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Abstract 

Although many models have been proposed for a union of functional and logic pr* 
gramming styles, none yet  has  fulfilled the goals of being easy to understand, easy t o  
use and straightforward t o  implement efficiently. This paper presents a union of these 
styles in a language called F+L and discusses some aspects of the semantics and imple- 
mentation of this language. Some interesting programming issues a re  revealed through 
examples. 

F+L combines functional programming with Horn-clause logic and can be under- 
stood a s  a logical language with interpreted equality. I t s  semantics provide both a 
function space and relations over the non-functional semantic values. We outline a 
strategy for a n  efficient implementation by compiled graph reduction. 

1. Introduction 
There have been many proposals t o  merge functional and logic programming styles 

into the framework of a common language. In these proposals, two basic ideas come t o  
light: (I) Add equations to a Horn-clause logic. This will impose a congruence upon the 
Herbrand universe of terms. (11) Add logical variables and unification t o  a n  equational 
logic. This  can al ter  the interpretations of equations customarily given for a functional 
programming language. Most of the combined logics languages involve both of these 
ideas. 

When a Horn clause programming logic is enriched with equations, interpretation 
of the combined logic no longer constructs a free Herbrand model. In order t o  obtain a 
complete resolution proof strategy,  unification must also take  account of the 
congruences of terms. A substitution S unifies a pair of terms tl,  t 2  relative t o  a n  equa- 
tional theory E if S( t l )  % S ( t 2 )  The  ordinary unification algorithm is generalized t o  
Eunification if i t  computes most general unifiers relative t o  a n  equational theory. 
Unfortunately, convergent algorithms for E-unification are  known only for fairly simple 
theories. For  a theory as rich a s  elementary arithmetic, equivalence of terms is unde- 
cidable and hence there can be no convergent algorithm for E-unification. 

Consequently, a programming language based upon Horn clause logic enriched 
with equations may employ a n  incomplete resolution proof strategy1. Resolution offers 

The research reported in this paper has been partially supported by the National Science Foundation under 
Grant No. DCR-8513572. 

' Of course Prolog, even without equations, does not employ a complete proof strategy because i t  uses depth-first 
search in i ts  attempt t o  Rnd a proof quickly. This incomplete proof strategy is efficient, but is often troublesome to  
logic programmers. 
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no advantage over reduction t o  perform computations in a type t h a t  can readily be 
axiomatized by an  equational theory. Such computations can be programmed function- 
ally. Computation by resolution is useful t o  produce values in a non-algebraic type for 
which a n  equational axiomatization is not natural .  (Of course a non-algebraic type 
may use algebraic values in i ts  representation.) 

When logical variables are allowed in the terms of an equation, we must be precise 
about the interpretations t o  be given t o  the equations. In a purely functional program- 
ming language the  equations have no free variables. Every variable occurring in an 
equation is universally quantified (we also say lambda-bound). When logical variables 
are  introduced, they may have free occurrences in a n  equation. Some designers of 
merged languages have chosen t o  interpret free variables a s  singly bound [Lin85,Red86] 
and some as multiply bound [GoM86, Smo86] or set-valued [DFP86]. 

When equations as well as Horn clauses are resolved by unification, rather subtle 
logical problems can arise. In equational logic, equality has  the substitution property; a 
right-side expression can be substituted for a left-side expression (or vice-versa) without 
changing the meaning of a context. However, when the meaning of a n  expression is 
resolved by unification with the left side of an equation, a variable free with respect t o  
the  equation may become bound. Such a binding becomes a side effect of having used 
the equation. I t  is easy t o  demonstrate a n  incongruity by a foolish example: 

def foo nil = 3: 
let i = foo x in 
5.x 

The  let-defined constant i is never referred t o  in the principal expression, yet if the let 
clause were evaluated anyway, the free variable x would be bound by unification. Does 
the expression have a value? 

Another incongruity can occur if logical variables are interpreted as multiply 
bound and equations are  resolved by unification. In each instantiation of a n  equation, a 
logical variable might take a different binding. Evaluating the same applicative expres- 
sion in subsequent iterations of a segment of program can result in different values, 
because different bindings obtain for some variable t h a t  occurs free in a n  equation t h a t  
is resolved. The  meaning of a n  equation must then be explained a s  a relation entailing 
the values i t  equates and the values of i ts  free variables [DFP86]. 

Although there are explanations for these phenomena, we have reservations about 
programming languages t h a t  manifest apparent incongruities of meaning. F+L is a 
rather conservatively designed language in which the meanings of programs will hope- 
fully be obvious. Eqlog [GoM86] is an  equational language designed t o  respect the 
integrity of the underlying logic. The  designers of Eqlog have been somewhat more 
adventuresome with respect t o  implementation strategies, however. An F+L implemen- 
tat ion can be nearly as efficient as t h a t  of a purely functional programming language. 

2. Programming logics 
A pure, functional programming language is an  equational logic, usually subjected 

t o  syntactic restrictions t h a t  make i t  easy t o  give a weakly constructive interpretation2 
t o  the  equations. T h e  equations t h a t  define functions are oriented from left t o  right so 

We say weakly constructive because there is no guarantee that the evaluation of an expression will terminate. 

2 
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t h a t  evaluation can proceed by reduction, or  term-rewriting. Equations are commonly 
constrained t o  be left-linear, t h a t  is, no variable has a repeated occurrence in the left- 
hand side of any equation3. In order t o  make it easier t o  do efficient pattern-matching 
and t o  impose a notion of consistency on a system of equations, the set  of constant sym- 
bols can be partitioned into defined functors and free constructors. Under the free con- 
structor discipline, a left-hand side term may contain nested constructor applications 
but  is allowed t o  contain a t  most one occurrence of a defined functor, which must be in 
the function position in the outermost application. 

Equational languages of this kind have a well defined semantics, or  model theory. 
The  standard models are algebraic, weakly constructive, and the semantic domain con- 
tains i t s  function space. Functions of any order can be defined in a n  equational 
language. Least fixpoints of recursive equations are computable whenever they exist. 
Completeness of a n  interpretation is assured by following a deterministic computation 
rule, the rule of normal order reduction. 

A non-equational logic is usually given semantics by a Herbrand model. Without 
further restrictions, this tells very little about the properties of a model. For a pro- 
gramming logic, a weakly constructive interpretation is required. Accordingly, the syn- 
t a x  must be restricted so t h a t  quantifiers are not interleaved, conclusions are  unequivo- 
cal, and a positive conclusion cannot be inferred from a negation. Horn clause logics 
meet these requirements, and we shall henceforth restrict our attention t o  these as  our 
non-equational progrmming logics. 

Even with the stringent restriction t o  Horn clauses, we are not guaranteed of alge- 
braic properties of a model, nor given conditions for a deterministic evaluation strategy 
t h a t  will ensure completeness, short of basing evaluation on a complete proof theory4. 
Nevertheless, logic programming has  some significant advantages. The  semantics of 
predicate symbols are relations over the domain of ground values, and the relations 
need not be functional. Sets are expressed very naturally by characteristic predicates. 
Arbitrary projections of an  undirected relation can be taken,  whereas functional rela- 
tions are directed; a function can only be applied. Logic programmers also advertise 
the advantages of demand-driven scheduling of evaluation, but this advantage is also 
inherent in functional programs with lazy evaluation [Joh86]. 

The advantages of a language tha t  provides equational logic, Horn clause logic, 
free constructors and embeds semantic algebras for arithmetic and boolean domains are 
that :  

a )  Equational logic is a n  expressive notation in which t o  describe functions on an  alge- 
braic domain; 

b) Horn clause logic is quite relations. 

I These are useful even for 
domains they are  essential - 6 h t  e-i -- CP- 

c) D a t a  structures built with free constructors allowf 
values t o  be embedded; I t  is unreasonable t o  handicap programming with a language I 

a The language OBJ2 and i t s  derivatives lOBJ85) do not require left linearity, but a t  the  cost or less efficient 
pattern-matching. 

'This i s  not generally considered feasible because i t  requires breadth-first search, which can be costly beyond any 
complexity bound. Some Prolog implementations have experimented with depth-bounded search, which simulates 
breadth-first search only if depth-first search t o  some previously determined depth bound fails. 
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t h a t  is natura l  for only one type of domain. 

The challenge in combining these logics in a single programming language is how 
t o  give a coherent semantics t o  the combined logics, while respecting the integrity of 
the logic. Once the semantics is understood, implementations of the  semantics will be 
relatively straightforward t o  design. 

2.1. Equality interpretations 
I t  is essential t o  understand the interpretations of equality t h a t  are possible in the 

combined logics. There is potential for confusion because the interpretations made of 
equality depend upon the syntactic context of an  occurrence of the equality symbol. 
Equality is expressed as a relation on terms, but may be interpreted either on terms 
themselves (intensional equality) or  on the meanings of terms (semantic, or  extensional 
equality). 

Boolean-valued equality. A Boolean-valued expression may select an  a rm of a condi- 
tional expression. This forces a very strong interpretation on the equality predicate. 
This equality interpretation is a (partial) decision procedure for the semantic equality 
of expressions. I t  requires construction of an  explicit demonstration t h a t  the two argu- 
ments of a n  equality proposition have the same value or t h a t  their values differ. The  
arguments must generally evaluate t o  ground terms, for if they were t o  contain free 
variables, then the equality would have t o  be demonstrated for all possible valuations of 
the variables. 

It is only possible t o  have a constructive interpretation for Boolean-valued equal- 
ity if i ts  domain is restricted t o  a type of finite elements. By this we mean a type all of 
whose values are finite elements of a semantic domain. Thus  int and list(int) are 
admissible types for Boolean-valued equality, while int-int and stream(int) are not. 

Definitional equality. The equality of definitions is given a more liberal interpretation. 
Definitional equality is extensional, but since no decision procedure is required, the type 
of this equality is unrestricted. Terms containing variables may be defined as equal, 
with the understanding t h a t  the equality holds for all possible valuations of the vari- 
ables over their types. The  property of referential transparency of expressions is a 
consequence of the  fa& feat definitional equality is given this interpretation. I t  is not 

k 
the same interpretation glven t o  the assignment operator ':=' in imperative languages. 

A 
Predicated equality. A Horn clause logic can have a n  interpreted equality predicate. 
Logic terms in a Horn clause are tested for satisfiability; a query asks for the set of 
bindings for logic variables for which a clause is satisfiable. Satisfiability of equality is 
constructive if there is an  effective decision procedure for the  equality of non-ground 
terms and weakly constructive if there is a semi-decision procedure. In a free Herbrand 
model, unification gives an  effective decision procedure for equality of first-order object 
terms. 

In conjunction with an  equational logic, a set  of Horn clauses may admit  non-free 
models. A partial  semi-decision procedure for equality can be gotten by the two-step 
process of (1) reducing the arguments of a predicated equality t o  normal forms accord- 
ing t o  the equational theory, followed by (2) unification of the reduced terms. This is 
the process of narrowing [Fay79, Hu180, Red861. Unification alone can only demonstrate 
the  intensional equality of reduced terms t h a t  belong t o  types of finite elements. I t  can 
provide only a part ial  decision procedure for semantic equality, even if the reduction of 
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terms were known t o  terminate. 

I t  has  been proposed t o  strengthen the decision procedure by using semantic or E 
unification (GoM86, SuY861. This would provide an  extensional equality interpretation 
for predicated equality in the presence of an  equational theory. Unfortunately, 
unification relative t o  a theory is not known t o  be complete except for rather simple 
theories. In particular, i t  is necessarily incomplete for the theory of elementary arith- 
metic, whose equality is undecidable. 

3. F+L - a language with functions plus logic 
F+L is a programming language tha t  integrates equational definitions, algebraic 

expressions, and positive definite Horn clause logic. I t  is evaluated by reducing applica- 
tions of defined functors t o  canonical reduced terms and by narrowing t o  bind logic 
variables in order t o  satisfy constraining propositions. 

F+L has a type system similar t o  the Milner type system for a purely functional 
ML [Mi178]. Not much will be said about typed terms in this paper. Types are 
assumed t o  be gotten by type inference rather than by explicit declaration. The reader 
should keep in mind t h a t  we are discussing a typed language. 

An abbreviated F+L syntax is presented in Table 1 t o  assist in reading the exam- 
ples. The  alternative forms for each syntactic category are  listed in order of pre- 
cedence; the first listed form is more tightly bound t h a t  those t h a t  follow. Patterns 
(abbreviated as  pat in Table 1) is a subclass of expressions with no operators other than 
free constructors. The  identifier in the applicative position in a n  application pattern 
must be a free constructor declared by i t s  occurrence in a type definition 

A new type can be specified a s  a disjoint union of injections from constituent 
types. The  type definition declares names, arities, and types for the constructors of a 
disjoint union in a pattern-structured syntax. This scheme of notation has been used in 
several functional programming languages. 

The  constructors declared in a type definition are distinguished from functor symbols 
declared in equations. Constructors are free, defined functors are not free. The literal 
constant symbols of a n  algebraic type, such as true and false, or  numerals for the 
natural  numbers or integers also have the s t a tus  of free constructors. 

Table 2: Syntax of type definitions 

We impose a requirement t h a t  constructors are free and functors are non-free 
through a convention called the free constructor discipline. If a system of equations E 
entails the congruence of expressions Cl(x) and C2(y), where C1 and C2 are different 
constructors5, then E is inconsistent with the free constructor discipline. Conversely, if 
there is a well-typed functor application f e l ,  . . . , e n  whose E-congruence class con- 
tains no canonical constructor expression Ci(x), then E is incomplete with the free con- 
structor discipline. If an  Econgruence class contains an  irreducible functor application, 
but no canonical constructor expression, then the system E is finitely incomplete. 

It  ir, understood t h a t  t h e  constructor applications could also  be nullary. 

type-dejn ::= 

disjoint-union ::= 

type-expr ::= 

type id {(type-war[, type-war\)) is disjoint-union; 

id (( type-expr 
id {( type-expr 

-, type-expt' )) [+ disjoint-union] 
, type-expr ) 
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Braces {,) are meta-symbols indicating zero or  one occurrence of the enclosed text. 
Brackets [,I indicate zero or  more occurrences. 

In a semantically meaningful F+L program, an  equational theory must neither be 
inconsistent nor finitely incomplete with respect t o  the free constructor discipline. 
Although these conditions are undecidable in general, i t  is well known t h a t  for equa- 
tional theories alone ( that  is, without Horn clause logic) t h a t  if the left-hand sides of 
equations have non-overlapping patterns (no critical pairs) they are consistent. If the 
set  of left side patterns covers all constructor patterns, the equations are  not finitely 
incomplete. Neither of these restrictions is necessary, however, and they are  not 
enforced for F+L programs. 

variable, constant 

empty list 
constructor application 
constructed list 
s tream 
tuple 

application 
set  expression 
algebraic expression 
algebraic expression 
list construction 
stream construction 
tuple construction 
Abstraction 
conditional 

equational definition 
constrained expression 
predicate definition 
case expression 

pat ::= 

7 

ezpr  ::= 

prop ::= 

logic-defs ::= 

clauses  ::= 

eq-dejs ::= 

equat ions  ::= 

case-inst ::= 

Table 1: Abbreviated syntax of F--L 
i d  
n u m b e r  
character 
string 
nil 

id ( pat [, pat] 
pat . pat 
pat : pat 
p a t ,  pat O pat] 
( pat ) 

pat 
e zpr  e zpr  
'< ' pat I Prop [t prop] 3 ' 
ezpr  operator e zpr  
operator e zpr  
e zpr  . ezpr  
ezpr  : ezpr  
ezpr  , ezpr  [, ezpr]  
pat . ezpr  
i f ezpr  then ezpr  else ezpr  
ezpr  where var id [, id] 
l e t  eq-defs in ezpr  
let prop [, ~ r o p ]  {var-decl} in ezpr  
de f logic-defs in ezpr  
case ezpr  in case-inst [ I  I  case-inst] end 
( e z p r  ) 

i d  ( ezpr  1, ezpr] ) 
clauses  [and logic,dejs\ 

id  ( pat ) {:- prop [, prop]) I I clauses] 
equat ions  land equations] 
id  { p a t  Ipat))  = expr  [ ( I equations] 
pat : ezpr  
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The  left side terms of both equational definitions and Horn clauses are syntacti- 
cally restricted by the free constructor discipline, since a pattern cannot contain an 
occurrence of a defined functor. 

Observation 1: A pattern more complex than a single variable cannot unify with the 
left side of a defining equation. 

The  free constructor discipline limits the expressiveness of the Horn clause logic. 
If a n  equational theory is consistent and finitely complete with respect t o  the free con- 
structor discipline, then properties of equationally defined functions cannot be predi- 
cated by the restricted Horn clause logic. Although equality can be predicated in the 
logic, finite completeness assures tha t  no irreducible functor terms will be equated by 
unification in resolving a predicated equality, since reduction of terms precedes 
unification. Conversely, resolution of a predicated equality fails on an  a t tempt  t o  unify 
dissimilar constructor terms. 

Observation 2: If an equational theory is consistent and finitely complete, i t  remains 
so  with the  addition of Horn clauses respecting the (syntactic) free constructor discip- 
line. 

Under the free constructor discipline, Eunification is also simplified with respect 
t o  the  general case. If a well-typed propositional expression p contains a s  an  argument 
a term t = f el, . . . , e n  but t is not an  instance of one of the left sides of the equa- 
tions defining j ,  then t must be unifiable with the left sides of one o r  more of these 
equations. After choosing an  equation and unifying, the substituted term t' reduces. 
Thus  from p is obtained a finite set of narrowed propositions t o  be resolved. The nar- 
rowing steps may be recursively repeated until the set of propositional terms contains 
no occurrence of a n  unreduced application of j. 

Observation 3: Under the free constructor discipline, and for an  equational theory E 
t h a t  is consistent and finitely complete, narrowing is relatively complete as E-resolution 
for Horn clause logic. If the equational theory is also noetherian, then narrowing rela- 
tive t o  E gives a complete proof theory for positive definite Horn clause logic. 

The  second assertion of Observation 3 can be proved by a recursive-path ordering. 

The  free constructor discipline ensures a comfortable marriage of equations and 
Horn clause logic. 

3.1. Logical variables and constrained expressions 
The  syntax and semantics of equational definitions in F+L are  largely inherited 

from LML [Joh83]. In F+L, however, logic variables [Lint351 may occur in expressions 
along with universally quantified variables. The fact  t h a t  reductions produce canonical 
reduced terms, not necessarily values, is a consequence of the introduction of logical 
variables. In another departure from its  parent language, applications of functions and 
constructors (other than the stream constructor, ':') are  strict. Streams are introduced 
as distinct types, not t o  be confused with list types. 

A canonical reduced term (henceforth called a cart) is either a basic value (i.e. an 
integer, character or  boolean value), an  unbound logical variable, a canonical construc- 
tion of ca r t s  or  the abstraction of a cart .  Thus, the terms we are  accustomed t o  
regarding as canonical value terms of a functional programming language are  carts, but 
a ca r t  may also contain occurrences of unbound logical variables. A non-canonical 
expression, such as 3+u, where u is a logical variable, is not a car t .  In fact ,  an 
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a t t empt  t o  evaluate a non-ground, non-canonical expression such as 3+u will be 
detected as a n  error, since the algebraic operator '+' expects i t s  arguments t o  be values. 
The  notion of ca r t  is derived from [Lin86] although the present author is t o  blame for 
introducing the name. 

A def clause consists of a sequence of Horn clauses defining a set  of predicate 
symbols. Every variable occurring in a Horn clause is considered t o  be bound and can- 
not be confused with a free variable. A Horn clause 

P(x l J  ..., zn)  :- Ql( ...), . . . , Qm( ...) 

is implicitly quantified as 

+f 21 ,..., x,, . P ( Z ~ , . . . , X ~ )  :- 3 y1j...,yk.Q1(...), - . , Qm(...) 

where the yll...,yk includes all variables different from the xl, ... ,x, t h a t  occur in the 
terms on the  right side of the clause. 

A logic variable is introduced in a let clause6, for instance 

l e t  var x i n  expr 

An expression t h a t  contains occurrences of a logic variable has the same operational 
semantics as any other expression in which free variables occur; a ca r t  is computed by 
reduction in an  environment, p, t h a t  maps variables t o  carts. An environment defining 
car ts  for the  lambda-bound, or universally quantified variables of a function definition is 
gotten a t  each application of the function by matching arguments t o  variables by posi- 
tion. An environment t h a t  defines car ts  for logic variables is computed by resolving the 
definitions of predicates, in order t o  satisfy a propositional constraint. 

A logic variable may be bound by narrowing. This occurs a s  a consequence of 
satisfying a constraint. A constrained expression has a let clause t h a t  consists of a con- 
straining proposition, rather than a n  equational definition. For instance, the con- 
strained expression 

l e t  P(x) var x i n  expr 

has  a ca r t  relative t o  an environment p such tha t  P ( p  (x) ) is satisfied, otherwise i t  is 
undefined. The  proposition P (x) constrains the  interpretations allowed for expr. 

A constraining propositional term need not contain an  explicit occurrence of a 
logic variable in order t o  narrow i ts  interpretation. Since a logic variable can occur as  
an  argument in an applicative expression, it may be constrained by the definition of the 
function t h a t  is applied. 

3.2. An example: binding definitions 
The  following example is a n  adaptation of one t h a t  has appeared in the logic pro- 

gramming literature [AdF86,Red86]. (Unlike Prolog, there is no syntactic significance 
t o  the use of capitalized identifiers in F+L. For readability, the syntax allows the 
abbreviation [a: b: c] for an  explicit list construction a. b. c. n i l  in patterned 
expressions.) 

A where clause would d o  as well. The reason that  logic variables are introduced explicitly rather than impli- 
citly as in (Ling51 is t o  avoid the accident of having a misspelled identifier introduce a new logic variable. 
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Example 1: binding definition6 

type Term i8 DEF (char) + USE (char) : 
def Member (a, (a. S) ) 
I I Member (a, (b. S) ) : - Member (a, S) 
in 
letrec 

defseq (USE (x) . seq) n T = let Member ( (x,  i) , T) var i in 
i:defseq seq n T 

I I de f seq (DEF (x) . seq) n T = let Member ( (x, n) , T) in 
defseq seq (n+l) T 

1 1  defseq nil n T = 0:s where var s in 
- -  0 is a sentinel value marking the end of a stream of output 

let input = 
[USE ('B') :DEF ('B') :USE ('B') :USE ('A') :USE ( C )  D F  ( C )  D F  ('A)] in 

defseq input 1 Table where var Table 

In this example, d e f s e q  is a function t h a t  maps i ts  first argument, a list of type 
Term, t o  a list of natura l  numbers. The  output stream7 is the image of the sequence 
of USE terms in the input list. The value associated with each USE ( i d )  is the index 
of a corresponding DEF ( i d )  in the sequence of DEF terms in the input list. The 
second argument t o  d e f s e q  is the index t o  be given to  the next DEF term encoun- 
tered. The  third argument represents a table which associates identifier characters 
with the index of a DEF term t h a t  contained the identifier. 

The predicate Member represents the relation tha t  an  identifier-index pair exists 
in the table. The  result of evaluating this program is the sequence [I: 1; 3: 23. 

In the first of the  defining equations for d e f s e q ,  the expression on the right side 
is constrained t o  have a ca r t  in an  environment in which the proposition 
Member ( (x ,  i) , T) is satisfied. This constraint may narrow either the interpretation 
of the identifier i or  t h a t  of T depending on whether or not the table contains an  ass* 
ciation pair for x when the constraint is enforced. Note t h a t  T a b l e  is introduced as  
a n  unbound logical variable in the applicative expression in the last line of the program. 

The  second defining equation for d e f s e q  is constrained by the proposition 
M e m b e r  ( (x,  n) , T) , which may narrow the interpretation for T, and may also possi- 
bly narrow the interpretation of instances of the variable i t h a t  were introduced by 
reductions of d e f s e q  applications t h a t  matched the first equation. 

I t  is inconsequential t o  this example whether or  not the language definition 
specifies lazy o r  str ict  evaluation rules for function application or  list construction. 
Logic variables are  inherently lazy. 

This example could also be programmed entirely in Horn clause logic. To do so, 
the functor d e f s e q  of the F+L program is replaced by a four-place relation symbol, 

' Output is a stream in order t o  obtain incremental evaluation, since the list constructor i s  strict in F+L. The 
program would still work if the output were presented in a list, but evaluation would then not be incremental. 
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r-defseq ( (USE (x) . seq) ,n,T, i. outseq) : - 
Member ( (x , i) , T) , r-de f seq (seq, n , T, outseq) 

1 I r-def seq ( (DEF (x) . seq) , n, T, outseq) : - 
Member ( (x,  n) , T) , r-defseq (seq, (n+l) , T, outseq) 

I I r-defseq(nil,n,T,outseq) 

and the expression applying the functor t o  a n  input list becomes a propositional query: 

?outseq i n  r-defseq ( input,  1, T, outseq) 

As a program, this version is harder t o  read because the essentially functional 
nature  of the relation expressed by de f seq is not manifest. Mode declarations would 
help, but  the  program is certainly less clear without the use of equational logic t o  
express functional dependency. 

The  same example can also be programmed in a functional language with lazy 
evaluation rules. Here is a program in LML: 

import type Term = DEF (char) + USE (char) : 
letreo 

lookup x ((y,n).s) = if x-y then n 
else lookup x s 

and 
enter a nil = [a] 

1 1 enter a (b. s) = b. enter a. s 
and 

def seq (USE (x) . seq) n T = 
l e t  (outseq, T) = defseq seq n T in 
lookup x T. outseq, T 

( I def seq (DEE (x) . seq) n T = 
defseq seq ( n + l )  (enter (x,n) T) 

I I defseq nil n T = nil, T 
in 
fst (defseq input 1 nil) 

In this  version of the program, we need to express the relation of the  association list t o  
the input sequence functionally. This has  two obvious consequences. I t  is necessary t o  
replace the predicate Member with the definitions of two functions, lookup and 
enter .  I t  is further necessary t h a t  the function defseq must return a pair of values, 
the desired output  list and a n  auxiliary list representing the association list. The  need 
t o  separately define functions for table entry and lookup is not a serious flaw because it 
does not make the  program harder t o  understand, but  introducing a spurious value a s  a 
component of the result of a defseq application is distracting. 

There is a more disturbing consequence which is not so obvious. Even though lazy 
evaluation is the computation rule (evaluation fails under a call-by-value rule), the out- 
put  sequence m e  produced incrementally! When the program is executed, the 

rs wt 
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$4 
first element of the output sequence-printed until the entire input sequence 
has been read, even though the definition of the first USE occurrence has  been read ear- 
lier. This c rcumstance arises because the association list cannot be constructed until 
the n i l  V&U marking the end of the input has been seen. Even though entries are 
inserted only at the tail end of the association list, there is no way t o  express in the 
syntax of the functional language t h a t  an initial sequence of the association list is never 
changed by inserting a new value. 

T h e  two versions of the  program t h a t  make use of Horn clause logic express the 
construction of the association list with the use of logical variables as placeholders, 
rather than by suspending construction of the list itself. Logical variables provide a 
finer-grained unit of delayed evaluation. 

It is important t o  allow incremental evaluation when the  programmer intends it. 
A problem t h a t  functional programming languages have not solved is t o  produce multi- 
ple output  lists without synchronous coupling. If the output lists are  produced totally 
independently, then expression a s  a pair of lists is satisfactory, but if there is a depen- 
dence between them, i t  is difficult t o  avoid the problem illustrated by the defseq 
example. The  introduction of logical variables appears t o  provide a way t o  accomplish 
this. A further consideration, not elaborated on here, is the fact  t h a t  synchronously 
produced result sequences may be asynchronously consumed. This can lead t o  the 
storage management problem known as "space leaks" [Wad86]. 

3.3. Referential transparency 

As mentioned before, the  property of referential transparency is a consequence of 
equational logic. I t  cannot be compromised by introducing logical variables if we are t o  
respect the integrity of the logic. 

Observation 4: Let p be an  environment such t h a t  expr has a ca r t  relative t o  p. If e 
has  a n  occurrence at i in expr, and if ReduceE I e 1 p = v ,  then ReduceE I ezpr [ i t v ] l  p 
= ReduceE I ezpr I p. 

Here, ReduceE is the  operation of reduction modulo a term rewriting system E. 
The  computation of a n  environment in order t o  satisfy a constraining proposition 

is not a side effect, since the proposition must be satisfied in order t h a t  the car t  of a 
constrained expression is defined. Furthermore, a subsequent evaluation of the expres- 
sion in the same environment cannot produce altered bindings because the constraining 
proposition will already have been satisfied. This principle answers the question a s  t o  
whether logical variables can have multiple bindings in a language defined as is F+L. 

3.4. Set-typed expressions 

Logic clauses can be used t o  specify a set in terms of a characteristic predicate. 
Generalizing this mode of specification slightly, a set  is specified by a n  expression for i ts  
members, constrained by a conjunction of propositional terms. Variables t h a t  occur in 
the  expression for members are  quantified over the set  expression. For instance, the set 
expression 

{ ~ ( x , Y )  I P ( x , 3 ) *  Q ( X , Y ) ~  
denotes a set  of car ts  obtained by substituting in e  the ordered pairs of ca r t s  t h a t  
simultaneously satisfy the constraining propositions P (x , 3 )  and Q (x, y) , and reduc- 
ing the resulting expression instances. The variables are,  of course, implicitly 
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universally quantified in a set  expression. q &k ~ 4 4 .  
The  representation of a set is elaborated a s  a stream ( a  laz~lisj ,) ,  with possible 

repetitions of elements. Stream access operations are defined on set-typed expressions. 
T o  compute an  element of the stream representing a set ,  first compute an environment 
in which the  constraining proposition is satisfied. The bindings given by this environ- 
ment are  then used in reduction of the members expression8 t o  a car t .  The  tail of the 
s t ream contains the car ts  t h a t  result from additional bindings for the variables. 

There & special casedof set  expressions t h a t  & worth mentioning. YIBnr 

. . 0. When the predicate 
expression is empty, then the set  value consists of the values of the members expression 
under all instantiations of the  logical variables over their respective types. 

When the evaluation of the members expression produces a ca r t  t h a t  is not a 
ground value, subsequent evaluation of the program may narrow i ts  interpretation t o  a 
single value. A non-ground ca r t  cannot be presumed t o  represent more than a single 
value. In order t h a t  the stream elaboration of a set  expression can be complete, it 
must .reduce repetitions of ca r t s  in which the sets of occurring logical variables are dis- 
joint. Upon repeated selection of i t s  head, the head of i t s  tail, etc., the  set  expression E @ evaluates t o  a s t ream of fresh instances of non-ground carts. This mechanism is used in 3 
Example 2 t o  generate independent axioms from a list of axiom schemes. 

This example is a resolution theorem prover for minimal combinatory logic. I t  was 
originally programmed in Standard ML as an  example in lecture notes by G .  Huet 
[Hue86]. The first two axiom schemes are  formulae for the types of K and S; the third 
is the rule for application of a n  arrow type. A proof of a formula is derived by a series 
of arrow applications of the axioms for K and S, resulting in the  formula t o  be proved. 
Derivations are constructed in reverse order by this program because i t  proceeds back- 
ward from the goal. The  function a l l - p r o o f s  produces a s t ream of traces of the 
derivations found in constructing proofs of a list of desired goal formulae. 

In the ML version, a unification algorithm had t o  be programmed explicitly. A 
term constructor t o  represent variables was necessary, and new instances of axioms had 
t o  be constructed explicitly by generating new variable terms. In the version shown 
above, the F+L implementation resolves logic clauses, and new instances of car ts  
defined in the s t ream representation of a set  are created each time the s t ream is 
separated into head and tail.  The  function new performs this separation over a list of 
set typed elements. appreciate the distinction between an  axiom 

IS represented a s  a set expressio$in order t o  provide for 
independent n 
4. A n  evaluation strategy 

Lazy evaluation of functional language programs requires the  evaluator t o  distin- 
guish the representation of a suspended application from a canonical value. With lazy 
evaluation, i t  is no longer possible for a compiler t o  embed in the compiled code an  
accurate schedule for evaluating applicative expressions, as i t  can for a call-by-value 
rule. The  abst ract  architecture of a lazy evaluator depends on having tagged d a t a  
objects. 

We use the term "members expression" t o  denote the part of a set expression preceding the stroke. 
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Example 2: A prover for minimal combinatory logic 

type term if3 CONST (int) + ARROW (term, term) : 
let KS = (((ARROW(x,ARROW(y,x)), nil) I var x,y)). 

(((ARROW (ARROW (x,ARROW(y,z)) ,ARROW(ARROW (x,y) ,ARROW(x,z))) , nil) 
I vat x,y,z)). 

(((y, [ARROW(x,y): XI) I var x,y)).nil: 
-- Axiom schemes for miminal combinatory calculus. 

letrec Resolve (goal.subgoals, (goal,hypoths).R, hypoths, R, 1, true) 
I (  Resolve (goals, a.R, h, S, i+l, success) :- 

Resolve (goals, R, h, S, i, success) 
-- i counts the number of steps to a successful resolution 

and new nil = ni1,nil 
( ( new (h. t) = let (nt, tt) = new t in 

(shd h) . nt, (st1 h) . tt 
-- forms a list of new instances from a list of axiom schemes. 
-- shd and st1 are the head and tail operators on streams. 

in 
letrec 

all-proofs nil $ = nil -- goals exhausted 
I I all-proofs ( ($, $, $,nil) .Rest) Th = all-proofs Rest Th -- a proof path fails 
( I allgroofs ( (trace, goal .subgs, j , Axs) .Rest) Th = 

let Resolve ( (goal. subgs) , Axs, hyps, residue, i, success) 
var hyps, residue, i, success) 

and (insts,Th) = new Th in 
if success then 

case subgs @ hyps in 
nil : (i+ j .trace) : 

all-proofs (Rest @ 
[trace, goal. subgs, i+ j , residue] ) Th 

I I goals : all-proofs (Rest @ [i+j.trace, goals, 0, insts] @ 
[trace, goal. subgs, i+ j , residue] ) Th 

end 
else 

all-proofs Rest Th 
and (KS-axioms,KS-Theory) = new KS 
in a1 1-proofs [nil, [ARROW (CONST (1) , CONST (1) ) ] , 0, KS-axioms] KS-theory 

Unbound logic variables must also have a tagged representation in the  abstract  
architecture of a n  F+L evaluator. A compiler can schedule the bindings of functional 
variables. Binding occurs when a function is applied or  a d a t a  structure is built t o  
represent a suspended application. Bindings of logical variables cannot be statically 
scheduled, thus the occurrences of variables must be representable in a similar manner 
as are values. , 

This similarity suggests t h a t  a tagged-memory architecture for evaluating purely 
functional programs by graph reduction might be equally a s  suitable for evaluating 
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F+L programs. Gary Lindstrom has observed t h a t  a reduction mechanism can be used 
to evaluate logic programs [Lin86]. The  capability for lazy evaluation of applicative 
expressions is required because F+L has stream-typed objects, thus the abstract  
machine's d a t a  types are: 

(CT) canonical term 
(App) suspended application 
(Ubv) unbound variable 

T h e  action t h a t  can be taken on a d a t a  object depends upon the demand of the opera- 
tor t h a t  is applied. Algebraic operators, such as  '+', '&', '<' demand evaluated argu- 
ments. T h e  EVAL combinator t h a t  is compiled when lazy evaluation is the rule 
demands only a suspension. A free constructor, viewed as a n  operator, demands only a 
cart .  The  following table gives the operator application rules for the  machine d a t a  
types. 

Demand Tag Action 
value C T  apply the operator directly 

App fail with an  error9 
Ubv error notification 

suspension C T  apply the  operator directly 
App evaluate first, then apply operator 
Ubv error notification 

car t  CT apply the operator directly 
App apply the operator directly 
Ubv apply the  operator directly 

O If a compiler emits correct code, this case should never occur. 

4.1. Evaluating propositione 

Although syntactic resolution provides a straightforward means for evaluating 
propositions relative t o  a set  of Horn clauses, i t  is rather expensive computationally. 
Modern Prolog compilers eschew the unification of terms whenever possible, t o  secure 
better performance. In our evaluation strategy, full unification is used only t o  evaluate 
predicated equality. Resolution of every other propositional form is accomplished with 
a unification compiled specifically for the term t h a t  occurs in the head of a particular 
clause. Thus  specialized, term unification is little more than pat tern  matching. In par- 
ticular, the occurs check is unnecessary except when testing predicated equality. 

A t  the outset, Horn clauses are rewritten t o  make predicated equality explicit. A 
clause whose head contains repeated occurrences of a variable is rewritten, introducing 
new variables t o  make all occurrences distinct. For each new variable introduced, the 
proposition of i ts  equality t o  the old variable is explicitly added t o  the  conjunct of the 
right side. For instance, 

P (x,  x.S)  : - Q (x,  S) =$, P(x,y.S) :- y=x, Q(x,S) 
This produces a logically equivalent clause, but operationally i t  allows the unification of 
repeated occurrences t o  be deferred until after a goal term is successfully unified with 
the head of a clause. 

A proposition expresses a constraint on the values t h a t  might be assumed by 
unbound logical variables. Evaluating a propositional expression can produce bindings 



Kieburta Functions + Logic February 26,1987 

for previously unbound variables. We can explain in a semi-formal way exactly how 
this occurs. This  amounts t o  a n  operational semantics for propositions involving predi- 
ca te  symbols defined by Horn clause logicg. 

The  "value" of a proposition in a n  environment is a new environment. Thus  the mean- 
ing of a proposition is an  environment transformation. This is computed dynamically 
by a t tempt ing to satisfy a set  of Horn clauses. In case of failure, alternative clauses 
must  be tried. This backtracking can usefully be represented a s  a continuation. 

A predicate symbol P is defined by a set  of Horn clauses having P-propositions a t  
their heads, 

We shall make use of the following types: 

Semantic Types 

For  each predicate symbol P, defined by a se t  of Horn clauses, there is a function 
Resolvep : Term+Cont + C o d  t h a t  expresses the resolution of a proposition G against 
the P-clauses: 

Enu 
Trans 
Cont 

Resolvep G w IC p = 
case unify G with 

P1 + p1 : let w' = Resolveplpl G w in 
Satisfy Qsl d IC (plUp) 

II P2 p2 : let w' = R e s o l ~ e ~ ~ ~ ~ , ~ ,  G w in 
Satisfy Qs2 w' IC (p2up) 

I I  ... 
II P, p, : Satisfy Qs, w K ( p , ~ p )  
11 $ : O K p  
end 

The  symbol '$' is a universally matching pat tern  t h a t  designates a default case 
instance. The  notations ResolveplP-,erucnce indicate residual resolutions with the P- 
clauses less the clauses headed by members of P-sequence. 

Vat-+Cart 
E n m E n u  
Trans-+ Trans 

In this  notation (which is not F+L), the ith case instance is selected by a successful 
unification with the head of the  ith clause, producing a unifying substitution (an 
environment) pi. In t h a t  case, a continuation expressing the resolution of the term with 
all the remaining P-clauses is passed a s  a n  argument t o  a function t h a t  expresses the 
result of satisfying the  conjunction of propositions on the right side of the ith clause. 
The continuation argument is invoked only in case of failure. When a continuation 

Environments 
Environment transformations 
Continuations 

O This operational semantics uses a leftmost, depth-first search strategy on a list of goal propositions and hence, 
does not constitute a logically complete inference system for the logic. This can be remedied by adopting a modified 
search strategy, such as incremented, depth-bounded searches. 
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argument is invoked, all the bindings made on the way t o  a failure are ignored. 

A function t h a t  expresses the computation of a n  environment satisfying a conjunc- 
tion of propositions is 

Satisfy nil w K p = IC p 
II Satisfy (Q.Qs) w K p = 

let P(A) = Q in 
Resolvep (Reduce Q p)  w (Satisfy Qs w K )  p 

Of course the selection of a particular Resolve function is made by case selection on the 
predicate symbol appearing in the  goal term. 

The  meaning of a constrained expression, 

let P (A) i n  expr 

relative t o  a n  environment p, is 

ReduceE expr (Satisfy [P (A) ] Fail IdTronB p )  

where Fail is a system-defined failure continuation. 

In denotational semantics, continuations were introduced t o  explain discontinuous 
control transfers, or  go-to's. In the compiled implementation of a n  F+L program, the 
invocation of a continuation argument, which is seen t o  be a tail-call in the description 
of Resolve, is made by a direct control transfer, or g c ~ t o .  

4.2. Compiled narrowing 
In explaining the semantics, the resolution of a goal term P(A) with the heads of 

P-clauses was described as a unification. A compiled implementation need not make 
use of a general algorithm for every one of these unifications, however. Since pattern 
terms are  the heads of Horn clauses t h a t  occur in the program text, a compiler can 
analyze the set  of P-clauses t o  produce a unification algorithm custom-tailored for each 
predicate symbol P. Recall t h a t  resolution is restricted by (1) having required the free 
constructor discipline in the heads of clauses, and (2) having transformed each clause 
into a left-linear form with predicated equality in i ts  hypotheses. Resolution thus res- 
tricted can be compiled into efficient code by adaptating an  algorithm t h a t  compiles 
matching of case-instance patterns in a functional programming language [Aug85]. We 
shall illustrate with an  example. 

Suppose a predicate P is defined by a pair of Horn clauses, 

P ( C 1  (CO) ) : - H1 
I I P ( C l ( x ) )  :- H2 

where H1 and H2 are lists of propositions, possibly empty. Then the Resolve function 
produced by a compiler for these P-clauses would correspond to: 
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Resolvep G w u p = 
let P(A) = G in 
def var x in 
case A in 

Ubv(vo) : let w' = Xu.Xp.Satisfy H2 w u ((vo,C1(x)).p) in 
Satisfy H1 w' u ((vo,C1(CO)).p) 

II CT(Cl(C0)):  let &=Sat i s fy  H2 win 
Satisfy H1 w' IC ((x,CO).p) 

I1 CT(Cl(y)) : Satisfy H2 w u ((x,y).p) 
11 $ : w r e p  
end 

Here, we have represented the bindings of logical variables as identifier-cart pairs, and 
an  environment as a list of such pairs. 

In a compiled implementation, a logical variable is represented by a node in an 
expression graph marked with a Ubv tag.  There is no explicit representation for an 
environment; i t  is captured in the s t a te  of memory representing the current expression 
graph. The  next version of the implementation is described a s  an  imperative procedure, 
much closer in structure t o  the code t h a t  would be produced by a compiler. 

declare resolveP procedure (G,  w); 
allocate Ubv(x); 
let P(A) = G in 
case A in 

Ubv(vo) : label w': unbind [vo]; 
bind (vO,C1(x)); 
satisfy (H2, w); 
end in 

bind (vo,C1(CO)); 
satisfy (HI,  w'); 

II CT(Cl(C0)) : label w': unbind [x]; 
satisfy (H2, w); 
end in 

bind (x,CO); 
satisfy (HI,  d ) ;  

II CT(Cl(y)) : bind (x,y); 
satisfy (H2, w); 

I1 $ : got0 w; 
end; 

Since a n  environment is represented by the s t a te  of graph memory, a failure continua- 
tion in the procedural implementation must "unbind" the logical variables bound en 
route t o  a failed unification. 

The  procedure t h a t  does the work of Satisfy is: 
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declare satisfy procedure (Gs, w); 
case G s  in 

nil : return; 
II (Q.Qs) : let P(A) = Q in 

resolvep (A, w); 
satisfy (Qs, w); 

end; 

5. Abstract interpretations 
Compilation of F+L can be assisted by several abstract  interpretations of a pro- 

gram. 

Type inference is an  abstract  intepretation computing the (polymorphic) type signa- 
ture of each expression. I t  is straightforward t o  extend the interpretation t o  predicate 
symbols, computing the type signature of the relation defined by each predicate. A 
predicate P is badly typed if the most general types inferred from the clauses defining 
P fail t o  have a least upper bound in the type system. 

Mode analysis tries t o  determine for each occurrence of a logic variable in the literal 
terms of a Horn clause whether the variable will definitely be bound t o  a canonical 
value when the literal is t o  be satisfied (input mode), will definitely not be bound but 
may acquire a value if the literal is satisfied (output mode), o r  might fall under either of 
these cases (indefinite mode). Mode analysis has been proposed as  a n  aid in compiling 
control for logic programs (Nai851. 

When applied t o  the  implementation scheme we have outlined, knowledge t h a t  the 
ith argument of the head of a clause has a definite input mode would mean t h a t  in the 
case analysis of this term a s  a pattern,  the test for a Ubv in the  ith position of the  goal 
proposition could be omitted. Conversely, if the ith argument has a definite output 
mode, then a matching proposition must not have a canonical term in the correspond- 
ing position and the test for a CT tag  can be omitted. When the mode of a n  argument 
is indefinite, no such optimization is applicable. 

V-strictness is the property t h a t  the argument of a function must be a canonical term 
value, not a n  unbound logical variable. The property is defined by analysis of a set of 
defining equations. 

Definition 1: We say of a n  equation 

t h a t  E is V-strict at the  ith place, l < i < n ,  if either pi is not a simple variable, or 
pi = z and z is str ict  in e .  

Definition 2: A functor j defined by a set of equations E = {El, . . . ,Em) is V-strict 
in the ith position if 3 j ,  l < j < m ,  such tha t  Ej is V-strict a t  the i th place. 

Definition 3: We say t h a t  a variable z is V-strict in an  expression according t o  the 
syntactic cases given in Table 3: Notice in particular t h a t  an  occurrence of a variable s 
in a n  arbitrary context is not a V-strict occurrence. In a n  arbitrary context, one not 
requiring t h a t  z be evaluated, a logical variable will do as well. 

When a variable occurs as  an  argument of an algebraic operator or as the discrim- 
ination expression of a case or  a conditional expression, i t s  value is required t o  reduce 
the expression. I t  is a n  error if an unbound logical variable is encountered in such a 
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position at the time the expression is t o  be evaluated. Accordingly, a compiler must 
either verify t h a t  all such occurrences of variables have previously been bound at the 
time t h a t  a n  expression is evaluated, or  must insert a runtime check of the t a g  on the 
d a t a  representation, t o  confirm t h a t  i t  is not Ubv. T h e  use made of V-strictness is t o  
help a compiler t o  avoid inserting these runtime tests  whenever possible. 

Accordingly, if an  equation j pl ... xi ... pn = e is V-strict in the  ith place because 
the  variable q is V-strict in e ,  we should like the compiled code t o  check the t a g  of xi 
at most once in reducing an  application of j .  Using the information t h a t  j is V-strict 
in the ith position, the compiler can insert the code t o  check the UBV t a g  of the ith 
argument expression of an  application f el  - . - en only if t h a t  argument cannot be 
confirmed to have a value at the point of the function call. This is directly analogous 

Table 
z is V-strict in: 
z+e 
e +z 
(also for -,*,/, &, I, 
=,'=,<,<=,>,>=) 
- 2 

- 2 

i f  z t h e n  e l  else e2 

i f  e t h e n e l e l s e e p  

case z i n  . - . 
case e i n  

P1 : e l  

Pn : en 
end 

c ( e )  
e1,e2 
e1.e2 
el:e2 
Xp.e p # z  

e l  e9 
z is V-strict in: 
j el...ei_] z ei+l...e, 
l e t  P ( e l ,  ..., em) i n  e 

I 

3: V-etrictness in an expreaeion 
if z is V-strict in 

e o r e l o r e 2  

e or any of ei, 1 L i S n  

e ,  where C is a free constructor 
e l  or  e2  
e l  or  e2  
el or  e2 
e 
e l  or  e9 
if: 
j is V-strict in the ith position 
z is V-strict in e and i t  is not the case that :  
3 i ,  l s i s m  and ei = z and 
the ith argument of P has definite output  mode, 

or  z is V-strict in any of the ei, or 
3 i, l < i < m  and ei = z and 
the itT;argument of P has definite input mode 
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t o  the use made of strictness analysis t o  permit call-by-value argument passing in a 
lazy functional language. 
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