer
make set of

TextMirror (source.label , view.label)
condition source.subarray # NIL or viewsubarray # NIL

iteration factor times i
QuadhrayMirror (source.subarray[i], view.subarray[factor-i+1])

merge source.elements factor
view.elements factor

end

Figure 3.8: Filter type for QuadArrayMirror.

subfilters recursively. T h e i teration fac tor serves as a local variable t h a t is bound to t h e

The Filter - A Paradigm for Interfaces

elements address of the source and view objects. The symbol '=@' expresses that fact in the
merge statement.

This example has been implemented in Smalltalk for experimentation. QuadArray
objects are instances of a Smalltalk class. The QuadArrayMirror filter is implemented as an
object tha t keeps track of two QuadArrays to be controlled. Each subfilter connects one node
in the source object to one node in the view object. The QuadArrayMirror filter is capable of
creating and deleting subfilters automatically as the structure changes in the QuadArrays. All
constraints representing the filter were translated into Smalltalk code.

Using end-to-end composition (see last section), we can now build a higher-level filter con-
necting two objects of type QuadArray using a third, intermediate, object of type QuadArray
and a set of two QuadArrayMirrors. The result is an identity filter. Obviously, there is a much
simpler filter equivalent to this construction. An optimizing implementation could detect the
redundancy and eliminate the middle object.

This example showed an interface from objects of type QuadArray to objects of the same
type. But what we really want would be an interface from a terminal to objects of type Quad-
Array. In order to build such an interface we will have to define filters that take the Quad-
Array step by step, in end-bend combination, to the desired screen representation. Then we
connect these subfilters and all the necessary intermediate objects, and so define an interface.
Section 5 on implementation describes some of the concepts that we need when we approach the
screen, such as how to render graphical objects and sensor input according to our filter para-
digm.

4. Filter Specification

4.1. Introduction

A filter defines a mediator between two objects. We described earlier how we understand
tha t logical relationship and how we hope to build interfaces based on this notion. This section
presents a complete definition of a filter specification language. We present a syntax for a filter
type definition. A filter type provides the framework and structure for building a filter relation
between the underlying objects. The source and view objects are typed in order to insure well
constructed filters and legal filter compositions. When composing filters together to form a
larger interface, the intermediate objects have to be checked as to whether they fit the type
framework. Filter composition can also impose constraints on the source and view objects.

Object types are built from atomic types by grouping previously defined types together to
form new types. Several grouping mechanisms are provided. New object types can be defined as
subtypes of existing types to create a type hierarchy. Filter types are built from atomic filters,
which establish low level relationships between object types, or by grouping according to pro-
vided mechanisms. In order to do construct filter types correctly, type information from the
underlying source and view objects is needed. The structure of the filter type reflects the struc-
ture of the constituent objects.

The syntax for object and filter types is given in Section 4.2, 4.3, and 4.4. Examples are
given that illustrate the definitions. The object type examples in Section 4.2 are used in the
filter type examples of Sections 4.3 and 4.4. The meaning of a filter specification is discussed in
Section 4.5 on semantics. This specification is done in terms of an informal description of
semantic functions. The discussion distinguishes between the static and behavioral case, where
the static case is for creating a filter from existing objects, and the behavioral case deals with

4. Filter Specification

input or change behavior.

4.2. Object Types

In spite of the cliche' that "typing is for people with poor memory and is only for the
benefit of the compiler," in order to allow filter composing and to ensure correctness of a filter
construct, we need the notion of type for the objects that participate in the filter definition.
The idea is to separate type checking from run-time to get well-formed programs. This idea is
well-founded in the literature p i lner 781.

We want to support the notions of aggregation and specialization as a type definition
mechanism [Albano 831 [Borgida 841. With aggregation we can build higher level objects from
lower level components. Specialization allows us to refine an existing type by adding more type
information to it.

Aggregation builds objects from components. Each component has an address and is of
an object type tha t is already defined. The lowest level components, from which any object
type is built, are predefined atomic types. For atomic types we allow:

- Integer for integer numbers
- Character for single characters
- Boolean for truth values 'true' and 'false'
- Bit for bit values '0' and '1'

All object types include the value NIL that denotes the undefined value.

In specialization we can refine an existing object type by inheriting its components and
adding new ones. We are using strict inheritance, which means that all components are inher-
ited by the specialized object type. This is in contrast to default inheritance, where not all
attributes have to be inherited [Borgida 841.

These aggregation and specialization mechanisms allows us to build a type hierarchy in
two ways: Explicitly, by specializing existing object types, and implicitly, by aggregating the
same components as in an existing types plus more others [Albano 831. In addition, all object
types can impose intra-object constraints on their components. Thus we can create a type
hierarchy or a partial order on the object types.

Object types are defined using the notion of well-formed terms [Ait-Kaci 841 extended
with some syntactic sugar to express condition and iteration in an easy way. They are defined
as follows:

Object Type <Name>
inherit from <object types>
<address-expr_list>
constraint <constraintname>

end

Where

<Name>
is a unique name for this type of object. Subsequent object and filter definitions can use
this name when constructing more complex objects or filters. The name has to start with
a capital letter.

<object types>
are the names of previously defined object types, from which components are inherited. If
inherited components have the same address in more than one subsuming type, t,hen the

The Filter - A Paradigm for Interfaces

addresses are concatenated with the names of the object types where they are defined.

<address-expr_list>
establishes the structure of the object. It is built from address expressions. There are
address expressions of basic, iteration and condition form, which are defined below.

<constraint_name>
is the name of a constraint that has to be satisfied for this object type to be well-formed.
The constraint could be a previously defined filter type or a constraint that is supplied
from outside. The constraint or filter can name addresses from the current object type
definition or from supertypes that were mentioned in the inherit from statement.

The inherit from, <address-expr_list> or constraint statements can be omitted if not
needed. The <address-expr_list> is a list of one or more address expressions. The basic
address format is :

<address> + <object-type>

where <address> is a label for this subpart of the definition and <object-type> refers to
another Object Type definition or to an atomic type. We also allow literals of an atomic type.
Literals of type Integer are denoted by numbers, of type Character by quoted characters, of
type Boolean by the words 'true' and 'false', and of type Bit by 'OB' and '1B'. If a literal is
specified in an object type definition, then this address will be constant for all instances of the
object type.

Basic address expressions can be grouped together to form a record-like structure. Con-
sider the list of integers '(1,2,3,4)'. In order to specify an object type for this particular
instance, we group together basic address expressions of type Character and Integer. The
character types are denoted by the literals '(', ',' and ')'. The integer types are denoted by the

Object Type Array-1 Object Type Array2
subfield [4] + Integer label 4 Integer

end dependents + Array-1
end

Object Type List-1 Object Type List-:!
str-1 4 '(' label + Integer
sub-1 + Integer dependents -, List-1
str-2 + I , ' end
sub-:! + Integer
str-3 4 I , '

sub-3 + Integer
str-4 ','
sub-4 + Integer
str-5 4 ')'

end

Figure 4.1: Sample object types.

4. Filter Specification

name of their atomic type. Figure 4.1 shows object type List-17, which specifies the type dis-
cussed above. The other object types in this example are described later in this section and are
used as source and view object types in the discussion of filter types later in this paper.

For succinctness, when multiple subparts of the same type are needed, we introduce the
iteration address which has the form:

where <iterationfactor> specifies how many times this address should be replicated. The
<iterationfactor> can be an integer constant or an arithmetic expression that evaluates to
integer. Figure 4.1 shows object type Array-1 where 4 subfields are summarized as an iteration.
An instance of this object type could be: '1 2 3 4', modelled as an array of integers. Figure 4.1
shows object types A r r a y 2 and List-2 that reference not only atomic types but also previously
defined object types, such as Array-1 and List-1.

To express the fact that object types can have variable structure we introduce the condi-
tional address of the form:

where the <address-expr> exists only if the <union-condition> evaluates to true. The
<union-condition> has to evaluate to type Boolean. The expressions used in the union-
condition have to be bound in the current environment, which includes other addresses and pro-
perties of the object type. Figure 4.2 shows object types A r r a y 3 and List-3 with a conditional
address expression. To express an object type in terms of itself we need to introduce recursion.
Recursion is specified by using the object type name of the current definition in the
<object-type> specification of the address expression. Mutual recursion is also allowed. Figure
4.2 shows object types Array-4 and List-4, which are defined recursively. Note tha t recursion
permits cycles in our data structures. To illustrate the data structures, Figure 4.3 shows graphs
of some of the types defined so far.

This type specification for objects is closely related to well-formed terms [Ait-Kaci 841,
but he has no constructs for iteration and condition in well-formed terms. Iteration can be

Object Type Array3 Object Type Array-4
label -+ Integer label -+ Integer
(label = NIL) : (label = NIL) :

dependents -+ Array-1 dependents -+ Array-4
end end

Object Type List-3 Object Type List-4
label Integer label -+ Integer
(label - NIL) : (label = NIL) :

dependents -+ List-1 dependents -+ List-4
end end

Figure 4.2: Sample object types with condition and recursion.

'Note that this type does not capture the order of the fields the way an array would

- 14 -

The Filter - A Paradigm for Interfaces

A r r a y 2 Array-4

integer Array-1

integer integer integer integer

Figure 4.3: Graphs of sample object types.

thought of as pure notation simplification, except when the iteration factor depends on some
other part of the object. Condition can be viewed as the union of two separate well-formed
terms, one including the address expression of the conditional address, the other not. The first
object type is a subtype of the second.

Subtyping allows us to build a type hierarchy. A type hierarchy is useful because it
allows us to define general filters that not only can connect objects of a given type but also all
their subtypes. An object type can implicitly be a subtype of another object type, by using the

Object Type Array4
size --, Integer
subfield [size] + Integer

end

Object Type Array-7
inherit from Array-5
constraint IntegerIdentity(size,4)

end

Object Type Array-6
inherit from Array-5
name[lO] -+ Character

end

Figure 4.4: Sample object types using inheritance.

4. Filter Specification

addresses and constructs in its definition, or it can be explicitly defined a s a subtype of some
other object type. If an object type definition names another object type in its inherit from
statement, then all the components from tha t object type are inherited. Figure 4.4 shows object
type Array-5, which defines a n array of integer. The size of the array is stored within the
definition. Array-1 of Figure 4.1 is an implicit subtype of Array-5. Array-6 of Figure 4.4 is an
explicit subtype of Array4. Operationally it does not matter whether a n object type is an
implicit or explicit subtype of another object type.

In the examples so far, we explained how to build structured objects. If we want t o
impose conditions on these structures we can use the constraint statement, which allows us to
name filter types or constraints t o insure the well-formedness of an object. This concept
corresponds t o the intra-object constraints discussed earlier. The constraint can name explicit
addresses or addresses tha t are inherited from the supertype. In contrast t o the condition
address expression, the constraint statement does not directly affect the structure of the object
type but imposes restrictions on the values tha t are stored in an object of such a type. Figure
4.4 shows Array-7, which is also a subtype of Array-5, but i t names the constraint tha t the
number of subfields is always fours. Array-7 denotes the same object type as Array-1 of Figure
4.1.

Once we have defined object types, we can create instances of it. We need instances of
object types when we define source and view objects for a filter or as variables in a filter type
specification (see Section 4.4). An object is instantiated by giving its name and an instantiation
list. The instantiation list contains pairs of address and initial value. The object is then
instantiated using the specified initial values.

An object is accessed by traversing a path of addresses. T o access subparts of the
objects we have t o specify a path through the object structure by using the addresses in a dot
notation: 'myList.labell for a variable 'myList' of type List-3 a t address 'label'. We distinguish
direct and delayed access. In direct access the structure of the object is traversed according to
the path and the correct object is returned. In delayed access we store the object identity
together with the path to allow access on need a t a later time. Delayed access is needed
because i t is possible tha t a n object does not comply with the given path a t the time when the
path is defined, but may be changed in a dynamic environment. It is also possible tha t objects
along the path change, thus changing the result of the path evaluation.

4.3. Filter Atoms

A filter enforces a constraint between its source and view object. It serves a s a control
element between the two objects. The objects are constructed from atomic types. In order t o
control the objects, a filter has t o constrain the relations of their atomic types and the relation
of their structure. A filter atom connects two objects tha t are of atomic type or are of a type
where the substructure does not mattere. A filter is therefore built from filter atoms, which are
composed by using filter constructors as described in the next section on filter packs.

The idea is t o build filter incrementally from filter atoms. Filter atoms are predefined or
imported from a n external constraint satisfaction system. Each of these filter atoms has a filter
type. In order t o use i t in a filter pack definition i t has t o be named in the make statement
using the syntax:

Constraints name addresses. The integer constant four has no address. It is a value. A possible com-
piler for the filter description has to detect that and create an object that has a constant value of four and
cannot be changed, i.e., is anchored during constraint satisfaction.

As example consider the constraint filter atom in Figure 4.5.

The Filter - A Paradigm for Interfaces

<filter atom name> (<source object> , <view object>)
or

use <variable> with <signature> (<source object> , <view object>)
where <filter atom name> is the name of the filter, <variable> is a variable that will hold the
name of the filter a t the time when i t is instantiated, <signature> gives the types of source and
view object as a pair, and <source object> and <view object> are path expressions that can
be evaluated to yield the corresponding objects for source and view when the filter is instan-
tiated. The aource and view objects are identified by position.

We distinguish four groups of filter atoms. There are:

- equality filter atoms
- conversion filter atoms
- constraint filter atoms
- implementation filter atoms

Each group represents a class of filter types. Note that we always deal with relations between
types. In our filter type definition we are only concerned about types. What the filter type
mechanism establishes is a framework of relations between object types tha t could be thought of
as slots, which are filled when the filter is instantiated with objects of the appropriate type.
This framework constrains the value of objects that fill the slots. Notice, we cannot constrain
two integer objects to be the same, but we can build a filter framework tha t will constrain two
integer addresses to hold the same value.

4.3.1. Equality Filter Atoms
For each of the atomic object types there is an equality filter atom. The filter atom

represents an equality constraint. The following filters are predefined10:

- IntegerIdentity (Integer , Integer)
- CharacterIdentity (Character , Character)
- BooleanIdentity (Boolean , Boolean)
- BitIdentity (Bit , Bit)

Equality filter atoms ensure that their associated 8ource and view objects hold the same value.
They are implicitly defined on the participating type, e.g., 'IntegerIdentity' is defined as a filter
from type Integer to type Integer. There is no directionality implied among the objects for
dynamic changes. However, when a filter atom is first instantiated we will propagate the value
from the source object to the view object if necessary. Changes on either side will be pro-
pagated to the other side.

4.3.2. Conversion Filter Atoms
Similar to equality filter atoms, conversion filter atoms represent constraints. Conversion

filter atoms are given between the atomic types, such as:

- IntegerCharacterAtom (Integer , Character)
- IntegerBooleanAtom (Integer , Boolean)
- IntegerBitAtom (Integer , Bit)

- CharacterIntegerAtom (Character , Integer)
- CharacterBooleanAtom Character , Boolean)
- CharacterBitAtom (Character , Bit)

lo Equality filters can be defined for arbitrary structured objects using the appropriate equality filter
atoms and the filter constructors according to the object structure.

4. Filter Specification

- BooleanIntegerAtom (Boolean , Character)
- EboleanCharacterAtom (Boolean , Character)
- BooleanBitAtom (Boolean , Bit)

- BitIntegerAtom (Bit , Integer)
- BitCharacterAtom (Bit , Character)
- BitBooleanAtom (Bit , Boolean)

It is obvious tha t the object types of these conversion filter atoms are restricted. E.g., the
IntegerCharacterAtom will restrict its aource object to one-digit numbers and it view object to
the characters '0' t o '9'. Note that there is a conversion filter atom for both directions, e.g.,
IntegerCharacterAtom and CharacterIntegerAtom, to allow initial propagation to be done in
either direction.

4.3.3. Constraint Filter Atoms

As mentioned earlier, our filter specification represents constraints, but for certain
geometric and computational constraints we want to provide a trap door to an external system.
Constraint filter atoms are externally defined filter atoms for which there is a constraint-
satisfaction technique known to an external system. These constraints are specified like subrou-
tine calls, where the parameters identify the objects that are to be constrained. Constraint
filter atoms could be implemented in terms of an interface to the Bertrand programming
language [Leler 861 or to a system like ThingLab [Borning 791.

Figure 4.5 shows an arithmetic filter that defines the view to be the sum of the two con-
stituents of the source. The source is of type IntegerPair, the view of type Integer. The syntax
follows the rules for filter packs except that the make statement is replaced by a constraint
specification. The 'P1usConstrainty call is a reference to an external constraint satisfaction
mechanism. It has three parameters and constrains the third parameter to be the sum of the
first and second.

In addition, the constraint-satisfaction mechanism needs some information on which
object is the "anchor" or "preferred object" in order to resatisfy the constraint correctly,
because we don't want it to respond to a change to an object by undoing it. This information
will be provided by the interface mechanism and can be deduced from the aource and view
objects. In case of initial value propagation the source object is preferred. In the case of a

Object Type IntegerPair
first -+ Integer
second Integer

end

Filter Type IntegerPlus (source : IntegerPair , view : Integer)
constraint

Plusconstraint (source.first , source.second , view)
end

Figure 4.6: Object and filter type for IntegerPlus constraint filter atom.

The Fil ter - A P a r a d i g m fo r Interfaces

change, the "anchor" marking is inferred from the state of the objects (see Section 4.5 on
semantics).

4.3.4. Implementat ion Fil ter Atoms

In addition to the filter atoms mentioned above, an implementation of the filter paradigm
has to provide more primitives. Section 5 on implementation describes input and output primi-
tives that are modelled as filter atoms.

4.4. Fil ter P a c k s

A filter pack is a higher-level filter that is constructed from atomic or previously defined
filters. A filter-pack type definition represents a constraint between two objects. Throughout
this paper these objects were called the source and view object.

The type definition follows this syntax:

Fil ter T y p e <Name> (source : <source-type> , view : <view-type>)
Y a r

<variable declaration list>
m a k e

<filter construct list>
merge

<address-equals-variable list>
end

Where:

<Name>
is a unique name for this type of filter. Subsequent filter definitions can use this name
when constructing more complex filters. The name has to start with a capital letter.

<source-type>
is labelled by the keyword 'source' and specifies the type of the source object of the filter
that is defined. It has to be either atomic (Integer, Boolean, Character , Bit), or has to
refer to an object definition.

<view-type>
is labelled by the keyword 'view' and specifies the type of the view object of the filter that
is defined. It has to be either atomic (Integer, Boolean, Character , Bit), or has to refer
to an object definition.

<variable declaration list>
is a list of variable names followed by their type. The types must be either atomic
(Integer, Charac te r , Boolean, Bit), or refer to a object type definition. These variables
can be used to create intermediate objects to connect complex filter packs or to reduce the
amount of text. Note that there is an important distinction to make: variables can be
used to create intermediate objects to connect subfilters, and variables can be introduced
for clarity reasons, which are later unified with components of either the source or view
object. This unification process can be controlled in the merge statement.

<filter construct list>
establishes the structure of the filter pack, by instantiating filter atoms or previously
defined filter packs. Analogously to the object type definition, we introduce iteration, set,

4. Fil ter Specification

condition and recursion. The valid filter constructs are:

- i te ra t ion <expression> t imes <variable>
- Bet of
- condition <condition>
- implicit recursion

These subfilters are established between components of the source and view objects or the
variables tha t are introduced in the variable declaration list. A filter is instantiated by
using its specific name and by identifying the appropriate aource and view object, or by
providing a variable, holding the filter name, plus a signature for aource and view object
tha t can be evaluated when the filter is instantiated (see Section 4.3).

The set of construct instantiates several filters of possibly different types with different
arguments. This this can be used for side-by-side or end-to-end composition. In end-to-
end composition we have to introduce a variable to serve as an intermediate object.

The i te ra t ion construct instantiates a certain number of same filters with arguments of
type array. The <expression> defines the range of the <variable>. The <expression> is
evaluated within this filter type definition. It can mention source or view object com-
ponents or defined variables. Therefore, the iteration can depend on an object that is
itself part of an instantiated filter.

The condition construct instantiates a filter only if the condition given is true. The
<condition> is evaluated within the filter type definition and therefore the value can
depend on an object that is part of another subfilter.

The recursion construct instantiates a filter of the same type as the one being defined,
much like a recursive call in a conventional programming language.

<address-equals-variable list>
is a list of equations relating the addresses from the object definition to the variables used
in the filter construction. A aouree-view relation can be established here if it was not pos-
sible or convenient to identify source and view objects of the subfilters in the m a k e state-
ment. The aource and view objects are bound to objects of the lower-level filters, which in
turn are bound to even lower levels. This binding proceeds down to the level of filter
atoms, where source and view are slots for atomic objects. To express the fact that we are
using unification, rather than type or token identity, we introduce the special symbol
'+'.
If any of these statements, such as va r , m a k e or merge, are not necessary, they can be

omitted. With the given syntax we are able to define arbitrary filters.

The object types used in the following examples are all described in Section 4.2 on object
type definition. Figure 4.6 shows a filter of type IterationExample where a filter type is con-
structed from four instantiations of the IntegerIdentity filter atom. This filter establishes an
equality constraint between an integer array of size 4 and the components of a list. Note that
the size 4 in this example is necessary since none of the participating objects contains informa-
tion about the size of the arrays. It does not need to be a constant if the source or view object
or a variable within the filter type definition could be used to express the iteration factor.

If we want to combine filters of different types, we use the set of construct. Figure 4.7
shows the SetExample where an IntegerIdentity filter atom and the IterationExample of the last
example are composed. Note that the actual connection of source and view objects of the
defined filter to the source and view objects of the instantiated filters is done in the m a k e state-
ment. This SetExample filter is defined for source and view of type Array-2 and List-2, respec-
tively. But it is also defined for all subtypes of A r r a y 2 and List-2.

The Filter - A Paradigm for Interfaces

Filter Type IterationExample (source : Array-1 , view : List-1)
var

v[4] Integer
make

iteration 4 times i
IntegerIdentity (source.subfield[i] , v[i])

merge
view.sub-1 ==@ v[l]
view.sub2 =()= v[2]
view.sub-3 v[3]
view sub-4 0 v[4]

end

Figure 4.6: Filter type for IterationExample.

Filter Type SetExample (source : Array2 , view : Lis t2)
make

set of
IntegerIdentity (source.labe1 , view.labe1)
IterationExample (source.dependents , view'dependents)

end

Figure 4.7: Filter type for SetExample.

Filter Type ConditionExample (source : Array3 , view : L i s t 3)
make

set of
IntegerIdentity (source.label , view.labe1)
condition source.labe1 = NIL or view.label - NIL

IterationExample (source.dependents , view.dependents)
end

Figure 4.8: Filter type for ConditionExample.

If the instantiation of a subfilter depends on components of source or view objects o r
defined variables, we can use the condition construct. Figure 4.8 shows the ConditionExample,
which is similar t o the IterationExample except t h a t the instantiation of the IterationExample
subfilter depends on the value of the first pa r t of the source and view object. Figure 4.9 shows

4. Fil ter Specification

Filter Type RecursionExample (source : Array-4 , view : List-4)
make

set of
Integerldentity (source.label , viewlabel)
condition source.label = NIL or view.labe1 - NIL

RecursionExample (source.dependents , view.dependents)
end

Figure 4.9: Filter type for RecursionExample.

RecursionExample, which is the same as the SetExample except that it will instantiate the
RecursionExample again recursively, depending on whether the label part of the source or view
object are not NIL.

The last examples clarified our concept of composing a filter from subfilters using the
different filter constructors. We used the terms "instantiation" and "establishing" to express
the fact tha t a filter is created from its filter type specification. If a filter is established, it has
a source and view object associated with it that are of known object type. We have to distin-
guish between the type given by the filter type for the aource and view and the type of the
objects filling these slots. The type of an object filling a slot has to be a subtype of the one
defined by the filter type.

4.6. Informal Semantics

Now that we have defined the syntax of our filter type specification language and given
some examples, we move on to specifying the meaning of the language. Note that this is only
an informal discussion and that the details still have to be worked out. The language specifies
objects in terms of object types built from atomic types using object constructors, and filter
types built from filter atoms using filter constructors. A filter and its two associated aource and
view objects constitute an instantiated filter.

In a programming language, the meaning of a program can be defined by a semantic
function. This semantic function maps the domains 'program' and 'state' to the domain 'state'
[Gordon 791, i.e., i t defines how a program affects the state. We can define the meaning of the
filter paradigm in a similar fashion. All source and view objects constitute the state. Instead of
a program we have filters. The filters represent constraints that are defined for the objects. A
constraint is a condition that must hold for some objects, plus a method to satisfy the condition
by manipulating the participating objects. As filter specification is declarative, there should be
no distinction between the semantic function denoting a well-formed specification, and the
semantic function denoting behavioral aspects. However, because the notion of input to an
instantiated filter is not yet clearly defined, we would like to distinguish between static and
behavioral semantics for this informal discussion.

Let us first look a t the static part of the semantics. Consider having two objects and a
filter and wanting to combine them to an instantiated filter. The objects are of a certain object
type, the filter has its filter type. The filter type specifies the composing subfilters and how the
subobjects of the source and view are associated with them. The addresses of source and view
objects have to be determined and are combined with the subfilters to instantiate the subfilters.
We instantiate subfilters until we reach filter atoms. A filter atom cannot be decomposed any

The Filter - A Paradigm for Interfaces

further, but there are implicit constraints associated with it. For an identity filter atom, the
implicit constraint is equality; for a conversion filter atom, it is a conversion constraint; and for
a constraint filter atom, i t is the defined constraint. So this constraint can either be satisfied or
fail. Note tha t there are two places where failure can occur: first, in identifying the subparts of
source and view objects when building an instantiated subfilter, and second, when satisfying the
constraint of a filter atom. The first failure can be detected from the filter type specification
using the object type definition of the source and view objects. The second failure will result in
invoking the constraint satisfaction mechanism that is defined for the constraint. Thus, the
meaning of our filter paradigm can be defined by a semantic function that maps the domains
'state' and 'filter' to the domain 'state' augmented with a value for failure. The type signature
of such a semantic function expressing the well-formedness of an instantiated filter would be:

(state X filter) -+ (state + 'failure')

The behavioral aspect of the semantics has to give meaning to dynamic changes in the
instantiated filter when an object is changed. Let us impose the restriction that changes may
occur only to one object of the instantiated filter a t a given time, either the source or view
object. As an example, consider a QuadArrayMirror filter connecting two QuadArrays with one
sublevel of nodes. Figure 4.10 illustrates the QuadArrayMirror filter constructed from five

Figure 4.10: QuadArrayMirror for QuadArrays with one sublevel.

4. Filter Specification

instances of the TextMirror filter". There are two kinds of changes: changes tha t only affect
the state of a node, such as changing the 'label' address of a QuadArray, and changes that
affect the structure of the QuadArray, such as adding or deleting subnodes. The label is associ-
ated with the TextMirror subfilter. If the label is changed, the TextMirror filter updates the
corresponding label. This update can be done by marking the changed label as "anchor" and
satisfying the TextMirror constraint of the TextMirror filter. If the structure is changed, the
make statement of the QuadArrayMirror filter has to be consulted again to check which
subfilters have to be released or which new ones have to be added. For example, if four sub-
nodes are added a t a leaf node of the source object, the address 'subarrays' in the make state-
ment of the QuadArrayMirror filter type definition (see Figure 3.8) is no longer NIL and four
subfilters will be instantiated. This node will then be marked as "anchor" and the constraint
satisfaction will also create four subarrays for the view object of the QuadArrayMirror filter.

As in the static case, there are two cases where failure can occur: the constraint for the
filter atom cannot be satisfied, or the subparts, the addresses, of the source and view object can-
not be identified. Hence, some changes are not allowable. The semantic function for the
behavioral aspect maps the domain 'state', where some objects are marked as changed, and the
domain 'filter' to the domain 'state' augmented with a label for failure. The type signature of
such a semantic function expressing the change behavior of an instantiated filter would be:

(state X marking X filter) -+ (state + 'failure')
This semantic function expresses only the effect the change has on the objects. But as a result
of the change, the filters can have changed, too. This is an area where we need to work on the
details. Also, if the structure of objects is changed, the marking may not provide enough infor-
mation for the constraint satisfaction. It has the meaning tha t only the structure a t this level
of the instantiated filter has to be conserved in constraint satisfaction, but tha t the subparts
can be subject to changes due to dependencies in the chain of change propagation.

As we have seen, the static and dynamic semantic functions are related. One difference
is tha t in the behavioral case we mark one object as special so it will not be affected in the con-
straint satisfaction. Further research in this area is under way.

5. Implementation

Although not the main issue in this phase of the research, the implementation of some
prototype filters is useful to locate the critical issues. Two implementations were done: one for
the QuadArray filters12 described in Section 3, and one to explore the interactive behavior of
filters described later in this section. The QuadArray example led to recognizing the necessity
to control the structure of objects and the access to them. The other example, manipulating
primitive graphical objects, clarified the issues of rendering objects on the bitmap display and
sensing user action. Both implementations used a very basic constraint satisfaction mechanism
that was sufficient for the examples. In order to allow the full expressiveness of our filter para-
digm we plan to implement it on top of an existing constraint system, such as ThingLab [Born-
ing 791.

" The TextMirror filter is assumed to be previously defined. See also Section 3.1

l2 See Figures 3.1, 3.2 and 3.8.

The Filter - A Paradigm for Interfaces

6.1. Object Control

The language used is Smalltalk. Therefore, objects are instances of classes. Program-
ming is done in terms of messages tha t are sent between objects, resulting in methods being exe-
cuted. Filters are implemented as objects, named filter describing objects. Source and view
objects have to be controlled in order to detect a change. The objects could be examined a t a
specific event [Ege 851, or the access to the objects could be controlled. To provide this control,
access to objects is done through object holders, which behave like the actual objects but also
monitor the access to it. Source and view objects are replaced by object holders. The
object holder implements the same messages as the controlled object. Whenever a message is
received, the holder forwards this message to the held object and sends messages to all objects
that are interested in the access. The object holder takes registrations from filter describing
objects and notifies them when an update to the source or view object has occurred. In order to
do that , i t keeps a list of all filter describing objects that are interested in the held object. The
filter describing objects that have registered a t the object holders for their source and view
object, are notified when a change has occurred and update the other participants in the filter
accordingly. Objects can be intermediate objects in a chain of end-to-end composed filters. The
object holder then sends messages to several filter objects. The filter describing objects ensure
that an update is not applied twice by using a simple synchronization technique. Note that in
this implementation the filter describing objects handle the constraint satisfaction. The struc-
ture of the instantiated filter is hidden in dependency chains. Therefore only simple 'propaga-
tion of value' is used as constraint satisfaction method. Future implementations will use more
sophisticated methods like in ThingLab [Borning 791.

6.2. Path Expressions

When a filter is instantiated, a source and view object is associated with it. These
objects have to be retrieved. As mentioned in Section 4.2 objects can be accessed dynamically
on need. To model this in Smalltalk path expressions are used. A path expression is a pair con-
sisting of an anchor object and a list of selection messages. In order to access an object that is
referenced by a path expression, the first selection message is sent to the anchor object yielding
one of its subobjects. The second selection message is then sent to that subobject yielding
another object, and so on for all selection messages in the list. The object resulting from the
last selection message in the list is the result of the delayed access. If we view an object as a
tree, the delayed access through a path expression represent a tree traversal by executing each
selection message from the list. If one of the intermediate objects in the path becomes 'NIL',
then the path evaluation returns 'NIL'. It is also possible to substitute the last object in the
path traversal. In this case the last selection message is used as update message with the sub-
stitution object as parameter.

5.3. Constructing Filters

Filters are constructed from filter atoms. As described in Section 4, these filter atoms
have to be provided by the basic implementation. In order to incorporate user interaction in
the filter pack, we have to introduce filter atoms for accessing the display bitmap and the input
devices of the user terminal. This access can be modelled in our paradigm.

The filter atom that renders a point on the screen is modelled as a filter connecting an
object tha t consists of a X and Y coordinate and the screen bitmap. The bit representing the
location expressed by the coordinates is turned on. This PointRender filter is a one-way filter
atom. Change can occur only a t the coordinates object. This filter atom can be used to define
filter packs to render higher level graphical objects, such as line, box, etc., although we will
probably include atomic filters for simple geometric objects.

5. Implementation

Filter Type PointAtMouse (source: Mouse , view: Display)
var

position -+ Point
make set of

PointRender (position , view)
PointSensor (source, position)

end

Figure 5.1: Filter pack to display point a t mouse position.

A filter atom tha t senses input from an input device is modelled analogously. As a n
example, consider a pointing device, the mouse. Any change in the mouse position affects the
value of a mouse position object consisting of an X and Y coordinate. Such filter atom sensors
have to be implemented for all the graphical input primitives wallgren 831. Figure 5.1 shows
these two filter atoms combined, resulting in a simple interface, where the mouse moves a point
across the screen.

When manipulating graphical objects, basic arithmetic operations are needed13. Our
implementation includes some basic constraints for solving arithmetic, such a s addition, subtrac-
tion, multiplication and division for integers. They are implemented using a technique similar
t o ThingLabYs satisfaction methods k r n i n g 791. Figure 5.2 shows a more elaborate example,
where a box is defined in terms of its corner points. The coordinates are constrained to ensure
parallel edges using IntegerIdentity filter atoms. The lines connecting the corners are rendered

Filter Type BoxAtMouse (source: Mouse , view: Display)
var

northwest, northEast, southwest, southEast -+ Point
make set of

IntegerIdentity (n0rthWest.x , n0rthEast.x)
IntegerIdentity (n0rthWest.y , s0uthWest.y)
IntegerIdentity (s0uthWest.x , southEast.x)
IntegerIdentity (n0rthEast.y , s0uthEast.y)
LineRender ((northWest,northEast) , view)
LineRender ((northWest,southWest) , view)
LineRender ((northEast,southEast) , view)
LineRender ((southWest,southEast) , view)
PointSensor (source , southEast)

end

Figure 5.2: Filter pack t o display box at mouse position.

lSE.g., to express point locations relative to a reference point. See the appendix for an example

The Filter - A Paradigm for Interfaces

o n t o t h e display b i tmap using t h e LineRender filter. T h e LineRender filter constrains t h e screen
b i tmap t o display a line at t h e location specified by t h e coordinates of t h e endpoints of t h e line.
T h e lower left corner (southEast) of t h e box is then connected t o a PointSensor filter t h a t binds
it t o t h e mouse location. Whenever t h e mouse is moved t h e coordinates of t h a t point will

From Smalltalk-80 version T2.2.0, of Match 13, 1986 on 28 August 1986 at 11 :34:36 am

FilterEzamples class methodsFor: 'input-output'

"Example tracks mouse cursor with box"

I northLine eastLine westLine southLine
northwest northEast southwest southEast
x l x 2 x 3 x 4 y l y 2 y 3 y 4 I I

"create variables"

x l c IntegerHolder new. x2 c IntegerHolder new.
x3 t IntegerHolder new. x4 t IntegerHolder new.
y l c IntegerHolder new. y2 c IntegerHolder new.
y3 c IntegerHolder new. y4 + IntegerHolder new.

northwest c ImpPoint x: x4 y: y4. northEast t ImpPoint x: x3 y: y3.
southwest + ImpPoint x: x2 y: y2. southEast + ImpPoint x: x l y: y l .

northLine c ImpLine top: northwest bot: northEast.
westLine t ImpLine top: northwest bot: southwest.
southLine t ImpLine top: southwest bot: southEast.
eastLine c ImpLine top: northEast bot: southEast.

"instantiate filters"

IntegerIdentity source: x l view: x2.
IntegerIdentity source: y l view: y3.
IntegerIdentity source: x3 view: x4.
IntegerIdentity source: y2 view: y4.

LineRender source: northLine view: Display
LineRender source: westLine view: Display.
LineRender source: southLine view: Display
LineRender source: eastLine view: Display.

PointSensor source: nil view: southEast.

Figure 5.3: Smalltalk instantiat ion of BoxAtMouse filter pack.

6. Implementation

------- last
.-R current
.------ -------. next

Figure 6.4: BoxAtMouse interface.

change. The coordinates are part of IntegerIdentity filter atoms that will be satisfied to ensure
parallel edges by changing the coordinates of the adjacent points. All these points (southEast,
southwest, NorthEast) are part of lines that will be redisplayed, thus reshaping the box. Figure
5.3 shows the Smalltalk code that was written to instantiate the filter pack. The objects that
are values for the variables have to be created first. Points are created from X and Y coordi-
nates. Lines are created from points'4. The IntegerIdenity subfilters are instantiated for the
coordinates. The lines are displayed by sending the LineRender class the message 'source:view:'
and identifying the correct objects. The input sensor is instantiated by sending the same mes-
sage to the Pointsensor class. Figure 5.4 illustrates the screen representation. Three instances
in time are recorded. The first part shows a rectangle. Then the cursor is moved right and up.
The rectangle follows as shown in the middle part. Then the cursor is moved down and left.
The rectangle follows as shown in the right part.

5.4. Condition and Iteration

The current implementation is also concerned with the notion of structural change. If
the structure of the filter pack is to be modifiable by user input, then a more complex control of
the filter instantiation mechanism has to be provided. The structure of a instantiated filter can
change, because objects that are participating in the filter constructors, such as iteration and
condition, are changed. Iteration and condition filters depend on the objects tha t are referenced
in their iteration factor and condition expression, respectively. When one of these objects is
changed the filter has to determine whether and how many subfilters to establish. This depen-
dency can be viewed as a one-way filter where changes affect the iteration and condition filter.
Whenever a subfilter is then instantiated, the source and view objects have to be reevaluated
from their path expressions.

The next step in the implementation of a prototype interface is to provide filter atoms to
create interface concepts, such as menu, form, window, etc., and to code more basic constraints,
such as constraints for arithmetic. As mentioned a t the beginning of this section, the current

l4 Note that the object types point and line are called ImpPoint and ImpLine, respectively, to avoid a
conflict with Smalltalk classes point and line.

The Filter - A Paradigm for Interfaces

implementation uses a very basic constraint satisfaction mechanism. ThingLab [Borning 791
implements a powerful constraint satisfaction. Combining ThingLab and the filter paradigm by
implementing the filter describing objects as ThingLab 'things' will probably yield a more usable
system. Research in this area is under way.

6. Conclusion

This paper presented the filter paradigm. It is a new approach to model interfaces. The
basic concepts of objects, constraints and filters were introduced and the filter specification
language was defined. Critical issues in a possible implementation were discussed.

This research is a step towards the goal of automatic generation of user interfaces, which
is subject of joint research a t the University of Washington, the Oregon Graduate Center and
the Tektronix Computer Research Laboratory [Borning 861. The generator will be based on the
filter paradigm. We think of a system where the interface designer specifies the interface graph-
ically from subfilters, plugging existing parts together to build his system incrementally. This
graphical description has to be transformed into the filter specification language given in this
paper. The language is declarative and can be analyzed to optimize the interface. This
language is then subject to compilation into constraints, which can be satisfied using a
constraint-satisfaction system. Before we build a compiler for the filter specification language,
translating them into constraints, we would like to build a prototype interface by implementing
the filters directly in Smalltalk or on top of ThingLab [Borning 791 as discussed in Section 5.

7. Acknowledgement

Grateful acknowledgement goes to my advisor, Dr. David Maier, for supplying the origi-
nal idea for this research and guiding me through the development process. I would also like to
thank Dr. Alan Borning, who provided ThingLab that will be used in the next implementation
of the filter paradigm. This work was done while the author held the Tektronix Fellowship for
Computer Science and Engineering.

Appendix

8. Geometric Theorem

As in the related literature [Borning 811 [Leler 861, we will demonstrate the usability of
our filter description. The following sections will describe step by step how to visualize a
geometric theorem. The geometric theorem states that if we connect the midpoints of all edges
of a quadrilateral, we will always get a parallelogram. We want to construct an interface for a
graphical screen that allows us to manipulate the points of the quadrilateral and of the paral-
lelogram by preserving their geometric properties. This example will highlight several features
in our filter paradigm:

- 1 / 0 primitives as filter atoms
- type hierarchies
- constraints
- filter instantiation

8.1. 1/0 Primitives

The section on filter specification (see Section 4) introduced the need for filter atoms.
The basic filter atoms are identity, conversion and constraint filter atoms. The section on
implementation (see Section 5) added filter atoms for input and output. The table in Figure 8.1
gives some examples: The PointRender filter atom displays a pixel on the screen bitmap a t the
location given by the object of type Point. The LineRender filter atom displays a line of pixels

Output:

PointRender

LineRender

PointRender - BitMap

BitMap

Figure 8.1: 1/0 Primitives.

Input:

Pointsensor

Buttonsensor

Point Cursor

Boolean ButtonSensor Mouse

The Filter - A Paradigm for Interfaces

Filter Type PointAtCursor(source: InputMedium, view: DisplayMedium)
var

position 4 Point
make set of

PointSensor (position , view)
PointRender (position , source)

end

Figure 8.2: PointAtCursor Filter Type.

on the screen bitmap a t the location given by the object of type Line. The PointSensor filter
atom reflects the position of the cursor in an object of type Point. The Buttonsensor relates a
mouse button to an object of type Boolean.

A simple interface can be constructed by connecting end-to-end a PointSensor and Point-
Render filter atom that agree on an intermediate object 'position' of type Point. This PointAt-
Cursor filter (see Figure 8.2) will trace the cursor movement with a pixel on the display bitmap.
(This filter type is basically identical to the one in Figure 5.1 and is included here only for com-
pleteness.)

8.2. Type Hierarchies
Our object type specification allows us to build type hierarchies. Consider as example

the four object types: Polygon, Quadrilateral, Triangle and Box. Their object types are given in
Figure 8.3. The figure also illustrates their type hierarchy. The object type Polygon is super-
type of Quadrilateral, Triangle and Box. Quadrilateral is supertype of Box. Note that the sub-
types do not add addresses to the type definition. Instead, they constrain inherited addresses.

We can use this type hierarchy in defining a filter type to display objects of these types
on the display bitmap. The PolygonRender filter type will instantiate a LineRender subfilters
for each edge of the source object. The number of edges is given by the count address of the
source object. Figure 8.4 shows the resulting filter type definition. Notice tha t two adjacent
points are combined to form an edge.

8.3. Constraints

As described in Section 5 on implementation, we need basic arithmetic constraints.
Other constraints can be build from them. As an example (see Figure 8.5), consider a line with
two points 'head' and 'tail'. We want a third point, 'mid', to be in the middle of the line from
'head' t o 'tail'. If the two points of the line are moved, the midpoint should be adjusted to
satisfy the constraint. If the midpoint is moved one of the endpoints should be moved accord-
ingly.

We can express this relationship with a constraint equation:

mid = (head + tail) / 2

If we want to decompme the constraint into subfilters, we introduce another point, 'add', that
represents the addition of the two endpoints of the line. The 'add' point can then be divided by
two to yield the midpoint. The addition and division are not simple arithmetic operations but

8. Geometric Theorem

Object Type Polygon
count -+ Integer -

points [count] -+ point)

Object Type Quadrilateral Object Type Triangle
inherit from Polygon inherit from Polygon
constraint Identity(count ,4) constraint Identity(count,3)

Object Type Rectangle
inherit from Quadrilateral
constraint Identity (points [1] .x ,points [3] .x)

Identity (points[l] .y ,points[2] .y)
Identity (points[2] .x,points[4] .x)
Identity (points[3] .y,points[4] .y)

end

Figure 8.3: Type Hierarchy for Polygons.

Filter Type PolygonRender (source : Polygon , view : DisplayMedium)
make set of

iteration source.count times i
LineRender((source.points[i],source.points[(i+l)%source.count]) , view)

end

Figure 8.4: PolygonRender Filter Type.

The Filter - A Paradigm for Interfaces

I

Figure 8.5: Midpoint on a Line.

represent sub-constraints tha t keep the relation of the points. These sub-constraints are further
subdivided into basic arithmetic constraints for integer arithmetic t ha t are filter atoms. We
express this construction as a filter type in Figure 8.6.

8.4. Filter Instantiation

Filter instantiation is not static. As an example, consider the condition filter constructor.
The subfilter is only instantiated when the associated condition is true. The filter type
PointMenu (see Figure 8.7) instantiates a conditional subfilter PointSensor 'view.count' times.
The condition depends on the variable 'selection' tha t is manipulated by the PopUpMenu
subfilter. This PopUpMenu subfilter is supplied by the implementation as a filter atom. It sets
the variable 'selection' according to the choice the user made. Only one PointSensor subfilter is

Filter Type Midpoint (source : Line , view : Point)
var

add -, Point
make set of

Pointplus ((source.head , source.tai1) , add)
PointDivision ((add , 2) , view)

end

Figure 8.6: Midpoint Filter Type.

8. Geometric Theorem

instantiated because only one of the conditions can be true. If the value of 'selection' changes,
then the old subfilter is released and the new subfilter, which condition is now true, is instan-
tiated.

8.6. Geometric Theorem

The previous examples can now be plugged together t o illustrate the geometric theorem:
connect the midpoints of the edges of a quadrilateral t o yield a parallelogram. Figure 8.8 shows
three examples of the graphical representation of the theorem1. The interface we built will
display the quadrilateral and the parallelogram on the display bitmap and will provide a
popupmenu t o let us select one of the eight points t o move i t with the mouse. The graphical

Filter Type PointMenu (source : InputMedium , view : Polygon)
var

selection -+ Integer
make set of

PopUpMenu (selection, view .count)
iteration view.count times i

condition (selection = i)
Pointsensor (view.points[i], source)

end

Figure 8.7: PointMenu Filter Pack.

Figure 8.8: Illustrated Geometric Theorem.

' This figure was generated using the constraint-based IDEAL language

The Filter - A Paradigm for Interfaces

Filter Type Theorem (source : InputMedium , view : DisplayMedium)
var

quad , para -+ Quadrilateral
make set of

iteration 4 timea i
MidPoint((quad.points[i],quad.points[(i+l)%5]), para.points[i])

PolygonRender (quad , view)
PolygonRender (para, view)

PointMenu (source , (quad.points + para.points))
end

Figure 8.9: Theorem Filter Pack.

display follows the mouse movement, always satisfying the midpoint constraint, thus illustrating
the geometric theorem.

The filter type 'Theorem' (see Figure 8.9) relates an InputMedium to a DisplayMedium as
source and view type. In the var statement the filter type defines two variables of type Quadri-
lateral (see Section 8.2). Since a Quadrilateral has four sides The make statement names four
Midpoint subfilters (see Appendix Section 1.3), associating the lines of the 'quad' quadrilateral
and the points of the 'para' quadrilateral. The two quadrilaterals are then displayed using two
PolygonRender subfilters (see Section 8.2). We finally include a PointMenu subfilter (see Section
8.4) to bind the InputMedium to the eight points of the quadrilaterals.

This interface is implemented in Smalltalk-80 on a Tektronix 4400 machine. It allows
the user to select any point of either the quadrilateral or the parallelogram. The selected point
is then associated with the mouse. Mouse movement will cause the point to move, thus reshap-
ing the graph as shown in Figure 8.8. Note that the filter type 'TheoremY describes this dynamic
behavior purely declarative. The dynamic behavior is hidden in the constraint satisfaction.

Bibliography

[Ait-Kaci 841
Ait-Kaci, H., A Lattice Theoretic Approach to Computation Based on a Calculus of Partially
Ordered Type Structures, PhD thesis, University of Pennsylvania, 1984.

[Albano 831
Albano, A., Cardelli, L., Orsini, R., Galileo: a strongly typed, interactive conceptual
language. Bell Labs Technical Memorandum TM 83-11271-2, 1983; also ACM Transactions
on Data Base Systems 10(2), 1983.

[Atkinson 851
Atkinson, M., Morrison, R., Types, Bindings and Parameters in a Persistent Environment,
Persistent Programming Research Report 16, University of Glasgow and University of St.
Andrews, August 1985.

[Borgida 841
Borgida, A., Mylopoulos, J., Wong, H., Generaliration/Specioliration as a Basis for Software
Specification, in: On Conceptual Modelling, Brodie, M., Mylopoulos, J., Schmidt, J . (eds),
Springer-Verlag, New York, 1984.

[Borning 791
Borning, A., ThingLab - A Constraint-Oriented Simulation Laboratory, PhD thesis, Stan-
ford, 1979.

[Borning 811
Borning, A., The Programming Language Aspects of ThingLab, a Constraint-Oriented Simu-
lation Laboratory, ACM Transactions on Programming Languages and Systems 3(4),
October 1981.

[Borning 86)
Borning, A., Maier, D., London, R., Automatic Generation of Interactive Displays, proposed
research, proposal t o the National Science Foundation, 1986.

[Bournique 851
Bournique, R., Treu, S., Specifaction and Generation of Variable, Personalized Graphical
Interfaces, International Journal Man-Machine Studies, (1985) 22, 663-684.

[Chi 851
Chi, U., Formal Specification of User Interfaces: a Comparison and Evaluation of four
aziomatic Matehods, IEEE Transactions on Software Engineering, S E l l : 8 , August 1985.

[Ege 841
Ege, R., The Display Function in ALLEGRO. Master's thesis, Oregon State University,
July 1984.

[Ege 851
Ege, R., Entwicklung sines Systems zur vereinfachten alphanumerisehen EinlAusgabe fur die
Programmiersprache Pascal (Development of a System for simplified alphanumerical
Inputloutput for the Programming Language Pascal). Diplomarbeit, Institut fiir Informa-
tik, Universitat Stuttgart, August 1985.

[Goldberg 831
Goldberg, A., Robson, D., Smalltalk-80: The Language and its Implementation. Addison-
Wesley, Reading, Mass., 1983.

[Goldberg 851
Goldberg, A., Application Development Frameworks, Oregon Graduate Center Colloquium,
Video Tape, November 13, 1985.

T h e Filter - A Paradigm for Interfaces

[Gordon 791
Gordon, M. The Denotational Description of Programming Languages, Springer-Verlag,
New York, 1979.

[Kay 831
Kay, A., Novice Programming in the 1980'8, Programming Technology, Pergamon Infotech,
1983.

[Leler 861
Leler, W., Specification and Generation of Constraint Satisfaction Systems using Augmented
Term Rewriting, PhD thesis draft, The University of North Carolina a t Chapel Hill, 1986.

waier 861
Maier, D., Nordquist, P., Grossman, M., Displaying Database Objects. Proceedings First
International Conference on Expert Database Systems, April 1986.

[Mallgren 831
Mallgren, W., Formal Specification of Interactive Graphics Programming Languages, ACM
distinguished dissertation 1982, MIT Press, Cambridge, MA, 1983.

wilner 781
Milner, R., A Theory of Type Polymorphism in Programming, Journal of Computer and
System Science 17(3), 348-375, 1978.

worgenstern 831
Morgenstern, M., Active Databases as a Paradigm for Enhanced Computing Environments,
Proceedings 9th International Conference on Very Large Data Bases, Florence, Italy,
October 1983.

wyers 831
Myers, B., INCENSE: A System for Displaying Data Structures, Computer Graphics 17(3),
July 1983.

wyers 841
Myers, B., Strategies for Creating an Easy to Use Window Manager with Icons, Proceedings
Graphics Interface '84, National Research Council of Canada, 1984.

[Nordquist 851
Nordquist, P., Interactive Display Generation in Smalltalk, Master's thesis, Oregon Gradu-
ate Center, Technical Report CS/E 85-009, March 1985.

[Reis 861
Reis, S., An Object-Oriented Framework for Graphical Programming, research report,
Brown University, March 1986.

[Scofield 851
Scofield, J., Editing as a Paradigm for User Interaction. PhD thesis, University of Washing-
ton, August 1985. Available as Computer Science Department Technical Report 85-08-10.

[Shaw 831
Shaw, M., Borison, E., Horowitz, M., Lane, T., Nichols, D., Pausch, R., Deacartes: A
Programming-Language Approach to Interactive Display Interfaces. Proceedings SIGPLAN
Symposium on Programming Language Issues in Software Systems, ACM, June, 1983.

[Shaw 861
Shaw, M., An Input-Output Model for Interactive Systems, Proceedings CHI '86: Conference
on Human Factors in Computing Systems, April 1986.

[Studer 841
Studer, R., Abstract Models of Dialog Concepts, Proceedings 7th International Conference

Bibliography

on Software Engineering, IEEE, 1984, pp.420-429.

[Sutherland 631
Sutherland, I., Sketchpad: A Man-Machine Graphical Communication System. PhD thesis,
MIT, 1963.

[Takala 851
Takala, T., Communication Mediator - A Structure for UIMS, in: User Interface Manage-
ment Systems, (G. Pfaff, ed.), Springer-Verlag, Berlin, 1985.

[Van Wyk 811
Van Wyk, C., IDEAL User's Manual. Computing Science Technical Report No. 103, Bell
Laboratories, Murray Hill 1981.

[Van Wyk 821
Van Wyk, C., A High-Level Language for Specifying Pictures, ACM Transactions on
Graphics 1(2), April 1982.

