
PIQ'UE: A Relational Query Language
without Relations

David Maier
David Rorenshtein

Sharon Salveter
Jacob Stein

David S. Warren

Technical Report CS/E87-003
9 April 1987

Oregon Graduate Center
19600 S.W. von Neumann Drive
Beaverton, Oregon 97006-1999

PIQUE: A Relational Query Language
without Relations1

David Maier
Oregon Graduate Center

David Rozenshtein
Rutgers University

Sharon Salveter
Boston University

Jacob Stein
Servio Logic Corp. and Oregon Graduate Center

David S. Warren
SUNY at Stony Brook

'some of the work prerented in this paper war done while the firrt four author8 were at the State t'nivcrrity of
New York s t Stony Brook. Work rupported in part by %SF grants IST 81.11622, MCS 82-07216, and IST
84-08970.

PIQCE

Abstract

Relational database systems have gone far towards providing users with physical data

independence. T o use a relational database, users need not know the physical storage

structures of relations, and are protected from changes in these structures. However, a user

must still navigate among relations. In other words! if the information needed to answer a

question spans several relations, he must explicitly specify how these relations are to be

combined.

Physical data independence is not enough. A user should also be afforded some

degree of structural data independence. More specifically, he should be able to pose queries

without having to explicitly navigate among relations in the database. Instead, the system

should do the navigation for him.

We consider universal scheme interfaces as a means for automatic database navigation,

and introduce the concept of a generator as central to such navigation. We describe a

particular generator based on the semantic notions of decomposable and non-decomposable

facts, and present PIQUE, an attribute-based query language designed to work with this

generator.

PIQUE is a concise, yet powerful, language with natural semantics. A distinguishing

feature of PIQUE is that tuple variables in queries are bound implicitly and that the

logical connectives "and," "or," and "not" can affect the binding, and, therefore, take on

"semantic overtones." Furthermore, the semantic interpretation PIQUE gives to these

connectives is more natural than the one given by most other query languages.

In the appendix, we present PIQCE's formal syntax and semantics, along with the

proof that PIQUE is relationally complete.

1. I n t r o d u c t i o n

,4 database systen for interaction with non-technical users should provide them with a

"user oriented'' query language with natural syntax and semantics, so that it is easy to

!earn and remember. By "user oriented" we mean that the language should support the

~Jser {remantic) point of view on the world being represented rather than the database

{structural) one. In particular, the queries posed in the language should be phrased in

t.erms of semantic notions and be free from representational artifacts.

At the very leaui, shch a language should provide users with a certain degree of

physics.! d ~ i t o independence. TExt is, it should allow users to pose queries without any

knowledge of the physical s t r u c t ~ ~ r e of the database. We note that all existing relational

query hnguages (such as SQL iCA41, Quel [SWKH:, QBE [Zl], etc.) possess this property.

The TISV of a relational database sees. the data as a collection of named relations, each

over snrne set of attributes. Therefore, he does not have to be concerned with the details

v ~ f l) I ~ y s i ~ a ~ implementation of thew relations (such as pointers, indexing schemes. physical

i : > ~ t . , r f i ~tcl..:tllres, et.c.1. I,ikewise, since the user phrases his questions in a high level

relatitrnal Iaoguage, he does not have to know anything about the actual implementation of

the oyerafiions on relations.

'To i1)ustrate the importance of achieving physical data independence, consider a simple

network database modelling a university. A possible scheme for such a database is

r e c o r d S(fie1d STUDENT, ..)
r e c o r d C(fie1d COURSE. ,.)
r e c o r d F(fie1d F A C C T Y , ...)
r e c o r d R1(...)
r e c o r d R2(...)
s e t S-Rl(owner S; m e m b e r R1)
s e t C-Rl(owner C; m e m b e r R1)
s e t C-R2(owner C; m e m b e r R2)
s e t F-RZ(owner F ; m e m b e r R2) -

where sets S-Rl and C-R1 represent information about students taking courses. and sets

PIQUE 1

C-R2 and F-R2 represent information about faculty members teaching them. A query such

as "Who takes some course taught by Smith?" directed at this database, can then be

posed in the following way (the syntax is borrowed from Date jDa] and is somewhat

simplified).

move 'Smith' to FACULTY in F
find any F using FACULTY in F
find first R2 within F-R2
perform until not fail

find owner within C-R2
find fvst R1 within C-R1
perform until not fail

find owner within S-Rl
get S
print STUDENT in S
find next R1 within C-Rl

end-perform
find next R2 within F-R2

end-perform

We shall not discuss this example in detail (a discussion on the design and use of

network databases can be found elsewhere IDa]). However, it is clear that the structure of

the query above is very much dependent on the specific physical structure that we have

chosen for the database. In particular, lines 3, 5, 6, 8, 11 and 13 depend on faculty,

course and student records being organized in particular ring structures, while line 2 refers

t o a specific method of accessing faculty records.

On the other hand, a typical relational database representing the same situation

would contain the following relations.

S(STUDENT, ...)
C(COURSE, ...)
F(FACULTY, ...)
TAKES(STCTDEKT, COURSE)
TEACHES(FACC:LTY, COURSE)

The same question can then be posed in Quel as follows.

PIQUE

1 range of x ie TEACHES
2. range of y is TAKES
3. retrieve (y.STI;DEXT)
4. where (y.COURSE = x.COURSE) and (x.FACLLTY = 'Smith')

In this query, lines 1 and 2 specify the relations involved, line 3 describes the

information to be retrieved, while line 4 refers to the conditions to be satisfied. Note that

no reference to the internal structure of relations or to any particular access method need

be made.

We note, however, that the user of a relational database must still navigate among

relations. In other words, if the information needed to answer a question spans several

relations, he must specify how these relations are to be combined to achieve the desired

answer. In particular, in posing his queries, the user must refer explicitly to relation

names (in algebraic languages) or explicitly declare and bind variables (in calculus

ianguages), and explicitly specify natural joins. In the Quel query above, for example,

ictlatizns TAKES and TEACHES are introduced into the query through explicit declaration

oi' tt~ple variables x and y, while condition (y.COURSE = x.COURSE) serves only to

specify the natural join between these relations.

In order t o navigate within a relational database, the user must know its structure.

This requirement may, in turn, present problems. First, the structure of the database in

any real application can be quite complex. Second, databases tend to evolve in time. In

particular relations in the database may be decomposed or restructured for reasons of

normalization or redundancy. Therefore, it seems unreasonable to expect all users to know

the database structure in detail a t all times. Finally, some users may be precluded from

seeing all of the database for security reasons.

We, therefore, believe that having physical data independence is not enough. A user

of a database should also be afforded some degree of structural (sometimes also called

PIQCE 6

logical) data independence. More specifically, he should be able to pose queries without

having to explicitly navigate among relations in the database. Instead, the system should

do the navigation for him. As we shall see, this will allow a considerable simplification of

the query language, since none of the navigational information will need to be included in

queries. This, in turn, will make the language more natural in its appearance, and,

therefore, more suitable for users.

The remainder of this paper is organized as follows. In Section 2, we consider

universal scheme interfaces as a means for automatic database navigation. We discuss

general principles behind providing such interfaces and introduce the concept of a generator

as central to automatic navigation. In Section 3, we describe one particular universal

scheme interface, based on the semantic notion of fact. In Section 4 , we present PIQUE,

an attribute-based query language designed to work with this interface. In PIQUE, the

question "Who takes some course taught by Smith?" can be posed as follows.

retrieve (STUDEKT) where (FACULTY = 'Smith')

In Section 5, we discuss various improvements t o PIQC'E. Finally, in the appendix, we

present PIQUE'S formal syntax and semantics, along with the proof that PIQUE is

relationally complete.

2. Universal Scheme In te r faces

The traditional method of hiding structural details of a database from a user (thus. in

effect, avoiding the problem of navigation) has been to offer the user a view of the

database 'Da,Ma,Clli. A view in a relational database is a set of (derived) relations

defined by some set of relational algebra (or relational calculus) expressions, usually

explicitly referencing stored relations of the database. For the sake of simplicity, we shall

assume a view to be a single relation, rather then a set of them.

tTje believe that there are several problems with views. First, views do not really free

the rtser from the need to know the structure and semantics of the underlying database.

For example, consider a user who is given some relation r as a view on a database. If the

IISZP is to make any use of this view, he must be able to correctly interpret the

information contained in it; that is, he must be able to associate a correct semantic

interpret,s+ion with tuples from r.

'Che only way the ixer can do this precisely is by looking a t how view r was defined.

'I'hl.; iri-(plies that he has t o know the meaning of all stored relations involved in the

defirlltior: of r. Furthermore, if there are several views that the user can choose from. he

ha!? LO understand the meaning of all stored relations mentioned in any of them. And

final!y, for the user to realize that none of the available views suit him (and, consequently.

to request the construction of a new one) he has to understand the meaning of all stored

relations comprising the database.

AS an example, consider a database consisting of a single relation

'rEACHES-TO(FACULTY,COURSE,STUDENT). Suppose a user has been given a view

TEACHER(FACULTY,COURSE) defined as rFC (TEACHES-TO). (rFC stands for

"projection onto attributes {FACULTk',COC:RSE).")

-
If the user is to understand the meaning of this view, he has t o be aware of the

presence and the meaning of relation TEACHES-TO. Then, and only then, will the user

PIQUE 8

be able to correctly interpret a tuple <f,c> from view TE-4CHER: namely, that there

exists some student s who takes course c taught by faculty member f.

The second problem with views is tha t the user has to remember the names and the

schemes of the available views. Since the number of views in any non-trivial database can

be quite large, this approach does not seem to provide any real advantage.

Yet another problem with views is that they are database oriented. Since views are

usually predefined by the database designer, they really represent his (overal!) point of view

on the database, which might not correspond to the interpretations that users have in

mind.

In particular, the most intuitive interpretation of view TEACHER is that faculty

members teach courses (regardless of the existence of any students taking them). Clearly,

however, such an interpretation of view TEACHER is not correct. Furthermore, without

the use of placeholder nulls [Sc], a view with the above interpretation cannot even be

defined in terms of relation TEACHES-TO.

A more promising approach is the use of universal scheme interfaces. A universal

scheme interface allows one to access the database solely through the attributes. The

assumption is that attributes in a such an interface correspond naturally to the entities in

the real world, and the attribute names are chosen in such a way as to give users an

intuitive understanding of the relationships among these entities that is close to the

semantics of the database.

Query processing in a universal scheme interface can be viewed as a two step

procedure. First, a set of attributes X appearing in the query is determined. Then, on

the basis of the s ta te of the database, a relation r over X is generated. (If the query

contains several variables, then attributes appearing with each variable are used to generate
-

separate relations.) Second, further operations specified by the query (such as selections,

projections and joins) are performed on the generated relation(s) t o produce an answer.

+?'h~se two steps are usually called binding and eoaluatzon ,XfRUi2.

The process of binding can. in turn, be divided into two sub-stages: naozgation and

cgrnputation. Given a set of attributes X, the universal scheme system first determines an

appropriate navigation path. That is, the system establishes a relational expression that

defines r over 31 in terms of stored relations. This relational expression is usually called a

window (or a connection) for X and is denoted by [IX,j 'MRW21. Note that formally ' X '

cat also br thought of as a function from database instances to relations over

X ' S f - [, X : is sometimes refei-red to as a window functrcn 'MRN-2 . During the

crbc~~iutstion stage, expression iiX1: is used to compute the relation r. While, properly, we

riio~lld denote the value of [[Xi] on database instance d as [IX/](d), in most cases d wiIl be

i~nrierqtood, and we shall simply write [/Xi].

A mechanism for navigating within a database, or more precisely for generating

wicido~vs :$ called a window generator, or simply a generator [MRSZ: Formally, a

yellerat,>< car? be looked a t as a mapping from a set of attributes and a database scheme

to tho ivindn-.v for that set irl that scheme.

in gtn~ra1, there is inore than one way to establish a navigation path covering a

;i;re~i set of attributes Therefore, generators often use additional semantic information in

chnasing among possible paths. This semantic information usually falls into one of two

categocies: semantic tools provided by or added to the relational model (e.g., functional and

join dependencies), and assumptions made about the state of the database (e.g., universal

irl~tancr: a~sumyt ion, universal relation scheme assumption. weak and:or representative

i~s ta i lze asrumption).

Several universal scheme systems have been proposed or are under development.

Among them are: APPLE [CK]; the system of Shenk and Pinkert !SP:; q [AK:: System I'

IKo,KKFGU,KU,MCT,U12]; PIQUE jMRSl,MRS2,MRSSW,MW,Ro!; Parafrise [KMRS,KS!:

FIDI, /Ba]: DURST [BB!; and the system of Arazi-Conczarowski !A-G'. Maier, Rozenshtein

PIQUE 10

and Warren 3 f R W l , M R W 2 ' provide a detailed overview and a comparison of these

systems. For the purpose of exposition, in the next section, we choose and briefly present

the object-based (OB) generator adopted from the association-object data model [M w ' .

In concluding this section, we note that windows are similar to views. They differ

from traditional views, however, in that generators provide a uniform discipline for defining

and naming them. In addition, unlike an arbitrary set of views, windows in many

(although not ail) universal scheme interfaces display some manner of semantic consistency.

In fact, the choice of the term "window" is intended to convey the image of a consistent

set of views onto a single database world.

PIQUE

3. The Object-Based Generator

In presenting the OB generator, we take the view that the database scheme should be

designed in such a way that the relations in the database would correspond to sets of

Sryeducible facts. (A precise definition of fact for relational databases was introduced by

Sciore ~SC'.) A fact is considered irreducible if it cannot be derived from any of its partial

subfactu. For example. a tuple <Smith.CS302> from relation

TEACHES(FACULTY,COCRSE) represents an irreducible fact. since we cannot posit that

Smith tpnches CS302 from knowing that Smith is a faculty member and CS302 is a course.

Likewise, a tuple <Smith,CS302,Kirk> from relation

'fEACHES-'I'O(FACULTY,COURSE,STUDENT) corresponds to an irreducible fact, since

again we cannot posit that Smith teaches CS302 to Kirk from knowing that Smith teaches

CS302 and Kirk takes it.

Additional semantic information (to be used by the OB generator) is represented by

tne.;o: of semantic dcvitles called objects and by the enforcement of the so-called unique role

i s s i ~ , n y t i o n (L'RA). W e use the term extended database scheme to refer to a database

n~hpl.il:? *,ogether with its objects.

Each object is a set of attributes. The set of objects is declared by the database

tiesigcer. Declaring W to be an object corresponds to asserting that there exists some

se~nant ic relationship among attributes in W and tha t this relationship is decomposable.

Thus, tuples over W have meaningful interpretations and correspond to reducible facts.

'rhesc facts can be derived from their subfacts. We shall return to how this is done later

in this section.

The URA is a simplifying assumption that basically states that the database

represents a t most one semantic relationship among any set of attributes. In other words,

there is a t most one way to interpret an existing tuple over any set of i t t r ibutes. For

example, a database with relations TAKES(STUDENT,COURSE) and

PIQUE 12

ASSISTS-WITH(STLDENT,COC'RSE) would violate the VRA, since it contains two

semantically distinct relationships between STUDENT and COCRSE. One of them states

that STUDENT takes COURSE, while the other states tha t STUDENT is a teaching

assistant for COURSE. An obvious way to make this database satisfy the URA is to

rename attribute STUDENT in one of the relations. For example, we can achieve

satisfaction of the URA by renaming STUDENT into ASSISTANT in relation

ASSISTS-WITH.

Note tha t the URA does not require that there exist a meaningful relationship among

any set of attributes. It merely states that if a directly represented relationship does exist

among the attributes in some set X, then i t is unique. Also note that we do not construe

the URA so strongly as to prohibit the very existence of multiple semantic relationships

among a set of attributes. We only intend our system to consider one of them t o be the

most natural, and to establish that relationship automatically. Other relationships must be

established by the user.

For example, consider a simple database modelling a university. A possible scheme

for such a database is:

TEACHES(FACULTY,COCTRSE)
TAKES(STUDEKT,COURSE)
ASSISTS- WITH(ASSISTAKT,COC:RSE)
TEACHES-TO(FACULTY,COC'RSE,STUDENT)

with objects

A possible instance for this database is:

PIQCE 13

TAKES = STUDEST COURSE
-------*--------

Kirk CS120
Rabkin CS120
Kirk CS302
Ross CS303

TEACHES = FACULTY / COURSE
---------------- I------------*-

Smith : CS120
Smith / CS302
Smith I CS303

TEACHES-TO = FACULTY / COURSE I STUDENT
---------------- I_-__-___------- I______-_____-___
Smith I CS302 I Kirk

ASSISTS-WITH = ASSISTAKT) COURSE
----------------=- -------------
Chung I CS112
Johnson I CS302
Ross CS112

Note that this database does satisfy the TIRA. with each relation scheme corresponding to

a type of irreducible facts.

One of the consequences of the lJRA is that a database may contain a t most one

stored relation for any set of attributes. Therefdre, we do not have to use relation names

to identify relations in a URA database. From now on, when convenient, we shall use

r (R) t.0 denote the stored relation over R.

We note that the OB generator allows subscheme relations to be present. It is a

consequence of the URA, however, that these relations must satisfy the following

containment condition: for any two relations r(R) and r(S) if R G S, then nR(r(S)) Z r(R).

For example, since the scheme of relation TEACHES is included in the scheme of relation -
TEACHES-TO, these relations must (and. in fact, do) satisfy the following containment

condition.

'FC (TEACHES-TO) TEACHES

(In the expression above and in other expressions throughout this paper we often abbreviate

attributes t o their first letters.)

Recall that objects correspond to types of reducible facts. Relations for objects are

not stored in the database, but rather are computed from stored relations. In particular,

let W be a n object. The semantics of a tuple w over W must follow from the semantics

of those subtuples of w that correspond to irreducible facts. That is, the meaning given to

any tuple w(W) is a combination of meanings given to tuples from all those stored

relations whose schemes are included in W. Furthermore, by the URA, the interpretations

assigned t o all such relations are mutually consistent with each other.

Therefore, we define a relation for W (denoted by ;(W) and called an object view) as

the following natural join expression (called the object-join).

;(w) = *
R ia relation acheme, R 5 W (r(R)

We shall again abuse the notation and often write ;(W) to mean ;(W)(d) when the

database s ta te d is understood and the context is clear.

For example, the object view for object {FACULTY,COLRSE,ASSISTAh-T) is defined

as follows.

The actual relation for this object, which is computed by applying object-join ~ (F C A) to

our database, is

-

PIQUE

FACCLTY j COURSE , ASSISTANT ________________ i _________ _ _ _ _ _ _ ;__________ ________
Smith I CS302 i Johnson

The definition above makes sense only if W is equal t o the union of some set of

relation schemes [MRWl,MRWZ,MW]. The OB generator makes this restriction on

allowable objects. In addition, since every fact can always be considered t o be reducible to

itself, every relation scheme is automatically included in the set of objects. For the sake of

.:ucciactness, however, relation schemes do not have to be explicitly declared as objects.

Yote that, for any two relations r(X) and r(Y), if X c Y and nx(r(Y)) E r(X), then

(X * (Y) = r) . Therefore, by the containment condition for relations, only relations

aver the mazimal schemes need actually be considered in taking the join. Furthermore, as

the next lemma shows, object views also satisfy the containment condition.

Lenuna 1:

For any two objects V and W: if V W, then nv(; (w)) C: ;(V)

Proof:

Immediate from the definition of object views.

ii

We note that our generator, in effect, uses objects to navigate within the database.

To the generator, each object represents a meaningful semantic relationship among a set of

attributes, and therefore a meaningful navigation path. Note, however, that objects are the

only tool used by this generator. Therefore, in our definition of objects there is an implicit

assumption that they represent all meaningful relationships. Again we do not construe this

assumption so strongly as t o prohibit the possibility that there exists- some semantic

relationship among attributes in a set tha t is not declared as an object. However, this

relationship will not be recognized as meaningful by our generator, and therefore will not

PIQUE

be established automatically.

We also note that if W is an object, then there exists a meaningful relationship

among any subset V of W. Furthermore, the semantics of this relationship is (at least

partially) determined by the semantics of the object W.

Finally, we note that by the URA and by the requirement that objects be closed

under nonempty intersection (this requirement is introduced later in this section) the

semantic interpretations given t o any two objects that share attributes are consistent.

These arguments motivate the following strategy for defining windows. Given a set of

attributes X, the OB generator considers all objects whose attributes include X. Every such

object represents a meaningful relationship relevant t o the relationship among attributes in

X; these objects represent all relevant relationships; and, finally, all of these objects have

consistent semantic interpretations. Therefore, the OB generator defines [X I] as the

following union.

For example, the window for {FACULTY,ASSISTANT) is defined as follows.

The corresponding relation, which is obtained by applying the expression [;FA:) to our

database, is

FACULTY I ASSISTANT
I ___------__----- I__-_-_____________

Smith j Johnson

A tuple <Smith.Johnson> from this relation is interpreted as "faculty member Smith -
teaches some course for which Johnson is an assistant."

PIQUE 17

If the extended database scheme contains no objects thzt include X. then the

generatar will return nothing (i.e.. the relational expression defining the empty relation over

X) as the definition of [I X ' . In fact, it should probably be made to return a message

stating that it could not define j X . a t all. This is appropriate. since the absence of

objects that include X indicates that (as far as the database designer is concerned) the

relationship among X is not semantically meaningful (or, a t least, is not sufficiently

meaningful to be defined automatically).

By the containment condition for objects. if objects W and V both contain X, and W

= V, then V can be dropped from the union that defines ;;Xij . Thus, only the minimal

objects need actually be considered in taking the union. In addition, as the next lemma

shows, the windows compiited by the OR generator also satisfy the containment condition.

Far any X and Y, if X G Y. then lix(:lY j) G :Xi:.

immediate from the definition of windows.
!I
I I

It, follows from Lemma 2 that windows defined by the OB generator are semantically

cor~ulstent,. Furthermore, the OB generator is faithful. That is, windows are defined in

such a way that for any relation scheme R, r (R) = ;(R) = [iRi!. We note that

faithf1.ilness is a n essential and very much desired property of any generator. Unless the

generatof is faithful, it is possible to add a tuple t o a stored relation and not be able to

retrieve it. The next theorem describes the necessary and sufficient conditions for the

faithfulness of the OB generator.

-

Theorem 1 iMRW21:

PIQUE 15

The OB generator is faithful if and only if every relation scheme is also considered to

be a n object. and relations satisfy the containment condition.

The final condition deals with the integrity of objects. The purpose behind this

condition is to prevent little knowledge from being a dangerous thing. If someone knows

the semantics of all relations whose schemes are contained within some object W, then he

should be able to deduce the meaning of the window on any subset of W. Formally, object

W is integral if for any X c W, i/X] can be computed from {r(R) / R 2 W) alone.

Our example database violates integrity of objects, because, for example, IiCOURSEij

cannot be defined from relations in object {FACULTY,COURSE) alone. In fact, the OB

generator would define it as

The danger here is that if a user knows only that the database contains information about

faculty members and courses (and does not know about students and assistants) his

assumptions about the meaning of [(COURSE/] will be incorrect.

The next theorem shows that integrity of objects is equivalent to the set of objects

being closed under nonempty intersection. That is, if objects V and W have a nonempty

intersection Z, then Z must also be an object. This closure property has an important

computational advantage: for any X there is a unique minimal object W containing

X. This, together with the containment condition for objects, implies that ilXij can be

defined in terms of ;(w) alone. In other words, no unions need to be taken to define

[IXl].

PIQUE

Theorem 2 'hIRiT2::

All objects a r e integral if and only if objects a re closed under nonempty intersection.

The integrity of objects and the condition requiring every object to be the union of

Fir,me relation 5chemes imply that relation schemes themselves must be closed under

aonernpty intersection. In accordance with this, we modify our example to include a

rel&tion over {COC'RSE). A possible interpretation of relation r (C0URSE) is t o represent

111 :::isttng courses (e.g., ali courses listed in a catalogue). We note that a course may be

listed i n a catalogue independently from any students taking it, any faculty member

teachiag it, or any assistant assisting with it .

PIQUE 20

4. PIQUE: The Query Language for the OB Generator

Recall that query processing in a universal scheme system involves two steps: binding

and evaluation. During binding, the generator establishes the necessary windows and

computes the corresponding relations; during evaluation, additional operations specified in

the query are applied to these relations to generate a n answer.

While these steps do interact, they are loosely-coupled. Changes to the generator can

be made without affecting the procedures a t the evaluation step. Therefore, the PIQUE

query language, while designed for use with the OB generator, can also be used with other

types of generators. (We note, however, that changes to the generator will affect the way

it defines windows and, therefore, may result in different answers to queries.)

PIQUE is a tuple calculus language similar t o Quel [SWKH]. Thus, a query in

PIQUE has the general form

retrieve <retrieve set> where <condition>,

where <retrieve se t> is a list of tuple-attribute pairs and <condition> is a predicate of a

forrn t o be specified later. There are, however, two important distinctions between PIQUE

and Quel. First, because the OB generator automatically navigates within the database,

the tuple binding mechanism of Quel that explicitly binds tuple variables t o relations

becomes superfluous. Instead, tuple variables are bound to windows. (More precisely, they

are bound t o relations obtained by evaluating windows on the current state of the

database.) The second distinction is that users do not have to specify the bindings

explicitly. Instead, the system uses the syntax of the query to determine the range of

tuple variables.

In this section, we present examples of queries that motivate the constructs necessary

for a natural and powerful query language. We also show how these constructs can be -
used in determining the range of tuple variables within a query. All sample PIQUE

queries discussed in this section will refer to the database with the following relation

PIQUE

schemes

{COURSE}
{FACULTY ,COURSE)
{STUDENT.COURSE}
{ASSISTANT.COC'RSE)
{FACULTY,COURSE,STUDENT)

the following objects

and the following instance

COURSE FACULTY I COURSE STUDENT I COURSE
----------- ---------------- 1-------------_ ---------------- --------------

CS112 Smith I CS120 Kirk I CS120
CS120 Smith 1 CS302 Rabkin CS120
CS302 Smith / CS303 Kirk ' CS302
CS303 Ross CS303

ASSISTANT / COC'RSE
------------ * ----- 1 --------------

I

Chung / CS112
Johnson 1 CS302
Ross I CS112

FACULTY j COURSE , STLDENT
---------------- I-____----_____- ;___--------_____
Smith / CS302 Kirk

This database is our example database of Section 3 with relation r(C0URSE) added

in. In the world reflected by this database, assistants are assigned to courses, not to

faculty members or students. Therefore, an assistant is responsible for aiding every student

taking his course regardless of which faculty member teaches it. Likewise, an assistant is

responsible for helping every faculty member teaching his course. -
Again, whenever convenient we shall abbreviate attribute names to their first letters.

Also, we shall often use [IX" to denote the actual relation corresponding to the window for

PIQUE

X, rather than the expression defining it.

4.1. Simple Quer ies

Consider a request for the list of faculty members and the courses they teach. Query

re t r i eve t.F, t .C w h e r e (QJ

models the above request in an intuitive manner. However, t o make Q1 return an

intuitively correct answer, namely

{<Smith,CSlPO>, <Smith,CS302>, <Smith,CS303>)

tuple variable t has to be bound to [IFC/i.

Note that condition in Q1 is empty. For the sake of succinctness, if the condition of

the query is empty, then keyword 'where ' may be omitted from the query.

Next consider a request for the list of students taking some particular course, say

CS120. This information is contained in the tuples of [JSC/] that have C-values of CS120.

Consider the query

re t r i eve t.S w h e r e (t.C = CS120).

Again, the query above intuitively Corresponds t o the request. If during its evaluation

tuples with C-value CS120 are selected from [jSCj] and their S-values are returned, then

query QZ returns

{<Kirk>, <Rabkin>)

which is intuitively correct. In order to do that , however, tuple variable t, must be bound

to ~ISCI].

In both queries Q1 and Q2 above, tuple variable t is bound to ;Imen(t) j , where

men(t) is the mention set of t: the set of attributes that appear with t in the query. We

note that mention sets were used to determine tuple binding in System/U queries in the

presence of maximal objects [MU]. However, the way men(t) is defined in PIQUE queries

is different from the way i t is defined in Systern!U queries. A formal definition of men(t)

aud the binding mechanism of tuple variables are provided in the appendix.

In the condition 't.C = CS120', attribute C is compared to a constant. PIQCE also

~ r o v i d e s the facility to compare two attributes and allows comparisons for inequality. In

addition t o that , for ordered domains, PIQUE provides the facility to use any of the binary

comparators from (c , <=, >: >=). For string domains, substring and regular expression

matching can also be performed.

Consider a request for a set of courses that have assistants. Query

retrieve t .C where (t . ~ = t.A) (Q3)

rnodels this request if tuple variable t is bound to [jACli. Query Qg returns an intuitively

correct answer, which is

{<CS112>, <CS302>).

%ate chat condition 't.A = t.A' is included in Qg just to insure that tuple variable t is

boranci t o [lACij iather than ;IC';, and not for the sake of the comparison. Therefore, in

PIQUE queries, ' i .A' is written in place of 't.A =I t.A' and is referred to as a name drop,

indicating that A was "dropped" into ~nen(t) . The query then takes the form

retrieve t.C where (t . ~) . (Q4)

The name drop %.A' in Q4 can then be interpreted as "assistant exists."

I t is interesting to note the similarity in the use of name drops in PIQUE queries

and in System/U queries evaluated in the presence of maximal objects. In both systems

narne drops are used to limit the range of the query. Formally, there is a difference

however. In a System/U query, a name drop restricts a tuple variable to range over fewer

maximal objects, while in a PIQUE query, it forces a tuple variable to range over larger

objects. -

In the queries above, 'P', 'C' and 'A' could have been used in place of 't.P', 't.C'

PIQUE 2 4

and %.A1, if the existence of a default tuple variable was assumed. In PIQCE, this default

tuple variable is referred to as the blank tuple variable and the above substitutions are

allowed. For example, query Q2 can be rewritten as

re t r i eve S w h e r e (C = CS120).

Kow consider queries that involve several comparisons. Consider the following closely

related English questions: "Which courses are being taken by Kirk from Smith?," and

"Which courses are being taken by Kirk and taught by Smith?" Note that in answering

the first question, information from [IFCSl] should be used. In PIQC'E, this question is

posed as

retrieve t.C w h e r e (t.F = Smith)*(t.S = Kirk). (Q6)

Symbol '*' in the condition of Q6 indicates that both F and S are to be included in

men(t), thus forcing the query to be evaluated over jiFCSI]. From a semantic point of

view, the '" operator is interpreted as "and simultaneously." In other words, it indicates

that both of the selection conditions are to be performed on the same tuple. The answer

In answering the second question, tuples from [IFC!) and [iSCI], rather than [IFCS!],

should be considered. This is because a course can be taught by Smith and taken by

Kirk, but not necessarily be taught by Smith to Kirk. The above request can be posed as

r e t r i e v e t.C w h e r e (t.C = u.C)*(t.F = Smith)*(u.S = Kirk). (Q,)

By the binding convention, tuple variable t is bound to [/ F C and tuple variable u is

bound to [ISCI]. The answer to this query is

{<CS120>, <CS302>).

It is obtained by taking the cross-product of [IFCI] and ['SCI!, applying specified selections,

and applying a projection onto t.C. There is, however, a more natural way of posing this

request.

4.2., Complex Queries

Consider again a request for the courses taken by Kirk and taught by Smith.

Consider the query

retrieve t.C where (t .P = Smith) and (t.S = Kirk). (Q,)

Ihe rule for interpreting Q8 is motivated by the fact that semantics of 'and' is almost

invariably associated with intersection. The answer to this query is obtained by evaluating

the queries

retrieve t.C where (t.P = Smith)

and

retrieve t.C where (t.S = Kirk)

and (eturning the intersection of the evaluation results. We note that this answer is, of

.course, the same as the answer to query Q7.

We also note, that at different stages in the evaluation of query Q8, tuple variable t

is bound to different connections. In other words, men(t) takes on different values a t

different ~ t a g e s of evaluation. This situation does not occur in Quel queries, because tuple

variables there are explicitly bound to named relations. Neither does it occur in System/C;

queries, since all tuple variables there are permanently bound to the universal instance

iKUj, or, in the presence of maximal objects, permanently bound to the union of maximal

objects.

While queries with multiple tuple variables do occur in PIQUE, they are not usually

used to specify joins on stored relations. Since the need to join stored relations occurs

frequently, the ability to specify these joins using only one tuple variable is an advantage. -
Note that in queries involving multiple tuple variables, the retrieve set may contain

duplicate attributes. Therefore, a mechanism for renaming attributes is provided in the

PIQUE 26

language. As an example of a query involving renaming. consider

retrieve t.STUDENT -> CLASS-MATE, u.STC'DENT where
(t.COURSE = u.COI;RSE)'(t.STC'DENT != u.STUDENT). (Q9)

This query corresponds to the question "What are pairs of students taking the same

course?" The presence of ' t .STUDEST -> CLASS-MATE' in the retrieve set of Q9

indicates that in the result of this query, which is

{<Kirk,Rabkin>, <Rabkin,Kirk > j

attribute STUDENT associated with tuple variable t is to be renamed to CLASS-MATE.

The language also contains 'not' and Lor'. PIQUE interpretation of 'not' is

motivated by the following example. Consider the query

retrieve t .C where not (t.F).

It is reasonable t o require that this query returns the list of courses that have no faculty

members associated with them, i.e., the courses not included in rc([/FCi]). On the other

hand, it is also reasonable to require that the query returns only those courses that

actually exist, i.e., the ones appearing in :IC,j . The above motivates the following

interpretation.

First, compute the answer to the query

retrieve t.C.

Then, compute the answer to the query

retrieve t.C where (t.F).

Finally, return the relational set difference of the latter from the former as the answer.

Thus, the answer to query Qlo is

{<CS112>).

Note again tha t tuple variable t is bound to different connections, namely l / C i] and 1,FC 1 ,

a t different stages of the computation.

PIQCE 27

Consider another query involving 'not'.

r e t r i e v e t.C w h e r e not (t.S = Kirk)

In designing PIQUE, it was considered important that connectives be interpreted

independently of conditions they connect. In particular, interpretation of ' n o t 7 should not

depend on the form of the condition in the query. If the query above is interpreted in a

manner similar to that of the previous query, then it returns the existing courses that are

noe taken by any student, i.e., have no students enrolled, as well as those not taken by

Kirk Thus, it returns

{<CS112>, <CS303>).

Query Qla then corresponds to the question ''What are the courses not taken by Kirk?"

Xote that condition 'not (t.S = Kirk)' is not the same as condition 't.S != Kirk',

where symbol '!=' stands for "not equal." Consider the query

r e t r i e v e t.C where (t.S != Kirk). (Q14)

This query is evaluated in exactly the same manner as if it had an equality condition. In

the collc:je of its evaluation, tuple variable t ranges over [/men(t) , l , in this case : ISC' , .

Thoye tuples from SCIj that satisfy condition 't.S != Kirk' are selected, and their C-values

are i-eturned. Therefore, this query returns all courses taken by a t least one student other

than Kirk, or

{<CS120>, <CS303>).

Thus, query QI4 corresponds to the question "What are the courses that students other

than Kirk are taking?"

In PIQUE, neither of the above two questions can be expressed in terms of the other.

By distinguishing between 'not (... = ...)' and '(... != ...)', more flexibility in posing

questions is allowed to the user. Also, if 0 is a binary comparator from f!=, C, <=, >,

>=), then in general conditions 'not (... B ...)' and '(... not B ...)' are not the same. To

PIQUE

emphasize this point, consider the queries

re t r i eve t.C w h e r e not (t.S <= Rabkin)

and

r e t r i e v e t.C w h e r e (t.S > Rabkin),

where '<=' and '>' indicate alphabetical order. The first query will return

{<CS112>, <CS303>),

i.e., the list of existing courses that are not taken by any student whose last name comes

before or is equal to "Rabkin." The second query, on the other hand, will return

{<CS303>),

i.e., the list of courses that are taken by students whose last names come after "Rabkin."

There is a major difference between the use and interpretation of 'not' in PIQUE

queries and in Quel queries. In PIQUE, the use of 'not ' , in effect, allows us t o specify a ,

relational set difference in a single query. In Quel. however, this is not the case. Taking

a true relational set difference in Quel involves a creation of a temporary relation, and the

use of the 'delete' command.

The semantics of 'or' in the language is analogous to that of 'and' with union

substituted for intersection. Thus, the query

re t r ieve t.C w h e r e (t.F = Smith) or (t.S = Kirk)

corresponds t o the question "Which courses are being taken by Kirk or taught by Smith?"

The answer to this query is

{<CS120>, <CS302>, <CS303>).

De Morgan's and Distributive Laws hold for the interpretations of 'and' , 'or' and

'not'. In PIQUE queries, 'not ' has precedence over Land ' , which in t u r q has precedence

over 'or'. These rules of precedence can be overridden with parentheses.

PIQUE 29

T o illustrate the simplicity with which complex English questions car, be posed,

consider retrieving the courses which are either taught by Smith and taken by Kirk, but

not, tailght by Smith to Kirk, or have no assistants. In Quel, the query posing this

question requires the use of four tuple variables bound to appropriate relations over FC,

SC, FCS, and AC. In PIQUE, the above question can be posed using only one tuple

variable (which is conveniently chosen to be the blank tuple variable). The query is

retrieve C where (F = Smith) and (S = Kirk) and
not (F = Smith)*(S = Kirk) or not (A). (Q18)

The answer t o Q18 is

As another example consider the query

retrieve 5 where (C = CS120) and (C = CS302).

!'his query corresponds t o the question "Which students take both CS120 and CS302

.zo~irses?~ and returns

{<Kirk>)

as the result. An analogo~ls Quel query would always return the empty relation as the

answer, since the condition '(C r= CS120) and (C = CS302)' is always False when

evaluated with respect t o any single tuple.

4.3. Query Nesting

PIQUE also provides a facility for query nesting. Query nesting can be used in three

ways: to restrict the answer of the query, t o override the tuple binding mechanism. and to

test for subset or superset inclusion.

A semijoin, denoted by symbol '*<', and a n antisemijoin, denoted by symbol '!*<',

are binary relational algebra operations, defined a s follows.

PIQUE

While the operations of semijoin and antisemijoin are defined with respect t o natural join,

it is straightforward to extend them to arbitrary 8-joins [Rol

Restriction of an answer is done by performing a semijoin or an antisemijoin of the

intermediate result in the query evaluation, with respect to the answer to the subquery. In

particular, a subquery that retrieves a single attribute can be substituted for one of the

attributes everywhere a comparison between two attributes is allowed.

For the convenience of users, a subquery is allowed to have a retrieve set consisting

of several attributes. In that case, since renaming of attributes is allowed in PIQUE, the

user has to specify a map for the comparison. That is, the user has to specify how the

attributes from the main query are to be compared with the attributes from the retrieve

set of the subquery.

As an example of the use of the restriction facility consider the query

retrieve C where (S in retrieve S where (P = Smith)).

Subquery

retrieve S where (P = Smith),

which returns the list of all students taught by Smith is evaluated first. The answer to

subquery QZ1 is

{<Kirk>).

Then, during the evaluation of the main query, tuples over SC are compared with the

result of subquery Qzl. Keyword 'in' indicates that the comparison is to be done by
-

semijoin. The absence of a comparison map indicates that the semijoin is based on the

natural join. Query Qzo, then, corresponds t o the question "What are the courses taken

PIQUE 3 1

by students who are taught by professor Smith?" The answer to Qzo is

{<CS120>, <CS302>).

An equivalent query not using the restriction facility is

retrieve C where (S = t.S)*(t.P = Smith).

While this query is shorter, its structure does not reflect the structure of the question, thus

making it less intuitive than query QZa. The difference in the clarity of the queries that

the restriction facility and those that do not increases rapidly as queries become more

complex.

As another example of the use of the restriction facility consider the query

retrieve A where (A notin A = S retrieve S). (Q23)

Again, the subquery

retrieve S

is evaluated first. It rettlrns the list of all students, which is

{<Kirk>: <Rabkin>, <Ross>).

'Then, during the evaluation of Q23, tuples from [jAi] are compared with the result of

subquery Q24. Keyword 'notin' indicates that the comparison is to be done by

antisemijoin, while 'A ;= S' provides a map for the comparison. In particular, it indicates

tha t at tr ibute A from [/All is to be compared for equality with at tr ibute S in the answer

t o the subquery. Thus, this map indicates that the antisemijoin is based on the equijoin.

Query QZ3, then? corresponds to the question "Who are the assistants that are not among

the students?" The answer to Q23 is

{<Chung>, <Johnson>).

While this question can be posed in PIQUE without the use of the restriction facility, the -
resulting query would not be natural.

Overriding tuple variable binding is performed using keyword 'from'. As an example

PIQUE 3 2

consider the query

retrieve t.PERSON where (t from retr ieve STCTDEXT -> PERSON)
o r (t f rom retrieve ASSISTANT -> PERSON). (Q25)

This query corresponds to the question "Who is either a student or an assistant?" The

answer to this query is obtained in the following way.

First, compute the answer to the first subquery

retrieve STUDENT -> PERSON.

Note that attribute STUDENT is renamed to PERSO?;. The answer to this query is

{<Kirk>, <Rabkin>, <Ross>).

Then, compute the answer to the query

retr ieve t.PERSON where (t f rom retr ieve STUDENT -> PERSOK), (QZ7)

by binding tuple variable t to the answer of subquery QZ6. (The answer to Q2, is, of

course, the same as the answer to its subquery.)

Second, compute the answer to the second subquery

retrieve ASSISTANT -> PERSON.

Again, note the renaming. The answer to this query is

{<Chung>, <Johnson>, <Ross>).

Then, compute the answer to the query

retrieve t.PERSON where (t f rom retr ieve ASSISTAXT -> PERSOY). (QZQ)

Again, the answer to QZ9 is the same as the answer to its subquery.

Finally, return the union of the answers to Q2, and Qzg as the result. Thus, the

answer to query QZ5 is

{<Chung>, <Johnson>, <Kirk>, <Rabkin>, <Ross>). -

We note that this question cannot be asked a t all in PIQUE without the use of the

PIQUE 33

facilities for attribute renaming and binding overriding. We also note that posing the

above question in Quel requires the creation of a temporary relation and the use of the

'append' command.

Testing for subset inclusion is performed using keyword 'of in conjunction with

k2ywi;rd 'include' that corresponds to superset inclusion, or keyword 'among' that

correspo~ds to subset inclusion. As an example of superset inclusion, consider the query

retrieve S where (C of S include retrieve C where (A = Johnson)). (Q3J

This query corresponds to the question "Who are the students that have taken all of the

courses tha t are assisted by Johnson?" The answer to Q30 is computed in the following

;+ ay,

First, compute the answer to the subquery

retrieve C where (A = Johnson).

The answer to QJ1 is

'L'heii divide (in the relational aigebra sense) jSC by the answer to this subquery. The

resiiit, which is a relation over S, is

{<Kirk>).

Finally, during the evaluation of the main query, restrict the answer to those tuples that

are contained in the result of the division. In other words, perform a semijoin with respect

t o {<# irk>) . The answer to query Q30 is

{<Kirk>).

As an example of subset inclusion, consider the query

retrieve S where (C of S among retrieve C where (F = Smith)). (QH) -

This query corresponds to the question "Who are the students that have taken only those

courses that are taught by Smith?" The answer to this query is computed in a manner

PIQUE 34

similar to the previous computation, except that the division is taken in the opposite

direction. (A formal description of how this is done is provided in the appendix.)

4.4 PIQUE I m p l e m e n t a t i o n

There exists a running compiler for a substantial subset of PIQUE. The only features

of PIQUE that are not implemented are: the facility to test subset and superset inclusion,

and the facility to perform regular expression matching. The compiler was written in the

C language and runs under the C'NIX operating system. The parser for PIQUE was

created by the YACC system [Jo].

After a PIQUE query has been parsed, its intermediate form is stored in six system

relations. These relations satisfy the URA, and thus can be made part of a database.

This allows users to precompile their ,queries and t o store their compiled form over a

period of time. This is especially useful if several queries share the same subquery.

The algorithm for evaluating PIQUE queries, which corresponds to the examples

discussed in this section and is consistent with the formal definition of PIQUE semantics

described in the appendix, is presented below.

Algorithm

1. Expressions are constructed for the answers to all subqueries of a given query Q.

2. Query Q is decomposed into a set of simple queries {Q1, ..., Qn), where the
condition in each of these simple queries does not contain keywords 'not', Land'
or 'or'.

3. All tuple variables in each simple query Qi are appropriately bound. Tha t is, if
a tuple variable t appears with keyword 'from' in the condition of Qi, then an
expression for the answer t o the corresponding subquery is constructed; else, the
expression for [Imen(t)/] is constructed.

4. For each simple query Qi, a cross product of the expressions f o r all tuple
variables is taken. Let the resulting expressions be Ei,l.

5. For each simple query Qi, restrictions (i.e., semijoins and antisemijoins) specified

PIQUE 3 5

in the condition of Qi are applied to EiTl. Let the resulting expressions be E,,:.

6. For each simple query Qi, selections specified in the condition of Qi are applied

t o EiS2. Let the resulting expressions be Eiq3.

7. For each simple query Qi, projections onto attributes specified in the retrieve set
of query Q are applied to Ei,3: necessary renamings are performed. Let the
resulting expression be E,,,. Note that these expressions represent answers to

simple queries {Q1, ..., Q,,).

8. Expressions E,,, are combined with relational set difference, intersection and
anion, according to hot ' , ' and ' and 'or' connectives in the condition of query
Q. The resulting expression is evaluated and the result is returned as the answer
to qllery Q.

i 1

Eris [Re21 is a relational database system developed a t Brown L'niversity. It is based

on the path model of relational database implementation proposed by Reiss /Reli . . . The

PIQUE compiler translates the intermediate form of queries into relational algebra

supported by Eris. Because Eris optimizes relational algebra expressions, the cross products

take.. irl Step 4 of the Algorithm above are not actually computed unless necessary.

PIQUE

5. Conclueions

5.1. Summary

This paper presents PIQUE, an attribute-based relational query language.

Section 1 motivates the need to go beyond physical data independence, towards

structural data independence. Section 2 considers views, the traditional method of hiding

the structural details of the database from the user. However, views do not always provide

the user with a semantically consistent and intuitive image of the underlying database.

Universal scheme interfaces, also considered in Section 2, are a viable and semantically

consistent alternative for providing structural d a t a independence.

The concept of a window generator, discussed in Section 2, is central to many

universal scheme interfaces. Section 3 examines in detail the object-based (OB) generator,

which is based on the semantic notions of decomposable and non-decomposable facts.

PIQITE, an attribute-based tuple calculus-like language developed for the use with the OB

generator is presented in Section 4 and the appendix. Section 4 provides examples

motivating the syntax and the semantic interpretation of PIQC'E queries. The appendix,

on the other hand, contains PIQUE'S formalization and the proof of its relational

completeness.

The distinguishing characteristic of PIQUE is that the syntactic structure of queries

together with the extended database scheme determines the range of tuple variables. We

believe PIQUE to be a powerful, yet natural, language. Many queries can be posed in

PIQUE without explicitly using any tuple variables a t all. In particular, given the

appropriate choice of objects, these queries include the important class of

6 L project-select-join" queries of the form

-
*

n < ~ e t of a t t r i b u t o > (~ < C o n d i t i o n > (~ l * "' rn))'

PIQUE 3;

,tiso ,;here exists a large class of queries that can be asked using many fewer tuple

variables than in other tuple calculus-like languages.

5.2, Related and Future Work

Recall that the OB generator depends on the unique role assumption (CRA) for

navigntioil. While any database can be made to satisfy the URA by renaming of

sttrihutes certain semantic information may be lost. For example. consider a database

~ i t J b :elat:ons HAS(EllPLOYEE,SALARY), WORKS-IS(EMPLOYEE,DEPARThIENT) and

bM.ii,4GES(Eh\.IPLOYEE,DEPARTMENT). This database does not satisfy the URA

i it contains two semantically distinct relationships between employees and

Jepartments,

The database can be made to satisfy the URA by renaming attribute EMPLOYEE in

nni of the relations; say, in relation MANAGES to MASAGER. However, certain

:emar\tis ,nfo'-mation, namely that E,MPLOYEE and MANAGER represent entities from the

.i,~n,? class, but in different roles. is lost from the database. Furthermore, nothing in the

renamed database indicates how t.o establish a relationship between managers and their

salacizs (Kote tha t in the original database it was the presence of the same attribute

EMPT,i>YEE in both relations HAS and MANAGES that indicated how to compute salaries

of managers.)

In IMXSl,MRS2] we explore means of recapturing this information by incorporating

role hierarchies into the database scheme. We then show how the role information can be

by a generator to automatically navigate within the database in new ways.

Unfortunately, even in the presence of role information, there may exist several semantically

different ways of establishing a relationship among a given set of attributes. In that case,

it may be possible for the user to disambiguate the request by explicitly'specifying some

role information in the query. We are currently investigating ways of incorporating the

PIQUE

role information into PIQUE.

In this paper, we have presented a computational definition of the OB generator.

Stein [St,SM develops an equivalent definition based on representative instances [H o z , ~ ~ ' .

The d a t a dependencies inherent in the model are then explored. These dependencies are

similar t o functional, join and template dependencies, except for their reliance on no

information nulls [Zaj. The dependencies developed are well behaved, possessing a

complete, self contained axiomatization. We intend t o use these dependencies to develop

normal forms for the fact-based databases satisfying the ~ ' R A .

PIQUE

Bibliography

!A-G'

iDa,

IHo2'

;H C'

,Jo

Koi

iKKFGUj

[Ma j

iMRSS W]

Z. Arazi-Gonczarowsky. .A high-level interface for users in a relational
database. Manuscript, Dept of Computer Science, Hebrew University.
1983.

A.V. .4ho, B.W. Xernighan. Program research!user/avajq/READhfE,
1950.

E. Babb. Joined normal form: A storage encoding for relational
databases, ACM Transactions on Database Systems, 7:4, December 1982.

J. Biskup, H.H. Bruggeman. Universal relation views: A pragmatic
approach, Technical Report 150, University of Dortmund, lMarch 1983.

D.D. Charnberlin, et al. SEQUEL2: -4 unified approach to data
definition, manipulation and control. IBM Journal of Research and
Development, 20:6, pp. 560-673, November 1976.

C.K. Carlson, R.S. Kaplan. A generalized access path model and its
application to a relational database system. Proceedings of the
A CM-SIGMOD Conference, June 1976.

C.J. Date. A n Introdaction to Database Systems. 3rd edition.
Addison- Wesley, 1982.

P. Honeyman. Testing satisfaction of functional dependencies. Journal o j
t'he ACM, 29:3, pp. 668-677, July 1982.

J.E. Hopcroft, J.D. 't'llma!l. Introduction to Automata Theory, Languages.
and Computation, Addison- Wesley. 1979.

S.C. Johnson. YACC yet another compiler compiler, Computing
Science Technical Report 32, Bell Laboratories, July 1975.

M.F. Korth. SystemjL:: A progress report. Proceedings of the XP2
Workshop on Relational Database Theory, June 1981.

H.F. Korth, G.M. Kuper, J. Feigenbaum, A. van Gelder, J.D. Ullman.
System/U: A database system based on the the universal relation
assumption. ACM Transactions on Database Systems, 9:3, pp. 331-348,
September 1984.

S.M. Kuck, D.A. McNabb, S.V. Rice, Y. Sagiv. The Parafrase database
user's manual. Computer Science Technical Report 80-1046, University of
Illinois, December 1980.

S.M. Kuck, Y. Sagiv. A universal relation database system implemented
via the network model. Proceedings of the ACM Symposium on
Principles of Database Systems, March 1982.

H.F. Korth, J.D. Ullman. Systern/U: A database system based on the
universal relation assumption. Proceedings of the XP1 Workshop on
Relational Database Theory, June-July 1980, Stony Brook, N.Y. -
D. Maier. The Theory of Relational Databases. Computer Science Press,
1983.

D. Maier, D. Rozenshtein, S. Salveter, J . Stein, D.S. Warren. Towards

PIQUE

[MRS 11

[MR W 11

[MRW2]

[MW j

[MU J

[Re 1

[Re21

(Roj

[Sc]

[SP!

[St1

ISMI

logical da ta independence: A relational query language without relations.
Proceedings of the ACM-SIGMOD Conference, June 1982, Orlando, Fla.

D. Maier, D. Rozenshtein, J . Stein. Representing roles in universal
scheme interfaces. Extended Abstract. Proceedings of the IEEE Computer
Data Engineering Conference, April 1984, Los Angeles, Ca.

D. Maier, D. Rozenshtein, J . Stein. Representing roles in universal
scheme interfaces. IEEE Transactions on Software Engineering, SE.l1:7,
pp. 644-652, July 1985.

D. Maier, D. Rozenshtein, D.S. Warren. Windows on the world.
Proceedings of the ACM-SIGMOD Conference, May 1983, San Jose, Ca.

D. Maier, D. Rozenshtein, D.S. Warren. Window functions. Advances in
Computing Research, vol. 3, JAI Press, Inc., Greenwich, Ct, 1986.

D. Maier, D.S. Warren. Specifying connections for a universal relation
database scheme. Proceedings of the A CM-SIGMOD Conference, June
1982, Orlando, Fla.

D. Maier, J.D. Ullman. Maximal objects and the semantics of universal
relation databases. A CM Transactions on Database Systems, 8: 1, pp.
1-14, March 1983.

S.P. Reiss. The path model of relational database implementation.
Unpublished manuscript, Brown University, December 1981.

S.P. Reiss. Eris reference manual. Unpublished manuscript, Brown
University, January 1982.

D. Rozenshtein. Query and Role Playing in the Association-Object Data
Model. Doctoral Dissertation, State University of Sew York a t Stony
Brook, 1983.

Y. Sagiv. Can we use t h e universal instance assumption without using
nulls? Proceedings of the ACM-SIGMOD Conference, April - May 1981,
Ann Arbor, Mich.

E. Sciore. The Universal Instance and the Database Design. Doctoral
Dissertation, Princeton University, 1980.

K.L. Schenk, J.R. Pinkert. An algorithm for servicing multirelational
queries. Proceedings of the ACM-SIGMOD Conference, August 19M.

J. Stein. Constraints in the Association-Object Data Model. Doctoral
Dissertation in preparation, State University of New York a t Stony Brook.

J . Stein, D. Maier. Relaxing the universal relation scheme assumption.
Proceedings of the ACM Symposium on Principles of Database Systems,
March 1985.

M. Stonebraker, E. Wong, P. Kreps, G. Held. The design and
implementation of INGRES. A C M Transactions on Database Systems,
1:3, pp. 189-222, September 1976. -
J.D. Ullman. Principles of Database Systems. Computer Science Press,
1980.

J.D. Ullman. The U.R. strikes back. Proceedings of the ACM

PIQUE 4 1

Symposium on Principles of Database Systems, March 1982.

I Zl: M.M. Zloof. Query-by-example: A database language. IBM Systems
Journal, 16:4, pp. 324-313. December 1977.

[Za] C. Zaniolo. Database relations with null values. Proceedings of the
ACM Symposium on Principles of Database Systems, 1982.

PIQUE

Appendix
In this appendix, we present a formal definition of the PIQCE query language.

Al . PIQUE Syntax

As usual, let U denote the universal set of attributes, and let A and B stand for

attributes in C'. Letters t and u are tuple variables. Symbol 0 stands for a binary

comparator from {=, !=, <, <=, >, >=, <<, =re), where symbol '<<' denotes substring

matching and symbol '=re' denotes regular expression matching. Letter c denotes a

constant. Symbol c represents the empty string. The notion of domain is extended to

tuple-attribute pairs by letting dom(t.A) be equal to dom(A).

If t is a tuple over a set of attributes Y and A E Y, then t(A) stands for the value

of attribute A in t. Also, if X c Y , then t(X) stands for the restriction of t to, X.

PIQUE grammar is presented below. For the sake of clarity, nonterminal symbols in

the productions a re indicated by enclosing them with angle brackets, while keywords are

shown in boldface.

::= t.A
::= <term> I <term><inset>
. . - ..- <te rm> <term><terms>
::= <term> 8 B j <te rm> 8 B, <map>
::= <term> -> B i <term> -> B, <retset>
::= r] (< te rm>) 1 (c t9 <term>) I (< term> 8 c) '

(<term> B <te rm>) 1 (t from <query>) 1

(<inset> in <map> <query >) I
(<inset > notin <map> <query>)
(<terms> of <terms> include <query>)
(<terms> of <terms> among <query >)

::= <econd > I <econd>* <scond>
::= <scond> / (<ccond>) 1 not <ccond>

cccond> and <ccond> i <ccond> or <ccond>
..- ..- retrieve <retset> where <ccond>

In the grammar, nonterminal <term> stands for a tuple-attribute pair. The retrieve

PIQUE 43

set of a query is denoted by nonterminal <retset>, which is a sequence of reriamed terms.

rhc symbol '->' in '<term> -> B' indicates that , in the answer to the query. '<term;' is

to be renamed to 'B'. Since duplicate attributes are disallowed in the answer to a query

(which is, of course, a relation), no two '<term> -> B' elements of <retset> may have

the same B. Throughout this appendix, Bs in the retrieve set of the query are referred to

as new names for the attributes. Also, if B is already an attribute in the database, then

the domain of <term> must be equal to the domain of B. Finally, even though

r,orltc?rminals <inset> and <terms> have structurally identical definition, they are used in

thz s:nmrnar for quite different purposes. Thus, for the sake of clarity, they are not

cnmblqed into a single nonterminal.

'There are three levels of complexity of conditions in PIQUE queries. The simplest of

!.:!ern correspond to nonterminal <econd> and are called elementary conditions. There are

several type restrictions that apply to elementary conditions. In particular, e must be

rlel?ne#f o n the domains of constituent <term>s, and constant c must be an element of the

grope? ,totx:ain. Also, if 8 denotes a regu!ar expression match, then constant c is taken to

I:e a regular expression paitern, expressed in a standard notation IHUj.

There are three kinds of elementary conditions that deserve special attention. First,

ar: Aementary condition may involve keywords 'in' or 'notin'. In that case it specifies a

restriction by semijoin or by antisemijoin. The <inset> specifies a list of tuple-attribute

pairs to he used in the comparison with the answer to subquery <query>. The <map>

specifies how the comparison is t o be performed. If an elementary condition indeed

invalves a scmijoin or an antisemijoin, then the following restrictions apply: the <terrn>s in

-:inset> must be the <term>s in <map>, and each new name B in <map> must be

among new names in the <retset> of the subquery <query>.

Second, an elementary condition may involve keyword 'from'. This condition specifies

explicit binding for the tuple variable involved.

PIQUE 4 4

Third. an elementary condition may involve keyword 'of. This condition specifies a

restriction that depends on whether the answer to subquery <query> is a subset (in the

case of &include1) or a superset (in the case of ' among ') of a particular projection of a

certain intermediate result in the query evaluation. If an elementary condition describes

this type of restriction. then the domain of the i-th <term> in <terms> (where <terms>

is the nonterminal that appears just before 'of) must be the same as the domain of the

i-th new name B in <retset> of subquery <query>.

The slightly more complex conditions are referred to as simple conditions. They are

constructed from elementary conditions using the '*' operator. Simple conditions correspond

to nonterminal cscond>. There is only one restriction applicable to simple conditions:

there may be a t most one explicit binding for a particular tuple variable in a simple

condition.

The most complex conditions are those involving 'not', 'and', and 'or' operators

connecting simple conditions. They correspond to nonterminal <ccond> and are referred t o

as complez conditions.

A query in PIQUE is specified by specifying a retrieve set and a condition.

E x a m p l e 1:

As an example, consider the following three query derivation sequences, where symbol

'a' stands for "derives in one step," symbol '*a' stands for "derives in one or more

steps," and letters C, D, E, G , K, L, M denote attributes.

PIQUE

<query> =+ retrieve <retset> where <ccond> *a
retrieve <term> -> E, <retset> where <econd>*<scond> *a
retrieve t.C -> E, u.D -> F where (t.C)*(t.G = u.Ii)*(u.L > 5)

<query> retrieve <retset> where <ccond> *a
retrieve <term> -> N where <econd> *a
retrieve t .M -> N where (t from <query>) **
retrieve t.-M -> N where (t from retrieve u.C -> M where)

<query> retrieve <retset> where r<ccond> **
retrieve <term> -> E where <econd> or <econd> *a
retrieve t .D -> E where (t .K = 9) or (t.L = 7)

In concluding this section, we note that because of the incorporation of certain

user-friendly features into the language, the grammar used in the actual implementation of

PIQUE differs slightly from the grammar presented above. These features include the

ability t o drop keyword 'where' from the syntax of the query if the condition is empty,

and the ability not to rename attributes in the retrieve set unless necessary.

:\2. Formal Semantics of PIQUE Queries

In this section, we present rules for semantic interpretation of PIQUE queries. To

illustrate these rules, we shall use the three PIQUE queries derived in the previous section.

Our example database shall consist of two relations r(CG) and r(DKL), with no additional

objects. The instances for these relations are presented below.

Throughout this appendix, we shall often want to distinguish a restricted class of

PIQUE queries: those whose conditions do not involve keywords 'not', 'and4 or 'or'. Each

query from this class has the form

retrieve <retset> where <scond>

PIQCE

and is referred to as simple query.

Recall that, in PIQUE queries, tuple variables are bound automatically. In case of a

simple query, a tuple variable t is bound to the window for the mention set of t: the set

of attributes that appears with t in the query.

Function men(t, Q) that computes the mention set of tuple variable t in simple query

Q is defined recursively as follows.

For <term>:
men(t, u.A) = {A) if t = u,

= d otherwise.

For <inset>:
men(t, <term>) is defined above;
men(t, <term>,<inset>) = men(t, <term>) J men(t, <inset>).

For <terms>:
men(t, <term>) is defined above;
men(t, <term>,<terms>) = men(t, <term>) I; men(t, <terms>).

For <retset >:
men(t, <term> -> B) = men(t, <term>);
men(t, <term> -> B,<retset>) = men(t, <term>) u men(t, <retset>).

For <econd>:
men(t, c) = 4;
men(t, (<termBl B <term>2)) = men(t, <term>l) L men(t, <term>2);
men(t, (<term> B c)) = men(t, <term>);
men(t, (c B <term>)) = men(t, <term>);
men(t, (<term>)) = men(t, <term>);
men(t, (<inset> in <map><query >)) = men(t, <inset>);
men(t, (<inset> notin <map><query>)) = men(t, <inset>);
men(t, (u from <query>)) = d, even if t = u;
men(t, (<terms>l of <terms>2 include <query>))

=men(t, <terms>l) L men(t, <terms>J;
men(t, (<terms>l of <terms>2 among <query>))

=men(t, <terms>l) c: men(t, <terms>?).

For <scond>:
men(t, <econd>) is defined above;
men(t, <econd>*<scond>) = men(t, <econd>) L men(t, <scond>).

For simple query Q:
men(t, retrieve <retset> where <scond>) -

= men(t, <retset>) u men(t, <scond>).

Example 2:

Consider tuple variable t from query Q1. Its retrieve set contributes {C) to men(t),

and its condition contributes (C G) to men(t). Thus, men(t) in Q1 is {CG). On the

other hand, men(u) in Q1 is {DKL).

Consider tuple variable t from query Q2. The retrieve set of Q2 contributes (M} to

men(t), while its conditior, contributes nothing to men(t). Thus, men(t) in Q2 is {M).

On the other hand, men(u) in Q2 is 4.

Note that the definition does not apply to query Q3, since its condition contains

keyword Lor'.

11

Again, let Q be a simple query of the form

retrieve <retset> where <scond>.

Let Te be the set of ezternally defined buple variables in simple query Q, i.e., those tuple

.:ariables that appear with keyword 'from' in the condition of Q. Formally, Te is defined

as

Te ;. {t i ' (t from ...)' appears in condition of simple query Q)

Let T i be the set of internally defined tuple variables in simple query Q, i.e., those tuple

variables that do not appear with keyword 'from' in the condition of Q. Formally, Ti is

defined as

Ti = {t i t $ Te and men(t, Q) f. 4).

Example 3: -
For query Q1, Te is empty and Ti is {t, u). On the other hand, for query Q2, Te is

{ t) and Ti is empty. Again note that these definitions do not apply to query Q3. since it

PIQUE

is not simple.

[1

Let function (stand for some tuple assignment function. In other words, function

assigns a particular tuple over men(t, Q) to each tuple variable t in Ti J Te for simple

query Q. However, not all of the tuple assignment functions can be considered satisfactory.

In particular, let EQ be the set of those f that map internally defined tuple variables

mentioned in Q to tuples contained in the database (more precisely, to tuples contained in

corresponding windows), and externally defined tuple variables to tuples contained in the

answers to the appropriate subqueries.

Formally, Eq is defined as

- = {C I v t E Ti ,((t)(men(t, Q)) E [/men(t , Q)/l, and =Q
v t E Te ,((t)(men(t, Q)) E ans(<query>,)),

where <query>, is '<query>' that appears in 't from <query>' in the condition of

Q. (Function ans that maps queries to their answers is defined formally later.)

Example 4

Consider again queries Q1 and Q2 evaluated against our example database.

Let f1 be a tuple assignment function that maps tuple variable t from Q1 to tuple

<c,2> and tuple variable u from it to tuple <d,9,3>. Then f1 is included in " . On
- Q l

the other hand, the tuple assignment function (* tha t maps t to <c, 6> (and u to any

tuple from r(DKL)) is not included in Ipl.

In fact, there are only four tuple assignment functions that are included in EQ1.

They are the ones that map t to <c,2> and u to <d,9,3>, or map t t o <c,2> and u to

<f,4,7>, or map t to <e,4> and u t o <d,9,3>, or map t to <e,4> and u to <f,4,7>. -
The determination of = is also straightforward. The answer to the subquery - Q2

retrieve u.C -> M where

PIQCE 4 9

is a relation {<c> , < e >) over scheme {M). The tuple assignment function t3 that maps t

from Q? to <e> is included in IQ2, while the tuple assignment function (* that maps t

from it t o cg>, where g is some constant distinct from both c and e, is not included in

We note that , since query Q3 is not simple, the definition above again does not apply

T'r... tuple assignment functions contained in = are not guaranteed. however. to - Q

~at is fy dhe selection conditions in the condition of simple query Q. Therefore, let function

qq select those f from Z q that do satisfy the selection conditions in Q.

F~lnction q is defined recursively for the condition of simple query Q as follows. Q

For <term>:
?,((, t.A) = t (t)(A), thus mapping t.A to the value of ((t) for A.

Cnr c:tecrns>;
q q ((, <term>) is defined above;
-7 ((, <term><terrns>) =. q (F , <terms>) appended to q ((, <term>). Q Q Q

PIQUE

For <econd>:
qQ((. c) = True;
nQ((, (<term>, B <term>,)) =True if qQ((, < te rm>l) 6 qp((, <term>,),

= False otherwise;
qQ((, (<term> 6 c)) = True if qQ((, <term>) 6 c,

= False otherwise;
qQ((, (c 6 <term>)) = True if c B qq((, < te rm>) ,

= False otherwise;
qQ((, (<term>)) = True;
nQ((, (<inset> in <map><query>)) = True

if 3 tuple u E ans(<query>), such that
V elements 't.A 6 B' in <map>, ((t)(A) B u(B),

= False otherwise;
qQ((, (<inset> n o t i n < m a p > <query>)) = True

if 7 3 tuple u E ans(<query>), such that
V elements 't.A 6 B' in <map>, ((t)(A) 6 u(B),

= False otherwise;
qQ((, (t f r o m <query>)) = True;
'IQ((, (<terms>, o f <terms>, include <query>)) = True if ((<terms>,) E r,

= False otherwise;
q ((, (<terms>, of <terms>, a m o n g <query>)) = True if ((<terms>,) E s, Q

= False otherwise.

For <scond>:
sQ(€, <econd>) is defined above;
qq((, <econd>*<scond>) = True

if vQ((, <econd>) = True and qp(& <scond>) = True,
= False otherwise.

Relations r and s used in the previous definition are defined as follows. Let relation

q be defined as q = ans(re t r ieve < t e r m ~ > ~ , < t e r m s > ~) , and relation p be defined as p =

ans(<query>), where '<query>' is the nonterminal that appears after keywords 'include'

or Lam~ng' .

Then, relation r is defined as r = q / p, where symbol '/' denotes the relational

algebra division operator [Da]. In other words, if q is a relation over X and p is a

relation over Y, then r is the relation over (X-Y), where r = {z(X-Y) I V w E p, 3 v E q,

such that v(X-Y) = z and v(Y) = w) .

Relation s is defined as s = q \ p, where symbol '\' denotes thecreverse division

operator [Ro]. In other words, if q is a relation over X and p is a relation over Y, then s

PIQUE 5 1

is the relation over (X-Y), where r = {z(X-Y) i t/ v E q, such that v(X-Y) = z. : w E p:

such that v (Y) = w). hote, that s = q \, p can also be expressed as s = nX-y(q) -

xx.,cs - (.,.,(q? * PI)

Thus, given a tuple assignment function [E tQ, qQ maps it to True if and only if

the tuples assigned by (to all of the tuple variables used in simple query Q jointly satisfy

the selection conditions specified in the condition of Q.

Example 5:

Consider two tuple assignment functions t5 and C6 from = . Let C 5 map t to <e,4>
-Ql

and u to <f,4,7>, and let t6 map t to <c,2> and u to <d,9,3>. Then rl maps t5 to
Q 1

True and maps t6 to False.

[1

Function ans maps queries to their answers. It is defined in two steps.

Semantic Definition 1:

L e t Q be a simple query of the form

retrieve <retset> where <scond>.

'The .inswer to query Q is the relation over the new names for the attributes in <retset>.

Functio,l sns(Q) that maps simple query Q to the relation over the appropriate scheme is

defined as follows.

ans(Q) : {ill u is a tuple over attributes B in <retset> of Q,
such that 3 (E ZQ, such that q q ([, <scond>) = True,
such that 'd t E Ti u Te.
if 't.A -> B' appears in <retset> of Q, then u(B) = ((t)(A)).

-
Example 6:

The answer t o query Q,, which is a relation over {EF), is computed as follows. As

PIQUE 5 2

Example 4 illustrates, there exist four tuple assignment functions, which are included in

-
-Ql
- . However, only one of them, namely t5 from Example 5 tha t maps t to <e,4> and u

t o <f,4,7>, satisfies rl . Consider a tuple v from the answer to Q,. Since 't.C -> E'
Q 1

appears in the retrieve set of Q1, v(E) must be equal to tS(t) (C) , which is, in turn, equal

t o e. Likewise, since 'u.D -> F' appears in the retrieve set of Q1, v(F) must be equal to

C5(u)(D), which is, in turn, equal to f. Therefore, the answer to Q, is {<e,f>).

The answer to query Q2 is computed as follows. First, the subquery

r e t r i e v e u.C -> M w h e r e

is evaluated. The answer t o this subquery, which is a relation over {M), is {<c>,<e>).

Then the main query itself is evaluated. The answer to i t , which is a relation over {N),

S e m a n t i c Def in i t ion 2:

Let Q be a (not necessarily simple) query of the form

r e t r i e v e <retset> w h e r e <ccond>,

where <ccond> is assumed to be fully parenthesized. The answer to query Q is obtained

in the following way

ans (re t r i eve <retset> w h e r e <scond>) is defined above.

ans(re t r ieve <retset> w h e r e n o t <ccond>) =
ans(re t r ieve <retset> w h e r e) -
ans(retr ieve <retset> w h e r e <ccond>).

ans (re t r i eve <retset> w h e r e cccond>, a n d < ~ c o n d > ~) =
ans(re t r ieve <retset> w h e r e cccond>,) n
ans(retr ieve <retset> w h e r e cccond>J.

ans(re t r ieve <retset> w h e r e <ccond>, o r < ~ c o n d > ~) =
ans(re t r ieve <retset > w h e r e < c c ~ n d > ~) u
ans(re t r ieve <retset> w h e r e <ccond>J.

PIQUE

Example 7:

The answer to query Qs, which is a relation over {E), is computed as follows. First,

QS is broken into two queries,

retrieve t.D -> E where (t.K = 9)

and

retrieve t.D -> E where (t .L = I)

rhe answer t o the first of these queries, which is a relation over {E), is {<d>). The

answer t o the second, which also is a relation over {E), is {<f>). Therefore, the answer

to QJ i s a relation over {E), and is equal to {<d>,<f>) .

0

Even though the semantics of queries was not defined directly over the syntax, the

answez Is defined for any syntactically correct query Q, as the next theorem shows.

Theorem 1:

Function ans(Q) is defined for any expression Q of the form

retrieve <retset> where <ccond>.

Proof: (by induction on n: the number of not, and, and or connectives in <ccond>)

Basis: n = 0. Then Q is of the form

retrieve <retset> where <scond>

which is defined by Semantic Definition 1 above.

Induction: Let ans(Q) be defined for any query Q whose condition contains fewer than

n connectives. Then one of the following three cases applies. -

Case 1: Q is of the form

retrieve cre tse t> where not <ccond>.

PIQUE 54

Then <ccond> has n - 1 connectives. Therefore, ans(re t r ieve <retset> w h e r e <ccond>)

is defined. Therefore, ans(re t r ieve <retset> w h e r e n o t <ccond>) is defined.

Case 2: Q is of the form

re t r i eve <retset> w h e r e <ccond>, and <ccond>?.

Then each of < c c ~ n d > ~ and < c c ~ n d > ~ has a t most n - 1 connectives. Therefore,

ans (re t r i eve <retset> w h e r e < c c ~ n d > ~) is defined, and ans(retr ieve <retset> where

<ccond>?) is defined. Therefore, ans(retr ieve <retset> w h e r e < c c ~ n d > ~ and <ccond>J

is defined.

Case 3: Q is of the form

r e t r i e v e <retset> w h e r e < c c ~ n d > ~ or < c c ~ n d > ~ .

Then each of < c c ~ n d > ~ and <ccondB2 has a t most n - 1 connectives. Therefore,

ans (re t r i eve <retset> where < c c ~ n d > ~) is defined, and ans(retr ieve <retset> w h e r e

< c c ~ n d > ~) is defined. Therefore, ans(retr ieve <retset> w h e r e <ccond>, or < c c ~ n d > ~) is

defined.

il

The PIQUE query language is relationally complete: Moreover, unlike Quel [SWKH],

PIQUE is single-query complete. Any relational algebra expression can be posed by a

single PIQUE query (with subqueries, of course). The next theorem shows that relational

algebra tha t uses renaming, union, difference, product, selection and projection, is reducible

to PIQUE.

Theorem 2:

Assume a relational database satisfying the CRA. Let r(R) identify the stored

relation over scheme R. Furthermore, assume that no additional objects have been declared

for this database. Thus, [IRI] = r(R) for any stored relation r(R).
-

Let E be a relational algebra expression posed with respect to this database. Then

PIQUE 5 5

there is a PIQCE query Q equivalent to E (written Q r E).

Proof: (by induction on n: the number of connectives in E)

Basis: n = 0, Then E is just r(R) for some relation r(R), where R is a set of

attributes {Al, ..., An). Construct Q to be the following query.

retrieve Al, ..., An where

Then Q = E.

induction: Let the theorem be true for ail E with fewer than n connectives. Then

one of the following six cases applies.

Case 1 (Renaming): E is of the form 6(81 ., Cl, ..., Bk -, Ck) (El), where El results in a

relation over {B,, ..., Bk, Bk+,, ..+, B,,) and E results in a relation over {C1, ..., Ck, BkT1,

.., Bn). By the inductive hypothesis there exists query Ql = El. Let this query Q1 be

retrieve < r e t ~ e t > ~ where < c ~ o n d > ~ .

Canstrg~ct <retset> t o contain 't.A -> C' if 't.A -> B' appears in <retsetBl and 'B -> C'

appear3 in the renaming, and contain 't.A -> B' if 't.A -> B' appears in < r e t ~ e t > ~ and 'B

--., 17' does not appear in the renaming. Construct Q to be the following query.

retrieve <retset> where <ccond>,

Then Q = E.

Case 2 (Union): E is of the form El ~1 E2. By the inductive hypothesis there exist

queries Q1 r El and Q2 r E2. Let query Q1 be

retrieve <retset> where <ccond

and let query Q2

retrieve < r e t ~ e t > ~ where < c c ~ n d > ~ .

-
For El b E2 to make sense the schemes of El and E2 have to be the same. Construct

<retset> to contain 't.B -> B' if new name 'B' appears in <retset>,. Construct Q to be

PIQUE 56

the following query.

retrieve <retset> where (t from Q1) or (t from Q2)

Then Q = E.

Case 9 (Difference): E is of the form El - E2. For El - E2 to make sense the

schemes of El and E2 have to be the same. Let Q1 = E l and Q2 z E2 be of the form

shown in Case 2. Construct <inset> to contain 'LA' if 't.A -> B' appears in < r e t ~ e t > ~ .

Construct <map> to contain 't.A = B' if 't.A -> B' appears in < r e t ~ e t > ~ . Construct Q

to be the following query.

retrieve <retset>, where < c ~ o n d > ~ and (<inset> notin <map> Q2)

Then Q = E.

Case 4 (Product): E is of the form El x E2. Let Ql = El and Q2 = E2 be of the

form shown in Case 2. Assume that Q1 and Q2 do not share any tuple variables; also for

El x E2 to make sense these queries should not share any new names. Construct <retset>

to contain 't.C -> C' if new name C appears in < r e t ~ e t > ~ and contain 'u.D -> D' if new

name D appears in < r e t ~ e t > ~ . Construct Q to be the following query.

retrieve <retset> where (t from Ql)*(u from Q2)

Then Q = E.

Case 5 (Projection): E is of the form rY(E1). Let Q1 r El be of the form shown in

Case 1. Construct <retset> to contain 't.B -> B' if B E Y and new name B appears in

< r e t ~ e t > ~ . Construct Q to be the following query.

retrieve <retset> where (t from Q1)

Then Q = E.

Case 6 (Selection): E is of the form o ~ = ~ (E ~) . Let Q1 E El be of the form shown in -
Case 1. Construct <retset> to contain 't.C -> C' if new name C appears in < r e t ~ e t > ~ .

Construct Q to be the following query.

PIQUE

Then Q = E.

5 7

retrieve <retset> where (t from Q,)*(t.B = c j

