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Abstract 

Load balancing and network topology are important issues to  the performance of a 

distributed (message-passing) OR-parallel logic programming system. We discuss the merits of 

different load balancing schemes and network topologies and their effects on the distributed 

logic system. We set up a system for evaluating various heuristics in load balancing and for 

evaluating the efficacy of various network topologies. A non-pre-emptive supply-driven pressure 

model and the star-graph network will provide an effective execution method for OR-parallel 

Prolog. 

1. Introduction 

The need for ever faster logic computing systems continues to  grow. Logic programming 

languages themselves offer a potential solution to this problem through OR-parallelism [1,2]. 

Parallel logic programs, in fact, must limit or control the parallelism available to prevent the 

system from being overloaded by a wealth of tasks of varying importance. It is also desirable to  

control parallelism when an ordering is required for solutions obtained from separate clauses. 

Distributed systems (message-passing systems, or systems without shared memory) have a 

larger upper bound on the number of supportable processors than shared memory systems. 

They also have a much lower cost per processor. With such systems, two of the most important 
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issues are the distribution of tasks, or load balancing, and the shape of the interconnection 

network, or network topology. 

Load balancing is a method of assigning tasks to processors. The goal of load balancing is 

t o  spread the tasks among the processors in such a way tha t  all are kept busy. A further goal 

is t o  minimize the overall execution time required to  solve a problem. The load balancing 

algorithm may depend on a priori knowledge, or i t  may base its decisions on the current s tate  of 

the system. Static load balancing depends completely on information derived prior to the 

execution of the problem [3]; no system load or s tate  information is taken into account. 

Optimal static mapping of tasks to processors in a distributed network is known to  be NP- 

complete, and is very difficult even for simple problems. It  requires a priori knowledge of the 

resource requirements (CPU time, memory, etc.) for each task, and only merits the expense for 

very stable programs with a small number of tasks. A large class of numerical problems, such 

a s  matrix operations and FFTs fall into this category [4], but the execution patterns of logic 

programs vary a great deal. This makes any form of static task-to-processor mapping 

unsuitable for their execution. 

Near optimal load balancing can be obtained with much less expense by binding the tasks 

to processors a t  the time the tasks are created. This allows the use of system information, such 

as the current system load to  assist in task distribution. This is called dynamic load balancing. 

A load balancing algorithm is centralized if there is a single task server which receives and 

distributes all tasks 151. Centralized algorithms provide uniform distribution of tasks over the 

system if the tasks are long lived. Such algorithms are expensive in terms of the time required 

to  bind tasks, since the round-trip time to  communicate with the task server may be very long. 

Dynamic decentralized load balancing requires less time to  decide the placement of tasks. 

Time spent distributing tasks is additional overhead to  the system, and any reduction in system 

overhead will be felt directly in system performance. This is, of course, on the condition that  

the task distribution algorithm does not perform significantly worse than a centralized 
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algorithm. It is the problem of dynamic decentralized load balancing that  we consider here. 

Network topology has a major impact on the performance of a system as  well. Topologies 

which spread nodes far apart require much more communication time than those tha t  do not. 

The number of connections per node will affect the dollar cost per node of the system. Some 

common network topologies, like the NxM grid and the binary tree, have a constant number of 

connections per node, but have larger distances across the network. Other topologies, like the 

binary n-cube (hypercube) and the star-graph, vary the number of connections per node as the 

network increases in size, but have smaller distances between nodes. 

Distances between nodes (measured in edges of a graph) affect performance in two ways. 

Smaller distances require less time to  pass messages between nodes. A message which must 

traverse five edges will take five times as long as a message which must only cross one. The 

setup time required to  inject a message into the network will reduce this ratio somewhat, but 

the longer distance will always require more time. 

A second, less obvious effect, is that shorter distances allow the task load to  be distributed 

more quickly across the system. If the distance between the two most distant nodes is k, then a 

node in the network is able to  reach any other node in the system in k steps or less, some of 

which may be more lightly loaded. Thus smaller values of k for a network encourage faster load 

balancing. 

In this paper we discuss several load balancing schemes and network topologies, and effects 

tha t  one may have on the other. 

2. Distributed Prolog 

OR-parallelism is the concurrent evaluation of OR branches in a search tree [6] .  It might 

include concurrent evaluation of disjunctive expressions within a clause, but it  typically refers 

to the parallel evaluation of separate clauses. Variables are not shared between clauses, but 

they may be passed to  clauses as parameters. The system has no concept of state - there are no 
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global variables or side effects. 

Now because OR-parallelism involves the concurrent evaluation of clauses, clauses are a 

natural division for tasks. But time spent evaluating an individual clause can be broken down 

into two categories: time spent in unification and backtracking (execution), and time spent 

waiting for the evaluation of subordinate clauses (synchronization). The latter far outweighs 

the former if the search tree has any depth a t  all. The obvious exception is clauses a t  the 

bottom of the search tree, where all the time is spent in unification and backtracking. From 

this we obtain a large number of small communicating tasks, many of which are suspended a t  

any given time. 

In Prolog, search trees are created from top to  bottom and from left to right. Prolog uses 

a depth-first, left t o  right (iterative) search strategy. In distributed Prolog the left to  right 

restriction is removed for OR-parallel clauses. This creates a useful and a regular pattern to  

the execution of active tasks in the evaluation of a search tree. A parent task is active until it  

spawns one or more children, who then become the active tasks. The parent task is suspended 

until one or more of its children completes. Once a child completes, the parent may then 

remain active for a period of time before it  either spawns more children, or it  passes its results 

on to  its parent. The child, however, may either continue to  search for the next solution, or it  

may suspend pending a request from the parent for additional solutions. Extending this 

reasoning to  the whole search tree, the farther a task is from the leaves of a search tree, the less 

active it  will be. 

Uncontrolled OR-parallelism, however, is not desirable. It  may load up the machine with 

so many tasks that the machine thrashes or fails altogether due to  a lack of resources. Some 

clauses may spawn many subtasks which consume valuable resources and prevent more critical 

clauses from being evaluated. The programmer may also desire that  certain clauses be 

evaluated in order. An example might be if successive clauses represent a hierarchy of results, 

conditional on the failure of previous clauses. 
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We are experimenting with an annotated subset of Prolog, which allows us to  control the 

amount of OR-parallelism a program exhibits. We use three annotations, PAR, PIPE and 

SEQ, which determine the search strategy to be used. PAR allows full OR-parallelism, with no 

order imposed on the results. Results will be consumed in the order they arrive a t  the parent 

task. PIPE permits parallelism during the execution of a task, but the results are consumed in 

the order specified by the programmer. Eventually, the various subtasks will block pending the 

parent's consumption and subsequent acknowledgement of the result, so the parallelism cannot 

continue unchecked. SEQ forces complete sequential execution - no additional tasks are formed 

until the previous task is completely expended. 

These annotations are placed around clauses with the same name and arity in the form of 

a block. Blocks may be nested arbitrarily. When a block occurs within a block, it  is treated as 

if it  were a clause whose definition encompassed the clauses contained within the block, but 

happens to exhibit the desired parallelism. 

For example, 

PAR /* p a r a l l e l  b l o c k  */ 

a(X) :- b ( Y ) ,  c (X,Y) ,  d ( X ) .  

SEQ / *  s e q u e n t i a l  b l o c k  */ 

a (X) : - e (X) , f (X) . 
a (X) : - g (X) . 

END 

END 

establishes a predicate named a, with an arity of one. The first clause will execute in parallel 

with the block that  contains the second and third clauses. No order is imposed on those 

solutions. The third clause, however, is never started unless clause two fails. If the sequential 

block were instead a pipelined block, using PIPE as the block annotation rather than SEQ, the 
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third clause would be started with the second one, but the parent would not see the results of 

clause three until clause two had failed. PIPE allows some measure of parallelism without 

altering the order in which answers return to  a query. 

The solutions returned are bindings to variables. When task requests are formed, any 

binding information which partially or completely defines a variable in the child clause is 

included in the task request. Solutions generated by the child clause are returned as complete 

structures, tha t  is, they do not contain remote references or pointers to structures not contained 

within the message. Messages containing bindings could be shortened by passing remote 

references to  the actual structures or variables, but such a system would suffer additional delays 

when those values were actually needed. Here we are trading off longer messages against more 

frequent short messages, which seems reasonable given the message startup overhead in most 

systems. 

3. Load Balancing 

As a Prolog query begins evaluation, it  unifies each predicate in the body of the query 

against clauses in the program. If the unification is successful and the clause has a body, i t  

spawns a new task. The task must then be bound to  a processor before its execution may begin. 

If the processor is near the parent task, the parent will spend less time waiting for results than 

a task whose child is far away. If the node is lightly loaded to which the new task is bound, the 

child will execute more quickly, hence the parent will also spend less time waiting for the 

results. 

One can imagine a naive task allocation policy which assigns all tasks to  the same 

processor. Such a policy would yield performance which is no better, and possibly much worse 

than tha t  of a uniprocessor. Thus task allocation can be very important to  system 

performance. 
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The two major resources required for the evaluation of queries are CPU time and memory. 

A good load balancing scheme is one which evenly distributes over the whole system, tasks 

which consume both of these resources. The number of tasks a t  each node may or may not be 

uniform over the system, but memory consumption and the CPU idle time should be nearly 

uniform. The purpose behind this is to  minimize both overall execution time and the maximum 

memory required by a node. The load balancing scheme must execute quickly, because resources 

required for load balancing are additional overhead to  the system. 

A load balancing scheme consists of three policies: a transfer policy, a location policy, and 

an information exchange policy [3,7,8]. The transfer policy determines when to  accept or 

transfer a new task. If the transfer policy is demand-driven [9,10], then a node issues a request 

for more work whenever the policy indicates the node is lightly loaded. A supply-driven transfer 

policy determines whether to  accept a task whenever a new task becomes available. A transfer 

policy may also be pre-emptive or non-pre-emptive [7]. A pre-emptive transfer policy may 

transfer tasks which have been previously bound to a node and perhaps partially executed. A 

non-pre-emptive policy will transfer only newly requested tasks which have not yet been bound 

to  a processor. 

Immediately after a task is received, a supply-driven transfer policy forces a decision 

whether the task will be accepted for evaluation or forwarded to a neighbor. Thus as OR- 

parallel clauses are submitted for evaluation, a node will bind them for execution or ship them 

to the node most likely to accept them. A demand-driven policy will measure its load and issue 

a request whenever its load falls below a certain level. If the node receiving the request has a 

spare task, that  task is shipped to  the requestor. Otherwise the request is combined with 

others, if any, and forwarded to  the neighbor most likely to have extra work. 

We have chosen to  explore the supply-driven policy because of its greater simplicity. It 

also appears the supply-driven policy will perform better when the system is lightly loaded. The 

demand-driven policy is very active under light loads, when each node sends requests to its 
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neighbors for more work. This imposes no penalty for those nodes which have no load, but i t  

interferes with the execution of nodes which are loaded. The supply-driven policy is more of a 

passive policy - its stimulus comes from outside itself. This suggests i t  will be most active when 

the system is loaded. It is not clear a t  this time which is preferable. 

A pre-emptive transfer policy is one in which any task, bound to  a processor or otherwise, 

may be transferred to another node. For example, a demand-driven pre-emptive policy would 

allow a node to  accept and bind any task created by other tasks existing on that  node. As 

nodes reduce their task loads by completing task evaluations, they steal tasks from more heavily 

loaded neighbors. Thus the load would tend to spread evenly across the system. A non-pre- 

emptive policy would only allow the transference of tasks which had not been previously bound 

to a processor. Any task which is bound to  a processor remains on that  processor until its 

demise, regardless of the system load. 

We have selected a non-pre-emptive policy to avoid the complexity associated with pre- 

emptive policies, because the additional overhead does not appear justified. First there is the 

time and resources required to move and relocate a task on a new node. Tasks in our system 

are fairly small, but the effort required is still much greater than, say, creating a new task. 

Since parent tasks do not complete before their children, i t  is expected tha t  the creation of new 

tasks will be sufficient t o  balance the system. A second, and more important source of overhead 

comes from informing both the parent and the children tasks of the relocation. Simply 

forwarding messages on from the old to the new address is clearly unacceptable, since this would 

lengthen the communication paths, adding a substantial amount of communication time to  the 

transmission of each message. Some forwarding would still have to  take place to re-route 

messages in transit a t  the time the task is moved. 

A location policy determines the node to which a task will be transferred. It may be 

random according to  some probability distribution [7,11], based on the acceptance of bids 

[12,13], or based on some measurement of load pressure [9,10], etc. A completely probabilistic 
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location policy requires no system information whatsoever. It assigns the location according to  

some random function, the distribution of which has been obtained through experimentation or 

analysis of similar problems. A policy that  uses no system state  information is called a etatic 

policy. It  is static in the sense that  everything is determined a priori, and does not adapt t o  the 

needs of the system. A policy which relies on some determination of the current system load is 

termed adaptive, or dynamic. Considering the unpredictability of the shapes of the search trees 

generated by Prolog programs, i t  is hard to believe that  any static approach would yield 

promising results for this type of problem. 

As the load on each node changes, a bidding policy causes each node to  send a notice to 

all neighboring nodes. Each neighbor subsequently returns a bid, which represents its own load. 

When all bids are received, a partner is chosen with whom the bidder will swap tasks. The 

bidder and the partner then send each other a task which each believes will be better for the 

other. This policy may work well if the amount of time required by the bidding process is small 

when compared to the execution time of each task. As was mentioned earlier, in our system 

there are many small tasks which causes rapid changes in system load, so a bidding policy 

would heavily load the communication network and cause extensive delays in the assignment of 

tasks to  nodes. 

In a sense, a bidding policy is very similar t o  a pre-emptive demand-driven pressure model. 

In a pressure model, a node compares its own load value with those of its neighbors. If its own 

load value is the lowest, the node retains the task, or steals one from the node with the highest 

load, depending on the transfer policy. Otherwise, the neighbor with the lowest load value 

becomes the recipient of the task. A major benefit of this policy is tha t  decisions are made 

quickly based upon information which is retained locally. The corresponding drawback is that  

occasionally the system will make use of inaccurate information. It  is the responsibility of the 

information exchange policy to  insure this happens only rarely, as  will be discussed below. We 

have chosen a pressure model a s  the location policy for our system. 
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Frame 1 

0 1 2  0 1 2  

Frame 8 Frame 4 

Figure 1 - Uncorrected Channel Effect 

The information exchange policy is responsible for maintaining current system load 

information a t  each node. Because of the large number of messages inherent to  a distributed 

Prolog system, load information may be piggybacked onto messages already being sent to  

neighbors. The paths that  messages take are unpredictable, but they are not random. Thus 

some nodes may only receive messages infrequently from certain neighbors, and therefore will 

retain load values for those neighbors which will eventually become obsolete. Admittedly this is 

more of a problem when the system is lightly loaded, since the total number of messages is less. 

Two times when this is most likely to occur are the beginning and end of a run. 

Two problems that can occur because of inaccurate information are channels and blockouts 

(our terminology)., A channel is a path or a cycle in the network through which new tasks 

travel against the system load because of false information. Figure 1 illustrates how this might 

happen. The T-shaped boxes represent each node's understanding of the system load. Its own 

load is the lower box. In frame 1 of the figure, node 0 has one task which it  is executing. That 

task spawns a child task which is sent to  node 1, sending its load information along with the 

new task. Node 1 accepts the task, which spawns another task, which is sent to  node 2 (frame 

2). This task, in turn, spawns yet another which is sent to  node 0 (frame 3). At this point each 
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Frame 1 
0 1 2  0 1 2  

Frame 2  

Frame 8 Frame 4 

Figure 2 - Corrected Channel Effect 

node has exactly one task under execution, and there is one task "floating" around the network. 

Each node believes it  has one neighbor with a load and one without. It is here the channel 

becomes a problem (frame 4). Node 0,  thinking that node 1 has no work to  do, sends i t  the 

task. Node 1 does the same to  node 2, which in turn sends the task back to  node 0. The 

"floating" task will continue to  cycle until some node, for whatever reason, sends a message in 

the opposite direction of the channel. 

Figure 2 gives an example of an information exchange policy which does not allow the 

formation of channels. Briefly, whenever a node accepts a task for execution, it returns a 

message to  the neighbor which sent the request, informing it of its new load value. A second 

value, the perceived value of the receiver's load is included in each message. If the receiver's 

load does not closely match the sender's perception of its load, a message is returned to  the 

sender (if no other messages are scheduled) correcting it's value. 

A blackout is a blockage of communication based on a perceived load which is greater 

than the actual load. This is in contrast to a channel, which is created because the perceived 

load is less than the actual load. Figure 3 illustrates how a blackout may occur. The load for 

each neighbor is relatively high, and each node correctly perceives the load. If the load then 
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Frame 1 Frame 2 

0 3 5  I 0  3  5  

1 2 4  I 1 2 4  

Figure 3 - Blackout Effect 

declines rapidly for all nodes without any communication occurring between nodes 0 and 1, node 

0 will perceive the load to  be very high on node 1 and vice versa. This will form a barrier 

preventing the exchange of tasks between these nodes. This barrier can be broken down by 

other messages passing between them, but tha t  may not happen if the system is lightly loaded. 

A solution to  this problem is t o  use a timeout. After each time period elapses, the 

perceived load value of the uncommunicating neighbor is reduced, eventually to  zero. The rate 

a t  which such reductions take place must be carefully chosen so a s  t o  avoid basing many 

decisions on inaccurate information. This reduction rate is static, and will have to be derived 

through further study. 

We are experimenting with a number of heuristics for the transfer and location policy 

functions. We have a number of different system parameters we are able t o  measure, which we 

believe reflect the system load. They include: the number of active tasks, the number of 

suspended tasks, and current memory usage (in bytes). The balance between active and 

suspended tasks on any given node affects the utilization of CPU time, whereas i t  is the total 

number of tasks which affects the memory usage. In addition, we have two variables which are 

important t o  the acceptance or transfer of an  unbound task, but do not reflect the system load. 

They are the distance of the unbound task from the parent task (which affects elasticity) and 

the network's communication bandwidth (which affects viscosity). A given heuristic would be a 

weighting function of these factors, so that  location, and transfer could be computed, much as a 
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chess-playing program computes its next move. 

The elast ic i ty  of the location policy is a function which is directly related to  the distance 

between the new task and its parent. Elasticity tends to  keep tasks near their parents, much 

like a band of elastic tends to  pull its ends together when stretched. As tasks move further 

away from their parents, communication becomes more expensive. As tasks move closer to  their 

parents, the load tends to become unbalanced. Thus elasticity is used to  balance the pressure 

created by the system load. The optimal balance of the forces of pressure and elasticity are an 

important issue, since they represent the conflicting goals of balancing the load and minimizing 

communication costs. 

The viscosi ty  is a function which is inversely related to  the bandwidth of the system. It is 

a measure of the cost incurred by transferring a task to  another node. The viscosity represents 

the expense incurred by transferring a task to  another node rather than accepting it for 

evaluation. A fast network would have a low viscosity, which would allow tasks to  move 

around the system easily. It is of lesser importance than elasticity, but nevertheless should not 

be ignored. As elasticity or viscosity increase, greater pressure is required to  move tasks around 

the system. 

4. Network Topology 

Loosely-coupled message-passing systems have the advantage that  a large number of nodes 

may be connected to  a network with a relatively small increase in cost per node. A network is 

characterized by degree, order, d iameter ,  and average diameter .  The degree of a network is the 

largest number of neighbors held by a node in the network. The dollar cost of each node in a 

system depends in part on the degree of the network. The maximum performance of a 

distributed system, however, is determined by the number of processors, or order of the system. 

The dis tance between two nodes is the smallest number of edges that  connects them. 

Performance is also dependent, in part, on the distance between the nodes. This dependency 
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90 1,O 40 5 0  40 

Figure 4 - 5 x 5 Grid 

can be reduced by allocating tasks so that messages only travel to  local nodes, but one must be 

careful with this as it  may induce an imbalance in the system load. The diameter is the largest 

distance a message must travel between any two nodes. The average diameter is the average 

distance a message must travel between nodes. 

The optimal network for a distributed Prolog system can now be categorized. It would 

have a small degree to  keep the cost per node low, and the order would be suitably large to  

provide high performance. The average diameter would also be small to minimize the cost of 

message passing. The average diameter roughly indicates the cost of communication, but with a 

suitable elasticity in the load balancing algorithm, children tasks can be retained locally, which 

further reduces communication costs. The average diameter also gives some indication of how 

quickly the nodes in the network may be reached. A network with a small average diameter 

would allow more nodes to  be reached in fewer hops than a similar network with a larger 

average diameter. This in turn would allow the load balancing scheme to  spread tasks more 

evenly across the network. 

Some network types, such as the NxM grid (figure 4), encourage tasks to  either bunch 

together on few nodes, or travel long distances to  find unloaded nodes. This is because of the 

long distances task requests must travel to  reach a significant fraction of the nodes in the 

network. Each task may request a large number of children tasks. Each child may also request 
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Figure 5 - 16 Node Hypercube 

additional tasks. It does not take many generations to  create a large number of tasks. If the 

tasks do not spread quickly to  all parts of the system, each successive generation will increase 

the system imbalance. If the tasks must travel long distances to  reach the network extrema, 

either they will travel long distances or they will bunch up. If tasks bunch up, the system load 

becomes unbalanced and the performance is reduced. If they travel, communication between 

nodes becomes more expensive. Again the performance is reduced. 

Other networks, such as the binary n-cube (figure 5) and the star-graph (figure 6) 

encourage better task distribution and offer less expensive communication. The binary n-cube, 

or hypercube, is particularly well known, being the topology of choice for several commercial 

products. Tables 1 and 2 give a comparison of degree, order, diameter, and average diameter 

for several networks. In table 1 H, represents the nth harmonic number. A definition for H, 

may be found in [14] (page 73). The definition of a star-graph and a derivation of its formulae 

may be found in [15,16,17]. The grid, hypercube, and other network topologies may be found in 

[16,18]. 
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Table 2 

As can be seen from the tables, the NxM grid is not the best possible network topology. 

Both the binary n-cube and the star-graph do much better in terms of diameter and average 

diameter. The binary n-cube and the star-graph have very similar performance, with an edge 

going to  the star-graph. The most significant difference between the two is the degree. 

The advantage of a small degree is a lower cost per node. Another advantage is tha t  if 

the number of connections for each node is fixed, a s  is the case with Inmos Transputers (which 

have four connections each), one may build a larger star-graph than hypercube. The largest 

hypercube one may build with the Transputer has 16 nodes. The largest star-graph has 120 

nodes, or 7% times the processing power. 

For large networks, the star-graph shows an  improvement in both the diameter and the 

average diameter. They are somewhat difficult t o  compare, however, because their sizes do not 

correspond very closely. Advanced networks like the star-graph have not yet been chosen for 

commercial application partly because they are not well understood. The binary n-cube, on the 

other hand, is well known to be easily partitioned into many other topologies, for example a 

ring or a mesh, and is also known t o  be suitable for many common numeric problems. These 

properties of the n-cube, though useful in their own right, hold no advantage for our 

application. Because our system promises no particular regularity in its execution patterns, we 

expect the best performance from the network which offers the smallest degree and average 
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diameter for its order. 

Of particular interest for our application is the truncated star-graph network, which 

allows the use of subsets of the full star-graph. The extra connections left open by the 

truncation are used to increase performance further, by selecting the nodes which are furthest 

away and connecting them. Some of the network symmetry is lost by this process, but that 

incurs no penalty for our application and is of little import. 

5 .  Summary 

OR-parallel distributed Prolog is able to generate a large number of small, communicating 

tasks. This makes network performance and load balancing issues of paramount importance. 

We believe a supply-driven non-pre-emptive pressure model coupled with a high performance 

network offers excellent possibilities for creating a system to  evaluate an OR-parallel distributed 

Prolog. The star-graph network has a small degree and average diameter considering the 

number of processors it  will support. We believe it  is these properties which affect the network 

performance under our application. 

6. Future Research 

The implementation of a distributed OR-Prolog simulator is complete, and suitable 

benchmark programs are being designed. The simulator allows the variation of message delays 

and transmission rates, network topology and size, and load balancing scheme. Our work is now 

focused on developing and testing the different heuristic functions used by the transfer and 

location policies. 

We intend to  simulate other networks in addition to the star-graph, in order to  form a 

more complete picture of the effect topology has on performance in this environment. 

Additional networks will include a grid, the binary n-cube (hypercube), pancake network [15,16], 

and cube connected cycles [18]. Each network will be compared for performance against a 
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completely connected network, since that represents the network with the highest possible 

performance, although such networks are rarely built because of the overwhelming expense 

involved. 

In order to  validate how accurately the simulator reflects the type of environment we have 

t described in this article, we will implement our system on both an Intel iPSC (Hypercube) and 

a network of Transputers, whose link connections will be software reconfigurable using the new 

Inmos 32x32 crossbar chip. 
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