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Abstract 

Interfaces play a crucial role in today's computer technology. Much effort is spent to 
design and program user interfaces. This paper describes a new approach to this area of research 
that is based on the concept of separating the presentation from the data, and describing the 
presentation declaratively. The source and view of data are then related using constraints to 
control the interface between them. Source and view objects are strongly typed to allow con- 
struction of higher-level interfaces from composition of lower-level units. 

This paper introduces the basic concepts of object, constraint and filter and shows how 
they can be used to describe an interface. The syntax and semantics of the object and filter type 
definition is given and related to the theory. Objects and filters are built from basic atoms using 
constructors, inheritance and constraints. The critical issues in a possible implementation are 
described. The paper concludes with ideas on how to build an interface specification tool based 
on the filter paradigm and illustrates a geometric theorem as sample interface to a data struc- 
ture. 

1. Introduction 

Interfaces are a crucial part of any computer, not only between users and the computer, 
but also between programs running in a computer system or between different components of a 
computer system. The quality of an  application is partly judged by the quality of the user 
interface. Significant effort is spent on designing and programming the interface part of any 
application. This research is aimed a t  reducing this effort. One goal is t o  provide the designer 
with a method or model t o  produce interfaces that  are acceptable t o  the user in respect t o  style, 
usability and efficiency. Another goal is t o  reduce programming by automatically generating 
interfaces and re-using parts of existing interfaces. We are not proposing a particular style of 
interfaces, but a new abstraction for building interfaces. 

Object-oriented Systems 

In a n  object-oriented environment a n  application is represented by objects. These objects 
communicate with each other and with the user of the application. An important step towards 
efficient user-interface design was made when i t  was realized tha t  interface and application 
should be decoupled. Thus the interface is also represented by objects. This research is con- 
cerned with workstations tha t  are able t o  display a great range of objects using high-resolution 
bitmap displays. The user perceives the objects presented t o  him on the screen and interacts 
with them by using the input devices of a modern workstation. Interface objects and applica- 
tion objects are related. For example, the user sees a graphical representation of a tree, how- 
ever the application knows of the tree as a nested collection of records. Conceptually, the tree 
exists only once and has many aspects. Each participant in such a system looks a t  an  object in 
the universe and models i t  in his own world. In the tree example, the user looks a t  a graphical 
image of the tree consisting of bits on the bitmap display, the application program views the 
tree in terms of bytes and addresses of memory. We can picture tha t  abstraction as looking a t  
an  object in the universe through telescopes using different filters. Figure 1.1 illustrates this 
conceptual model. User and application each have their own view of the universe. 

To define an interface according to  this metaphor we could initially specify the object in 
the universe and the filtering mechanisms for both participants in the interface. The 
specification of the object would be very elaborate because in describing the object we have to  
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Viewing 

Figure 1.1: Conceptual model. 

consider all the perspectives from which we ever want to  look a t  it. The filtering mechanisms, 
however, would simply pass through a portion of the object information without change. 
Instead, the approach we are taking is to  define the two objects that  result from the filtering. 
The object in the universe disappears and the two filtering mechanisms are combined into one. 
So, instead of having the user and the application look a t  the same object using a filtering tech- 
nique (Figure 1.1), we define two separate objects, one in the user's reality and one in the 
application's reality, which are connected via a control mechanism (Figure 1.2). We could call 
the control mechanism a 'channel' [Kay 831 or a 'mediator' [Goldberg 851, but because we want 
to reflect the original idea of filtering aspects of an object in the universe into the reality of the 
interface, we name it 'filter'. 

Constructing Filters 

Our notion of an  interface has three parts as illustrated in Figure 1.2. Two objects, 
source and view, are connected by a filter. The source and view are objects that  can be part of 
the application's or the user's object space. The filter component relates the two objects. It 

w view 

Figure 1.2: Filter paradigm. 
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constrains the source and view objects to  be representations of a conceptual object tha t  has 
them as two different views. Both objects belong to  their respective environment, which could 
be the memory of a program in an application or the user's display screen. In general, a filter 
can connect any two objects. Bigger filters can be constructed from smaller filters using inter- 
mediate objects or sharing subparts of larger objects. Thus we can build filters from subfilters, 
but the result is still a fi lter connecting a source and view object. If either object is changed the 
fi lter has to  enforce the conceptual equality. If the application changes the data in the memory 
of the program, this change has to  be reflected on the screen. If the user expresses a change to 
the representation on the screen, the memory of the program is updated. 

In contrast, consider a screen editor. The data on the screen (view) reflects the contents 
of a file stored somewhere on a disk (source). The communication protocol between the two 
objects, screen view and disk file, is well defined. The disk file is displayed initially, the user 
updates his screen view and finally the new version is saved back to  the disk file. Here the 
equality of the two objects is not maintained a t  all times. The constraint enforcement is 
separated into two phases, one a t  the beginning of the editing session and one a t  the end. 
Another example is a spreadsheet program where relations between objects (numbers) can be 
expressed by equations. Subsequent numbers can be defined in terms of previously defined 
numbers. In common spreadsheet programs changes are only forwarded in one direction through 
the equations. In our notion, changes on either side of the equation are reflected on the other 
side. 

This paper represents the first step towards the goal of automatic generation of interac- 
tive displays using the filter paradigm. It defines a filter specification language. Future 
research will be aimed a t  implementing this language using constraint satisfaction techniques 
and a t  an interactive tool to  specify interfaces graphically. In the next section we describe 
related ideas and distinguish our approach from the ongoing research in the field. Section 3 
introduces the basic concepts, which are objects, constraints and filters. Section 4 gives syntax 
and semantics for the object and filter specification language. Section 5 discusses the issues that  
concern the implementation of a prototype interface with filters. We conclude this paper with 
ideas on how to  build an interface specification tool based on the filter paradigm. In the appen- 
dix we describe an implementation of a geometric theorem using our filter paradigm. 

2. Related Work 

The goal of this research is to  provide a high-level specification of interfaces and a good 
model for modular construction of displays that  will allow automatic generation of interactive 
displays. The areas that  are involved in seeking a solution are: 

- interface design and specification 
- displaying objects in an object-oriented environment 
- constraint languages and satisfaction systems. 

In designing any interface, we have to  realize the two major issues of communicability, 
which is how the user can express his wishes, and perceptibility, which is how the user perceives 
the data presented to  him [Bornique 851. Thus, an interface will have two components. Viewing 
an interfaces as a two-way street, a user interface management system can implement a media- 
tor to control an  input and output pipe [Takala 851. Editing can be used as an abstraction of 
user interaction [Scofield 851. Also, there are semantic issues to  be observed. Using the Vienna 
Development Method, a group a t  University of Stuttgart [Studer 841 defined dialog concepts not 
only in terms of windows, menus, etc., but also for interactive concepts such as user input, error 
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handling and undo operations. Several other theoretical approaches using algebraic techniques 
can be used to  specify user interfaces and interaction axiomatically [Chi 851. 

Our approach was guided by experience with the Smalltalk model-view-controller ( W C )  
paradigm [Goldberg 831. This paradigm employs the idea that  all data are kept by a model. 
The presentation is kept in a view and a controller handles the interaction. As mentioned in 
the first section, this arrangement makes it  necessary that the model knows about any aspect 
from which it  can be observed. Programming experience has shown that  this paradigm is hard 
to  follow. The Smalltalk Interaction Generator (SIG) tried to add a declarative interface on 
top of the MVC mechanism [Nordquist 85, Maier 861. Objects need type information to  guide 
an automatic display. The Incense system p y e r s  831 uses type information supplied by a com- 
piler to  display objects. The user can influence the display format but cannot update through 
this system. The display function in Allegro [Ege 841 also deals with viewing database informa- 
tion using the scheme of a network database system. 

Constraints are used to  specify relations and dependencies in a secalled a c t i v e  database 
interface system [Morgenstern 831. Other systems use constraints as their major construct, such 
as ThingLab [Borning 791, which allows constraints to  be expressed in a graphical manner. An 
early system that  employed constraints to  express graphical relations was Sketchpad [Suther- 
land 631. The language Ideal, used in typesetting graphical pictures, is based on constraints and 
demonstrates their power and usefulness1 p a n  Wyk 821. Bertrand [Leler 861 is a language that  
can specify and generate constraint satisfaction systems. It has been demonstrated that  it  can 
be used to  build graphics constraint languages. 

3. Basic Concepts 

As described in the first section of this paper, our filter paradigm employs objects, con- 
straints and filters. In an object-oriented system objects represent entities tha t  we want to  
model. These objects have structure that  are defined by their types. Constraints can be defined 
for an object and between objects. A filter is an object that  represents a constraint that  is 
defined between two objects of specific types. Objects can be connected by filters to  form an 
interface. Objects in such an interface are called source  and v i e w  objects. The source  object is 
displayed by the v i e w  object when the interface is used for displays, but we can use filters to  
construct other interfaces. Section 3.1 gives an introductory example. Sections 3.2, 3.3 and 3.4 
explain the basic concepts of object, constraint and filter and give examples. Section 3.5 covers 
the introductory example in more detail. 

3.1. QuadArrayMirror Example 

As introductory example, let us consider objects that  are QuadArrays. A QuadArray is a 
tree-like data structure. Each node in the structure has either four subnodes or is a leaf node. 
A text string is attached to  each node as a label. As interfaces can be constructed between any 
types of objects, we want to  construct an interface between two objects of type QuadArray. 
The task of the interface is to  act as a mirror, reflecting one object to  the other. The text 
labels a t  the nodes and the structure of the QuadArrays are to  be reversed. We start out to  
define a subpart of the interface that  reverses a text string. Each label on one side of the 

' Figures 1.1, 3.3, 4.10 and 5.4 of this paper were produced using Ideal. The implementation of some 
graphical objects described in Section 5.2 is similar to Ideal. 
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interface needs to  be related to  the corresponding label on the other side of the interface in 
terms of text reversal. We call such a relationship a filter in general, and TextMirror filter for 
this specific relation. This relationship can be expressed as a constraint. The constraint is not 
static. If the label on one side is changed, the other label is changed accordingly, preserving the 
mirror interface. If the QuadArrays on either side of the interface consist of only one node, this 
TextMirror filter would be a correct implementation of our interface, if the nodes containing the 
labels are otherwise identical. If subnodes are added to  the QuadArray, the filter has to  allow 
TextMirror subfilters for the label of the subnodes. TextMirror filters then connect the label of 
the first subnode of one side to  the label of the fourth subnode of the other side, etc. By con- 
structing an interface for QuadArrays that have one sublevel from TextMirror filters, we have 
created a new filter. The new filter not only holds information on which nodes are connected to  
which other nodes, but also knows the structure of the connections. The concept of adding four 
more TextMirror subfilters for each sublevel can now be applied recursively to  define the desired 
interface as a QuadArrayMirror filter. 

Figure 3.1 illustrates this example as it  was implemented in Smalltalk2. The QuadArray 

QuadArray Mirror 

madam i'm 
adam madam 

- - 

Figure 3.1: QuadArrayMirror interface. 

- - 

See Section 5 on implementation. 
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objects are displayed using the SIG system [Nordquist 851. Two QuadArrays are visible. We 
look a t  them from the top. The node in the middle is the top node and is surrounded by its sub- 
nodes. The subnodes are again QuadArrays that  can have subnodes. 

This examples illustrates that ,  in order to  create interfaces, we need information about 
the type of the objects that  participate, that  objects can be related using constraints, and that  
higher-level interfaces can be constructed from filters. 

3.2. Objects 

Objects are present a t  the two sides of a filter. If the interface is more complex, objects 
can also serve as intermediates in a chain of sub-interfaces. We want to  define types for 
objects. Types are needed because the filters need information about the structure of the eource 
and view objects, and because we want to  check the type of an object when we use i t  to  com- 
pose filters to  create larger interfaces. The type is defined in terms of attributes an object has. 
The attributes can be of any known type. Following the syntax of well-formed terms [Ait-Kaci 
841, we call attributes addreaeea. We distinguish between atomic objects, which are of an atomic 
type such as integer, boolean, character, and structured types, which are formed from atomic 
types using the structural constructors set, array, condition and recursion. Addresses for a type 
can be defined explicitly. In addition a type inherits all addresses from all its subsuming types. 
Conditions can be placed on addresses to  ensure well-formedness of a type. 

An example object type is QuadArray (Figure 3.2). It contains three addresses: label, 
elemente and subarray. They denote the constituent types TextString,  Integer and array of 
QuadArray.  We assume that  the type TextSt r ing  is already defined. All types include the 
value NIL, which expresses the fact that  the address is undefined. In the example, this value 
can be used to  terminate the recursion. The iteration in the eubarray address uses the address 
elements to  express the iteration factor. The elemente address is also used in the const ra in t  
statement, which constrains the value held a t  this address to  be the integer constant 4. 

An important notion is subtyping. Subtypes can be defined implicitly by using the same 
and more addresses as an existing object type, or explicitly by inheriting addresses from another 
object type. This inheritance leads to  a type hierarchy, which can be useful when determining 
which objects can be plugged together in filters to  form an interface. If object types belong to  a 
type lattice (Figure 3.3), then a filter that  is defined for a specific object type can also be 
applied to  all its subtypes. The symbols ' T  ' and 'I ' denote the top and bottom in the type 
hierarchy. Ait-Kaci describes algorithms to  compute upper and lower bounds in a type hierar- 
chy [Ait-Kaci 841. As an  example, consider an interface that is built from a filter that  is defined 
for a view object of type DisplayMedium. The filter constrains a source object to  be displayed 

Object Type QuadArray 
label --, TextString 
elements --, Integer 
subarray [ elements ] --, Quadhray  
constraint IntegerIdentity ( elements, 4 ) 

end 

Figure  3.2: QuadArray object type. 
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DisplayMedium DisplayText Path  

Form Paragraph TextList Line Arc 

Figure 3.3: Type lattice for display classes in Smalltalk. 

on the DisplayMedium. The DisplayMedium is only an  abstraction for different subtypes. So, 
we expect this filter to  display the same source object on a view object of type Displayscreen, 
which is a subtype of DisplayMedium. 

3.3. Constraints 

Constraints are the backbone and the basic building tool in our filter paradigm. We 
have to distinguish three areas where we use constraints. First, filters represent constraints and 
are used to  express interfaces. Second, constraints are used to place conditions on objects as 
part of the object type definition. Third, complex constraints, for e.g. arithmetic, can be solved 
using an external constraint satisfaction system. 

Our filter paradigm is based on the idea that  we constrain the participating objects rela- 
tive to each other. We provide a model to structure this relation between the aource and view 
objects. The QuadArrayMirror filter (see Section 3.1) illustrates how to  construct a mirror 
interface by decomposing the overall mirror constraint into subfilters. Thus, a way to  imple- 
ment the filter paradigm would be to compile the filter description into a constraint. This con- 
straint can be solved and maintained using existing constraint satisfaction systems [Borning 79, 
Leler 861. In viewing the interface description as an overall constraint, we can allow interpreta- 
tion, compilation and optimization of the interface. The constraints also help us in discussing 
the semantics of the interface. 
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Constraints are also used to  express conditions that an object must fulfill. For example 
the object QuadArray (see Figure 3.2) has exactly four subnodes. But we could also impose 
more complex restrictions on an object and an object can restrict addresses that  i t  has inher- 
ited. As an example, consider the Cursor subtype of Form (see Figure 3.3). In its type definition 
it  restricts the display bitmap to  have height and width 16. This mechanism is very helpful 
when defining types. 

The basic building block in our paradigm is a filter atom. The QuadArrayMirror filter 

used the TextMirror subfilter, which is built from CharacterIdentityAtom filter atoms3. We do 
not expect that  all interfaces can be decomposed to  identity subfilters. Thus, we provide an 
interface to  a constraint satisfaction system4. For example, if we want to  describe graphical 
objects, we need arithmetic constraints to  express basic positional relationships. To define a 
point as the middle of a line between two other points we need to  solve the constraint: 

Middle = ( PointOne + PointTwo ) / 2. 

In the appendix we give details of how this constraint can be implemented. 

3.4. Filters 
The filter represents a constraint that  has to  be maintained between two objects. The 

filter is defined for specific types of objects and is identified by its type name. The QuadArray- 
Mirror filter example in Section 3.1 illustrates how we can decompose an interface using filters. 
The TextMirror subfilter is itself defined in terms of atomic subfilters. We have to  distinguish 
filter atoms, which have to  be provided, and higher-level filters, which are constructed from 
filter atoms or other constructed filters. We will refer to  constructed filters as filter packs. 

Our filter specification languages provides constructors to  declare filter packa. The set 
constructor declares several arbitrary subfilters. The iteration constructor declares a number of 
identical subfilters. The condition constructor declares a subfilter if an  expression is true. 
Recursion allows us to  declare subfilters recursively. Each constructor establishes subfilters and 
also keeps information on how the subfilters are related. A subfilter is established by giving its 
type name and associating aource and view objects to  it. Associating source and view objects to  
a subfilter is done by passing references to  the subfilters. 

In general, we can distinguish end-to-end and side-by-side subfilter combination. In end- 
to-end construction, the filter is composed from two subfilters. The view object of the first 
subfilter and the source object of the second subfilter agree on a common intermediate object. 
Figure 3.4 shows a filter pack tha t  constructs an identity filter for integers from two filter atoms 
(IntegerCharacterAtom and CharacterIntegerAtom), which serve as conversion filters between 
an integer and a character object6. The intermediate object is of type character. The make 
statement tells what subfilters to  instantiate and how to  relate their sources and views in order 
to  instantiate a PseudoIdentity filter. Note that  the filter definition introduces a local variable 
that constitutes the connecting object. The resulting filter is not exactly an  identity filter 
because the intermediate object is of type character. The integer to  character conversion filter 
atom restricts the participating integer numbers to  one digit. Figure 3.5 diagrams the filter 
pack using end-teend construction. 

In side-by-side construction the filter is composed from a set of two or more subfilters. 
The view object of the first subfilter and the view object of the second subfilter are part of the 

'Equality filter atoms are described in Section 4.3.1. 

See Section 4.3.3 on constraint filter atoms. 

See Section 4.3.2 on conversion filter atoms 
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Filter Type PseudoIdentity ( source : Integer , view : Integer ) 
var 

c + Character 
make set of 

IntegerCharacterAtom ( source , c ) 
CharacterIntegerAtom ( c , view ) 

end 

Figure 3.4: PseudoIdentity using character intermediate object. 

Figure 3.6: PseudoIdentity as  a filter pack. 

view object of the constructed filter pack. Analogously, the source objects are part of the source 
object of the filter pack. Figure 3.6 and 3.7 illustrate the NumberString filter. It  is defined for 
objects of type Dual and Pair. The object type Dual defines a n  array of two characters. The 
object type Pair defines two integers digits. One integer represents the first digit of a number, 
the other the second, which are concatenated into a string representing the whole number. The 
filter is built from two instances of the IntegerCharacterAtom filter atom, which was also used 
in the last example. The IntegerCharacterAtoms are instantiated with references to  their 
source and view objects tha t  are part of the source and view objects of the NumberString filter. 

3.5. QuadArrayMirror revisited 

Using the object type definition of QuadArray from Figure 3.2, we now give a more 
detailed description of the QuadArrayMirror interface example. This filter is constructed, using 
the set constructor, from a TextMirror subfilters and four QuadArrayMirror subfilters. Figure 
3.8 illustrates the filter definition. The set of statement establishes one subfilter for the label 
subparts of the source and view objects, and a conditional subfilter constructor for the subar- 
rays. The condition constructor establishes the iteration subfilter constructor only if one of the 
subarrays of source and view is not NIL. The iteration construct establishes QuadArrayMirror 

'We assume for this discussion that the TextMirror subfilter is already defined. 

- 9 -  
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Object Type Dual Object Type Pair 
field [ 2 ] + Character first + Integer 

end second + Integer 
end 

Filter Type NumberString ( source : Pair , view : Dual ) 
make set of 

IntegerCharacterAtom ( source.first , view.field[l] ) 
IntegerCharacterAtom ( source.second , view.field[2] ) 

end 

Figure 3.6: Object  a n d  filter type  definition for NumberString. 

Figure 3.7: NumberString filter. 

Filter Type QuadhrayMirror ( source : QuadArray , view : Quadhray  ) 
var factor -+ Integer 
make set of 

TextMirror ( source.label , view.label ) 
condition source.subarray # NIL or viewsubarray # NIL 

iteration factor times i 
QuadhrayMirror ( source.subarray[i], view.subarray[factor-i+1] ) 

merge source.elements factor 
view.elements factor 

end 

Figure 3.8: Filter  type  for QuadArrayMirror.  

subfilters recursively. T h e  i teration fac tor  serves as a local variable t h a t  is bound to t h e  
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elements address of the source and view objects. The symbol '=@' expresses that  fact in the 
merge statement. 

This example has been implemented in Smalltalk for experimentation. QuadArray 
objects are instances of a Smalltalk class. The QuadArrayMirror filter is implemented as an 
object tha t  keeps track of two QuadArrays to  be controlled. Each subfilter connects one node 
in the source object to one node in the view object. The QuadArrayMirror filter is capable of 
creating and deleting subfilters automatically as the structure changes in the QuadArrays. All 
constraints representing the filter were translated into Smalltalk code. 

Using end-to-end composition (see last section), we can now build a higher-level filter con- 
necting two objects of type QuadArray using a third, intermediate, object of type QuadArray 
and a set of two QuadArrayMirrors. The result is an identity filter. Obviously, there is a much 
simpler filter equivalent to  this construction. An optimizing implementation could detect the 
redundancy and eliminate the middle object. 

This example showed an interface from objects of type QuadArray to  objects of the same 
type. But what we really want would be an interface from a terminal to  objects of type Quad- 
Array. In order to build such an interface we will have to  define filters that  take the Quad- 
Array step by step, in end-bend combination, to  the desired screen representation. Then we 
connect these subfilters and all the necessary intermediate objects, and so define an interface. 
Section 5 on implementation describes some of the concepts that we need when we approach the 
screen, such as how to  render graphical objects and sensor input according to  our filter para- 
digm. 

4. Filter Specification 

4.1. Introduction 

A filter defines a mediator between two objects. We described earlier how we understand 
tha t  logical relationship and how we hope to  build interfaces based on this notion. This section 
presents a complete definition of a filter specification language. We present a syntax for a filter 
type definition. A filter type provides the framework and structure for building a filter relation 
between the underlying objects. The source and view objects are typed in order to  insure well 
constructed filters and legal filter compositions. When composing filters together to  form a 
larger interface, the intermediate objects have to  be checked as to  whether they fit the type 
framework. Filter composition can also impose constraints on the source and view objects. 

Object types are built from atomic types by grouping previously defined types together to 
form new types. Several grouping mechanisms are provided. New object types can be defined as 
subtypes of existing types to  create a type hierarchy. Filter types are built from atomic filters, 
which establish low level relationships between object types, or by grouping according to  pro- 
vided mechanisms. In order to  do construct filter types correctly, type information from the 
underlying source and view objects is needed. The structure of the filter type reflects the struc- 
ture of the constituent objects. 

The syntax for object and filter types is given in Section 4.2, 4.3, and 4.4. Examples are 
given that  illustrate the definitions. The object type examples in Section 4.2 are used in the 
filter type examples of Sections 4.3 and 4.4. The meaning of a filter specification is discussed in 
Section 4.5 on semantics. This specification is done in terms of an informal description of 
semantic functions. The discussion distinguishes between the static and behavioral case, where 
the static case is for creating a filter from existing objects, and the behavioral case deals with 
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input or change behavior. 

4.2. Object Types 

In spite of the cliche' that "typing is for people with poor memory and is only for the 
benefit of the compiler," in order to  allow filter composing and to  ensure correctness of a filter 
construct, we need the notion of type for the objects that  participate in the filter definition. 
The idea is to  separate type checking from run-time to  get well-formed programs. This idea is 
well-founded in the literature p i lner  781. 

We want to  support the notions of aggregation and specialization as a type definition 
mechanism [Albano 831 [Borgida 841. With aggregation we can build higher level objects from 
lower level components. Specialization allows us to  refine an existing type by adding more type 
information to  it. 

Aggregation builds objects from components. Each component has an address and is of 
an  object type tha t  is already defined. The lowest level components, from which any object 
type is built, are predefined atomic types. For atomic types we allow: 

- Integer for integer numbers 
- Character for single characters 
- Boolean for truth values 'true' and 'false' 
- Bit for bit values '0' and '1' 

All object types include the value NIL that  denotes the undefined value. 

In specialization we can refine an existing object type by inheriting its components and 
adding new ones. We are using strict inheritance, which means that  all components are inher- 
ited by the specialized object type. This is in contrast to  default inheritance, where not all 
attributes have to  be inherited [Borgida 841. 

These aggregation and specialization mechanisms allows us to  build a type hierarchy in 
two ways: Explicitly, by specializing existing object types, and implicitly, by aggregating the 
same components as in an existing types plus more others [Albano 831. In addition, all object 
types can impose intra-object constraints on their components. Thus we can create a type 
hierarchy or a partial order on the object types. 

Object types are defined using the notion of well-formed terms [Ait-Kaci 841 extended 
with some syntactic sugar to  express condition and iteration in an easy way. They are defined 
as follows: 

Object Type <Name> 
inherit from <object types> 
<address-expr_list> 
constraint <constraintname> 

end 

Where 

<Name> 
is a unique name for this type of object. Subsequent object and filter definitions can use 
this name when constructing more complex objects or filters. The name has to  start with 
a capital letter. 

<object types> 
are the names of previously defined object types, from which components are inherited. If 
inherited components have the same address in more than one subsuming type, t,hen the 
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addresses are concatenated with the names of the object types where they are defined. 

<address-expr_list> 
establishes the structure of the object. It is built from address expressions. There are 
address expressions of basic, iteration and condition form, which are defined below. 

<constraint_name> 
is the name of a constraint that has to  be satisfied for this object type to  be well-formed. 
The constraint could be a previously defined filter type or a constraint that  is supplied 
from outside. The constraint or filter can name addresses from the current object type 
definition or from supertypes that  were mentioned in the inherit from statement. 

The inherit from, <address-expr_list> or constraint statements can be omitted if not 
needed. The <address-expr_list> is a list of one or more address expressions. The basic 
address format is : 

<address> + <object-type> 

where <address> is a label for this subpart of the definition and <object-type> refers to  
another Object Type definition or to  an atomic type. We also allow literals of an atomic type. 
Literals of type Integer are denoted by numbers, of type Character by quoted characters, of 
type Boolean by the words 'true' and 'false', and of type Bit by 'OB' and '1B'. If a literal is 
specified in an object type definition, then this address will be constant for all instances of the 
object type. 

Basic address expressions can be grouped together to  form a record-like structure. Con- 
sider the list of integers '(1,2,3,4)'. In order to  specify an object type for this particular 
instance, we group together basic address expressions of type Character and Integer. The 
character types are denoted by the literals '(', ',' and ')'. The integer types are denoted by the 

Object Type Array-1 Object Type Array2 
subfield [4] + Integer label 4 Integer 

end dependents + Array-1 
end 

Object Type List-1 Object Type List-:! 
str-1 4 '(' label + Integer 
sub-1 + Integer dependents -, List-1 
str-2 + I , '  end 
sub-:! + Integer 
str-3 4 I , '  

sub-3 + Integer 
str-4 ',' 
sub-4 + Integer 
str-5 4 ')' 

end 

Figure 4.1: Sample object types. 



4. Filter Specification 

name of their atomic type. Figure 4.1 shows object type List-17, which specifies the type dis- 
cussed above. The other object types in this example are described later in this section and are 
used as source and view object types in the discussion of filter types later in this paper. 

For succinctness, when multiple subparts of the same type are needed, we introduce the 
iteration address which has the form: 

where <iterationfactor> specifies how many times this address should be replicated. The 
<iterationfactor> can be an integer constant or an arithmetic expression that  evaluates to  
integer. Figure 4.1 shows object type Array-1 where 4 subfields are summarized as an  iteration. 
An instance of this object type could be: '1 2 3 4', modelled as an array of integers. Figure 4.1 
shows object types A r r a y 2  and List-2 that  reference not only atomic types but also previously 
defined object types, such as Array-1 and List-1. 

To express the fact that  object types can have variable structure we introduce the condi- 
tional address of the form: 

where the <address-expr> exists only if the <union-condition> evaluates to  true. The 
<union-condition> has to  evaluate to  type Boolean. The expressions used in the union- 
condition have to  be bound in the current environment, which includes other addresses and pro- 
perties of the object type. Figure 4.2 shows object types A r r a y 3  and List-3 with a conditional 
address expression. To express an  object type in terms of itself we need to  introduce recursion. 
Recursion is specified by using the object type name of the current definition in the 
<object-type> specification of the address expression. Mutual recursion is also allowed. Figure 
4.2 shows object types Array-4 and List-4, which are defined recursively. Note tha t  recursion 
permits cycles in our data structures. To illustrate the data structures, Figure 4.3 shows graphs 
of some of the types defined so far. 

This type specification for objects is closely related to  well-formed terms [Ait-Kaci 841, 
but he has no constructs for iteration and condition in well-formed terms. Iteration can be 

Object Type Array3 Object Type Array-4 
label -+ Integer label -+ Integer 
( label = NIL ) : ( label = NIL ) : 

dependents -+ Array-1 dependents -+ Array-4 
end end 

Object Type List-3 Object Type List-4 
label Integer label -+ Integer 
( label - NIL ) : ( label = NIL ) : 

dependents -+ List-1 dependents -+ List-4 
end end 

Figure 4.2: Sample object types with condition and recursion. 

'Note that this type does not capture the order of the fields the way an array would 

- 14 - 
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A r r a y 2  Array-4 

integer Array-1 

integer integer integer integer 

Figure 4.3: Graphs of sample object types. 

thought of as pure notation simplification, except when the iteration factor depends on some 
other part of the object. Condition can be viewed as the union of two separate well-formed 
terms, one including the address expression of the conditional address, the other not. The first 
object type is a subtype of the second. 

Subtyping allows us to  build a type hierarchy. A type hierarchy is useful because it  
allows us to  define general filters that not only can connect objects of a given type but also all 
their subtypes. An object type can implicitly be a subtype of another object type, by using the 

Object Type Array4 
size --, Integer 
subfield [ size ] + Integer 

end 

Object Type Array-7 
inherit from Array-5 
constraint IntegerIdentity(size,4) 

end 

Object Type Array-6 
inherit from Array-5 
name[lO] -+ Character 

end 

Figure 4.4: Sample object types using inheritance. 
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addresses and constructs in its definition, or it can be explicitly defined a s  a subtype of some 
other object type. If an  object type definition names another object type in its inherit from 
statement, then all the components from tha t  object type are inherited. Figure 4.4 shows object 
type Array-5, which defines a n  array of integer. The size of the array is stored within the 
definition. Array-1 of Figure 4.1 is an  implicit subtype of Array-5. Array-6 of Figure 4.4 is an  
explicit subtype of Array4. Operationally it does not matter whether a n  object type is an  
implicit or explicit subtype of another object type. 

In the examples so far, we explained how to  build structured objects. If we want t o  
impose conditions on these structures we can use the constraint statement, which allows us to  
name filter types or constraints t o  insure the well-formedness of an  object. This concept 
corresponds t o  the intra-object constraints discussed earlier. The constraint can name explicit 
addresses or addresses tha t  are inherited from the supertype. In contrast t o  the condition 
address expression, the constraint statement does not directly affect the structure of the object 
type but imposes restrictions on the values tha t  are stored in an  object of such a type. Figure 
4.4 shows Array-7, which is also a subtype of Array-5, but i t  names the constraint tha t  the 
number of subfields is always fours. Array-7 denotes the same object type as  Array-1 of Figure 
4.1. 

Once we have defined object types, we can create instances of it. We need instances of 
object types when we define source and view objects for a filter or as  variables in a filter type 
specification (see Section 4.4). An object is instantiated by giving its name and an  instantiation 
list. The instantiation list contains pairs of address and initial value. The object is then 
instantiated using the specified initial values. 

An object is accessed by traversing a path of addresses. T o  access subparts of the 
objects we have t o  specify a path through the object structure by using the addresses in a dot 
notation: 'myList.labell for a variable 'myList' of type List-3 a t  address 'label'. We distinguish 
direct and delayed access. In direct access the structure of the object is traversed according to 
the path and the correct object is returned. In delayed access we store the object identity 
together with the path to  allow access on need a t  a later time. Delayed access is needed 
because i t  is possible tha t  a n  object does not comply with the given path a t  the time when the 
path is defined, but may be changed in a dynamic environment. It  is also possible tha t  objects 
along the path change, thus changing the result of the path evaluation. 

4.3. Filter Atoms 

A filter enforces a constraint between its source and view object. It  serves a s  a control 
element between the two objects. The objects are constructed from atomic types. In order t o  
control the objects, a filter has t o  constrain the relations of their atomic types and the relation 
of their structure. A filter atom connects two objects tha t  are of atomic type or are of a type 
where the substructure does not mattere. A filter is therefore built from filter atoms, which are 
composed by using filter constructors as  described in the next section on filter packs. 

The idea is t o  build filter incrementally from filter atoms. Filter atoms are predefined or 
imported from a n  external constraint satisfaction system. Each of these filter atoms has a filter 
type. In order t o  use i t  in a filter pack definition i t  has t o  be named in the make statement 
using the syntax: 

Constraints name addresses. The integer constant four has no address. It is a value. A possible com- 
piler for the filter description has to detect that and create an object that has a constant value of four and 
cannot be changed, i.e., is anchored during constraint satisfaction. 

As example consider the constraint filter atom in Figure 4.5. 
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<filter atom name> ( <source object> , <view object> ) 
or 

use <variable> with <signature> ( <source object> , <view object> ) 
where <filter atom name> is the name of the filter, <variable> is a variable that  will hold the 
name of the filter a t  the time when i t  is instantiated, <signature> gives the types of source and 
view object as a pair, and <source object> and <view object> are path expressions that  can 
be evaluated to  yield the corresponding objects for source and view when the filter is instan- 
tiated. The aource and view objects are identified by position. 

We distinguish four groups of filter atoms. There are: 

- equality filter atoms 
- conversion filter atoms 
- constraint filter atoms 
- implementation filter atoms 

Each group represents a class of filter types. Note that  we always deal with relations between 
types. In our filter type definition we are only concerned about types. What the filter type 
mechanism establishes is a framework of relations between object types tha t  could be thought of 
as slots, which are filled when the filter is instantiated with objects of the appropriate type. 
This framework constrains the value of objects that  fill the slots. Notice, we cannot constrain 
two integer objects to  be the same, but we can build a filter framework tha t  will constrain two 
integer addresses to  hold the same value. 

4.3.1. Equality Filter Atoms 
For each of the atomic object types there is an  equality filter atom. The filter atom 

represents an equality constraint. The following filters are predefined10: 

- IntegerIdentity ( Integer , Integer ) 
- CharacterIdentity ( Character , Character ) 
- BooleanIdentity ( Boolean , Boolean ) 
- BitIdentity ( Bit , Bit ) 

Equality filter atoms ensure that their associated 8ource and view objects hold the same value. 
They are implicitly defined on the participating type, e.g., 'IntegerIdentity' is defined as a filter 
from type Integer to  type Integer. There is no directionality implied among the objects for 
dynamic changes. However, when a filter atom is first instantiated we will propagate the value 
from the source object to  the view object if necessary. Changes on either side will be pro- 
pagated to  the other side. 

4.3.2. Conversion Filter Atoms 
Similar to  equality filter atoms, conversion filter atoms represent constraints. Conversion 

filter atoms are given between the atomic types, such as: 

- IntegerCharacterAtom ( Integer , Character ) 
- IntegerBooleanAtom ( Integer , Boolean ) 
- IntegerBitAtom ( Integer , Bit ) 

- CharacterIntegerAtom ( Character , Integer ) 
- CharacterBooleanAtom Character , Boolean ) 
- CharacterBitAtom ( Character , Bit ) 

lo Equality filters can be defined for arbitrary structured objects using the appropriate equality filter 
atoms and the filter constructors according to the object structure. 
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- BooleanIntegerAtom ( Boolean , Character ) 
- EboleanCharacterAtom ( Boolean , Character ) 
- BooleanBitAtom ( Boolean , Bit ) 

- BitIntegerAtom ( Bit , Integer ) 
- BitCharacterAtom ( Bit , Character ) 
- BitBooleanAtom ( Bit , Boolean ) 

It is obvious tha t  the object types of these conversion filter atoms are restricted. E.g., the 
IntegerCharacterAtom will restrict its aource object to one-digit numbers and it  view object to  
the characters '0' t o  '9'. Note that  there is a conversion filter atom for both directions, e.g., 
IntegerCharacterAtom and CharacterIntegerAtom, to  allow initial propagation to  be done in 
either direction. 

4.3.3. Constraint Filter Atoms 

As mentioned earlier, our filter specification represents constraints, but for certain 
geometric and computational constraints we want to  provide a trap door to  an external system. 
Constraint filter atoms are externally defined filter atoms for which there is a constraint- 
satisfaction technique known to  an external system. These constraints are specified like subrou- 
tine calls, where the parameters identify the objects that  are to  be constrained. Constraint 
filter atoms could be implemented in terms of an interface to  the Bertrand programming 
language [Leler 861 or to  a system like ThingLab [Borning 791. 

Figure 4.5 shows an arithmetic filter that  defines the view to  be the sum of the two con- 
stituents of the source. The source is of type IntegerPair, the view of type Integer. The syntax 
follows the rules for filter packs except that  the make statement is replaced by a constraint 
specification. The 'P1usConstrainty call is a reference to  an external constraint satisfaction 
mechanism. It has three parameters and constrains the third parameter to be the sum of the 
first and second. 

In addition, the constraint-satisfaction mechanism needs some information on which 
object is the "anchor" or "preferred object" in order to  resatisfy the constraint correctly, 
because we don't want it  to  respond to  a change to  an object by undoing it. This information 
will be provided by the interface mechanism and can be deduced from the aource and view 
objects. In case of initial value propagation the source object is preferred. In the case of a 

Object Type IntegerPair 
first -+ Integer 
second Integer 

end 

Filter Type IntegerPlus ( source : IntegerPair , view : Integer ) 
constraint 

Plusconstraint ( source.first , source.second , view ) 
end 

Figure 4.6: Object and filter type for IntegerPlus constraint filter atom. 
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change, the "anchor" marking is inferred from the state of the objects (see Section 4.5 on 
semantics). 

4.3.4. Implementat ion Fil ter  Atoms 

In addition to  the filter atoms mentioned above, an implementation of the filter paradigm 
has to  provide more primitives. Section 5 on implementation describes input and output primi- 
tives that  are modelled as filter atoms. 

4.4. Fil ter  P a c k s  

A filter pack is a higher-level filter that  is constructed from atomic or previously defined 
filters. A filter-pack type definition represents a constraint between two objects. Throughout 
this paper these objects were called the source and view object. 

The type definition follows this syntax: 

Fil ter  T y p e  <Name> ( source : <source-type> , view : <view-type> ) 
Y a r  

<variable declaration list> 
m a k e  

<filter construct list> 
merge  

<address-equals-variable list> 
end 

Where: 

<Name> 
is a unique name for this type of filter. Subsequent filter definitions can use this name 
when constructing more complex filters. The name has to  start with a capital letter. 

<source-type> 
is labelled by the keyword 'source' and specifies the type of the source object of the filter 
that is defined. It  has to  be either atomic (Integer, Boolean, Character ,  Bit), or has to  
refer to  an  object definition. 

<view-type> 
is labelled by the keyword 'view' and specifies the type of the view object of the filter that  
is defined. It has to  be either atomic (Integer, Boolean, Character ,  Bit),  or has to refer 
to  an object definition. 

<variable declaration list> 
is a list of variable names followed by their type. The types must be either atomic 
(Integer, Charac te r ,  Boolean, Bit), or refer to  a object type definition. These variables 
can be used to  create intermediate objects to connect complex filter packs or to  reduce the 
amount of text. Note that  there is an  important distinction to make: variables can be 
used to  create intermediate objects to  connect subfilters, and variables can be introduced 
for clarity reasons, which are later unified with components of either the source or view 
object. This unification process can be controlled in the merge  statement. 

<filter construct list> 
establishes the structure of the filter pack, by instantiating filter atoms or previously 
defined filter packs. Analogously to the object type definition, we introduce iteration, set, 
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condition and recursion. The valid filter constructs are: 

- i te ra t ion  <expression> t imes  <variable> 
- Bet of 
- condition <condition> 
- implicit recursion 

These subfilters are established between components of the source and view objects or the 
variables tha t  are introduced in the variable declaration list. A filter is instantiated by 
using its specific name and by identifying the appropriate aource and view object, or by 
providing a variable, holding the filter name, plus a signature for aource and view object 
tha t  can be evaluated when the filter is instantiated (see Section 4.3). 

The set of construct instantiates several filters of possibly different types with different 
arguments. This this can be used for side-by-side or end-to-end composition. In end-to- 
end composition we have to  introduce a variable to  serve as an intermediate object. 

The i te ra t ion  construct instantiates a certain number of same filters with arguments of 
type array. The <expression> defines the range of the <variable>. The <expression> is 
evaluated within this filter type definition. It can mention source or view object com- 
ponents or defined variables. Therefore, the iteration can depend on an object that  is 
itself part of an  instantiated filter. 

The condition construct instantiates a filter only if the condition given is true. The 
<condition> is evaluated within the filter type definition and therefore the value can 
depend on an object that  is part of another subfilter. 

The recursion construct instantiates a filter of the same type as the one being defined, 
much like a recursive call in a conventional programming language. 

<address-equals-variable list> 
is a list of equations relating the addresses from the object definition to  the variables used 
in the filter construction. A aouree-view relation can be established here if it  was not pos- 
sible or convenient to  identify source and view objects of the subfilters in the m a k e  state- 
ment. The aource and view objects are bound to  objects of the lower-level filters, which in 
turn are bound to even lower levels. This binding proceeds down to  the level of filter 
atoms, where source and view are slots for atomic objects. To express the fact that  we are 
using unification, rather than type or token identity, we introduce the special symbol 
'+'. 
If any of these statements, such as va r ,  m a k e  or merge, are not necessary, they can be 

omitted. With the given syntax we are able to  define arbitrary filters. 

The object types used in the following examples are all described in Section 4.2 on object 
type definition. Figure 4.6 shows a filter of type IterationExample where a filter type is con- 
structed from four instantiations of the IntegerIdentity filter atom. This filter establishes an 
equality constraint between an  integer array of size 4 and the components of a list. Note that 
the size 4 in this example is necessary since none of the participating objects contains informa- 
tion about the size of the arrays. It does not need to  be a constant if the source or view object 
or a variable within the filter type definition could be used to  express the iteration factor. 

If we want to  combine filters of different types, we use the set of construct. Figure 4.7 
shows the SetExample where an IntegerIdentity filter atom and the IterationExample of the last 
example are composed. Note that  the actual connection of source and view objects of the 
defined filter to  the source and view objects of the instantiated filters is done in the m a k e  state- 
ment. This SetExample filter is defined for source and view of type Array-2 and List-2, respec- 
tively. But it  is also defined for all subtypes of A r r a y 2  and List-2. 
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Filter Type IterationExample ( source : Array-1 , view : List-1 ) 
var 

v[4] Integer 
make 

iteration 4 times i 
IntegerIdentity ( source.subfield[i] , v[i] ) 

merge 
view.sub-1 ==@ v[l] 
view.sub2 =()= v[2] 
view.sub-3 v[3] 
view sub-4 0 v[4] 

end 

Figure 4.6: Filter type for IterationExample. 

Filter Type SetExample ( source : Array2 , view : Lis t2  ) 
make 

set of 
IntegerIdentity ( source.labe1 , view.labe1 ) 
IterationExample ( source.dependents , view'dependents ) 

end 

Figure 4.7: Filter type for SetExample. 

Filter Type ConditionExample ( source : Array3  , view : L i s t 3  ) 
make 

set of 
IntegerIdentity ( source.label , view.labe1 ) 
condition source.labe1 = NIL or view.label - NIL 

IterationExample ( source.dependents , view.dependents ) 
end 

Figure 4.8: Filter type for ConditionExample. 

If the  instantiation of a subfilter depends on components of source or view objects o r  
defined variables, we can use the  condition construct. Figure 4.8 shows the  ConditionExample, 
which is similar t o  the  IterationExample except t h a t  the  instantiation of the  IterationExample 
subfilter depends on the  value of the  first pa r t  of the  source and view object. Figure 4.9 shows 
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Filter Type RecursionExample ( source : Array-4 , view : List-4 ) 
make 

set of 
Integerldentity ( source.label , viewlabel ) 
condition source.label = NIL or view.labe1 - NIL 

RecursionExample ( source.dependents , view.dependents ) 
end 

Figure 4.9: Filter type for RecursionExample. 

RecursionExample, which is the same as the SetExample except that  it  will instantiate the 
RecursionExample again recursively, depending on whether the label part of the source or view 
object are not NIL. 

The last examples clarified our concept of composing a filter from subfilters using the 
different filter constructors. We used the terms "instantiation" and "establishing" to  express 
the fact tha t  a filter is created from its filter type specification. If a filter is established, it  has 
a source and view object associated with it  that  are of known object type. We have to  distin- 
guish between the type given by the filter type for the aource and view and the type of the 
objects filling these slots. The type of an object filling a slot has to  be a subtype of the one 
defined by the filter type. 

4.6. Informal Semantics 

Now that we have defined the syntax of our filter type specification language and given 
some examples, we move on to  specifying the meaning of the language. Note that  this is only 
an informal discussion and that  the details still have to  be worked out. The language specifies 
objects in terms of object types built from atomic types using object constructors, and filter 
types built from filter atoms using filter constructors. A filter and its two associated aource and 
view objects constitute an instantiated filter. 

In a programming language, the meaning of a program can be defined by a semantic 
function. This semantic function maps the domains 'program' and 'state' to the domain 'state' 
[Gordon 791, i.e., i t  defines how a program affects the state. We can define the meaning of the 
filter paradigm in a similar fashion. All source and view objects constitute the state. Instead of 
a program we have filters. The filters represent constraints that are defined for the objects. A 
constraint is a condition that  must hold for some objects, plus a method to  satisfy the condition 
by manipulating the participating objects. As filter specification is declarative, there should be 
no distinction between the semantic function denoting a well-formed specification, and the 
semantic function denoting behavioral aspects. However, because the notion of input to  an 
instantiated filter is not yet clearly defined, we would like to  distinguish between static and 
behavioral semantics for this informal discussion. 

Let us first look a t  the static part of the semantics. Consider having two objects and a 
filter and wanting to  combine them to  an  instantiated filter. The objects are of a certain object 
type, the filter has its filter type. The filter type specifies the composing subfilters and how the 
subobjects of the source and view are associated with them. The addresses of source and view 
objects have to  be determined and are combined with the subfilters to  instantiate the subfilters. 
We instantiate subfilters until we reach filter atoms. A filter atom cannot be decomposed any 
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further, but there are implicit constraints associated with it. For an  identity filter atom, the 
implicit constraint is equality; for a conversion filter atom, it  is a conversion constraint; and for 
a constraint filter atom, i t  is the defined constraint. So this constraint can either be satisfied or 
fail. Note tha t  there are two places where failure can occur: first, in identifying the subparts of 
source and view objects when building an  instantiated subfilter, and second, when satisfying the 
constraint of a filter atom. The first failure can be detected from the filter type specification 
using the object type definition of the source and view objects. The second failure will result in 
invoking the constraint satisfaction mechanism that  is defined for the constraint. Thus, the 
meaning of our filter paradigm can be defined by a semantic function that  maps the domains 
'state' and 'filter' to the domain 'state' augmented with a value for failure. The type signature 
of such a semantic function expressing the well-formedness of an  instantiated filter would be: 

( state X filter ) -+ ( state + 'failure' ) 

The behavioral aspect of the semantics has to  give meaning to  dynamic changes in the 
instantiated filter when an  object is changed. Let us impose the restriction that  changes may 
occur only to  one object of the instantiated filter a t  a given time, either the source or view 
object. As an example, consider a QuadArrayMirror filter connecting two QuadArrays with one 
sublevel of nodes. Figure 4.10 illustrates the QuadArrayMirror filter constructed from five 

Figure 4.10: QuadArrayMirror for QuadArrays with one sublevel. 
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instances of the TextMirror filter". There are two kinds of changes: changes tha t  only affect 
the state of a node, such as changing the 'label' address of a QuadArray, and changes that  
affect the structure of the QuadArray, such as adding or deleting subnodes. The label is associ- 
ated with the TextMirror subfilter. If the label is changed, the TextMirror filter updates the 
corresponding label. This update can be done by marking the changed label as "anchor" and 
satisfying the TextMirror constraint of the TextMirror filter. If the structure is changed, the 
make statement of the QuadArrayMirror filter has to  be consulted again to  check which 
subfilters have to  be released or which new ones have to  be added. For example, if four sub- 
nodes are added a t  a leaf node of the source object, the address 'subarrays' in the make state- 
ment of the QuadArrayMirror filter type definition (see Figure 3.8) is no longer NIL and four 
subfilters will be instantiated. This node will then be marked as "anchor" and the constraint 
satisfaction will also create four subarrays for the view object of the QuadArrayMirror filter. 

As in the static case, there are two cases where failure can occur: the constraint for the 
filter atom cannot be satisfied, or the subparts, the addresses, of the source and view object can- 
not be identified. Hence, some changes are not allowable. The semantic function for the 
behavioral aspect maps the domain 'state', where some objects are marked as changed, and the 
domain 'filter' to  the domain 'state' augmented with a label for failure. The type signature of 
such a semantic function expressing the change behavior of an instantiated filter would be: 

( state X marking X filter ) -+ ( state + 'failure' ) 
This semantic function expresses only the effect the change has on the objects. But as a result 
of the change, the filters can have changed, too. This is an area where we need to  work on the 
details. Also, if the structure of objects is changed, the marking may not provide enough infor- 
mation for the constraint satisfaction. It  has the meaning tha t  only the structure a t  this level 
of the instantiated filter has to  be conserved in constraint satisfaction, but tha t  the subparts 
can be subject to  changes due to  dependencies in the chain of change propagation. 

As we have seen, the static and dynamic semantic functions are related. One difference 
is tha t  in the behavioral case we mark one object as special so it  will not be affected in the con- 
straint satisfaction. Further research in this area is under way. 

5. Implementation 

Although not the main issue in this phase of the research, the implementation of some 
prototype filters is useful to  locate the critical issues. Two implementations were done: one for 
the QuadArray filters12 described in Section 3, and one to  explore the interactive behavior of 
filters described later in this section. The QuadArray example led to  recognizing the necessity 
to  control the structure of objects and the access to  them. The other example, manipulating 
primitive graphical objects, clarified the issues of rendering objects on the bitmap display and 
sensing user action. Both implementations used a very basic constraint satisfaction mechanism 
that was sufficient for the examples. In order to  allow the full expressiveness of our filter para- 
digm we plan to  implement it  on top of an existing constraint system, such as ThingLab [Born- 
ing 791. 

" The TextMirror filter is assumed to be previously defined. See also Section 3.1 

l2 See Figures 3.1, 3.2 and 3.8. 
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6.1. Object Control 

The language used is Smalltalk. Therefore, objects are instances of classes. Program- 
ming is done in terms of messages tha t  are sent between objects, resulting in methods being exe- 
cuted. Filters are implemented as objects, named filter describing objects. Source and view 
objects have to be controlled in order to  detect a change. The objects could be examined a t  a 
specific event [Ege 851, or the access to  the objects could be controlled. To provide this control, 
access to  objects is done through object holders, which behave like the actual objects but also 
monitor the access to  it. Source and view objects are replaced by object holders. The 
object holder implements the same messages as the controlled object. Whenever a message is 
received, the holder forwards this message to  the held object and sends messages to  all objects 
that  are interested in the access. The object holder takes registrations from filter describing 
objects and notifies them when an  update to  the source or view object has occurred. In order to 
do that ,  i t  keeps a list of all filter describing objects that are interested in the held object. The 
filter describing objects that  have registered a t  the object holders for their source and view 
object, are notified when a change has occurred and update the other participants in the filter 
accordingly. Objects can be intermediate objects in a chain of end-to-end composed filters. The 
object holder then sends messages to  several filter objects. The filter describing objects ensure 
that an  update is not applied twice by using a simple synchronization technique. Note that  in 
this implementation the filter describing objects handle the constraint satisfaction. The struc- 
ture of the instantiated filter is hidden in dependency chains. Therefore only simple 'propaga- 
tion of value' is used as constraint satisfaction method. Future implementations will use more 
sophisticated methods like in ThingLab [Borning 791. 

6.2. Path Expressions 

When a filter is instantiated, a source and view object is associated with it. These 
objects have to  be retrieved. As mentioned in Section 4.2 objects can be accessed dynamically 
on need. To model this in Smalltalk path expressions are used. A path expression is a pair con- 
sisting of an  anchor object and a list of selection messages. In order to  access an object that  is 
referenced by a path expression, the first selection message is sent to the anchor object yielding 
one of its subobjects. The second selection message is then sent to that subobject yielding 
another object, and so on for all selection messages in the list. The object resulting from the 
last selection message in the list is the result of the delayed access. If we view an object as a 
tree, the delayed access through a path expression represent a tree traversal by executing each 
selection message from the list. If one of the intermediate objects in the path becomes 'NIL', 
then the path evaluation returns 'NIL'. It is also possible to  substitute the last object in the 
path traversal. In this case the last selection message is used as update message with the sub- 
stitution object as parameter. 

5.3. Constructing Filters 

Filters are constructed from filter atoms. As described in Section 4, these filter atoms 
have to  be provided by the basic implementation. In order to  incorporate user interaction in 
the filter pack, we have to  introduce filter atoms for accessing the display bitmap and the input 
devices of the user terminal. This access can be modelled in our paradigm. 

The filter atom that  renders a point on the screen is modelled as a filter connecting an  
object tha t  consists of a X and Y coordinate and the screen bitmap. The bit representing the 
location expressed by the coordinates is turned on. This PointRender filter is a one-way filter 
atom. Change can occur only a t  the coordinates object. This filter atom can be used to  define 
filter packs to  render higher level graphical objects, such as line, box, etc., although we will 
probably include atomic filters for simple geometric objects. 
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Filter Type PointAtMouse ( source: Mouse , view: Display ) 
var 

position -+ Point 
make set of 

PointRender ( position , view ) 
PointSensor ( source, position ) 

end 

Figure 5.1: Filter pack to  display point a t  mouse position. 

A filter atom tha t  senses input from an  input device is modelled analogously. As a n  
example, consider a pointing device, the mouse. Any change in the mouse position affects the 
value of a mouse position object consisting of an  X and Y coordinate. Such filter atom sensors 
have to  be implemented for all the graphical input primitives wallgren 831. Figure 5.1 shows 
these two filter atoms combined, resulting in a simple interface, where the mouse moves a point 
across the screen. 

When manipulating graphical objects, basic arithmetic operations are needed13. Our 
implementation includes some basic constraints for solving arithmetic, such a s  addition, subtrac- 
tion, multiplication and division for integers. They are implemented using a technique similar 
t o  ThingLabYs satisfaction methods k r n i n g  791. Figure 5.2 shows a more elaborate example, 
where a box is defined in terms of its corner points. The coordinates are constrained to  ensure 
parallel edges using IntegerIdentity filter atoms. The lines connecting the corners are rendered 

Filter Type BoxAtMouse ( source: Mouse , view: Display ) 
var 

northwest, northEast, southwest, southEast -+ Point 
make set of 

IntegerIdentity ( n0rthWest.x , n0rthEast.x ) 
IntegerIdentity ( n0rthWest.y , s0uthWest.y ) 
IntegerIdentity ( s0uthWest.x , southEast.x ) 
IntegerIdentity ( n0rthEast.y , s0uthEast.y ) 
LineRender ( (northWest,northEast) , view ) 
LineRender ( (northWest,southWest) , view ) 
LineRender ( (northEast,southEast) , view ) 
LineRender ( (southWest,southEast) , view ) 
PointSensor ( source , southEast ) 

end 

Figure 5.2: Filter pack t o  display box at mouse position. 

lSE.g., to express point locations relative to a reference point. See the appendix for an example 
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o n t o  t h e  display b i tmap  using t h e  LineRender filter. T h e  LineRender filter constrains t h e  screen 
b i tmap  t o  display a line at t h e  location specified by t h e  coordinates of t h e  endpoints of t h e  line. 
T h e  lower left corner (southEast)  of t h e  box is then connected t o  a PointSensor filter t h a t  binds 
it t o  t h e  mouse location. Whenever t h e  mouse is moved t h e  coordinates of t h a t  point  will 

From Smalltalk-80 version T2.2.0, of Match 13, 1986 on 28 August 1986 at 11 :34:36 am 

FilterEzamples class methodsFor: 'input-output' 

"Example tracks mouse cursor with box" 

I northLine eastLine westLine southLine 
northwest northEast southwest southEast 
x l  x 2 x 3 x 4 y l y 2 y 3 y 4  I I 

"create variables" 

x l  c IntegerHolder new. x2 c IntegerHolder new. 
x3 t IntegerHolder new. x4 t IntegerHolder new. 
y l  c IntegerHolder new. y2 c IntegerHolder new. 
y3 c IntegerHolder new. y4 + IntegerHolder new. 

northwest c ImpPoint x: x4 y: y4. northEast t ImpPoint x: x3 y: y3. 
southwest + ImpPoint x: x2 y: y2. southEast + ImpPoint x: x l  y: y l .  

northLine c ImpLine top: northwest bot: northEast. 
westLine t ImpLine top: northwest bot: southwest. 
southLine t ImpLine top: southwest bot: southEast. 
eastLine c ImpLine top: northEast bot: southEast. 

"instantiate filters" 

IntegerIdentity source: x l  view: x2. 
IntegerIdentity source: y l  view: y3. 
IntegerIdentity source: x3 view: x4. 
IntegerIdentity source: y2 view: y4. 

LineRender source: northLine view: Display 
LineRender source: westLine view: Display. 
LineRender source: southLine view: Display 
LineRender source: eastLine view: Display. 

PointSensor source: nil view: southEast. 

Figure 5.3: Smalltalk instantiat ion of BoxAtMouse filter pack.  
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-------  last 
.-R current 
.------ -------. next 

Figure 6.4: BoxAtMouse interface. 

change. The coordinates are part of IntegerIdentity filter atoms that  will be satisfied to  ensure 
parallel edges by changing the coordinates of the adjacent points. All these points (southEast, 
southwest, NorthEast) are part of lines that  will be redisplayed, thus reshaping the box. Figure 
5.3 shows the Smalltalk code that  was written to  instantiate the filter pack. The objects that  
are values for the variables have to  be created first. Points are created from X and Y coordi- 
nates. Lines are created from points'4. The IntegerIdenity subfilters are instantiated for the 
coordinates. The lines are displayed by sending the LineRender class the message 'source:view:' 
and identifying the correct objects. The input sensor is instantiated by sending the same mes- 
sage to  the Pointsensor class. Figure 5.4 illustrates the screen representation. Three instances 
in time are recorded. The first part shows a rectangle. Then the cursor is moved right and up. 
The rectangle follows as shown in the middle part. Then the cursor is moved down and left. 
The rectangle follows as shown in the right part. 

5.4. Condition and Iteration 

The current implementation is also concerned with the notion of structural change. If 
the structure of the filter pack is to  be modifiable by user input, then a more complex control of 
the filter instantiation mechanism has to  be provided. The structure of a instantiated filter can 
change, because objects that  are participating in the filter constructors, such as iteration and 
condition, are changed. Iteration and condition filters depend on the objects tha t  are referenced 
in their iteration factor and condition expression, respectively. When one of these objects is 
changed the filter has to  determine whether and how many subfilters to  establish. This depen- 
dency can be viewed as a one-way filter where changes affect the iteration and condition filter. 
Whenever a subfilter is then instantiated, the source and view objects have to  be reevaluated 
from their path expressions. 

The next step in the implementation of a prototype interface is to  provide filter atoms to  
create interface concepts, such as menu, form, window, etc., and to  code more basic constraints, 
such as constraints for arithmetic. As mentioned a t  the beginning of this section, the current 

l4 Note that the object types point and line are called ImpPoint and ImpLine, respectively, to avoid a 
conflict with Smalltalk classes point and line. 
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implementation uses a very basic constraint satisfaction mechanism. ThingLab [Borning 791 
implements a powerful constraint satisfaction. Combining ThingLab and the filter paradigm by 
implementing the filter describing objects as ThingLab 'things' will probably yield a more usable 
system. Research in this area is under way. 

6. Conclusion 

This paper presented the filter paradigm. It is a new approach to  model interfaces. The 
basic concepts of objects, constraints and filters were introduced and the filter specification 
language was defined. Critical issues in a possible implementation were discussed. 

This research is a step towards the goal of automatic generation of user interfaces, which 
is subject of joint research a t  the University of Washington, the Oregon Graduate Center and 
the Tektronix Computer Research Laboratory [Borning 861. The generator will be based on the 
filter paradigm. We think of a system where the interface designer specifies the interface graph- 
ically from subfilters, plugging existing parts together to  build his system incrementally. This 
graphical description has to  be transformed into the filter specification language given in this 
paper. The language is declarative and can be analyzed to  optimize the interface. This 
language is then subject to  compilation into constraints, which can be satisfied using a 
constraint-satisfaction system. Before we build a compiler for the filter specification language, 
translating them into constraints, we would like to build a prototype interface by implementing 
the filters directly in Smalltalk or on top of ThingLab [Borning 791 as discussed in Section 5. 

7. Acknowledgement 

Grateful acknowledgement goes to  my advisor, Dr. David Maier, for supplying the origi- 
nal idea for this research and guiding me through the development process. I would also like to  
thank Dr. Alan Borning, who provided ThingLab that  will be used in the next implementation 
of the filter paradigm. This work was done while the author held the Tektronix Fellowship for 
Computer Science and Engineering. 



Appendix 

8. Geometric Theorem 

As in the related literature [Borning 811 [Leler 861, we will demonstrate the usability of 
our filter description. The following sections will describe step by step how to  visualize a 
geometric theorem. The geometric theorem states that  if we connect the midpoints of all edges 
of a quadrilateral, we will always get a parallelogram. We want to  construct an interface for a 
graphical screen that  allows us to  manipulate the points of the quadrilateral and of the paral- 
lelogram by preserving their geometric properties. This example will highlight several features 
in our filter paradigm: 

- 1 / 0  primitives as filter atoms 
- type hierarchies 
- constraints 
- filter instantiation 

8.1. 1/0 Primitives 

The section on filter specification (see Section 4) introduced the need for filter atoms. 
The basic filter atoms are identity, conversion and constraint filter atoms. The section on 
implementation (see Section 5) added filter atoms for input and output. The table in Figure 8.1 
gives some examples: The PointRender filter atom displays a pixel on the screen bitmap a t  the 
location given by the object of type Point. The LineRender filter atom displays a line of pixels 

Output: 

PointRender 

LineRender 

PointRender - BitMap 

BitMap 

Figure 8.1: 1/0 Primitives. 

Input: 

Pointsensor 

Buttonsensor 

Point Cursor 

Boolean ButtonSensor Mouse 



The Filter - A Paradigm for Interfaces 

Filter Type PointAtCursor(source: InputMedium, view: DisplayMedium) 
var 

position 4 Point 
make set of 

PointSensor ( position , view ) 
PointRender ( position , source ) 

end 

Figure 8.2: PointAtCursor Filter Type. 

on the screen bitmap a t  the location given by the object of type Line. The PointSensor filter 
atom reflects the position of the cursor in an object of type Point. The Buttonsensor relates a 
mouse button to  an object of type Boolean. 

A simple interface can be constructed by connecting end-to-end a PointSensor and Point- 
Render filter atom that  agree on an intermediate object 'position' of type Point. This PointAt- 
Cursor filter (see Figure 8.2) will trace the cursor movement with a pixel on the display bitmap. 
(This filter type is basically identical to  the one in Figure 5.1 and is included here only for com- 
pleteness.) 

8.2. Type Hierarchies 
Our object type specification allows us to  build type hierarchies. Consider as example 

the four object types: Polygon, Quadrilateral, Triangle and Box. Their object types are given in 
Figure 8.3. The figure also illustrates their type hierarchy. The object type Polygon is super- 
type of Quadrilateral, Triangle and Box. Quadrilateral is supertype of Box. Note that  the sub- 
types do not add addresses to  the type definition. Instead, they constrain inherited addresses. 

We can use this type hierarchy in defining a filter type to  display objects of these types 
on the display bitmap. The PolygonRender filter type will instantiate a LineRender subfilters 
for each edge of the source object. The number of edges is given by the count address of the 
source object. Figure 8.4 shows the resulting filter type definition. Notice tha t  two adjacent 
points are combined to  form an  edge. 

8.3. Constraints 

As described in Section 5 on implementation, we need basic arithmetic constraints. 
Other constraints can be build from them. As an example (see Figure 8.5), consider a line with 
two points 'head' and 'tail'. We want a third point, 'mid', to  be in the middle of the line from 
'head' t o  'tail'. If the two points of the line are moved, the midpoint should be adjusted to  
satisfy the constraint. If the midpoint is moved one of the endpoints should be moved accord- 
ingly. 

We can express this relationship with a constraint equation: 

mid = ( head + tail ) / 2 

If we want to  decompme the constraint into subfilters, we introduce another point, 'add', that 
represents the addition of the two endpoints of the line. The 'add' point can then be divided by 
two to  yield the midpoint. The addition and division are not simple arithmetic operations but 
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Object Type Polygon 
count -+ Integer - 

points [ count ] -+ point) 

Object Type Quadrilateral Object Type Triangle 
inherit from Polygon inherit from Polygon 
constraint Identity(count ,4) constraint Identity(count,3) 

Object Type Rectangle 
inherit from Quadrilateral 
constraint Identity (points [1] .x ,points [3] .x) 

Identity (points[l] .y ,points[2] .y) 
Identity (points[2] .x,points[4] .x) 
Identity (points[3] .y,points[4] .y) 

end 

Figure 8.3: Type Hierarchy for Polygons. 

Filter Type PolygonRender ( source : Polygon , view : DisplayMedium ) 
make set of 

iteration source.count times i 
LineRender( (source.points[i],source.points[(i+l)%source.count]) , view) 

end 

Figure 8.4: PolygonRender Filter Type. 
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I 

Figure 8.5: Midpoint on a Line. 

represent sub-constraints tha t  keep the relation of the points. These sub-constraints are further 
subdivided into basic arithmetic constraints for integer arithmetic t ha t  are filter atoms. We 
express this construction as a filter type in Figure 8.6. 

8.4. Filter Instantiation 

Filter instantiation is not static. As an  example, consider the condition filter constructor. 
The subfilter is only instantiated when the associated condition is true. The filter type 
PointMenu (see Figure 8.7) instantiates a conditional subfilter PointSensor 'view.count' times. 
The condition depends on the variable 'selection' tha t  is manipulated by the PopUpMenu 
subfilter. This PopUpMenu subfilter is supplied by the implementation as a filter atom. It  sets 
the variable 'selection' according to  the choice the user made. Only one PointSensor subfilter is 

Filter Type Midpoint ( source : Line , view : Point ) 
var 

add -, Point 
make set of 

Pointplus ( ( source.head , source.tai1 ) , add ) 
PointDivision ( ( add , 2 ) , view ) 

end 

Figure 8.6: Midpoint Filter Type. 
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instantiated because only one of the conditions can be true. If the value of 'selection' changes, 
then the old subfilter is released and the new subfilter, which condition is now true, is instan- 
tiated. 

8.6. Geometric Theorem 

The previous examples can now be plugged together t o  illustrate the geometric theorem: 
connect the midpoints of the edges of a quadrilateral t o  yield a parallelogram. Figure 8.8 shows 
three examples of the graphical representation of the theorem1. The interface we built will 
display the quadrilateral and the parallelogram on the display bitmap and will provide a 
popupmenu t o  let us select one of the eight points t o  move i t  with the mouse. The graphical 

Filter Type PointMenu ( source : InputMedium , view : Polygon ) 
var 

selection -+ Integer 
make set of 

PopUpMenu ( selection, view .count) 
iteration view.count times i 

condition ( selection = i ) 
Pointsensor ( view.points[i], source ) 

end 

Figure 8.7: PointMenu Filter Pack. 

Figure 8.8: Illustrated Geometric Theorem. 

' This figure was generated using the constraint-based IDEAL language 
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Filter Type Theorem ( source : InputMedium , view : DisplayMedium ) 
var 

quad , para -+ Quadrilateral 
make set of 

iteration 4 timea i 
MidPoint((quad.points[i],quad.points[(i+l)%5]), para.points[i]) 

PolygonRender ( quad , view ) 
PolygonRender ( para, view ) 

PointMenu ( source , (quad.points + para.points) ) 
end 

Figure 8.9: Theorem Filter Pack. 

display follows the mouse movement, always satisfying the midpoint constraint, thus illustrating 
the geometric theorem. 

The filter type 'Theorem' (see Figure 8.9) relates an InputMedium to  a DisplayMedium as 
source and view type. In the var statement the filter type defines two variables of type Quadri- 
lateral (see Section 8.2). Since a Quadrilateral has four sides The make statement names four 
Midpoint subfilters (see Appendix Section 1.3), associating the lines of the 'quad' quadrilateral 
and the points of the 'para' quadrilateral. The two quadrilaterals are then displayed using two 
PolygonRender subfilters (see Section 8.2). We finally include a PointMenu subfilter (see Section 
8.4) to  bind the InputMedium to  the eight points of the quadrilaterals. 

This interface is implemented in Smalltalk-80 on a Tektronix 4400 machine. It allows 
the user to  select any point of either the quadrilateral or the parallelogram. The selected point 
is then associated with the mouse. Mouse movement will cause the point to  move, thus reshap- 
ing the graph as shown in Figure 8.8. Note that  the filter type 'TheoremY describes this dynamic 
behavior purely declarative. The dynamic behavior is hidden in the constraint satisfaction. 
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