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Abstract 

Relational database systems have gone far towards providing users with physical data 

independence. T o  use a relational database, users need not know the physical storage 

structures of relations, and are protected from changes in these structures. However, a user 

must still navigate among relations. In other words! if the information needed to answer a 

question spans several relations, he must explicitly specify how these relations are to be 

combined. 

Physical data  independence is not enough. A user should also be afforded some 

degree of structural data  independence. More specifically, he should be able to pose queries 

without having to  explicitly navigate among relations in the  database. Instead, the system 

should do the navigation for him. 

We consider universal scheme interfaces as a means for automatic database navigation, 

and introduce the concept of a generator as central to  such navigation. We describe a 

particular generator based on the semantic notions of decomposable and non-decomposable 

facts, and present PIQUE, an attribute-based query language designed to  work with this 

generator. 

PIQUE is a concise, yet powerful, language with natural semantics. A distinguishing 

feature of PIQUE is that tuple variables in queries are bound implicitly and that  the 

logical connectives "and," "or," and "not" can affect the binding, and, therefore, take on 

"semantic overtones." Furthermore, the semantic interpretation PIQUE gives to these 

connectives is more natural than the one given by most other query languages. 

In the appendix, we present PIQCE's formal syntax and semantics, along with the 

proof that  PIQUE is relationally complete. 



1. I n t r o d u c t i o n  

,4 database systen for interaction with non-technical users should provide them with a 

"user oriented'' query language with natural syntax and semantics, so that it is easy to 

!earn and remember. By "user oriented" we mean that  the language should support the 

~Jser {remantic) point of view on the world being represented rather than the database 

{structural) one. In particular, the queries posed in the language should be phrased in 

t.erms of semantic notions and be free from representational artifacts. 

At the  very leaui, shch a language should provide users with a certain degree of 

physics.! d ~ i t o  independence. TExt is, it should allow users to pose queries without any 

knowledge of the physical s t r u c t ~ ~ r e  of the database. We note that  all existing relational 

query hnguages (such as SQL iCA41, Quel [SWKH:, QBE [Zl], etc.) possess this property. 

The TISV of a relational database sees. the data as a collection of named relations, each 

over snrne set of attributes. Therefore, he does not have to  be concerned with the details 

v ~ f  l ) I ~ y s i ~ a ~  implementation of thew relations (such as pointers, indexing schemes. physical 

i : > ~ t . , r f i  ~tcl..:tllres, et.c.1. I,ikewise, since the user phrases his questions in a high level 

relatitrnal Iaoguage, he does not have to  know anything about the actual implementation of 

the oyerafiions on relations. 

'To i1)ustrate the importance of achieving physical data  independence, consider a simple 

network database modelling a university. A possible scheme for such a database is 

r e c o r d  S(fie1d STUDENT, ..) 
r e c o r d  C(fie1d COURSE. ,.) 
r e c o r d  F(fie1d F A C C T Y ,  ...) 
r e c o r d  R1( ...) 
r e c o r d  R2( ...) 
s e t  S-Rl(owner S; m e m b e r  R1) 
s e t  C-Rl(owner  C; m e m b e r  R1) 
s e t  C-R2(owner C; m e m b e r  R2) 
s e t  F-RZ(owner F ;  m e m b e r  R2) - 

where sets S-Rl and C-R1 represent information about students taking courses. and sets 
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C-R2 and F-R2 represent information about faculty members teaching them. A query such 

as  "Who takes some course taught by Smith?" directed at this database, can then be 

posed in the following way (the syntax is borrowed from Date jDa] and is somewhat 

simplified). 

move 'Smith' to FACULTY in F 
find any F using FACULTY in F 
find first R2 within F-R2 
perform until not fail 

find owner within C-R2 
find fvst R1 within C-R1 
perform until not fail 

find owner within S-Rl 
get S 
print STUDENT in S 
find next R1 within C-Rl 

end-perform 
find next R2 within F-R2 

end-perform 

We shall not discuss this example in detail ( a  discussion on the design and use of 

network databases can be found elsewhere IDa]). However, it is clear that  the structure of 

the query above is very much dependent on the specific physical structure that we have 

chosen for the database. In particular, lines 3, 5, 6, 8, 11 and 13 depend on faculty, 

course and student records being organized in particular ring structures, while line 2 refers 

t o  a specific method of accessing faculty records. 

On the other hand, a typical relational database representing the same situation 

would contain the following relations. 

S(STUDENT, ...) 
C(COURSE, ...) 
F(FACULTY, ...) 
TAKES(STCTDEKT, COURSE) 
TEACHES(FACC:LTY, COURSE) 

The same question can then be posed in Quel as follows. 
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1 range of x ie TEACHES 
2. range of y is TAKES 
3. retrieve (y.STI;DEXT) 
4. where (y.COURSE = x.COURSE) and (x.FACLLTY = 'Smith') 

In this query, lines 1 and 2 specify the relations involved, line 3 describes the 

information to be retrieved, while line 4 refers to the conditions to be satisfied. Note that 

no reference to the internal structure of relations or to any particular access method need 

be made. 

We note, however, that  the user of a relational database must still navigate among 

relations. In other words, if the information needed to  answer a question spans several 

relations, he must specify how these relations are to be combined to achieve the desired 

answer. In particular, in posing his queries, the user must refer explicitly to relation 

names (in algebraic languages) or explicitly declare and bind variables (in calculus 

ianguages), and explicitly specify natural joins. In the Quel query above, for example, 

ictlatizns TAKES and TEACHES are introduced into the query through explicit declaration 

oi' tt~ple variables x and y, while condition (y.COURSE = x.COURSE) serves only to 

specify the natural join between these relations. 

In order t o  navigate within a relational database, the user must know its structure. 

This requirement may, in turn, present problems. First, the structure of the database in 

any real application can be quite complex. Second, databases tend to evolve in time. In 

particular relations in the database may be decomposed or restructured for reasons of 

normalization or redundancy. Therefore, it seems unreasonable to  expect all users to know 

the database structure in detail a t  all times. Finally, some users may be precluded from 

seeing all of the database for security reasons. 

We, therefore, believe that  having physical data  independence is not enough. A user 

of a database should also be afforded some degree of structural (sometimes also called 
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logical) data independence. More specifically, he should be able to pose queries without 

having to  explicitly navigate among relations in the  database. Instead, the system should 

do the navigation for him. As we shall see, this will allow a considerable simplification of 

the query language, since none of the navigational information will need to  be included in 

queries. This, in turn, will make the language more natural in its appearance, and, 

therefore, more suitable for users. 

The remainder of this paper is organized as  follows. In Section 2, we consider 

universal scheme interfaces as a means for automatic database navigation. We discuss 

general principles behind providing such interfaces and introduce the concept of a generator 

as central to  automatic navigation. In Section 3, we describe one particular universal 

scheme interface, based on the semantic notion of fact. In Section 4 ,  we present PIQUE, 

an  attribute-based query language designed to  work with this interface. In PIQUE, the 

question "Who takes some course taught by Smith?" can be posed as follows. 

retrieve (STUDEKT) where (FACULTY = 'Smith') 

In Section 5, we discuss various improvements t o  PIQC'E. Finally, in the appendix, we 

present PIQUE'S formal syntax and semantics, along with the proof that PIQUE is 

relationally complete. 



2. Universal Scheme In te r faces  

The traditional method of hiding structural details of a database from a user (thus. in 

effect, avoiding the problem of navigation) has been to offer the user a view of the 

database 'Da,Ma,Clli. A view in a relational database is a set of (derived) relations 

defined by some set of relational algebra (or relational calculus) expressions, usually 

explicitly referencing stored relations of the database. For the sake of simplicity, we shall 

assume a view to be a single relation, rather then a set of them. 

tTje believe that there are several problems with views. First, views do not really free 

the rtser from the need to  know the structure and semantics of the underlying database. 

For example, consider a user who is given some relation r as a view on a database. If the 

IISZP is to make any use of this view, he must be able to correctly interpret the 

information contained in it; that  is, he must be able to associate a correct semantic 

interpret,s+ion with tuples from r. 

'Che only way the ixer can do this precisely is by looking a t  how view r was defined. 

'I'hl.; iri-(plies that  he has t o  know the meaning of all stored relations involved in the 

defirlltior: of r. Furthermore, if there are several views that  the user can choose from. he 

ha!? LO understand the meaning of all stored relations mentioned in any of them. And 

final!y, for the user to realize that none of the available views suit him (and, consequently. 

to  request the construction of a new one) he has to understand the meaning of all stored 

relations comprising the database. 

AS an example, consider a database consisting of a single relation 

'rEACHES-TO(FACULTY,COURSE,STUDENT). Suppose a user has been given a view 

TEACHER(FACULTY,COURSE) defined as rFC (TEACHES-TO). (rFC stands for 

"projection onto attributes {FACULTk',COC:RSE).") 

- 
If the user is to understand the meaning of this view, he has t o  be aware of the 

presence and the meaning of relation TEACHES-TO. Then, and only then, will the user 
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be able to correctly interpret a tuple <f,c> from view TE-4CHER: namely, that there 

exists some student s who takes course c taught by faculty member f. 

The second problem with views is tha t  the user has to  remember the names and the 

schemes of the available views. Since the number of views in any non-trivial database can 

be quite large, this approach does not seem to  provide any real advantage. 

Yet another problem with views is that  they are database oriented. Since views are 

usually predefined by the database designer, they really represent his (overal!) point of view 

on the database, which might not correspond to  the interpretations that users have in 

mind. 

In particular, the most intuitive interpretation of view TEACHER is that faculty 

members teach courses (regardless of the existence of any students taking them). Clearly, 

however, such an interpretation of view TEACHER is not correct. Furthermore, without 

the use of placeholder nulls [Sc], a view with the above interpretation cannot even be 

defined in terms of relation TEACHES-TO. 

A more promising approach is the use of universal scheme interfaces. A universal 

scheme interface allows one to  access the database solely through the attributes. The 

assumption is that  attributes in a such an interface correspond naturally to the entities in 

the real world, and the attribute names are chosen in such a way as to give users an  

intuitive understanding of the relationships among these entities that  is close to  the 

semantics of the database. 

Query processing in a universal scheme interface can be viewed as a two step 

procedure. First, a set of attributes X appearing in the query is determined. Then, on 

the basis of the s ta te  of the database, a relation r over X is generated. (If the query 

contains several variables, then attributes appearing with each variable are used to generate 
- 

separate relations.) Second, further operations specified by the query (such as selections, 

projections and joins) are performed on the generated relation(s) t o  produce an answer. 



+?'h~se two steps are usually called binding and eoaluatzon ,XfRUi2. 

The process of binding can. in turn, be divided into two sub-stages: naozgation and 

cgrnputation. Given a set of attributes X, the universal scheme system first determines an 

appropriate navigation path. That is, the system establishes a relational expression that  

defines r over 31 in terms of stored relations. This relational expression is usually called a 

window (or  a connection) for X and is denoted by [IX,j 'MRW21. Note that formally ' X ' 

cat also br thought of as a function from database instances to relations over 

X ' S f -  [ ,  X : is sometimes refei-red to as a window functrcn 'MRN-2 . During the 

crbc~~iutstion stage, expression iiX1: is used to compute the relation r. While, properly, we 

riio~lld denote the value of [[Xi] on database instance d as [IX/](d), in most cases d wiIl be 

i~nrierqtood, and we shall simply write [/Xi]. 

A mechanism for navigating within a database, or more precisely for generating 

wicido~vs :$ called a window generator, or simply a generator [MRSZ: Formally, a 

yellerat,>< car? be looked a t  as a mapping from a set of attributes and a database scheme 

to tho ivindn-.v for that set irl that scheme. 

in gtn~ra1, there is inore than one way to  establish a navigation path covering a 

;i;re~i set of attributes Therefore, generators often use additional semantic information in 

chnasing among possible paths. This semantic information usually falls into one of two 

categocies: semantic tools provided by or added to the relational model (e.g., functional and 

join dependencies), and assumptions made about the state of the database (e.g., universal 

irl~tancr: a~sumyt ion,  universal relation scheme assumption. weak and:or representative 

i~s ta i lze  asrumption). 

Several universal scheme systems have been proposed or are under development. 

Among them are: APPLE [CK]; the system of Shenk and Pinkert !SP:; q [AK:: System I' 

IKo,KKFGU,KU,MCT,U12]; PIQUE jMRSl,MRS2,MRSSW,MW,Ro!; Parafrise [KMRS,KS!: 

FIDI, /Ba]: DURST [BB!; and the system of Arazi-Conczarowski !A-G'. Maier, Rozenshtein 
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and Warren 3 f R W l , M R W 2 '  provide a detailed overview and a comparison of these 

systems. For the purpose of exposition, in the next section, we choose and briefly present 

the object-based (OB) generator adopted from the association-object data model [ M w ' .  

In concluding this section, we note that  windows are similar to views. They differ 

from traditional views, however, in that  generators provide a uniform discipline for defining 

and naming them. In addition, unlike an arbitrary set of views, windows in many 

(although not ail) universal scheme interfaces display some manner of semantic consistency. 

In fact, the choice of the term "window" is intended to  convey the image of a consistent 

set of views onto a single database world. 
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3. The Object-Based Generator 

In presenting the OB generator, we take the view that  the database scheme should be 

designed in such a way that the relations in the database would correspond to sets of 

Sryeducible facts. ( A  precise definition of fact for relational databases was introduced by 

Sciore ~SC'.)  A fact is considered irreducible if it cannot be derived from any of its partial 

subfactu. For example. a tuple <Smith.CS302> from relation 

TEACHES(FACULTY,COCRSE) represents an irreducible fact. since we cannot posit that  

Smith tpnches CS302 from knowing that Smith is a faculty member and CS302 is a course. 

Likewise, a tuple <Smith,CS302,Kirk> from relation 

'fEACHES-'I'O(FACULTY,COURSE,STUDENT) corresponds to an  irreducible fact, since 

again we cannot posit that Smith teaches CS302 to  Kirk from knowing that Smith teaches 

CS302 and Kirk takes it. 

Additional semantic information (to be used by the OB generator) is represented by 

tne.;o: of semantic dcvitles called objects and by the enforcement of the so-called unique role 

i s s i ~ , n y t i o n  (L'RA). W e  use the term extended database scheme to refer to  a database 

n~hpl.il:? *,ogether with its objects. 

Each object is a set of attributes. The set of objects is declared by the database 

tiesigcer. Declaring W to be an object corresponds to  asserting that there exists some 

se~nant ic  relationship among attributes in W and tha t  this relationship is decomposable. 

Thus, tuples over W have meaningful interpretations and correspond to reducible facts. 

'rhesc facts can be derived from their subfacts. We shall return to  how this is done later 

in this section. 

The  URA is a simplifying assumption that  basically states that the database 

represents a t  most one semantic relationship among any set of attributes. In other words, 

there is a t  most one way to interpret an existing tuple over any set of i t t r ibutes.  For 

example, a database with relations TAKES(STUDENT,COURSE) and 
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ASSISTS-WITH(STLDENT,COC'RSE) would violate the VRA, since it contains two 

semantically distinct relationships between STUDENT and COCRSE. One of them states 

that  STUDENT takes COURSE, while the other states tha t  STUDENT is a teaching 

assistant for COURSE. An obvious way to make this database satisfy the URA is to 

rename attribute STUDENT in one of the relations. For example, we can achieve 

satisfaction of the URA by renaming STUDENT into ASSISTANT in relation 

ASSISTS-WITH. 

Note tha t  the URA does not require that there exist a meaningful relationship among 

any set of attributes. It merely states that  if a directly represented relationship does exist 

among the attributes in some set X, then i t  is unique. Also note that we do not construe 

the URA so strongly as to prohibit the very existence of multiple semantic relationships 

among a set of attributes. We only intend our system to consider one of them t o  be the 

most natural, and to  establish that relationship automatically. Other relationships must be 

established by the user. 

For example, consider a simple database modelling a university. A possible scheme 

for such a database is: 

TEACHES(FACULTY,COCTRSE) 
TAKES(STUDEKT,COURSE) 
ASSISTS- WITH(ASSISTAKT,COC:RSE) 
TEACHES-TO(FACULTY,COC'RSE,STUDENT) 

with objects 

A possible instance for this database is: 
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TAKES = STUDEST COURSE 
-------*-------- 

Kirk CS120 
Rabkin CS120 
Kirk CS302 
Ross CS303 

TEACHES = FACULTY / COURSE 
---------------- I------------*- 

Smith : CS120 
Smith / CS302 
Smith I CS303 

TEACHES-TO = FACULTY / COURSE I STUDENT 
---------------- I_-__-___------- I______-_____-___ 
Smith I CS302 I Kirk 

ASSISTS-WITH = ASSISTAKT ) COURSE 
----------------=- ------------- 
Chung I CS112 
Johnson I CS302 
Ross CS112 

Note that  this database does satisfy the TIRA. with each relation scheme corresponding to 

a type of irreducible facts. 

One of the consequences of the lJRA is that  a database may contain a t  most one 

stored relation for any set of attributes. Therefdre, we do not have to use relation names 

to identify relations in a URA database. From now on, when convenient, we shall use 

r ( R )  t.0 denote the stored relation over R. 

We note that  the OB generator allows subscheme relations to  be present. It is a 

consequence of the URA, however, that  these relations must satisfy the following 

containment condition: for any two relations r(R) and r(S) if R G S, then nR(r(S)) Z r(R).  

For example, since the scheme of relation TEACHES is included in the scheme of relation - 
TEACHES-TO, these relations must (and. in fact, do) satisfy the following containment 

condition. 



'FC (TEACHES-TO) TEACHES 

(In the expression above and in other expressions throughout this paper we often abbreviate 

attributes t o  their first letters.) 

Recall that  objects correspond to  types of reducible facts. Relations for objects are 

not stored in the database, but rather are computed from stored relations. In particular, 

let W be a n  object. The semantics of a tuple w over W must follow from the semantics 

of those subtuples of w that  correspond to irreducible facts. That  is, the meaning given to 

any tuple w(W) is a combination of meanings given to  tuples from all those stored 

relations whose schemes are included in W. Furthermore, by the URA, the interpretations 

assigned t o  all such relations are mutually consistent with each other. 

Therefore, we define a relation for W (denoted by ;(W) and called an object view) as 

the following natural join expression (called the object-join). 

;(w) = * 
R ia relation acheme, R 5 W (r(R) 

We shall again abuse the notation and often write ;(W) to  mean ;(W)(d) when the 

database s ta te  d is understood and the context is clear. 

For example, the object view for object {FACULTY,COLRSE,ASSISTAh-T) is defined 

as  follows. 

The actual relation for this object, which is computed by applying object-join ~ ( F C A )  to  

our database, is 

- 



PIQUE 

FACCLTY j COURSE , ASSISTANT ________________ i _________ _ _ _ _ _ _  ;__________ ________ 
Smith I CS302 i Johnson 

The definition above makes sense only if W is equal t o  the union of some set of 

relation schemes [MRWl,MRWZ,MW]. The OB generator makes this restriction on 

allowable objects. In addition, since every fact can always be considered t o  be reducible to 

itself, every relation scheme is automatically included in the set of objects. For the sake of 

.:ucciactness, however, relation schemes do not have to be explicitly declared as objects. 

Yote that, for any two relations r(X) and r(Y), if X c Y and nx(r(Y)) E r(X), then 

( X  * ( Y )  = r ) .  Therefore, by the containment condition for relations, only relations 

aver the mazimal schemes need actually be considered in taking the  join. Furthermore, as 

the next lemma shows, object views also satisfy the containment condition. 

Lenuna 1: 

For any two objects V and W: if V W, then nv( ; (w))  C: ;(V) 

Proof: 

Immediate from the definition of object views. 

ii 

We note that  our generator, in effect, uses objects to navigate within the database. 

To the generator, each object represents a meaningful semantic relationship among a set of 

attributes, and therefore a meaningful navigation path. Note, however, that  objects are the 

only tool used by this generator. Therefore, in our definition of objects there is an implicit 

assumption that  they represent all meaningful relationships. Again we do not construe this 

assumption so strongly as t o  prohibit the possibility that  there exists- some semantic 

relationship among attributes in a set tha t  is not declared as  an  object. However, this 

relationship will not be recognized as meaningful by our generator, and therefore will not 
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be established automatically. 

We also note that if W is an object, then there exists a meaningful relationship 

among any subset V of W. Furthermore, the semantics of this relationship is (at least 

partially) determined by the semantics of the object W. 

Finally, we note that by the URA and by the  requirement that objects be closed 

under nonempty intersection (this requirement is introduced later in this section) the 

semantic interpretations given t o  any two objects that share attributes are consistent. 

These arguments motivate the following strategy for defining windows. Given a set of 

attributes X, the OB generator considers all objects whose attributes include X. Every such 

object represents a meaningful relationship relevant t o  the relationship among attributes in 

X; these objects represent all relevant relationships; and,  finally, all of these objects have 

consistent semantic interpretations. Therefore, the OB generator defines [ X I ]  as the 

following union. 

For example, the window for {FACULTY,ASSISTANT) is defined as follows. 

The corresponding relation, which is obtained by applying the expression [ ;FA: )  to  our 

database, is 

FACULTY I ASSISTANT 
I ___------__----- I__-_-_____________ 

Smith j Johnson 

A tuple <Smith.Johnson> from this relation is interpreted as "faculty member Smith - 
teaches some course for which Johnson is an assistant." 
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If the extended database scheme contains no objects thzt  include X. then the 

generatar will return nothing (i.e.. the relational expression defining the empty relation over 

X) as the definition of [ I X  ' .  In fact, it should probably be made to return a message 

stating that  it could not define j X .  a t  all. This is appropriate. since the absence of 

objects that  include X indicates that (as far as the database designer is concerned) the 

relationship among X is not semantically meaningful (or, a t  least, is not sufficiently 

meaningful to be defined automatically). 

By the containment condition for objects. if objects W and V both contain X, and W 

= V, then V can be dropped from the union that  defines ;;Xij .  Thus, only the minimal 

objects need actually be considered in taking the union. In addition, as the next lemma 

shows, the windows compiited by the OR generator also satisfy the containment condition. 

Far any X and Y, if X G Y. then lix(:lY j )  G :Xi:. 

immediate from the definition of windows. 
!I 
I I 

It, follows from Lemma 2 that windows defined by the OB generator are semantically 

cor~ulstent,. Furthermore, the OB generator is faithful. That is, windows are defined in 

such a way that  for any relation scheme R, r (R)  = ;(R) = [iRi!. We note that  

faithf1.ilness is a n  essential and very much desired property of any generator. Unless the 

generatof is faithful, it is possible to  add a tuple t o  a stored relation and not be able to 

retrieve it. The next theorem describes the necessary and sufficient conditions for the 

faithfulness of the OB generator. 

- 

Theorem 1 iMRW21: 
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The OB generator is faithful if and only if every relation scheme is also considered to 

be a n  object. and relations satisfy the containment condition. 

The final condition deals with the integrity of objects. The purpose behind this 

condition is to prevent little knowledge from being a dangerous thing. If someone knows 

the semantics of all relations whose schemes are contained within some object W, then he 

should be able to deduce the meaning of the window on any subset of W. Formally, object 

W is integral if for any X c W, i/X ] can be computed from {r(R) / R 2 W )  alone. 

Our example database violates integrity of objects, because, for example, IiCOURSEij 

cannot be defined from relations in object {FACULTY,COURSE) alone. In fact, the OB 

generator would define it as 

The danger here is that if a user knows only that the database contains information about 

faculty members and courses (and does not know about students and assistants) his 

assumptions about the meaning of [(COURSE/] will be incorrect. 

The next theorem shows that  integrity of objects is equivalent to the set of objects 

being closed under nonempty intersection. That  is, if objects V and W have a nonempty 

intersection Z, then Z must also be an object. This closure property has an important 

computational advantage: for any X there is a unique minimal object W containing 

X. This, together with the containment condition for objects, implies that  ilXij can be 

defined in terms of ;(w) alone. In other words, no unions need to be taken to  define 

[IXl]. 
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Theorem 2 'hIRiT2:: 

All objects a r e  integral if and only if objects a re  closed under nonempty intersection. 

The  integrity of objects and the condition requiring every object to be the union of 

Fir,me relation 5chemes imply that  relation schemes themselves must be closed under 

aonernpty intersection. In accordance with this, we modify our example to  include a 

rel&tion over {COC'RSE). A possible interpretation of relation r (C0URSE)  is t o  represent 

111 :::isttng courses (e.g., ali courses listed in a catalogue). We note that  a course may be 

listed i n  a catalogue independently from any students taking it, any faculty member 

teachiag it, or any assistant assisting with it .  
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4. PIQUE: The Query Language for the OB Generator 

Recall that  query processing in a universal scheme system involves two steps: binding 

and evaluation. During binding, the generator establishes the necessary windows and 

computes the corresponding relations; during evaluation, additional operations specified in 

the query are applied to these relations to  generate a n  answer. 

While these steps do interact, they are loosely-coupled. Changes to the generator can 

be made without affecting the procedures a t  the evaluation step. Therefore, the PIQUE 

query language, while designed for use with the OB generator, can also be used with other 

types of generators. (We note, however, that  changes to the generator will affect the way 

it defines windows and, therefore, may result in different answers to queries.) 

PIQUE is a tuple calculus language similar t o  Quel [SWKH]. Thus, a query in 

PIQUE has the general form 

retrieve <retrieve set> where <condition>, 

where <retrieve se t> is a list of tuple-attribute pairs and <condition> is a predicate of a 

forrn t o  be specified later. There are, however, two important distinctions between PIQUE 

and Quel. First, because the OB generator automatically navigates within the database, 

the tuple binding mechanism of Quel that  explicitly binds tuple variables t o  relations 

becomes superfluous. Instead, tuple variables are bound to  windows. (More precisely, they 

are bound t o  relations obtained by evaluating windows on the current state of the 

database.) The second distinction is that  users do  not have to specify the bindings 

explicitly. Instead, the system uses the syntax of the query to determine the range of 

tuple variables. 

In this section, we present examples of queries that  motivate the constructs necessary 

for a natural and powerful query language. We also show how these constructs can be - 
used in determining the range of tuple variables within a query. All sample PIQUE 

queries discussed in this section will refer to the database with the following relation 
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schemes 

{COURSE} 
{FACULTY ,COURSE) 
{STUDENT.COURSE} 
{ASSISTANT.COC'RSE) 
{FACULTY,COURSE,STUDENT) 

the following objects 

and the following instance 

COURSE FACULTY I COURSE STUDENT I COURSE 
----------- ---------------- 1-------------_ ---------------- -------------- 

CS112 Smith I CS120 Kirk I CS120 
CS120 Smith 1 CS302 Rabkin CS120 
CS302 Smith / CS303 Kirk ' CS302 
CS303 Ross CS303 

ASSISTANT / COC'RSE 
------------ * ----- 1 -------------- 

I 

Chung / CS112 
Johnson 1 CS302 
Ross I CS112 

FACULTY j COURSE , STLDENT 
---------------- I-____----_____- ;___--------_____ 
Smith / CS302 Kirk 

This database is our example database of Section 3 with relation r(C0URSE) added 

in. In the world reflected by this database, assistants are assigned to courses, not to 

faculty members or students. Therefore, an assistant is responsible for aiding every student 

taking his course regardless of which faculty member teaches it. Likewise, an assistant is 

responsible for helping every faculty member teaching his course. - 
Again, whenever convenient we shall abbreviate attribute names to  their first letters. 

Also, we shall often use [IX" to  denote the actual relation corresponding to the window for 



PIQUE 

X, rather than the expression defining it. 

4.1. Simple Quer ies  

Consider a request for the list of faculty members and the courses they teach. Query 

re t r i eve  t.F, t .C w h e r e  (QJ 

models the above request in an intuitive manner. However, t o  make Q1 return an  

intuitively correct answer, namely 

{<Smith,CSlPO>, <Smith,CS302>, <Smith,CS303>) 

tuple variable t has to  be bound to [IFC/i. 

Note that  condition in Q1 is empty. For the sake of succinctness, if the condition of 

the query is empty, then keyword 'where '  may be omitted from the query. 

Next consider a request for the list of students taking some particular course, say 

CS120. This information is contained in the tuples of [ JSC/ ]  that have C-values of CS120. 

Consider the query 

re t r i eve  t.S w h e r e  (t.C = CS120). 

Again, the query above intuitively Corresponds t o  the request. If during its evaluation 

tuples with C-value CS120 are selected from [jSCj] and their S-values are returned, then 

query QZ returns 

{<Kirk>, <Rabkin>) 

which is intuitively correct. In order to  do  that ,  however, tuple variable t, must be bound 

to  ~ISCI]. 

In both queries Q1 and Q2 above, tuple variable t is bound to  ;Imen(t) j ,  where 

men(t) is the mention set of t: the set of attributes that  appear with t in the query. We 

note that  mention sets were used to determine tuple binding in System/U queries in the 

presence of maximal objects [MU]. However, the way men(t) is defined in PIQUE queries 



is different from the way i t  is defined in Systern!U queries. A formal definition of men(t) 

aud the binding mechanism of tuple variables are provided in the appendix. 

In the condition 't.C = CS120', attribute C is compared to  a constant. PIQCE also 

~ r o v i d e s  the facility to compare two attributes and allows comparisons for inequality. In 

addition t o  that ,  for ordered domains, PIQUE provides the facility to use any of the binary 

comparators from ( c ,  <=, >: >=). For string domains, substring and regular expression 

matching can also be performed. 

Consider a request for a set of courses that have assistants. Query 

retrieve t .C where ( t . ~  = t.A) (Q3) 

rnodels this request if tuple variable t is bound to [jACli. Query Qg returns an intuitively 

correct answer, which is 

{<CS112>, <CS302>). 

%ate chat condition 't.A = t.A' is included in Qg just to  insure that tuple variable t is 

boranci t o  [lACij iather than ;IC';, and not for the sake of the comparison. Therefore, in 

PIQUE queries, ' i .A' is written in place of 't.A =I t.A' and is referred to as  a name drop, 

indicating that  A was "dropped" into ~nen( t ) .  The query then takes the form 

retrieve t.C where ( t . ~ ) .  (Q4) 

The name drop %.A' in Q4 can then be interpreted as "assistant exists." 

I t  is interesting to note the similarity in the use of name drops in PIQUE queries 

and in System/U queries evaluated in the presence of maximal objects. In both systems 

narne drops are used to  limit the range of the query. Formally, there is a difference 

however. In a System/U query, a name drop restricts a tuple variable to  range over fewer 

maximal objects, while in a PIQUE query, it forces a tuple variable to range over larger 

objects. - 

In the queries above, 'P', 'C' and 'A' could have been used in place of 't.P', 't.C' 
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and %.A1, if the existence of a default tuple variable was assumed. In PIQCE, this default 

tuple variable is referred to  as the blank tuple variable and the above substitutions are 

allowed. For example, query Q2 can be rewritten as 

re t r i eve  S w h e r e  (C = CS120). 

Kow consider queries that  involve several comparisons. Consider the following closely 

related English questions: "Which courses are being taken by Kirk from Smith?," and 

"Which courses are being taken by Kirk and taught by Smith?" Note that in answering 

the first question, information from [IFCSl] should be used. In PIQC'E, this question is 

posed as 

retrieve t.C w h e r e  (t.F = Smith)*(t.S = Kirk). (Q6) 

Symbol '*' in the condition of Q6 indicates that  both F and S are to be included in 

men(t), thus forcing the query to be evaluated over jiFCSI]. From a semantic point of 

view, the '" operator is interpreted as "and simultaneously." In other words, it indicates 

that  both of the selection conditions are to be performed on the same tuple. The answer 

In answering the second question, tuples from [IFC!) and [iSCI], rather than [IFCS!], 

should be considered. This is because a course can be taught by Smith and taken by 

Kirk, but not necessarily be taught by Smith to Kirk. The above request can be posed as 

r e t r i e v e  t.C w h e r e  (t.C = u.C)*(t.F = Smith)*(u.S = Kirk). (Q,) 

By the binding convention, tuple variable t is bound to [ / F C  and tuple variable u is 

bound to  [ISCI]. The answer to this query is 

{<CS120>, <CS302>). 

It is obtained by taking the cross-product of [IFCI] and ['SCI!, applying specified selections, 

and applying a projection onto t.C. There is, however, a more natural way of posing this 

request. 



4.2., Complex Queries 

Consider again a request for the courses taken by Kirk and taught by Smith. 

Consider the query 

retrieve t.C where ( t .P  = Smith) and (t.S = Kirk). (Q,) 

Ihe  rule for interpreting Q8 is motivated by the fact that semantics of 'and' is almost 

invariably associated with intersection. The answer to this query is obtained by evaluating 

the queries 

retrieve t.C where (t.P = Smith) 

and 

retrieve t.C where (t.S = Kirk) 

and (eturning the intersection of the evaluation results. We note that  this answer is, of 

.course, the same as the answer to query Q7. 

We also note, that  at different stages in the evaluation of query Q8, tuple variable t 

is bound to different connections. In other words, men(t) takes on different values a t  

different ~ t a g e s  of evaluation. This situation does not occur in Quel queries, because tuple 

variables there are explicitly bound to named relations. Neither does it occur in System/C; 

queries, since all tuple variables there are  permanently bound to  the universal instance 

iKUj,  or, in the presence of maximal objects, permanently bound to the union of maximal 

objects. 

While queries with multiple tuple variables do occur in PIQUE, they are not usually 

used to specify joins on stored relations. Since the need to join stored relations occurs 

frequently, the ability to specify these joins using only one tuple variable is an advantage. - 
Note that  in queries involving multiple tuple variables, the retrieve set may contain 

duplicate attributes. Therefore, a mechanism for renaming attributes is provided in the 
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language. As an example of a query involving renaming. consider 

retrieve t.STUDENT -> CLASS-MATE, u.STC'DENT where 
(t.COURSE = u.COI;RSE)'(t.STC'DENT != u.STUDENT). (Q9) 

This query corresponds to the question "What are pairs of students taking the same 

course?" The presence of ' t .STUDEST -> CLASS-MATE' in the retrieve set of Q9 

indicates that  in the result of this query, which is 

{<Kirk,Rabkin>, <Rabkin,Kirk > j 

attribute STUDENT associated with tuple variable t is to be renamed to  CLASS-MATE. 

The language also contains 'not' and Lor'. PIQUE interpretation of 'not' is 

motivated by the following example. Consider the query 

retrieve t .C where not (t.F). 

It  is reasonable t o  require that  this query returns the list of courses that have no faculty 

members associated with them, i.e., the courses not included in rc([/FCi]). On the other 

hand, it is also reasonable to  require that the query returns only those courses that  

actually exist, i.e., the ones appearing in :IC,j .  The above motivates the following 

interpretation. 

First, compute the answer to the query 

retrieve t.C. 

Then, compute the answer to  the query 

retrieve t.C where (t.F). 

Finally, return the relational set difference of the latter from the former as the answer. 

Thus, the answer to query Qlo is 

{<CS112>). 

Note again tha t  tuple variable t is bound to  different connections, namely l / C i ]  and 1,FC 1 ,  

a t  different stages of the computation. 
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Consider another query involving 'not'. 

r e t r i e v e  t.C w h e r e  not (t.S = Kirk) 

In designing PIQUE, it was considered important that  connectives be interpreted 

independently of conditions they connect. In particular, interpretation of ' n o t 7  should not 

depend on the form of the condition in the query. If the query above is interpreted in a 

manner similar to that of the previous query, then it returns the existing courses that are 

noe taken by any student, i.e., have no students enrolled, as well as those not taken by 

Kirk Thus, it returns 

{<CS112>, <CS303>). 

Query Qla then corresponds to the question ''What are the courses not taken by Kirk?" 

Xote that  condition 'not (t.S = Kirk)' is not the same as condition 't.S != Kirk', 

where symbol '!=' stands for "not equal." Consider the query 

r e t r i e v e  t.C where (t.S != Kirk). (Q14) 

This query is evaluated in exactly the same manner as  if it had an equality condition. In 

the collc:je of its evaluation, tuple variable t ranges over [ /men(t) , l ,  in this case : ISC' , .  

Thoye tuples from SCIj that satisfy condition 't.S != Kirk' are selected, and their C-values 

are i-eturned. Therefore, this query returns all courses taken by a t  least one student other 

than Kirk, or 

{<CS120>, <CS303>). 

Thus, query QI4 corresponds to  the question "What are the courses that students other 

than Kirk are taking?" 

In PIQUE, neither of the above two questions can be expressed in terms of the other. 

By distinguishing between 'not (... = ...)' and '( ... != ...)', more flexibility in posing 

questions is allowed to the user. Also, if 0 is a binary comparator from f!=, C, <=, >, 

>=), then in general conditions 'not (... B ...)' and '( ... not B ...)' are not the same. To 
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emphasize this point, consider the queries 

re t r i eve  t.C w h e r e  not (t.S <= Rabkin) 

and 

r e t r i e v e  t.C w h e r e  (t.S > Rabkin), 

where '<=' and '>' indicate alphabetical order. The first query will return 

{<CS112>, <CS303>), 

i.e., the list of existing courses that  are not taken by any student whose last name comes 

before or is equal to "Rabkin." The second query, on the other hand, will return 

{<CS303>), 

i.e., the list of courses that are taken by students whose last names come after "Rabkin." 

There is a major difference between the use and interpretation of 'not' in PIQUE 

queries and in Quel queries. In PIQUE, the use of 'not ' ,  in effect, allows us t o  specify a , 

relational set difference in a single query. In Quel. however, this is not the case. Taking 

a true relational set difference in Quel involves a creation of a temporary relation, and the 

use of the  'delete'  command. 

The  semantics of 'or' in the language is analogous to  that  of 'and'  with union 

substituted for intersection. Thus, the query 

re t r ieve t.C w h e r e  (t.F = Smith) or (t.S = Kirk) 

corresponds t o  the question "Which courses are being taken by Kirk or taught by Smith?" 

The answer to  this query is 

{<CS120>, <CS302>, <CS303>). 

De Morgan's and Distributive Laws hold for the interpretations of 'and' ,  'or' and 

'not'. In PIQUE queries, 'not '  has precedence over Land ' ,  which in t u r q  has precedence 

over 'or'. These rules of precedence can be overridden with parentheses. 
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T o  illustrate the simplicity with which complex English questions car, be posed, 

consider retrieving the courses which are either taught by Smith and taken by Kirk, but 

not, tailght by Smith to Kirk, or have no assistants. In Quel, the  query posing this 

question requires the use of four tuple variables bound to  appropriate relations over FC, 

SC, FCS, and AC. In PIQUE, the above question can be posed using only one tuple 

variable (which is conveniently chosen to be the blank tuple variable). The  query is 

retrieve C where ( F  = Smith) and (S  = Kirk) and 
not (F = Smith)*(S = Kirk) or not (A).  (Q18) 

The answer t o  Q18 is 

As another example consider the query 

retrieve 5 where ( C  = CS120) and ( C  = CS302). 

!'his query corresponds t o  the question "Which students take both CS120 and CS302 

.zo~irses?~ and returns 

{<Kirk>)  

as the result. An analogo~ls  Quel query would always return the empty relation as the 

answer, since the condition '(C r= CS120) and (C  = CS302)' is always False when 

evaluated with respect t o  any single tuple. 

4.3. Query Nesting 

PIQUE also provides a facility for query nesting. Query nesting can be used in three 

ways: to restrict the answer of the query, t o  override the  tuple binding mechanism. and to 

test for subset or superset inclusion. 

A semijoin, denoted by symbol '*<', and a n  antisemijoin, denoted by symbol '!*<', 

are binary relational algebra operations, defined a s  follows. 
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While the operations of semijoin and antisemijoin are defined with respect t o  natural join, 

it is straightforward to extend them to  arbitrary 8-joins [Rol  

Restriction of an answer is done by performing a semijoin or an antisemijoin of the 

intermediate result in the query evaluation, with respect to the answer to the subquery. In 

particular, a subquery that  retrieves a single attribute can be substituted for one of the 

attributes everywhere a comparison between two attributes is allowed. 

For the convenience of users, a subquery is allowed to have a retrieve set consisting 

of several attributes. In that  case, since renaming of attributes is allowed in PIQUE, the 

user has to  specify a map for the comparison. That  is, the user has to  specify how the 

attributes from the main query are to  be compared with the attributes from the retrieve 

set of the subquery. 

As an example of the use of the restriction facility consider the query 

retrieve C where (S in retrieve S where (P = Smith)). 

Subquery 

retrieve S where (P = Smith), 

which returns the list of all students taught by Smith is evaluated first. The answer to 

subquery QZ1 is 

{<Kirk>). 

Then, during the evaluation of the main query, tuples over SC are compared with the 

result of subquery Qzl. Keyword 'in' indicates that  the comparison is to  be done by 
- 

semijoin. The absence of a comparison map indicates that the semijoin is based on the 

natural join. Query Qzo, then, corresponds t o  the question "What are the courses taken 
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by students who are taught by professor Smith?" The answer to Qzo is 

{<CS120>, <CS302>). 

An equivalent query not using the restriction facility is 

retrieve C where (S = t.S)*(t.P = Smith). 

While this query is shorter, its structure does not reflect the structure of the question, thus 

making it less intuitive than query QZa. The difference in the clarity of the queries that 

the restriction facility and those that do not increases rapidly as queries become more 

complex. 

As another example of the use of the restriction facility consider the query 

retrieve A where (A notin A = S retrieve S). (Q23) 

Again, the subquery 

retrieve S 

is evaluated first. It  rettlrns the list of all students, which is 

{<Kirk>: <Rabkin>, <Ross>). 

'Then, during the evaluation of Q23, tuples from [jAi] are compared with the result of 

subquery Q24. Keyword 'notin' indicates that  the comparison is to be done by 

antisemijoin, while 'A ;= S' provides a map for the comparison. In particular, it indicates 

tha t  at tr ibute A from [/All is to be compared for equality with at tr ibute S in the answer 

t o  the subquery. Thus, this map indicates that  the antisemijoin is based on the equijoin. 

Query QZ3, then? corresponds to the question "Who are the assistants that  are not among 

the students?" The answer to Q23 is 

{<Chung>, <Johnson>). 

While this question can be posed in PIQUE without the use of the restriction facility, the - 
resulting query would not be natural. 

Overriding tuple variable binding is performed using keyword 'from'. As an example 
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consider the query 

retrieve t.PERSON where (t from retr ieve STCTDEXT -> PERSON) 
o r  ( t  f rom retrieve ASSISTANT -> PERSON). (Q25) 

This query corresponds to the question "Who is either a student or an assistant?" The 

answer to this query is obtained in the following way. 

First, compute the answer to the first subquery 

retrieve STUDENT -> PERSON. 

Note that attribute STUDENT is renamed to PERSO?;. The answer to  this query is 

{<Kirk>, <Rabkin>, <Ross>). 

Then, compute the answer to  the query 

retr ieve t.PERSON where (t f rom retr ieve STUDENT -> PERSOK), (QZ7) 

by binding tuple variable t to the answer of subquery QZ6. (The answer to Q2, is, of 

course, the same as the answer to its subquery.) 

Second, compute the answer to the second subquery 

retrieve ASSISTANT -> PERSON. 

Again, note the renaming. The answer to this query is 

{<Chung>, <Johnson>, <Ross>). 

Then, compute the answer to  the query 

retrieve t.PERSON where (t f rom retr ieve ASSISTAXT -> PERSOY). (QZQ) 

Again, the answer to QZ9 is the same as the answer to its subquery. 

Finally, return the union of the answers to Q2, and Qzg as the result. Thus, the 

answer to query QZ5 is 

{<Chung>, <Johnson>, <Kirk>, <Rabkin>, <Ross>). - 

We note that this question cannot be asked a t  all in PIQUE without the use of the 
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facilities for attribute renaming and binding overriding. We also note that posing the 

above question in Quel requires the creation of a temporary relation and the use of the 

'append' command. 

Testing for subset inclusion is performed using keyword 'of in conjunction with 

k2ywi;rd 'include' that  corresponds to superset inclusion, or keyword 'among' that 

correspo~ds  to  subset inclusion. As an example of superset inclusion, consider the query 

retrieve S where (C of S include retrieve C where (A = Johnson)). (Q3J 

This query corresponds to the question "Who are the students that have taken all of the 

courses tha t  are assisted by Johnson?" The answer to Q30 is computed in the following 

;+ ay, 

First,  compute the answer to the subquery 

retrieve C where (A = Johnson). 

The answer to  QJ1 is 

'L'heii divide (in the relational aigebra sense) jSC by the answer to  this subquery. The 

resiiit, which is a relation over S, is 

{<Kirk>). 

Finally, during the evaluation of the main query, restrict the answer to those tuples that 

are contained in the result of the division. In other words, perform a semijoin with respect 

t o  {<# irk>) .  The answer to query Q30 is 

{<Kirk>). 

As an example of subset inclusion, consider the query 

retrieve S where (C of S among retrieve C where ( F  = Smith)). (QH) - 

This query corresponds to the question "Who are the students that  have taken only those 

courses that  are taught by Smith?" The answer to this query is computed in a manner 
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similar to  the previous computation, except that the  division is taken in the opposite 

direction. (A  formal description of how this is done is provided in the appendix.) 

4.4 PIQUE I m p l e m e n t a t i o n  

There exists a running compiler for a substantial subset of PIQUE. The only features 

of PIQUE that  are not implemented are: the facility to  test subset and superset inclusion, 

and the facility to  perform regular expression matching. The compiler was written in the 

C language and runs under the C'NIX operating system. The parser for PIQUE was 

created by the YACC system [Jo]. 

After a PIQUE query has been parsed, its intermediate form is stored in six system 

relations. These relations satisfy the URA, and thus can be made part of a database. 

This allows users to precompile their ,queries and t o  store their compiled form over a 

period of time. This is especially useful if several queries share the same subquery. 

The algorithm for evaluating PIQUE queries, which corresponds to the examples 

discussed in this section and is consistent with the formal definition of PIQUE semantics 

described in the appendix, is presented below. 

Algorithm 

1. Expressions are constructed for the answers to  all subqueries of a given query Q. 

2. Query Q is decomposed into a set of simple queries {Q1, ..., Qn), where the 
condition in each of these simple queries does not contain keywords 'not', Land' 
or  'or'. 

3. All tuple variables in each simple query Qi are appropriately bound. Tha t  is, if 
a tuple variable t appears with keyword 'from' in the condition of Qi, then an 
expression for the answer t o  the corresponding subquery is constructed; else, the 
expression for [Imen(t)/] is constructed. 

4. For each simple query Qi, a cross product of the expressions f o r  all tuple 
variables is taken. Let the resulting expressions be Ei,l. 

5. For each simple query Qi, restrictions (i.e., semijoins and antisemijoins) specified 
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in the condition of Qi are applied to  EiTl. Let the resulting expressions be E,,:. 

6. For each simple query Qi, selections specified in the condition of Qi are applied 

t o  EiS2. Let the resulting expressions be Eiq3. 

7. For each simple query Qi, projections onto attributes specified in the retrieve set 
of query Q are applied to Ei,3: necessary renamings are performed. Let the 
resulting expression be E,,,. Note that  these expressions represent answers to 

simple queries {Q1, ..., Q,,). 

8. Expressions E,,, are combined with relational set difference, intersection and 
anion, according to  hot ' ,  ' and '  and 'or' connectives in the condition of query 
Q. The resulting expression is evaluated and the result is returned as the answer 
to  qllery Q. 

i 1 

Eris [Re21 is a relational database system developed a t  Brown L'niversity. It is based 

on the path model of relational database implementation proposed by Reiss /Reli .  . . The 

PIQUE compiler translates the intermediate form of queries into relational algebra 

supported by Eris. Because Eris optimizes relational algebra expressions, the cross products 

take.. irl Step 4 of the Algorithm above are not actually computed unless necessary. 
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5. Conclueions 

5.1. Summary 

This paper presents PIQUE, an attribute-based relational query language. 

Section 1 motivates the need to  go beyond physical data  independence, towards 

structural data  independence. Section 2 considers views, the traditional method of hiding 

the structural details of the database from the user. However, views do not always provide 

the user with a semantically consistent and intuitive image of the underlying database. 

Universal scheme interfaces, also considered in Section 2, are a viable and semantically 

consistent alternative for providing structural d a t a  independence. 

The concept of a window generator, discussed in Section 2, is central to  many 

universal scheme interfaces. Section 3 examines in detail the object-based (OB) generator, 

which is based on the semantic notions of decomposable and non-decomposable facts. 

PIQITE, an attribute-based tuple calculus-like language developed for the use with the OB 

generator is presented in Section 4 and the appendix. Section 4 provides examples 

motivating the syntax and the semantic interpretation of PIQC'E queries. The appendix, 

on the other hand, contains PIQUE'S formalization and the proof of its relational 

completeness. 

The distinguishing characteristic of PIQUE is that  the syntactic structure of queries 

together with the extended database scheme determines the range of tuple variables. We 

believe PIQUE to be a powerful, yet natural, language. Many queries can be posed in 

PIQUE without explicitly using any tuple variables a t  all. In particular, given the 

appropriate choice of objects, these queries include the important class of 

6 L project-select-join" queries of the form 

- 
* 

n < ~ e t  of a t t r i b u t o > ( ~ < C o n d i t i o n > ( ~ l  * "' rn))' 
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,tiso ,;here exists a large class of queries that  can be asked using many fewer tuple 

variables than in other tuple calculus-like languages. 

5.2, Related and Future Work 

Recall that the OB generator depends on the unique role assumption (CRA) for 

navigntioil. While any database can be made to satisfy the URA by renaming of 

sttrihutes certain semantic information may be lost. For example. consider a database 

~ i t J b  :elat:ons HAS(EllPLOYEE,SALARY), WORKS-IS(EMPLOYEE,DEPARThIENT) and 

bM.ii,4GES(Eh\.IPLOYEE,DEPARTMENT). This database does not satisfy the URA 

i it contains two semantically distinct relationships between employees and 

Jepartments, 

The database can be made to satisfy the URA by renaming attribute EMPLOYEE in 

nni  of the relations; say, in relation MANAGES to MASAGER. However, certain 

:emar\tis ,nfo'-mation, namely that E,MPLOYEE and MANAGER represent entities from the 

.i,~n,? class, but in different roles. is  lost from the database. Furthermore, nothing in the 

renamed database indicates how t.o establish a relationship between managers and their 

salacizs (Kote tha t  in the original database it was the presence of the same attribute 

EMPT,i>YEE in both relations HAS and MANAGES that indicated how to  compute salaries 

of managers.) 

In IMXSl,MRS2] we explore means of recapturing this information by incorporating 

role hierarchies into the database scheme. We then show how the role information can be 

by  a generator to  automatically navigate within the database in new ways. 

Unfortunately, even in the presence of role information, there may exist several semantically 

different ways of establishing a relationship among a given set of attributes. In that case, 

it may be possible for the user to disambiguate the request by explicitly'specifying some 

role information in the query. We are currently investigating ways of incorporating the 
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role information into PIQUE. 

In this paper, we have presented a computational definition of the OB generator. 

Stein [St,SM develops an equivalent definition based on representative instances [ H o z , ~ ~ ' .  

The d a t a  dependencies inherent in the model are then explored. These dependencies are 

similar t o  functional, join and template dependencies, except for their reliance on no 

information nulls [Zaj. The dependencies developed are well behaved, possessing a 

complete, self contained axiomatization. We intend t o  use these dependencies to develop 

normal forms for the fact-based databases satisfying the ~ ' R A .  
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Appendix 
In this appendix, we present a formal definition of the PIQCE query language. 

Al .  PIQUE Syntax 

As usual, let U denote the universal set of attributes, and let A and B stand for 

attributes in C'. Letters t and u are tuple variables. Symbol 0 stands for a binary 

comparator from {=, !=, <, <=, >, >=, <<, =re), where symbol '<<' denotes substring 

matching and symbol '=re' denotes regular expression matching. Letter c denotes a 

constant. Symbol c represents the empty string. The notion of domain is extended to 

tuple-attribute pairs by letting dom(t.A) be equal to dom(A). 

If t is a tuple over a set of attributes Y and A E Y, then t(A) stands for the value 

of attribute A in t. Also, if X c Y ,  then t(X) stands for the restriction of t to, X. 

PIQUE grammar is presented below. For the sake of clarity, nonterminal symbols in 

the productions a re  indicated by enclosing them with angle brackets, while keywords are 

shown in boldface. 

::= t.A 
::= <term> I <term><inset> 
. . - ..- <te rm> <term><terms> 
::= <term> 8 B j <te rm> 8 B, <map> 
::= <term> -> B i <term> -> B, <retset> 
::= r ] (< te rm>)  1 (c t9 <term>) I (< term> 8 c) ' 

(<term> B <te rm>)  1 (t from <query>) 1 

(<inset> in <map> <query >) I 
(<inset > notin <map> <query>) 
(<terms> of <terms> include <query>) 
(<terms> of <terms> among <query >) 

::= <econd > I <econd>* <scond> 
::= <scond> / (<ccond>) 1 not <ccond> 

cccond> and <ccond> i <ccond> or <ccond> 
..- ..- retrieve <retset> where <ccond> 

In the grammar, nonterminal <term> stands for a tuple-attribute pair. The retrieve 
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set of a query is denoted by nonterminal <retset>, which is a sequence of reriamed terms. 

rhc symbol '->' in '<term> -> B' indicates that ,  in the answer to the query. '<term;' is 

to  be renamed to  'B'. Since duplicate attributes are disallowed in the answer to a query 

(which is, of course, a relation), no two '<term> -> B' elements of <retset> may have 

the same B. Throughout this appendix, Bs in the retrieve set of the query are referred to 

as new names for the attributes. Also, if B is already an attribute in the database, then 

the domain of <term> must be equal to the  domain of B. Finally, even though 

r,orltc?rminals <inset> and <terms> have structurally identical definition, they are used in 

thz s:nmrnar for quite different purposes. Thus, for the sake of clarity, they are not 

cnmblqed into a single nonterminal. 

'There are three levels of complexity of conditions in PIQUE queries. The simplest of 

!.:!ern correspond to nonterminal <econd> and are called elementary conditions. There are 

several type restrictions that  apply to elementary conditions. In particular, e must be 

rlel?ne#f o n  the domains of constituent <term>s, and constant c must be an element of the 

grope? ,totx:ain. Also, if 8 denotes a regu!ar expression match, then constant c is taken to 

I:e a regular expression paitern, expressed in a standard notation IHUj. 

There are three kinds of elementary conditions that  deserve special attention. First, 

ar: Aementary condition may involve keywords 'in' or 'notin'. In that case it specifies a 

restriction by semijoin or by antisemijoin. The <inset> specifies a list of tuple-attribute 

pairs to he used in the comparison with the answer to subquery <query>. The <map> 

specifies how the comparison is t o  be performed. If an  elementary condition indeed 

invalves a scmijoin or an  antisemijoin, then the following restrictions apply: the <terrn>s in 

-:inset> must be the <term>s in <map>,  and each new name B in <map> must be 

among new names in the <retset> of the subquery <query>. 

Second, an elementary condition may involve keyword 'from'. This condition specifies 

explicit binding for the tuple variable involved. 
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Third. an elementary condition may involve keyword 'of. This condition specifies a 

restriction that depends on whether the answer to subquery <query> is a subset (in the 

case of &include1) or a superset (in the case of ' among ' )  of a particular projection of a 

certain intermediate result in the query evaluation. If an elementary condition describes 

this type of restriction. then the domain of the i-th <term> in <terms> (where <terms> 

is the nonterminal that  appears just before 'of) must be the same as the domain of the 

i-th new name B in <retset> of subquery <query>. 

The slightly more complex conditions are referred to as simple conditions. They are 

constructed from elementary conditions using the '*' operator. Simple conditions correspond 

to nonterminal cscond>. There is only one restriction applicable to simple conditions: 

there may be a t  most one explicit binding for a particular tuple variable in a simple 

condition. 

The most complex conditions are those involving 'not', 'and', and 'or' operators 

connecting simple conditions. They correspond to  nonterminal <ccond> and are referred t o  

as complez conditions. 

A query in PIQUE is specified by specifying a retrieve set and a condition. 

E x a m p l e  1: 

As an example, consider the following three query derivation sequences, where symbol 

'a' stands for "derives in one step," symbol '*a' stands for "derives in one or more 

steps," and letters C, D, E, G ,  K, L, M denote attributes. 
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<query> =+ retrieve <retset> where <ccond> *a 
retrieve <term> -> E, <retset> where <econd>*<scond> *a 
retrieve t.C -> E, u.D -> F where (t.C)*(t.G = u.Ii)*(u.L > 5) 

<query> retrieve <retset> where <ccond> *a 
retrieve <term> -> N where <econd> *a 
retrieve t .M -> N where ( t  from <query> ) ** 
retrieve t.-M -> N where (t from retrieve u.C -> M where ) 

<query> retrieve <retset> where r<ccond> ** 
retrieve <term> -> E where <econd> or <econd> *a 
retrieve t .D -> E where ( t .K  = 9) or (t.L = 7) 

In concluding this section, we note that  because of the incorporation of certain 

user-friendly features into the language, the grammar used in the actual implementation of 

PIQUE differs slightly from the grammar presented above. These features include the 

ability t o  drop keyword 'where' from the syntax of the query if the condition is empty, 

and the ability not to rename attributes in the retrieve set unless necessary. 

:\2. Formal Semantics of PIQUE Queries 

In this section, we present rules for semantic interpretation of PIQUE queries. To 

illustrate these rules, we shall use the three PIQUE queries derived in the previous section. 

Our example database shall consist of two relations r(CG) and r(DKL), with no additional 

objects. The instances for these relations are presented below. 

Throughout this appendix, we shall often want to  distinguish a restricted class of 

PIQUE queries: those whose conditions do not involve keywords 'not', 'and4 or 'or'. Each 

query from this class has the form 

retrieve <retset> where <scond> 
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and is referred to as simple query. 

Recall that, in PIQUE queries, tuple variables are bound automatically. In case of a 

simple query, a tuple variable t is bound to  the window for the mention set of t: the set 

of attributes that appears with t in the query. 

Function men(t, Q) that computes the mention set of tuple variable t in simple query 

Q is defined recursively as follows. 

For <term>: 
men(t, u.A) = {A) if t = u, 

= d otherwise. 

For <inset>: 
men(t, <term>) is defined above; 
men(t, <term>,<inset>) = men(t, <term>) J men(t, <inset>). 

For <terms>: 
men(t, <term>) is defined above; 
men(t, <term>,<terms>) = men(t, <term>) I; men(t, <terms>). 

For <retset >: 
men(t, <term> -> B) = men(t, <term>); 
men(t, <term> -> B,<retset>) = men(t, <term>) u men(t, <retset>). 

For <econd>: 
men(t, c )  = 4; 
men(t, (<termBl B <term>2)) = men(t, <term>l) L men(t, <term>2); 
men(t, (<term> B c)) = men(t, <term>); 
men(t, (c B <term>)) = men(t, <term>); 
men(t, (<term>)) = men(t, <term>); 
men(t, (<inset> in <map><query >)) = men(t, <inset>); 
men(t, (<inset> notin <map><query>)) = men(t, <inset>); 
men(t, (u from <query>)) = d, even if t = u; 
men(t, (<terms>l of <terms>2 include <query>)) 

=men(t, <terms>l) L men(t, <terms>J; 
men(t, (<terms>l of <terms>2 among <query>)) 

=men(t, <terms>l) c: men(t, <terms>?). 

For <scond>: 
men(t, <econd>) is defined above; 
men(t, <econd>*<scond>) = men(t, <econd>) L men(t, <scond>). 

For simple query Q: 
men(t, retrieve <retset> where <scond>) - 

= men(t, <retset>) u men(t, <scond>). 



Example 2: 

Consider tuple variable t from query Q1. Its retrieve set contributes {C) to men(t), 

and its condition contributes ( C G )  to men(t). Thus, men(t) in Q1 is {CG). On the 

other hand, men(u) in Q1 is {DKL). 

Consider tuple variable t from query Q2. The retrieve set of Q2 contributes (M} to 

men(t), while its conditior, contributes nothing to men(t). Thus, men(t) in Q2 is {M). 

On the other hand, men(u) in Q2 is 4. 

Note that  the definition does not apply to query Q3, since its condition contains 

keyword Lor'. 

11 

Again, let Q be a simple query of the form 

retrieve <retset> where <scond>. 

Let Te be the set of ezternally defined buple variables in simple query Q, i.e., those tuple 

.:ariables that appear with keyword 'from' in the condition of Q. Formally, Te is defined 

as  

Te ;. {t  i ' ( t  from ...)' appears in condition of simple query Q) 

Let T i  be the set of internally defined tuple variables in simple query Q, i.e., those tuple 

variables that do not appear with keyword 'from' in the condition of Q. Formally, Ti is 

defined as 

Ti = {t i t $ Te and men(t, Q) f. 4). 

Example 3: - 
For query Q1, Te is empty and Ti is {t, u). On the other hand, for query Q2, Te is 

{ t )  and Ti is empty. Again note that  these definitions do not apply to query Q3. since it 
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is not simple. 

[ 1 

Let function ( stand for some tuple assignment function. In other words, function 

assigns a particular tuple over men(t, Q) to  each tuple variable t in Ti J Te for simple 

query Q. However, not all of the  tuple assignment functions can be considered satisfactory. 

In particular, let EQ be the set of those f that map internally defined tuple variables 

mentioned in Q to  tuples contained in the database (more precisely, to  tuples contained in 

corresponding windows), and externally defined tuple variables to  tuples contained in the 

answers to the appropriate subqueries. 

Formally, Eq is defined as 

- = {C I v t E Ti ,((t)(men(t, Q)) E [ /men(t ,  Q)/l,  and =Q 
v t E Te ,((t)(men(t, Q)) E ans(<query>,)), 

where <query>, is '<query>' that  appears in 't from <query>' in the condition of 

Q. (Function ans that  maps queries to  their answers is defined formally later.) 

Example 4 

Consider again queries Q1 and Q2 evaluated against our example database. 

Let f1 be a tuple assignment function that maps tuple variable t from Q1 to  tuple 

<c,2> and tuple variable u from it to  tuple <d,9,3>. Then f1 is included in " . On 
- Q l  

the other hand, the tuple assignment function (* tha t  maps t to  <c, 6> (and u to  any 

tuple from r(DKL)) is not included in Ipl.  

In fact, there are only four tuple assignment functions that are included in EQ1. 

They are the ones that  map t to <c,2> and u to  <d,9,3>, or map t t o  <c,2> and u to  

<f,4,7>, or map t to  <e,4> and u t o  <d,9,3>, or map t to  <e,4> and u to <f,4,7>. - 
The determination of = is also straightforward. The answer to the subquery - Q2 

retrieve u.C -> M where 
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is a relation {<c> ,  < e > )  over scheme {M). The tuple assignment function t3 that maps t 

from Q? to <e>  is included in IQ2, while the tuple assignment function (* that  maps t 

from it t o  cg>, where g is some constant distinct from both c and e, is not included in 

We note that ,  since query Q3 is not simple, the definition above again does not apply 

T'r... tuple assignment functions contained in = are not guaranteed. however. to - Q  

~at is fy  dhe selection conditions in the condition of simple query Q. Therefore, let function 

qq select those f from Z q  that do  satisfy the selection conditions in Q. 

F~lnction q is defined recursively for the condition of simple query Q as follows. Q 

For <term>: 
?,((, t.A) = t ( t)(A),  thus mapping t.A to  the value of ((t) for A. 

Cnr c:tecrns>; 
q q ( ( ,  <term>) is defined above; 
-7 ((, <term><terrns>) =. q ( F ,  <terms>)  appended to q ((, <term>).  Q Q Q 
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For <econd>: 
qQ((.  c )  = True; 
nQ((, (<term>, B <term>,)) =True if qQ((, < te rm>l )  6 qp((, <term>,), 

= False otherwise; 
qQ((, (<term> 6 c))  = True if qQ((, <term>) 6 c, 

= False otherwise; 
qQ((, (c 6 <term>)) = True if c B qq((, < te rm>) ,  

= False otherwise; 
qQ((, (<term>))  = True; 
nQ((, (<inset> in <map><query>))  = True 

if 3 tuple u E ans(<query>), such that  
V elements 't.A 6 B' in <map>, ((t)(A) B u(B),  

= False otherwise; 
qQ((, (<inset> n o t i n  < m a p >  <query>)) = True 

if 7 3 tuple u E ans(<query>), such that  
V elements 't.A 6 B' in <map>, ((t)(A) 6 u(B), 

= False otherwise; 
qQ((, ( t  f r o m  <query>)) = True; 
'IQ((, (<terms>, o f  <terms>, include <query>)) = True if ((<terms>,) E r, 

= False otherwise; 
q ((, (<terms>, of <terms>, a m o n g  <query>)) = True if ((<terms>,) E s, Q 

= False otherwise. 

For <scond>: 
sQ(€,  <econd>) is defined above; 
qq((, <econd>*<scond>) = True 

if vQ((, <econd>) = True and qp(& <scond>) = True, 
= False otherwise. 

Relations r and s used in the previous definition are  defined as  follows. Let relation 

q be defined as  q = ans(re t r ieve  < t e r m ~ > ~ , < t e r m s > ~ ) ,  and relation p be defined as p = 

ans(<query>),  where '<query>' is the nonterminal that  appears after keywords 'include' 

or Lam~ng' .  

Then, relation r is defined as r = q / p, where symbol '/' denotes the relational 

algebra division operator [Da]. In other words, if q is a relation over X and p is a 

relation over Y,  then r is the relation over (X-Y), where r = {z(X-Y) I V w E p, 3 v E q, 

such that  v(X-Y) = z and v(Y) = w ) .  

Relation s is defined as s = q \ p, where symbol '\' denotes thecreverse division 

operator [Ro]. In other words, if q is a relation over X and p is a relation over Y, then s 
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is the relation over (X-Y), where r = {z(X-Y) i t/ v E q, such that  v(X-Y) = z. : w E p: 

such that  v ( Y )  = w). hote,  that s = q \, p can also be expressed as s = nX-y(q) - 

xx.,cs - (.,.,(q? * PI) 

Thus, given a tuple assignment function [ E tQ, qQ maps it to  True if and only if 

the tuples assigned by ( to all of the tuple variables used in simple query Q jointly satisfy 

the selection conditions specified in the condition of Q. 

Example 5: 

Consider two tuple assignment functions t5 and C6 from = . Let C 5  map t to <e,4> 
-Ql 

and u to  <f,4,7>, and let t6 map t to  <c,2> and u to <d,9,3>. Then rl maps t5 to 
Q 1 

True and maps t6 to  False. 

[ 1 

Function ans maps queries to their answers. It is defined in two steps. 

Semantic Definition 1: 

L e t  Q be a simple query of the form 

retrieve <retset> where <scond>. 

'The .inswer to query Q is the relation over the new names for the attributes in <retset>. 

Functio,l sns(Q) that  maps simple query Q to the relation over the appropriate scheme is 

defined as follows. 

ans(Q) : {ill u is a tuple over attributes B in <retset> of Q, 
such that  3 ( E ZQ,  such that  q q ( [ ,  <scond>) = True, 
such that  'd t E Ti u Te. 
if 't.A -> B' appears in <retset> of Q, then u(B) = (( t)(A)).  

- 
Example 6: 

The answer t o  query Q,, which is a relation over {EF),  is computed as follows. As 
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Example 4 illustrates, there exist four tuple assignment functions, which are included in 

- 
-Ql 
- . However, only one of them, namely t5 from Example 5 tha t  maps t to  <e,4> and u 

t o  <f,4,7>, satisfies rl . Consider a tuple v from the answer to Q,.  Since 't.C -> E' 
Q 1 

appears in the  retrieve set of Q1, v(E)  must be equal to tS( t ) (C) ,  which is, in turn, equal 

t o  e. Likewise, since 'u.D -> F' appears in the retrieve set of Q1, v(F)  must be equal to  

C5(u)(D), which is, in turn, equal to  f. Therefore, the answer to  Q, is {<e,f>). 

The answer to  query Q2 is computed as follows. First, the subquery 

r e t r i e v e  u.C -> M w h e r e  

is evaluated. The answer t o  this subquery, which is a relation over {M), is {<c>,<e>).  

Then the main query itself is evaluated. The answer to i t ,  which is a relation over {N), 

S e m a n t i c  Def in i t ion  2: 

Let Q be a (not necessarily simple) query of the form 

r e t r i e v e  <retset> w h e r e  <ccond>, 

where <ccond> is assumed to  be fully parenthesized. The answer to query Q is obtained 

in the following way 

ans ( re t r i eve  <retset> w h e r e  <scond>) is defined above. 

ans(re t r ieve  <retset> w h e r e  n o t  <ccond>) = 
ans(re t r ieve  <retset> w h e r e  ) - 
ans(retr ieve <retset> w h e r e  <ccond>). 

ans ( re t r i eve  <retset> w h e r e  cccond>, a n d  < ~ c o n d > ~ )  = 
ans(re t r ieve  <retset> w h e r e  cccond>,) n 
ans(retr ieve <retset> w h e r e  cccond>J. 

ans(re t r ieve  <retset> w h e r e  <ccond>, o r  < ~ c o n d > ~ )  = 
ans(re t r ieve  <retset > w h e r e  < c c ~ n d > ~ )  u 
ans(re t r ieve  <retset> w h e r e  <ccond>J. 
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Example 7: 

The answer to query Qs, which is a relation over {E), is computed as follows. First, 

QS is broken into two queries, 

retrieve t.D -> E where (t.K = 9) 

and 

retrieve t.D -> E where (t .L = I) 

rhe  answer t o  the first of these queries, which is a relation over {E), is {<d>).  The 

answer t o  the second, which also is a relation over {E), is {<f>). Therefore, the answer 

to QJ i s  a relation over {E), and is equal to  {<d>,<f>) .  

0 

Even though the semantics of queries was not defined directly over the syntax, the 

answez Is defined for any syntactically correct query Q, as  the next theorem shows. 

Theorem 1: 

Function ans(Q) is defined for any expression Q of the form 

retrieve <retset> where <ccond>. 

Proof: (by induction on n: the number of not, and, and or connectives in <ccond>) 

Basis: n = 0. Then Q is of the form 

retrieve <retset> where <scond> 

which is defined by Semantic Definition 1 above. 

Induction: Let ans(Q) be defined for any query Q whose condition contains fewer than 

n connectives. Then one of the following three cases applies. - 

Case 1: Q is of the form 

retrieve cre tse t> where not <ccond>. 
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Then <ccond> has n - 1 connectives. Therefore, ans(re t r ieve  <retset> w h e r e  <ccond>) 

is defined. Therefore, ans(re t r ieve  <retset> w h e r e  n o t  <ccond>) is defined. 

Case 2: Q is of the form 

re t r i eve  <retset> w h e r e  <ccond>, and <ccond>?. 

Then each of < c c ~ n d > ~  and < c c ~ n d > ~  has a t  most n - 1 connectives. Therefore, 

ans ( re t r i eve  <retset> w h e r e  < c c ~ n d > ~ )  is defined, and ans(retr ieve <retset> where  

<ccond>?) is defined. Therefore, ans(retr ieve <retset> w h e r e  < c c ~ n d > ~  and <ccond>J 

is defined. 

Case 3: Q is of the form 

r e t r i e v e  <retset> w h e r e  < c c ~ n d > ~  or < c c ~ n d > ~ .  

Then each of < c c ~ n d > ~  and <ccondB2 has a t  most n - 1 connectives. Therefore, 

ans ( re t r i eve  <retset> where < c c ~ n d > ~ )  is defined, and ans(retr ieve <retset> w h e r e  

< c c ~ n d > ~ )  is defined. Therefore, ans(retr ieve <retset> w h e r e  <ccond>, or < c c ~ n d > ~ )  is 

defined. 

il 

The PIQUE query language is relationally complete: Moreover, unlike Quel [SWKH], 

PIQUE is single-query complete. Any relational algebra expression can be posed by a 

single PIQUE query (with subqueries, of course). The next theorem shows that relational 

algebra tha t  uses renaming, union, difference, product, selection and projection, is reducible 

to  PIQUE. 

Theorem 2: 

Assume a relational database satisfying the CRA. Let r(R) identify the stored 

relation over scheme R. Furthermore, assume that no additional objects have been declared 

for this database. Thus, [IRI] = r(R) for any stored relation r(R). 
- 

Let E be a relational algebra expression posed with respect to  this database. Then 
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there is a PIQCE query Q equivalent to E (written Q r E). 

Proof: (by induction on n: the number of connectives in E) 

Basis: n = 0, Then E is just r(R) for some relation r(R),  where R is a set of 

attributes {Al, ..., An). Construct Q to be the following query. 

retrieve Al,  ..., An where 

Then Q = E. 

induction: Let the theorem be true for ail E with fewer than n connectives. Then 

one of the following six cases applies. 

Case 1 (Renaming): E is of the form 6(81 ., Cl, ..., Bk -, Ck)  (El), where El results in a 

relation over {B,, ..., Bk, Bk+,, ..+, B,,) and E results in a relation over {C1, ..., Ck, BkT1, 

.., Bn). By the inductive hypothesis there exists query Ql = El. Let this query Q1 be 

retrieve < r e t ~ e t > ~  where < c ~ o n d > ~ .  

Canstrg~ct <retset> t o  contain 't.A -> C' if 't.A -> B' appears in <retsetBl and 'B -> C' 

appear3 in the renaming, and contain 't.A -> B' if 't.A -> B' appears in < r e t ~ e t > ~  and 'B 

--., 17' does not appear in the renaming. Construct Q to  be the following query. 

retrieve <retset> where <ccond>, 

Then Q = E. 

Case 2 (Union): E is of the form El  ~1 E2. By the inductive hypothesis there exist 

queries Q1 r El and Q2 r E2. Let query Q1 be 

retrieve <retset> where <ccond 

and let query Q2 

retrieve < r e t ~ e t > ~  where < c c ~ n d > ~ .  

- 
For El b E2 to  make sense the schemes of El and E2 have to  be the same. Construct 

<retset> to contain 't.B -> B' if new name 'B' appears in <retset>,. Construct Q to be 
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the following query. 

retrieve <retset> where (t from Q1) or ( t  from Q2) 

Then Q = E. 

Case 9 (Difference): E is of the form El - E2. For El - E2 to make sense the 

schemes of El and E2 have to be the same. Let Q1 = E l  and Q2 z E2 be of the form 

shown in Case 2. Construct <inset> to contain 'LA' if 't.A -> B' appears in < r e t ~ e t > ~ .  

Construct <map> to contain 't.A = B' if 't.A -> B' appears in < r e t ~ e t > ~ .  Construct Q 

to be the following query. 

retrieve <retset>, where < c ~ o n d > ~  and (<inset> notin <map> Q2) 

Then Q = E. 

Case 4 (Product): E is of the form El x E2. Let Ql = El and Q2 = E2 be of the 

form shown in Case 2. Assume that Q1 and Q2 do not share any tuple variables; also for 

El x E2 to make sense these queries should not share any new names. Construct <retset> 

to contain 't.C -> C' if new name C appears in < r e t ~ e t > ~  and contain 'u.D -> D' if new 

name D appears in < r e t ~ e t > ~ .  Construct Q to be the following query. 

retrieve <retset> where ( t  from Ql)*(u from Q2) 

Then Q = E. 

Case 5 (Projection): E is of the form rY(E1). Let Q1 r El be of the form shown in 

Case 1. Construct <retset> to contain 't.B -> B' if B E Y and new name B appears in 

< r e t ~ e t > ~ .  Construct Q to be the following query. 

retrieve <retset> where (t from Q1) 

Then Q = E. 

Case 6 (Selection): E is of the form o ~ = ~ ( E ~ ) .  Let Q1 E El be of the form shown in - 
Case 1. Construct <retset> to contain 't.C -> C' if new name C appears in < r e t ~ e t > ~ .  

Construct Q to be the following query. 
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Then Q = E. 

5 7 

retrieve <retset> where (t  from Q,)*(t.B = c j  


