
LOAD BALANCING HEURISTICS AND
NETWORK TOPOLOGIES FOR DISTRIBUTED

EVALUATION OF PROLOG

Douglas Pase

Oregon Graduate Center
19600 N.W. von Neumann Drive

Beaverton, OR 97006

Technical Report No. CS/E 87-005
April 1987

Load Balancing Heuristics and Network Topologies
for Distributed Evaluation of Prolog

Douglas Pase
Dept. of Computer Science and Engineering
Oregon Graduate Center
19600 N.W. Von Neumann Drive
Beaverton, OR 97006
(503) 690-1121 x7303

Peter Borgwardt
Imaging Research Laboratory
Tektronix, Inc.
P.O. Box 500, M.S. 50-662
Beaverton, OR 97077
(503) 627-1118

Abstract

Load balancing and network topology are important issues to the performance of a

distributed (message-passing) OR-parallel logic programming system. We discuss the merits of

different load balancing schemes and network topologies and their effects on the distributed

logic system. We set up a system for evaluating various heuristics in load balancing and for

evaluating the efficacy of various network topologies. A non-pre-emptive supply-driven pressure

model and the star-graph network will provide an effective execution method for OR-parallel

Prolog.

1. Introduction

The need for ever faster logic computing systems continues to grow. Logic programming

languages themselves offer a potential solution to this problem through OR-parallelism [1,2].

Parallel logic programs, in fact, must limit or control the parallelism available to prevent the

system from being overloaded by a wealth of tasks of varying importance. It is also desirable to

control parallelism when an ordering is required for solutions obtained from separate clauses.

Distributed systems (message-passing systems, or systems without shared memory) have a

larger upper bound on the number of supportable processors than shared memory systems.

They also have a much lower cost per processor. With such systems, two of the most important

This research was partially supported under National Science Foundation Grant No. ECS-8400758 at
the Oregon Graduate Center where the second author is an adjunct professor.

Page 1

issues are the distribution of tasks, or load balancing, and the shape of the interconnection

network, or network topology.

Load balancing is a method of assigning tasks to processors. The goal of load balancing is

t o spread the tasks among the processors in such a way tha t all are kept busy. A further goal

is t o minimize the overall execution time required to solve a problem. The load balancing

algorithm may depend on a priori knowledge, or i t may base its decisions on the current s tate of

the system. Static load balancing depends completely on information derived prior to the

execution of the problem [3]; no system load or s tate information is taken into account.

Optimal static mapping of tasks to processors in a distributed network is known to be NP-

complete, and is very difficult even for simple problems. It requires a priori knowledge of the

resource requirements (CPU time, memory, etc.) for each task, and only merits the expense for

very stable programs with a small number of tasks. A large class of numerical problems, such

a s matrix operations and FFTs fall into this category [4], but the execution patterns of logic

programs vary a great deal. This makes any form of static task-to-processor mapping

unsuitable for their execution.

Near optimal load balancing can be obtained with much less expense by binding the tasks

to processors a t the time the tasks are created. This allows the use of system information, such

as the current system load to assist in task distribution. This is called dynamic load balancing.

A load balancing algorithm is centralized if there is a single task server which receives and

distributes all tasks 151. Centralized algorithms provide uniform distribution of tasks over the

system if the tasks are long lived. Such algorithms are expensive in terms of the time required

to bind tasks, since the round-trip time to communicate with the task server may be very long.

Dynamic decentralized load balancing requires less time to decide the placement of tasks.

Time spent distributing tasks is additional overhead to the system, and any reduction in system

overhead will be felt directly in system performance. This is, of course, on the condition that

the task distribution algorithm does not perform significantly worse than a centralized

Page 2

algorithm. It is the problem of dynamic decentralized load balancing that we consider here.

Network topology has a major impact on the performance of a system as well. Topologies

which spread nodes far apart require much more communication time than those tha t do not.

The number of connections per node will affect the dollar cost per node of the system. Some

common network topologies, like the NxM grid and the binary tree, have a constant number of

connections per node, but have larger distances across the network. Other topologies, like the

binary n-cube (hypercube) and the star-graph, vary the number of connections per node as the

network increases in size, but have smaller distances between nodes.

Distances between nodes (measured in edges of a graph) affect performance in two ways.

Smaller distances require less time to pass messages between nodes. A message which must

traverse five edges will take five times as long as a message which must only cross one. The

setup time required to inject a message into the network will reduce this ratio somewhat, but

the longer distance will always require more time.

A second, less obvious effect, is that shorter distances allow the task load to be distributed

more quickly across the system. If the distance between the two most distant nodes is k, then a

node in the network is able to reach any other node in the system in k steps or less, some of

which may be more lightly loaded. Thus smaller values of k for a network encourage faster load

balancing.

In this paper we discuss several load balancing schemes and network topologies, and effects

tha t one may have on the other.

2. Distributed Prolog

OR-parallelism is the concurrent evaluation of OR branches in a search tree [6] . It might

include concurrent evaluation of disjunctive expressions within a clause, but it typically refers

to the parallel evaluation of separate clauses. Variables are not shared between clauses, but

they may be passed to clauses as parameters. The system has no concept of state - there are no

Page 3

global variables or side effects.

Now because OR-parallelism involves the concurrent evaluation of clauses, clauses are a

natural division for tasks. But time spent evaluating an individual clause can be broken down

into two categories: time spent in unification and backtracking (execution), and time spent

waiting for the evaluation of subordinate clauses (synchronization). The latter far outweighs

the former if the search tree has any depth a t all. The obvious exception is clauses a t the

bottom of the search tree, where all the time is spent in unification and backtracking. From

this we obtain a large number of small communicating tasks, many of which are suspended a t

any given time.

In Prolog, search trees are created from top to bottom and from left to right. Prolog uses

a depth-first, left t o right (iterative) search strategy. In distributed Prolog the left to right

restriction is removed for OR-parallel clauses. This creates a useful and a regular pattern to

the execution of active tasks in the evaluation of a search tree. A parent task is active until it

spawns one or more children, who then become the active tasks. The parent task is suspended

until one or more of its children completes. Once a child completes, the parent may then

remain active for a period of time before it either spawns more children, or it passes its results

on to its parent. The child, however, may either continue to search for the next solution, or it

may suspend pending a request from the parent for additional solutions. Extending this

reasoning to the whole search tree, the farther a task is from the leaves of a search tree, the less

active it will be.

Uncontrolled OR-parallelism, however, is not desirable. It may load up the machine with

so many tasks that the machine thrashes or fails altogether due to a lack of resources. Some

clauses may spawn many subtasks which consume valuable resources and prevent more critical

clauses from being evaluated. The programmer may also desire that certain clauses be

evaluated in order. An example might be if successive clauses represent a hierarchy of results,

conditional on the failure of previous clauses.

Page 4

We are experimenting with an annotated subset of Prolog, which allows us to control the

amount of OR-parallelism a program exhibits. We use three annotations, PAR, PIPE and

SEQ, which determine the search strategy to be used. PAR allows full OR-parallelism, with no

order imposed on the results. Results will be consumed in the order they arrive a t the parent

task. PIPE permits parallelism during the execution of a task, but the results are consumed in

the order specified by the programmer. Eventually, the various subtasks will block pending the

parent's consumption and subsequent acknowledgement of the result, so the parallelism cannot

continue unchecked. SEQ forces complete sequential execution - no additional tasks are formed

until the previous task is completely expended.

These annotations are placed around clauses with the same name and arity in the form of

a block. Blocks may be nested arbitrarily. When a block occurs within a block, it is treated as

if it were a clause whose definition encompassed the clauses contained within the block, but

happens to exhibit the desired parallelism.

For example,

PAR /* p a r a l l e l b l o c k */

a(X) :- b (Y) , c (X,Y) , d (X) .

SEQ / * s e q u e n t i a l b l o c k */

a (X) : - e (X) , f (X) .
a (X) : - g (X) .

END

END

establishes a predicate named a, with an arity of one. The first clause will execute in parallel

with the block that contains the second and third clauses. No order is imposed on those

solutions. The third clause, however, is never started unless clause two fails. If the sequential

block were instead a pipelined block, using PIPE as the block annotation rather than SEQ, the

Page 5

third clause would be started with the second one, but the parent would not see the results of

clause three until clause two had failed. PIPE allows some measure of parallelism without

altering the order in which answers return to a query.

The solutions returned are bindings to variables. When task requests are formed, any

binding information which partially or completely defines a variable in the child clause is

included in the task request. Solutions generated by the child clause are returned as complete

structures, tha t is, they do not contain remote references or pointers to structures not contained

within the message. Messages containing bindings could be shortened by passing remote

references to the actual structures or variables, but such a system would suffer additional delays

when those values were actually needed. Here we are trading off longer messages against more

frequent short messages, which seems reasonable given the message startup overhead in most

systems.

3. Load Balancing

As a Prolog query begins evaluation, it unifies each predicate in the body of the query

against clauses in the program. If the unification is successful and the clause has a body, i t

spawns a new task. The task must then be bound to a processor before its execution may begin.

If the processor is near the parent task, the parent will spend less time waiting for results than

a task whose child is far away. If the node is lightly loaded to which the new task is bound, the

child will execute more quickly, hence the parent will also spend less time waiting for the

results.

One can imagine a naive task allocation policy which assigns all tasks to the same

processor. Such a policy would yield performance which is no better, and possibly much worse

than tha t of a uniprocessor. Thus task allocation can be very important to system

performance.

Page 6

The two major resources required for the evaluation of queries are CPU time and memory.

A good load balancing scheme is one which evenly distributes over the whole system, tasks

which consume both of these resources. The number of tasks a t each node may or may not be

uniform over the system, but memory consumption and the CPU idle time should be nearly

uniform. The purpose behind this is to minimize both overall execution time and the maximum

memory required by a node. The load balancing scheme must execute quickly, because resources

required for load balancing are additional overhead to the system.

A load balancing scheme consists of three policies: a transfer policy, a location policy, and

an information exchange policy [3,7,8]. The transfer policy determines when to accept or

transfer a new task. If the transfer policy is demand-driven [9,10], then a node issues a request

for more work whenever the policy indicates the node is lightly loaded. A supply-driven transfer

policy determines whether to accept a task whenever a new task becomes available. A transfer

policy may also be pre-emptive or non-pre-emptive [7]. A pre-emptive transfer policy may

transfer tasks which have been previously bound to a node and perhaps partially executed. A

non-pre-emptive policy will transfer only newly requested tasks which have not yet been bound

to a processor.

Immediately after a task is received, a supply-driven transfer policy forces a decision

whether the task will be accepted for evaluation or forwarded to a neighbor. Thus as OR-

parallel clauses are submitted for evaluation, a node will bind them for execution or ship them

to the node most likely to accept them. A demand-driven policy will measure its load and issue

a request whenever its load falls below a certain level. If the node receiving the request has a

spare task, that task is shipped to the requestor. Otherwise the request is combined with

others, if any, and forwarded to the neighbor most likely to have extra work.

We have chosen to explore the supply-driven policy because of its greater simplicity. It

also appears the supply-driven policy will perform better when the system is lightly loaded. The

demand-driven policy is very active under light loads, when each node sends requests to its

Page 7

neighbors for more work. This imposes no penalty for those nodes which have no load, but i t

interferes with the execution of nodes which are loaded. The supply-driven policy is more of a

passive policy - its stimulus comes from outside itself. This suggests i t will be most active when

the system is loaded. It is not clear a t this time which is preferable.

A pre-emptive transfer policy is one in which any task, bound to a processor or otherwise,

may be transferred to another node. For example, a demand-driven pre-emptive policy would

allow a node to accept and bind any task created by other tasks existing on that node. As

nodes reduce their task loads by completing task evaluations, they steal tasks from more heavily

loaded neighbors. Thus the load would tend to spread evenly across the system. A non-pre-

emptive policy would only allow the transference of tasks which had not been previously bound

to a processor. Any task which is bound to a processor remains on that processor until its

demise, regardless of the system load.

We have selected a non-pre-emptive policy to avoid the complexity associated with pre-

emptive policies, because the additional overhead does not appear justified. First there is the

time and resources required to move and relocate a task on a new node. Tasks in our system

are fairly small, but the effort required is still much greater than, say, creating a new task.

Since parent tasks do not complete before their children, i t is expected tha t the creation of new

tasks will be sufficient t o balance the system. A second, and more important source of overhead

comes from informing both the parent and the children tasks of the relocation. Simply

forwarding messages on from the old to the new address is clearly unacceptable, since this would

lengthen the communication paths, adding a substantial amount of communication time to the

transmission of each message. Some forwarding would still have to take place to re-route

messages in transit a t the time the task is moved.

A location policy determines the node to which a task will be transferred. It may be

random according to some probability distribution [7,11], based on the acceptance of bids

[12,13], or based on some measurement of load pressure [9,10], etc. A completely probabilistic

Page 8

location policy requires no system information whatsoever. It assigns the location according to

some random function, the distribution of which has been obtained through experimentation or

analysis of similar problems. A policy that uses no system state information is called a etatic

policy. It is static in the sense that everything is determined a priori, and does not adapt t o the

needs of the system. A policy which relies on some determination of the current system load is

termed adaptive, or dynamic. Considering the unpredictability of the shapes of the search trees

generated by Prolog programs, i t is hard to believe that any static approach would yield

promising results for this type of problem.

As the load on each node changes, a bidding policy causes each node to send a notice to

all neighboring nodes. Each neighbor subsequently returns a bid, which represents its own load.

When all bids are received, a partner is chosen with whom the bidder will swap tasks. The

bidder and the partner then send each other a task which each believes will be better for the

other. This policy may work well if the amount of time required by the bidding process is small

when compared to the execution time of each task. As was mentioned earlier, in our system

there are many small tasks which causes rapid changes in system load, so a bidding policy

would heavily load the communication network and cause extensive delays in the assignment of

tasks to nodes.

In a sense, a bidding policy is very similar t o a pre-emptive demand-driven pressure model.

In a pressure model, a node compares its own load value with those of its neighbors. If its own

load value is the lowest, the node retains the task, or steals one from the node with the highest

load, depending on the transfer policy. Otherwise, the neighbor with the lowest load value

becomes the recipient of the task. A major benefit of this policy is tha t decisions are made

quickly based upon information which is retained locally. The corresponding drawback is that

occasionally the system will make use of inaccurate information. It is the responsibility of the

information exchange policy to insure this happens only rarely, as will be discussed below. We

have chosen a pressure model a s the location policy for our system.

Page 9

Frame 1

0 1 2 0 1 2

Frame 8 Frame 4

Figure 1 - Uncorrected Channel Effect

The information exchange policy is responsible for maintaining current system load

information a t each node. Because of the large number of messages inherent to a distributed

Prolog system, load information may be piggybacked onto messages already being sent to

neighbors. The paths that messages take are unpredictable, but they are not random. Thus

some nodes may only receive messages infrequently from certain neighbors, and therefore will

retain load values for those neighbors which will eventually become obsolete. Admittedly this is

more of a problem when the system is lightly loaded, since the total number of messages is less.

Two times when this is most likely to occur are the beginning and end of a run.

Two problems that can occur because of inaccurate information are channels and blockouts

(our terminology)., A channel is a path or a cycle in the network through which new tasks

travel against the system load because of false information. Figure 1 illustrates how this might

happen. The T-shaped boxes represent each node's understanding of the system load. Its own

load is the lower box. In frame 1 of the figure, node 0 has one task which it is executing. That

task spawns a child task which is sent to node 1, sending its load information along with the

new task. Node 1 accepts the task, which spawns another task, which is sent to node 2 (frame

2). This task, in turn, spawns yet another which is sent to node 0 (frame 3). At this point each

Page 10

Frame 1
0 1 2 0 1 2

Frame 2

Frame 8 Frame 4

Figure 2 - Corrected Channel Effect

node has exactly one task under execution, and there is one task "floating" around the network.

Each node believes it has one neighbor with a load and one without. It is here the channel

becomes a problem (frame 4). Node 0, thinking that node 1 has no work to do, sends i t the

task. Node 1 does the same to node 2, which in turn sends the task back to node 0. The

"floating" task will continue to cycle until some node, for whatever reason, sends a message in

the opposite direction of the channel.

Figure 2 gives an example of an information exchange policy which does not allow the

formation of channels. Briefly, whenever a node accepts a task for execution, it returns a

message to the neighbor which sent the request, informing it of its new load value. A second

value, the perceived value of the receiver's load is included in each message. If the receiver's

load does not closely match the sender's perception of its load, a message is returned to the

sender (if no other messages are scheduled) correcting it's value.

A blackout is a blockage of communication based on a perceived load which is greater

than the actual load. This is in contrast to a channel, which is created because the perceived

load is less than the actual load. Figure 3 illustrates how a blackout may occur. The load for

each neighbor is relatively high, and each node correctly perceives the load. If the load then

Page 11

Frame 1 Frame 2

0 3 5 I 0 3 5

1 2 4 I 1 2 4

Figure 3 - Blackout Effect

declines rapidly for all nodes without any communication occurring between nodes 0 and 1, node

0 will perceive the load to be very high on node 1 and vice versa. This will form a barrier

preventing the exchange of tasks between these nodes. This barrier can be broken down by

other messages passing between them, but tha t may not happen if the system is lightly loaded.

A solution to this problem is t o use a timeout. After each time period elapses, the

perceived load value of the uncommunicating neighbor is reduced, eventually to zero. The rate

a t which such reductions take place must be carefully chosen so a s t o avoid basing many

decisions on inaccurate information. This reduction rate is static, and will have to be derived

through further study.

We are experimenting with a number of heuristics for the transfer and location policy

functions. We have a number of different system parameters we are able t o measure, which we

believe reflect the system load. They include: the number of active tasks, the number of

suspended tasks, and current memory usage (in bytes). The balance between active and

suspended tasks on any given node affects the utilization of CPU time, whereas i t is the total

number of tasks which affects the memory usage. In addition, we have two variables which are

important t o the acceptance or transfer of an unbound task, but do not reflect the system load.

They are the distance of the unbound task from the parent task (which affects elasticity) and

the network's communication bandwidth (which affects viscosity). A given heuristic would be a

weighting function of these factors, so that location, and transfer could be computed, much as a

Page 12

chess-playing program computes its next move.

The elast ic i ty of the location policy is a function which is directly related to the distance

between the new task and its parent. Elasticity tends to keep tasks near their parents, much

like a band of elastic tends to pull its ends together when stretched. As tasks move further

away from their parents, communication becomes more expensive. As tasks move closer to their

parents, the load tends to become unbalanced. Thus elasticity is used to balance the pressure

created by the system load. The optimal balance of the forces of pressure and elasticity are an

important issue, since they represent the conflicting goals of balancing the load and minimizing

communication costs.

The viscosi ty is a function which is inversely related to the bandwidth of the system. It is

a measure of the cost incurred by transferring a task to another node. The viscosity represents

the expense incurred by transferring a task to another node rather than accepting it for

evaluation. A fast network would have a low viscosity, which would allow tasks to move

around the system easily. It is of lesser importance than elasticity, but nevertheless should not

be ignored. As elasticity or viscosity increase, greater pressure is required to move tasks around

the system.

4. Network Topology

Loosely-coupled message-passing systems have the advantage that a large number of nodes

may be connected to a network with a relatively small increase in cost per node. A network is

characterized by degree, order, d iameter , and average diameter . The degree of a network is the

largest number of neighbors held by a node in the network. The dollar cost of each node in a

system depends in part on the degree of the network. The maximum performance of a

distributed system, however, is determined by the number of processors, or order of the system.

The dis tance between two nodes is the smallest number of edges that connects them.

Performance is also dependent, in part, on the distance between the nodes. This dependency

Page 13

90 1,O 40 5 0 40

Figure 4 - 5 x 5 Grid

can be reduced by allocating tasks so that messages only travel to local nodes, but one must be

careful with this as it may induce an imbalance in the system load. The diameter is the largest

distance a message must travel between any two nodes. The average diameter is the average

distance a message must travel between nodes.

The optimal network for a distributed Prolog system can now be categorized. It would

have a small degree to keep the cost per node low, and the order would be suitably large to

provide high performance. The average diameter would also be small to minimize the cost of

message passing. The average diameter roughly indicates the cost of communication, but with a

suitable elasticity in the load balancing algorithm, children tasks can be retained locally, which

further reduces communication costs. The average diameter also gives some indication of how

quickly the nodes in the network may be reached. A network with a small average diameter

would allow more nodes to be reached in fewer hops than a similar network with a larger

average diameter. This in turn would allow the load balancing scheme to spread tasks more

evenly across the network.

Some network types, such as the NxM grid (figure 4), encourage tasks to either bunch

together on few nodes, or travel long distances to find unloaded nodes. This is because of the

long distances task requests must travel to reach a significant fraction of the nodes in the

network. Each task may request a large number of children tasks. Each child may also request

Page 14

a m 0331

Figure 5 - 16 Node Hypercube

additional tasks. It does not take many generations to create a large number of tasks. If the

tasks do not spread quickly to all parts of the system, each successive generation will increase

the system imbalance. If the tasks must travel long distances to reach the network extrema,

either they will travel long distances or they will bunch up. If tasks bunch up, the system load

becomes unbalanced and the performance is reduced. If they travel, communication between

nodes becomes more expensive. Again the performance is reduced.

Other networks, such as the binary n-cube (figure 5) and the star-graph (figure 6)

encourage better task distribution and offer less expensive communication. The binary n-cube,

or hypercube, is particularly well known, being the topology of choice for several commercial

products. Tables 1 and 2 give a comparison of degree, order, diameter, and average diameter

for several networks. In table 1 H, represents the nth harmonic number. A definition for H,

may be found in [14] (page 73). The definition of a star-graph and a derivation of its formulae

may be found in [15,16,17]. The grid, hypercube, and other network topologies may be found in

[16,18].

Page 15

CDAB DCAB ADBC BDAC

ADCB

DACB

CDB A

BDCA

DBAC

ABDC

BC AD

CB AD

DBCA CBDA BACD ABCD

Figure 6 - 24 Node Star-Graph

Table 1

Average
Network Degree Order Diameter Diameter

Page 16

n+m

n

n2-1 m2-1 +-
3n 3m

n -
2

2
n+H,-4+-

n

nm

2"

n!

NxM Grid

Hypercube

Star-Graph

4

n

n-1

Table 2

As can be seen from the tables, the NxM grid is not the best possible network topology.

Both the binary n-cube and the star-graph do much better in terms of diameter and average

diameter. The binary n-cube and the star-graph have very similar performance, with an edge

going to the star-graph. The most significant difference between the two is the degree.

The advantage of a small degree is a lower cost per node. Another advantage is tha t if

the number of connections for each node is fixed, a s is the case with Inmos Transputers (which

have four connections each), one may build a larger star-graph than hypercube. The largest

hypercube one may build with the Transputer has 16 nodes. The largest star-graph has 120

nodes, or 7% times the processing power.

For large networks, the star-graph shows an improvement in both the diameter and the

average diameter. They are somewhat difficult t o compare, however, because their sizes do not

correspond very closely. Advanced networks like the star-graph have not yet been chosen for

commercial application partly because they are not well understood. The binary n-cube, on the

other hand, is well known to be easily partitioned into many other topologies, for example a

ring or a mesh, and is also known t o be suitable for many common numeric problems. These

properties of the n-cube, though useful in their own right, hold no advantage for our

application. Because our system promises no particular regularity in its execution patterns, we

expect the best performance from the network which offers the smallest degree and average

Page 17

diameter for its order.

Of particular interest for our application is the truncated star-graph network, which

allows the use of subsets of the full star-graph. The extra connections left open by the

truncation are used to increase performance further, by selecting the nodes which are furthest

away and connecting them. Some of the network symmetry is lost by this process, but that

incurs no penalty for our application and is of little import.

5 . Summary

OR-parallel distributed Prolog is able to generate a large number of small, communicating

tasks. This makes network performance and load balancing issues of paramount importance.

We believe a supply-driven non-pre-emptive pressure model coupled with a high performance

network offers excellent possibilities for creating a system to evaluate an OR-parallel distributed

Prolog. The star-graph network has a small degree and average diameter considering the

number of processors it will support. We believe it is these properties which affect the network

performance under our application.

6. Future Research

The implementation of a distributed OR-Prolog simulator is complete, and suitable

benchmark programs are being designed. The simulator allows the variation of message delays

and transmission rates, network topology and size, and load balancing scheme. Our work is now

focused on developing and testing the different heuristic functions used by the transfer and

location policies.

We intend to simulate other networks in addition to the star-graph, in order to form a

more complete picture of the effect topology has on performance in this environment.

Additional networks will include a grid, the binary n-cube (hypercube), pancake network [15,16],

and cube connected cycles [18]. Each network will be compared for performance against a

Page 18

completely connected network, since that represents the network with the highest possible

performance, although such networks are rarely built because of the overwhelming expense

involved.

In order to validate how accurately the simulator reflects the type of environment we have

t described in this article, we will implement our system on both an Intel iPSC (Hypercube) and

a network of Transputers, whose link connections will be software reconfigurable using the new

Inmos 32x32 crossbar chip.

References

[I] John S. Connery, "The AND/OR Process Model for Parallel Interpretation of Logic

Programs", Ph.D. Thesis (TR 204), University of California, Irvine, June 1983

[2] John S. Connery and D. F. Kibler, "Parallel Interpretation of Logic Programs", Proceedings

of the ACM Conference on Functional Programming Languages and Computer Architecture,

pp 163-170, October 1981

[3] Derek L. Eager, Edward D. Lazowska, and John Zahorjan, "Adaptive Load Sharing in

Homogeneous Distributed Systems", IEEE Transactions on Software Engineering, Vol. S E

12, No. 5, May 1986

[4] Hassan M. Ahmed, Jean-Marc Delosme and Martin Morf, "Highly Concurrent Computing

Structures for Matrix Arithmetic and Signal Processing", IEEE Computer, Volume 15,

Number 1, pp 65-82, January 1982

[5] Vineet Singh and Michael R. Genesereth, "A Variable Supply Model for Distributing

Deductions", in 9th IJCAI, pp 39-45, August 1985

[6] Kunio Murakami, Takeo Kakuta, Rikio Onai and Noriyoshi Ito, "Research on Parallel
--

iPSC is a trademark of Intel Corporation

Page 19

Machine Architecture for Fifth-Generation Computer Systems", IEEE Computer, Volume

18, Number 6, pp 76-92, June 1985

[7] Amnon Barak and Amnon Shiloh, "A Distributed Load-balancing Policy for a

Multicomputer", Software - Practice and Experience, Vol 15(9), pp 901-913, September 1985

[8] Thomas L. Casavant and Jon G. Kuhl, "A Formal Model of Distributed Decision-Making

and Its Application to Distributed Load Balancing", in 6th International Conference on

Distributed Computing Systems, pp 232-239, IEEE Cambridge, Massachusetts, May 1986

[9] Frank C.H. Lin and Robert M. Keller, "Gradient Model: A Demand-Driven Load Balancing

Scheme", in 6th International Conference on Distributed Computing Systems, pp 329-336,

IEEE, Cambridge, Massachusetts, May 1986

[lo] Robert M. Keller and Frank C.H. Lin, "Simulated Performance of a Reduction-Based

Multiprocessor", IEEE Computer, Volume 17, Number 7, pp 70-81, July 1982

[ll] Chi-Yin Huang Hsu and Jane W.-S. Liu, "Dynamic Load Balancing Algorithms in

Homogeneous Distributed Systems", in 6th International Conference on Distributed

Computing Systems, pp 216-223, IEEE, Cambridge, Massachusetts, May 1986

[12] Dan Hammerstrom, "Dynamic, Decentralized Load Leveling", in Euromicro 80, London,

England, October 1980

[13] John A. Stankovic and Inderjit S. Sidhu, "An Adaptive Bidding Algorithm For Processes,

Clusters and Distributed Groups", in 4th International Conference on Distributed Computing

Systems, pp 49-59, IEEE, San Francisco, California, May 1984

[14] Donald E. Knuth, The art of Computer Programming, Volume 1 (1973), Addison Wesley

[15] Sheldon B. Akers and Balakrishnan Krishnamurthy, "Group Graphs as Interconnection

Page 20

Networks", in 14th International Conference on Fault-Tolerant Computing, Kissimmee,

Florida, pp 422-427, June 1984

[16] Sheldon B. Akers and Balakrishnan Krishnamurthy, "A Group Theoretic Model For

Symmetric Interconnection Networks", in 1986 International Conference on Parallel

Processing, pp 216-223, August 1986

[17] Sheldon B. Akers and Balakrishnan Krishnamurthy, "The Fault Tolerance of Star Graphs",

t o appear in Second International Conference on Supercomputing, Santa Clara, California,

May 1987

[18] Tse-yun Feng, "A Survey of Interconnection Networks", IEEE Computer, Volume 14,

Number 12, pp 12-27, December 1981

Page 21

