
Functions + Logic in theory and practice

Richard B. Kieburtz
Oregon Graduate Center

19600 N.W. von Neumann Dr.
Beaverton, Oregon 97006 U.S.A.

Abstract

Although many models have been proposed for a union of functional and logic pro-
gramming styles, none yet has fulfilled the goals of being easy to understand, easy t o
use and straightforward to implement efficiently. This paper presents a union of these
styles in a language called F+L and discusses some aspects of the semantics and imple-
mentation of this language. Some interesting programming issues a re revealed through
examples.

F+L combines functional programming with Horn-clause logic and can be under-
stood as a logical language with interpreted equality. Its semantics provide both a
function space and relations over the non-functional semantic values. We outline a
strategy for a n efficient implementation by compiled graph reduction.

The research reported in this paper bm been partially rupported by the National Science Foundation under
Grant No. DCR-8513572.

I

Kieburtc Functions + Logic February 26, 1987

Functions + Logic in theory and practice

Richard B. Kieburtz
Oregon Graduate Center

19600 N.W. von Neumann Dr.
Beaverton, Oregon 97006 U.S.A.

Abstract

Although many models have been proposed for a union of functional and logic pr*
gramming styles, none yet has fulfilled the goals of being easy to understand, easy t o
use and straightforward t o implement efficiently. This paper presents a union of these
styles in a language called F+L and discusses some aspects of the semantics and imple-
mentation of this language. Some interesting programming issues a re revealed through
examples.

F+L combines functional programming with Horn-clause logic and can be under-
stood a s a logical language with interpreted equality. I t s semantics provide both a
function space and relations over the non-functional semantic values. We outline a
strategy for a n efficient implementation by compiled graph reduction.

1. Introduction
There have been many proposals t o merge functional and logic programming styles

into the framework of a common language. In these proposals, two basic ideas come t o
light: (I) Add equations to a Horn-clause logic. This will impose a congruence upon the
Herbrand universe of terms. (11) Add logical variables and unification t o a n equational
logic. This can al ter the interpretations of equations customarily given for a functional
programming language. Most of the combined logics languages involve both of these
ideas.

When a Horn clause programming logic is enriched with equations, interpretation
of the combined logic no longer constructs a free Herbrand model. In order t o obtain a
complete resolution proof strategy, unification must also take account of the
congruences of terms. A substitution S unifies a pair of terms tl, t 2 relative t o a n equa-
tional theory E if S(t l) % S (t 2) The ordinary unification algorithm is generalized t o
Eunification if i t computes most general unifiers relative t o a n equational theory.
Unfortunately, convergent algorithms for E-unification are known only for fairly simple
theories. For a theory as rich a s elementary arithmetic, equivalence of terms is unde-
cidable and hence there can be no convergent algorithm for E-unification.

Consequently, a programming language based upon Horn clause logic enriched
with equations may employ a n incomplete resolution proof strategy1. Resolution offers

The research reported in this paper has been partially supported by the National Science Foundation under
Grant No. DCR-8513572.

' Of course Prolog, even without equations, does not employ a complete proof strategy because i t uses depth-first
search in i ts attempt t o Rnd a proof quickly. This incomplete proof strategy is efficient, but is often troublesome to
logic programmers.

Kieburts Functions + Logic February 26, 1987

no advantage over reduction t o perform computations in a type t h a t can readily be
axiomatized by an equational theory. Such computations can be programmed function-
ally. Computation by resolution is useful t o produce values in a non-algebraic type for
which a n equational axiomatization is not natural . (Of course a non-algebraic type
may use algebraic values in i ts representation.)

When logical variables are allowed in the terms of an equation, we must be precise
about the interpretations t o be given t o the equations. In a purely functional program-
ming language the equations have no free variables. Every variable occurring in an
equation is universally quantified (we also say lambda-bound). When logical variables
are introduced, they may have free occurrences in a n equation. Some designers of
merged languages have chosen t o interpret free variables a s singly bound [Lin85,Red86]
and some as multiply bound [GoM86, Smo86] or set-valued [DFP86].

When equations as well as Horn clauses are resolved by unification, rather subtle
logical problems can arise. In equational logic, equality has the substitution property; a
right-side expression can be substituted for a left-side expression (or vice-versa) without
changing the meaning of a context. However, when the meaning of a n expression is
resolved by unification with the left side of an equation, a variable free with respect t o
the equation may become bound. Such a binding becomes a side effect of having used
the equation. I t is easy t o demonstrate a n incongruity by a foolish example:

def foo nil = 3:
let i = foo x in
5.x

The let-defined constant i is never referred t o in the principal expression, yet if the let
clause were evaluated anyway, the free variable x would be bound by unification. Does
the expression have a value?

Another incongruity can occur if logical variables are interpreted as multiply
bound and equations are resolved by unification. In each instantiation of a n equation, a
logical variable might take a different binding. Evaluating the same applicative expres-
sion in subsequent iterations of a segment of program can result in different values,
because different bindings obtain for some variable t h a t occurs free in a n equation t h a t
is resolved. The meaning of a n equation must then be explained a s a relation entailing
the values i t equates and the values of i ts free variables [DFP86].

Although there are explanations for these phenomena, we have reservations about
programming languages t h a t manifest apparent incongruities of meaning. F+L is a
rather conservatively designed language in which the meanings of programs will hope-
fully be obvious. Eqlog [GoM86] is an equational language designed t o respect the
integrity of the underlying logic. The designers of Eqlog have been somewhat more
adventuresome with respect t o implementation strategies, however. An F+L implemen-
tat ion can be nearly as efficient as t h a t of a purely functional programming language.

2. Programming logics
A pure, functional programming language is an equational logic, usually subjected

t o syntactic restrictions t h a t make i t easy t o give a weakly constructive interpretation2
t o the equations. T h e equations t h a t define functions are oriented from left t o right so

We say weakly constructive because there is no guarantee that the evaluation of an expression will terminate.

2

Kieburtc Functions + Logic February 25, 1987

t h a t evaluation can proceed by reduction, or term-rewriting. Equations are commonly
constrained t o be left-linear, t h a t is, no variable has a repeated occurrence in the left-
hand side of any equation3. In order t o make it easier t o do efficient pattern-matching
and t o impose a notion of consistency on a system of equations, the set of constant sym-
bols can be partitioned into defined functors and free constructors. Under the free con-
structor discipline, a left-hand side term may contain nested constructor applications
but is allowed t o contain a t most one occurrence of a defined functor, which must be in
the function position in the outermost application.

Equational languages of this kind have a well defined semantics, or model theory.
The standard models are algebraic, weakly constructive, and the semantic domain con-
tains i t s function space. Functions of any order can be defined in a n equational
language. Least fixpoints of recursive equations are computable whenever they exist.
Completeness of a n interpretation is assured by following a deterministic computation
rule, the rule of normal order reduction.

A non-equational logic is usually given semantics by a Herbrand model. Without
further restrictions, this tells very little about the properties of a model. For a pro-
gramming logic, a weakly constructive interpretation is required. Accordingly, the syn-
t a x must be restricted so t h a t quantifiers are not interleaved, conclusions are unequivo-
cal, and a positive conclusion cannot be inferred from a negation. Horn clause logics
meet these requirements, and we shall henceforth restrict our attention t o these as our
non-equational progrmming logics.

Even with the stringent restriction t o Horn clauses, we are not guaranteed of alge-
braic properties of a model, nor given conditions for a deterministic evaluation strategy
t h a t will ensure completeness, short of basing evaluation on a complete proof theory4.
Nevertheless, logic programming has some significant advantages. The semantics of
predicate symbols are relations over the domain of ground values, and the relations
need not be functional. Sets are expressed very naturally by characteristic predicates.
Arbitrary projections of an undirected relation can be taken, whereas functional rela-
tions are directed; a function can only be applied. Logic programmers also advertise
the advantages of demand-driven scheduling of evaluation, but this advantage is also
inherent in functional programs with lazy evaluation [Joh86].

The advantages of a language tha t provides equational logic, Horn clause logic,
free constructors and embeds semantic algebras for arithmetic and boolean domains are
that :

a) Equational logic is a n expressive notation in which t o describe functions on an alge-
braic domain;

b) Horn clause logic is quite relations.

I These are useful even for
domains they are essential - 6 h t e-i -- CP-

c) D a t a structures built with free constructors allowf
values t o be embedded; I t is unreasonable t o handicap programming with a language I

a The language OBJ2 and i t s derivatives lOBJ85) do not require left linearity, but a t the cost or less efficient
pattern-matching.

'This i s not generally considered feasible because i t requires breadth-first search, which can be costly beyond any
complexity bound. Some Prolog implementations have experimented with depth-bounded search, which simulates
breadth-first search only if depth-first search t o some previously determined depth bound fails.

Kieburtr, Functions + Logic February 25, 1987

t h a t is natura l for only one type of domain.

The challenge in combining these logics in a single programming language is how
t o give a coherent semantics t o the combined logics, while respecting the integrity of
the logic. Once the semantics is understood, implementations of the semantics will be
relatively straightforward t o design.

2.1. Equality interpretations
I t is essential t o understand the interpretations of equality t h a t are possible in the

combined logics. There is potential for confusion because the interpretations made of
equality depend upon the syntactic context of an occurrence of the equality symbol.
Equality is expressed as a relation on terms, but may be interpreted either on terms
themselves (intensional equality) or on the meanings of terms (semantic, or extensional
equality).

Boolean-valued equality. A Boolean-valued expression may select an a rm of a condi-
tional expression. This forces a very strong interpretation on the equality predicate.
This equality interpretation is a (partial) decision procedure for the semantic equality
of expressions. I t requires construction of an explicit demonstration t h a t the two argu-
ments of a n equality proposition have the same value or t h a t their values differ. The
arguments must generally evaluate t o ground terms, for if they were t o contain free
variables, then the equality would have t o be demonstrated for all possible valuations of
the variables.

It is only possible t o have a constructive interpretation for Boolean-valued equal-
ity if i ts domain is restricted t o a type of finite elements. By this we mean a type all of
whose values are finite elements of a semantic domain. Thus int and list(int) are
admissible types for Boolean-valued equality, while int-int and stream(int) are not.

Definitional equality. The equality of definitions is given a more liberal interpretation.
Definitional equality is extensional, but since no decision procedure is required, the type
of this equality is unrestricted. Terms containing variables may be defined as equal,
with the understanding t h a t the equality holds for all possible valuations of the vari-
ables over their types. The property of referential transparency of expressions is a
consequence of the fa& feat definitional equality is given this interpretation. I t is not

k
the same interpretation glven t o the assignment operator ':=' in imperative languages.

A
Predicated equality. A Horn clause logic can have a n interpreted equality predicate.
Logic terms in a Horn clause are tested for satisfiability; a query asks for the set of
bindings for logic variables for which a clause is satisfiable. Satisfiability of equality is
constructive if there is an effective decision procedure for the equality of non-ground
terms and weakly constructive if there is a semi-decision procedure. In a free Herbrand
model, unification gives an effective decision procedure for equality of first-order object
terms.

In conjunction with an equational logic, a set of Horn clauses may admit non-free
models. A partial semi-decision procedure for equality can be gotten by the two-step
process of (1) reducing the arguments of a predicated equality t o normal forms accord-
ing t o the equational theory, followed by (2) unification of the reduced terms. This is
the process of narrowing [Fay79, Hu180, Red861. Unification alone can only demonstrate
the intensional equality of reduced terms t h a t belong t o types of finite elements. I t can
provide only a part ial decision procedure for semantic equality, even if the reduction of

Kieburtt Functions + Logic February 26,1987

terms were known t o terminate.

I t has been proposed t o strengthen the decision procedure by using semantic or E
unification (GoM86, SuY861. This would provide an extensional equality interpretation
for predicated equality in the presence of an equational theory. Unfortunately,
unification relative t o a theory is not known t o be complete except for rather simple
theories. In particular, i t is necessarily incomplete for the theory of elementary arith-
metic, whose equality is undecidable.

3. F+L - a language with functions plus logic
F+L is a programming language tha t integrates equational definitions, algebraic

expressions, and positive definite Horn clause logic. I t is evaluated by reducing applica-
tions of defined functors t o canonical reduced terms and by narrowing t o bind logic
variables in order t o satisfy constraining propositions.

F+L has a type system similar t o the Milner type system for a purely functional
ML [Mi178]. Not much will be said about typed terms in this paper. Types are
assumed t o be gotten by type inference rather than by explicit declaration. The reader
should keep in mind t h a t we are discussing a typed language.

An abbreviated F+L syntax is presented in Table 1 t o assist in reading the exam-
ples. The alternative forms for each syntactic category are listed in order of pre-
cedence; the first listed form is more tightly bound t h a t those t h a t follow. Patterns
(abbreviated as pat in Table 1) is a subclass of expressions with no operators other than
free constructors. The identifier in the applicative position in a n application pattern
must be a free constructor declared by i t s occurrence in a type definition

A new type can be specified a s a disjoint union of injections from constituent
types. The type definition declares names, arities, and types for the constructors of a
disjoint union in a pattern-structured syntax. This scheme of notation has been used in
several functional programming languages.

The constructors declared in a type definition are distinguished from functor symbols
declared in equations. Constructors are free, defined functors are not free. The literal
constant symbols of a n algebraic type, such as true and false, or numerals for the
natural numbers or integers also have the s t a tus of free constructors.

Table 2: Syntax of type definitions

We impose a requirement t h a t constructors are free and functors are non-free
through a convention called the free constructor discipline. If a system of equations E
entails the congruence of expressions Cl(x) and C2(y), where C1 and C2 are different
constructors5, then E is inconsistent with the free constructor discipline. Conversely, if
there is a well-typed functor application f e l , . . . , e n whose E-congruence class con-
tains no canonical constructor expression Ci(x), then E is incomplete with the free con-
structor discipline. If an Econgruence class contains an irreducible functor application,
but no canonical constructor expression, then the system E is finitely incomplete.

It ir, understood t h a t t h e constructor applications could also be nullary.

type-dejn ::=

disjoint-union ::=

type-expr ::=

type id {(type-war[, type-war\)) is disjoint-union;

id ((type-expr
id {(type-expr

-, type-expt')) [+ disjoint-union]
, type-expr)

Kieburts Functions + Logic February 26,1987

Braces {,) are meta-symbols indicating zero or one occurrence of the enclosed text.
Brackets [,I indicate zero or more occurrences.

In a semantically meaningful F+L program, an equational theory must neither be
inconsistent nor finitely incomplete with respect t o the free constructor discipline.
Although these conditions are undecidable in general, i t is well known t h a t for equa-
tional theories alone (that is, without Horn clause logic) t h a t if the left-hand sides of
equations have non-overlapping patterns (no critical pairs) they are consistent. If the
set of left side patterns covers all constructor patterns, the equations are not finitely
incomplete. Neither of these restrictions is necessary, however, and they are not
enforced for F+L programs.

variable, constant

empty list
constructor application
constructed list
s tream
tuple

application
set expression
algebraic expression
algebraic expression
list construction
stream construction
tuple construction
Abstraction
conditional

equational definition
constrained expression
predicate definition
case expression

pat ::=

7

ezpr ::=

prop ::=

logic-defs ::=

clauses ::=

eq-dejs ::=

equat ions ::=

case-inst ::=

Table 1: Abbreviated syntax of F--L
i d
n u m b e r
character
string
nil

id (pat [, pat]
pat . pat
pat : pat
p a t , pat O pat]
(pat)

pat
e zpr e zpr
'< ' pat I Prop [t prop] 3 '
ezpr operator e zpr
operator e zpr
e zpr . ezpr
ezpr : ezpr
ezpr , ezpr [, ezpr]
pat . ezpr
i f ezpr then ezpr else ezpr
ezpr where var id [, id]
l e t eq-defs in ezpr
let prop [, ~ r o p] {var-decl} in ezpr
de f logic-defs in ezpr
case ezpr in case-inst [I I case-inst] end
(e z p r)

i d (ezpr 1, ezpr])
clauses [and logic,dejs\

id (pat) {:- prop [, prop]) I I clauses]
equat ions land equations]
id { p a t Ipat)) = expr [(I equations]
pat : ezpr

Kieburtc Functions + Logic February 26,1987

The left side terms of both equational definitions and Horn clauses are syntacti-
cally restricted by the free constructor discipline, since a pattern cannot contain an
occurrence of a defined functor.

Observation 1: A pattern more complex than a single variable cannot unify with the
left side of a defining equation.

The free constructor discipline limits the expressiveness of the Horn clause logic.
If a n equational theory is consistent and finitely complete with respect t o the free con-
structor discipline, then properties of equationally defined functions cannot be predi-
cated by the restricted Horn clause logic. Although equality can be predicated in the
logic, finite completeness assures tha t no irreducible functor terms will be equated by
unification in resolving a predicated equality, since reduction of terms precedes
unification. Conversely, resolution of a predicated equality fails on an a t tempt t o unify
dissimilar constructor terms.

Observation 2: If an equational theory is consistent and finitely complete, i t remains
so with the addition of Horn clauses respecting the (syntactic) free constructor discip-
line.

Under the free constructor discipline, Eunification is also simplified with respect
t o the general case. If a well-typed propositional expression p contains a s an argument
a term t = f el, . . . , e n but t is not an instance of one of the left sides of the equa-
tions defining j , then t must be unifiable with the left sides of one o r more of these
equations. After choosing an equation and unifying, the substituted term t' reduces.
Thus from p is obtained a finite set of narrowed propositions t o be resolved. The nar-
rowing steps may be recursively repeated until the set of propositional terms contains
no occurrence of a n unreduced application of j.

Observation 3: Under the free constructor discipline, and for an equational theory E
t h a t is consistent and finitely complete, narrowing is relatively complete as E-resolution
for Horn clause logic. If the equational theory is also noetherian, then narrowing rela-
tive t o E gives a complete proof theory for positive definite Horn clause logic.

The second assertion of Observation 3 can be proved by a recursive-path ordering.

The free constructor discipline ensures a comfortable marriage of equations and
Horn clause logic.

3.1. Logical variables and constrained expressions
The syntax and semantics of equational definitions in F+L are largely inherited

from LML [Joh83]. In F+L, however, logic variables [Lint351 may occur in expressions
along with universally quantified variables. The fact t h a t reductions produce canonical
reduced terms, not necessarily values, is a consequence of the introduction of logical
variables. In another departure from its parent language, applications of functions and
constructors (other than the stream constructor, ':') are strict. Streams are introduced
as distinct types, not t o be confused with list types.

A canonical reduced term (henceforth called a cart) is either a basic value (i.e. an
integer, character or boolean value), an unbound logical variable, a canonical construc-
tion of ca r t s or the abstraction of a cart . Thus, the terms we are accustomed t o
regarding as canonical value terms of a functional programming language are carts, but
a ca r t may also contain occurrences of unbound logical variables. A non-canonical
expression, such as 3+u, where u is a logical variable, is not a car t . In fact , an

Kiebwts Functions + Logic February 26,1987

a t t empt t o evaluate a non-ground, non-canonical expression such as 3+u will be
detected as a n error, since the algebraic operator '+' expects i t s arguments t o be values.
The notion of ca r t is derived from [Lin86] although the present author is t o blame for
introducing the name.

A def clause consists of a sequence of Horn clauses defining a set of predicate
symbols. Every variable occurring in a Horn clause is considered t o be bound and can-
not be confused with a free variable. A Horn clause

P(x l J ..., zn) :- Ql(...), . . . , Qm(...)

is implicitly quantified as

+f 21 ,..., x,, . P (Z ~ , . . . , X ~) :- 3 y1j...,yk.Q1(...), - . , Qm(...)

where the yll...,yk includes all variables different from the xl, ... ,x, t h a t occur in the
terms on the right side of the clause.

A logic variable is introduced in a let clause6, for instance

l e t var x i n expr

An expression t h a t contains occurrences of a logic variable has the same operational
semantics as any other expression in which free variables occur; a ca r t is computed by
reduction in an environment, p, t h a t maps variables t o carts. An environment defining
car ts for the lambda-bound, or universally quantified variables of a function definition is
gotten a t each application of the function by matching arguments t o variables by posi-
tion. An environment t h a t defines car ts for logic variables is computed by resolving the
definitions of predicates, in order t o satisfy a propositional constraint.

A logic variable may be bound by narrowing. This occurs a s a consequence of
satisfying a constraint. A constrained expression has a let clause t h a t consists of a con-
straining proposition, rather than a n equational definition. For instance, the con-
strained expression

l e t P(x) var x i n expr

has a ca r t relative t o an environment p such tha t P (p (x)) is satisfied, otherwise i t is
undefined. The proposition P (x) constrains the interpretations allowed for expr.

A constraining propositional term need not contain an explicit occurrence of a
logic variable in order t o narrow i ts interpretation. Since a logic variable can occur as
an argument in an applicative expression, it may be constrained by the definition of the
function t h a t is applied.

3.2. An example: binding definitions
The following example is a n adaptation of one t h a t has appeared in the logic pro-

gramming literature [AdF86,Red86]. (Unlike Prolog, there is no syntactic significance
t o the use of capitalized identifiers in F+L. For readability, the syntax allows the
abbreviation [a: b: c] for an explicit list construction a. b. c. n i l in patterned
expressions.)

A where clause would d o as well. The reason that logic variables are introduced explicitly rather than impli-
citly as in (Ling51 is t o avoid the accident of having a misspelled identifier introduce a new logic variable.

Kieburts Functions + Logic February 26, 1987

Example 1: binding definition6

type Term i8 DEF (char) + USE (char) :
def Member (a, (a. S))
I I Member (a, (b. S)) : - Member (a, S)
in
letrec

defseq (USE (x) . seq) n T = let Member ((x, i) , T) var i in
i:defseq seq n T

I I de f seq (DEF (x) . seq) n T = let Member ((x, n) , T) in
defseq seq (n+l) T

1 1 defseq nil n T = 0:s where var s in
- - 0 is a sentinel value marking the end of a stream of output

let input =
[USE ('B') :DEF ('B') :USE ('B') :USE ('A') :USE (C) D F (C) D F ('A)] in

defseq input 1 Table where var Table

In this example, d e f s e q is a function t h a t maps i ts first argument, a list of type
Term, t o a list of natura l numbers. The output stream7 is the image of the sequence
of USE terms in the input list. The value associated with each USE (i d) is the index
of a corresponding DEF (i d) in the sequence of DEF terms in the input list. The
second argument t o d e f s e q is the index t o be given to the next DEF term encoun-
tered. The third argument represents a table which associates identifier characters
with the index of a DEF term t h a t contained the identifier.

The predicate Member represents the relation tha t an identifier-index pair exists
in the table. The result of evaluating this program is the sequence [I: 1; 3: 23.

In the first of the defining equations for d e f s e q , the expression on the right side
is constrained t o have a ca r t in an environment in which the proposition
Member ((x , i) , T) is satisfied. This constraint may narrow either the interpretation
of the identifier i or t h a t of T depending on whether or not the table contains an ass*
ciation pair for x when the constraint is enforced. Note t h a t T a b l e is introduced as
a n unbound logical variable in the applicative expression in the last line of the program.

The second defining equation for d e f s e q is constrained by the proposition
M e m b e r ((x, n) , T) , which may narrow the interpretation for T, and may also possi-
bly narrow the interpretation of instances of the variable i t h a t were introduced by
reductions of d e f s e q applications t h a t matched the first equation.

I t is inconsequential t o this example whether or not the language definition
specifies lazy o r str ict evaluation rules for function application or list construction.
Logic variables are inherently lazy.

This example could also be programmed entirely in Horn clause logic. To do so,
the functor d e f s e q of the F+L program is replaced by a four-place relation symbol,

' Output is a stream in order t o obtain incremental evaluation, since the list constructor i s strict in F+L. The
program would still work if the output were presented in a list, but evaluation would then not be incremental.

Kieburts Functions + Logic February 25,1987

r-defseq ((USE (x) . seq) ,n,T, i. outseq) : -
Member ((x , i) , T) , r-de f seq (seq, n , T, outseq)

1 I r-def seq ((DEF (x) . seq) , n, T, outseq) : -
Member ((x, n) , T) , r-defseq (seq, (n+l) , T, outseq)

I I r-defseq(nil,n,T,outseq)

and the expression applying the functor t o a n input list becomes a propositional query:

?outseq i n r-defseq (input, 1, T, outseq)

As a program, this version is harder t o read because the essentially functional
nature of the relation expressed by de f seq is not manifest. Mode declarations would
help, but the program is certainly less clear without the use of equational logic t o
express functional dependency.

The same example can also be programmed in a functional language with lazy
evaluation rules. Here is a program in LML:

import type Term = DEF (char) + USE (char) :
letreo

lookup x ((y,n).s) = if x-y then n
else lookup x s

and
enter a nil = [a]

1 1 enter a (b. s) = b. enter a. s
and

def seq (USE (x) . seq) n T =
l e t (outseq, T) = defseq seq n T in
lookup x T. outseq, T

(I def seq (DEE (x) . seq) n T =
defseq seq (n + l) (enter (x,n) T)

I I defseq nil n T = nil, T
in
fst (defseq input 1 nil)

In this version of the program, we need to express the relation of the association list t o
the input sequence functionally. This has two obvious consequences. I t is necessary t o
replace the predicate Member with the definitions of two functions, lookup and
enter . I t is further necessary t h a t the function defseq must return a pair of values,
the desired output list and a n auxiliary list representing the association list. The need
t o separately define functions for table entry and lookup is not a serious flaw because it
does not make the program harder t o understand, but introducing a spurious value a s a
component of the result of a defseq application is distracting.

There is a more disturbing consequence which is not so obvious. Even though lazy
evaluation is the computation rule (evaluation fails under a call-by-value rule), the out-
put sequence m e produced incrementally! When the program is executed, the

rs wt

Kieburts Functions + Logic February 25,1887

$4
first element of the output sequence-printed until the entire input sequence
has been read, even though the definition of the first USE occurrence has been read ear-
lier. This c rcumstance arises because the association list cannot be constructed until
the n i l V&U marking the end of the input has been seen. Even though entries are
inserted only at the tail end of the association list, there is no way t o express in the
syntax of the functional language t h a t an initial sequence of the association list is never
changed by inserting a new value.

T h e two versions of the program t h a t make use of Horn clause logic express the
construction of the association list with the use of logical variables as placeholders,
rather than by suspending construction of the list itself. Logical variables provide a
finer-grained unit of delayed evaluation.

It is important t o allow incremental evaluation when the programmer intends it.
A problem t h a t functional programming languages have not solved is t o produce multi-
ple output lists without synchronous coupling. If the output lists are produced totally
independently, then expression a s a pair of lists is satisfactory, but if there is a depen-
dence between them, i t is difficult t o avoid the problem illustrated by the defseq
example. The introduction of logical variables appears t o provide a way t o accomplish
this. A further consideration, not elaborated on here, is the fact t h a t synchronously
produced result sequences may be asynchronously consumed. This can lead t o the
storage management problem known as "space leaks" [Wad86].

3.3. Referential transparency

As mentioned before, the property of referential transparency is a consequence of
equational logic. I t cannot be compromised by introducing logical variables if we are t o
respect the integrity of the logic.

Observation 4: Let p be an environment such t h a t expr has a ca r t relative t o p. If e
has a n occurrence at i in expr, and if ReduceE I e 1 p = v , then ReduceE I ezpr [i t v] l p
= ReduceE I ezpr I p.

Here, ReduceE is the operation of reduction modulo a term rewriting system E.
The computation of a n environment in order t o satisfy a constraining proposition

is not a side effect, since the proposition must be satisfied in order t h a t the car t of a
constrained expression is defined. Furthermore, a subsequent evaluation of the expres-
sion in the same environment cannot produce altered bindings because the constraining
proposition will already have been satisfied. This principle answers the question a s t o
whether logical variables can have multiple bindings in a language defined as is F+L.

3.4. Set-typed expressions

Logic clauses can be used t o specify a set in terms of a characteristic predicate.
Generalizing this mode of specification slightly, a set is specified by a n expression for i ts
members, constrained by a conjunction of propositional terms. Variables t h a t occur in
the expression for members are quantified over the set expression. For instance, the set
expression

{ ~ (x , Y) I P (x , 3) * Q (X , Y) ~
denotes a set of car ts obtained by substituting in e the ordered pairs of ca r t s t h a t
simultaneously satisfy the constraining propositions P (x , 3) and Q (x, y) , and reduc-
ing the resulting expression instances. The variables are, of course, implicitly

Kieburtc Functions + Logic February 25, 1987

universally quantified in a set expression. q &k ~ 4 4 .
The representation of a set is elaborated a s a stream (a laz~lisj ,) , with possible

repetitions of elements. Stream access operations are defined on set-typed expressions.
T o compute an element of the stream representing a set , first compute an environment
in which the constraining proposition is satisfied. The bindings given by this environ-
ment are then used in reduction of the members expression8 t o a car t . The tail of the
s t ream contains the car ts t h a t result from additional bindings for the variables.

There & special casedof set expressions t h a t & worth mentioning. YIBnr

. . 0. When the predicate
expression is empty, then the set value consists of the values of the members expression
under all instantiations of the logical variables over their respective types.

When the evaluation of the members expression produces a ca r t t h a t is not a
ground value, subsequent evaluation of the program may narrow i ts interpretation t o a
single value. A non-ground ca r t cannot be presumed t o represent more than a single
value. In order t h a t the stream elaboration of a set expression can be complete, it
must .reduce repetitions of ca r t s in which the sets of occurring logical variables are dis-
joint. Upon repeated selection of i t s head, the head of i t s tail, etc., the set expression E @ evaluates t o a s t ream of fresh instances of non-ground carts. This mechanism is used in 3
Example 2 t o generate independent axioms from a list of axiom schemes.

This example is a resolution theorem prover for minimal combinatory logic. I t was
originally programmed in Standard ML as an example in lecture notes by G . Huet
[Hue86]. The first two axiom schemes are formulae for the types of K and S; the third
is the rule for application of a n arrow type. A proof of a formula is derived by a series
of arrow applications of the axioms for K and S, resulting in the formula t o be proved.
Derivations are constructed in reverse order by this program because i t proceeds back-
ward from the goal. The function a l l - p r o o f s produces a s t ream of traces of the
derivations found in constructing proofs of a list of desired goal formulae.

In the ML version, a unification algorithm had t o be programmed explicitly. A
term constructor t o represent variables was necessary, and new instances of axioms had
t o be constructed explicitly by generating new variable terms. In the version shown
above, the F+L implementation resolves logic clauses, and new instances of car ts
defined in the s t ream representation of a set are created each time the s t ream is
separated into head and tail. The function new performs this separation over a list of
set typed elements. appreciate the distinction between an axiom

IS represented a s a set expressio$in order t o provide for
independent n
4. A n evaluation strategy

Lazy evaluation of functional language programs requires the evaluator t o distin-
guish the representation of a suspended application from a canonical value. With lazy
evaluation, i t is no longer possible for a compiler t o embed in the compiled code an
accurate schedule for evaluating applicative expressions, as i t can for a call-by-value
rule. The abst ract architecture of a lazy evaluator depends on having tagged d a t a
objects.

We use the term "members expression" t o denote the part of a set expression preceding the stroke.

Kieburts Functions + Logic February 25,1987

Example 2: A prover for minimal combinatory logic

type term if3 CONST (int) + ARROW (term, term) :
let KS = (((ARROW(x,ARROW(y,x)), nil) I var x,y)).

(((ARROW (ARROW (x,ARROW(y,z)) ,ARROW(ARROW (x,y) ,ARROW(x,z))) , nil)
I vat x,y,z)).

(((y, [ARROW(x,y): XI) I var x,y)).nil:
-- Axiom schemes for miminal combinatory calculus.

letrec Resolve (goal.subgoals, (goal,hypoths).R, hypoths, R, 1, true)
I (Resolve (goals, a.R, h, S, i+l, success) :-

Resolve (goals, R, h, S, i, success)
-- i counts the number of steps to a successful resolution

and new nil = ni1,nil
((new (h. t) = let (nt, tt) = new t in

(shd h) . nt, (st1 h) . tt
-- forms a list of new instances from a list of axiom schemes.
-- shd and st1 are the head and tail operators on streams.

in
letrec

all-proofs nil $ = nil -- goals exhausted
I I all-proofs (($, $, $,nil) .Rest) Th = all-proofs Rest Th -- a proof path fails
(I allgroofs ((trace, goal .subgs, j , Axs) .Rest) Th =

let Resolve ((goal. subgs) , Axs, hyps, residue, i, success)
var hyps, residue, i, success)

and (insts,Th) = new Th in
if success then

case subgs @ hyps in
nil : (i+ j .trace) :

all-proofs (Rest @
[trace, goal. subgs, i+ j , residue]) Th

I I goals : all-proofs (Rest @ [i+j.trace, goals, 0, insts] @
[trace, goal. subgs, i+ j , residue]) Th

end
else

all-proofs Rest Th
and (KS-axioms,KS-Theory) = new KS
in a1 1-proofs [nil, [ARROW (CONST (1) , CONST (1))] , 0, KS-axioms] KS-theory

Unbound logic variables must also have a tagged representation in the abstract
architecture of a n F+L evaluator. A compiler can schedule the bindings of functional
variables. Binding occurs when a function is applied or a d a t a structure is built t o
represent a suspended application. Bindings of logical variables cannot be statically
scheduled, thus the occurrences of variables must be representable in a similar manner
as are values. ,

This similarity suggests t h a t a tagged-memory architecture for evaluating purely
functional programs by graph reduction might be equally a s suitable for evaluating

Kieburts Functions + Logic February 25, 1887

F+L programs. Gary Lindstrom has observed t h a t a reduction mechanism can be used
to evaluate logic programs [Lin86]. The capability for lazy evaluation of applicative
expressions is required because F+L has stream-typed objects, thus the abstract
machine's d a t a types are:

(CT) canonical term
(App) suspended application
(Ubv) unbound variable

T h e action t h a t can be taken on a d a t a object depends upon the demand of the opera-
tor t h a t is applied. Algebraic operators, such as '+', '&', '<' demand evaluated argu-
ments. T h e EVAL combinator t h a t is compiled when lazy evaluation is the rule
demands only a suspension. A free constructor, viewed as a n operator, demands only a
cart . The following table gives the operator application rules for the machine d a t a
types.

Demand Tag Action
value C T apply the operator directly

App fail with an error9
Ubv error notification

suspension C T apply the operator directly
App evaluate first, then apply operator
Ubv error notification

car t CT apply the operator directly
App apply the operator directly
Ubv apply the operator directly

O If a compiler emits correct code, this case should never occur.

4.1. Evaluating propositione

Although syntactic resolution provides a straightforward means for evaluating
propositions relative t o a set of Horn clauses, i t is rather expensive computationally.
Modern Prolog compilers eschew the unification of terms whenever possible, t o secure
better performance. In our evaluation strategy, full unification is used only t o evaluate
predicated equality. Resolution of every other propositional form is accomplished with
a unification compiled specifically for the term t h a t occurs in the head of a particular
clause. Thus specialized, term unification is little more than pat tern matching. In par-
ticular, the occurs check is unnecessary except when testing predicated equality.

A t the outset, Horn clauses are rewritten t o make predicated equality explicit. A
clause whose head contains repeated occurrences of a variable is rewritten, introducing
new variables t o make all occurrences distinct. For each new variable introduced, the
proposition of i ts equality t o the old variable is explicitly added t o the conjunct of the
right side. For instance,

P (x, x.S) : - Q (x, S) =$, P(x,y.S) :- y=x, Q(x,S)
This produces a logically equivalent clause, but operationally i t allows the unification of
repeated occurrences t o be deferred until after a goal term is successfully unified with
the head of a clause.

A proposition expresses a constraint on the values t h a t might be assumed by
unbound logical variables. Evaluating a propositional expression can produce bindings

Kieburta Functions + Logic February 26,1987

for previously unbound variables. We can explain in a semi-formal way exactly how
this occurs. This amounts t o a n operational semantics for propositions involving predi-
ca te symbols defined by Horn clause logicg.

The "value" of a proposition in a n environment is a new environment. Thus the mean-
ing of a proposition is an environment transformation. This is computed dynamically
by a t tempt ing to satisfy a set of Horn clauses. In case of failure, alternative clauses
must be tried. This backtracking can usefully be represented a s a continuation.

A predicate symbol P is defined by a set of Horn clauses having P-propositions a t
their heads,

We shall make use of the following types:

Semantic Types

For each predicate symbol P, defined by a se t of Horn clauses, there is a function
Resolvep : Term+Cont + C o d t h a t expresses the resolution of a proposition G against
the P-clauses:

Enu
Trans
Cont

Resolvep G w IC p =
case unify G with

P1 + p1 : let w' = Resolveplpl G w in
Satisfy Qsl d IC (plUp)

II P2 p2 : let w' = R e s o l ~ e ~ ~ ~ ~ , ~ , G w in
Satisfy Qs2 w' IC (p2up)

I I ...
II P, p, : Satisfy Qs, w K (p , ~ p)
11 $: O K p
end

The symbol '$' is a universally matching pat tern t h a t designates a default case
instance. The notations ResolveplP-,erucnce indicate residual resolutions with the P-
clauses less the clauses headed by members of P-sequence.

Vat-+Cart
E n m E n u
Trans-+ Trans

In this notation (which is not F+L), the ith case instance is selected by a successful
unification with the head of the ith clause, producing a unifying substitution (an
environment) pi. In t h a t case, a continuation expressing the resolution of the term with
all the remaining P-clauses is passed a s a n argument t o a function t h a t expresses the
result of satisfying the conjunction of propositions on the right side of the ith clause.
The continuation argument is invoked only in case of failure. When a continuation

Environments
Environment transformations
Continuations

O This operational semantics uses a leftmost, depth-first search strategy on a list of goal propositions and hence,
does not constitute a logically complete inference system for the logic. This can be remedied by adopting a modified
search strategy, such as incremented, depth-bounded searches.

Kieburt~ Functions + Logic February 26,1987

argument is invoked, all the bindings made on the way t o a failure are ignored.

A function t h a t expresses the computation of a n environment satisfying a conjunc-
tion of propositions is

Satisfy nil w K p = IC p
II Satisfy (Q.Qs) w K p =

let P(A) = Q in
Resolvep (Reduce Q p) w (Satisfy Qs w K) p

Of course the selection of a particular Resolve function is made by case selection on the
predicate symbol appearing in the goal term.

The meaning of a constrained expression,

let P (A) i n expr

relative t o a n environment p, is

ReduceE expr (Satisfy [P (A)] Fail IdTronB p)

where Fail is a system-defined failure continuation.

In denotational semantics, continuations were introduced t o explain discontinuous
control transfers, or go-to's. In the compiled implementation of a n F+L program, the
invocation of a continuation argument, which is seen t o be a tail-call in the description
of Resolve, is made by a direct control transfer, or g c ~ t o .

4.2. Compiled narrowing
In explaining the semantics, the resolution of a goal term P(A) with the heads of

P-clauses was described as a unification. A compiled implementation need not make
use of a general algorithm for every one of these unifications, however. Since pattern
terms are the heads of Horn clauses t h a t occur in the program text, a compiler can
analyze the set of P-clauses t o produce a unification algorithm custom-tailored for each
predicate symbol P. Recall t h a t resolution is restricted by (1) having required the free
constructor discipline in the heads of clauses, and (2) having transformed each clause
into a left-linear form with predicated equality in i ts hypotheses. Resolution thus res-
tricted can be compiled into efficient code by adaptating an algorithm t h a t compiles
matching of case-instance patterns in a functional programming language [Aug85]. We
shall illustrate with an example.

Suppose a predicate P is defined by a pair of Horn clauses,

P (C 1 (CO)) : - H1
I I P (C l (x)) :- H2

where H1 and H2 are lists of propositions, possibly empty. Then the Resolve function
produced by a compiler for these P-clauses would correspond to:

Functions + Logic February 25, 1987

Resolvep G w u p =
let P(A) = G in
def var x in
case A in

Ubv(vo) : let w' = Xu.Xp.Satisfy H2 w u ((vo,C1(x)).p) in
Satisfy H1 w' u ((vo,C1(CO)).p)

II CT(Cl(C0)): let &=Sat i s fy H2 win
Satisfy H1 w' IC ((x,CO).p)

I1 CT(Cl(y)) : Satisfy H2 w u ((x,y).p)
11 $: w r e p
end

Here, we have represented the bindings of logical variables as identifier-cart pairs, and
an environment as a list of such pairs.

In a compiled implementation, a logical variable is represented by a node in an
expression graph marked with a Ubv tag. There is no explicit representation for an
environment; i t is captured in the s t a te of memory representing the current expression
graph. The next version of the implementation is described a s an imperative procedure,
much closer in structure t o the code t h a t would be produced by a compiler.

declare resolveP procedure (G, w);
allocate Ubv(x);
let P(A) = G in
case A in

Ubv(vo) : label w': unbind [vo];
bind (vO,C1(x));
satisfy (H2, w);
end in

bind (vo,C1(CO));
satisfy (HI, w');

II CT(Cl(C0)) : label w': unbind [x];
satisfy (H2, w);
end in

bind (x,CO);
satisfy (HI, d) ;

II CT(Cl(y)) : bind (x,y);
satisfy (H2, w);

I1 $: got0 w;
end;

Since a n environment is represented by the s t a te of graph memory, a failure continua-
tion in the procedural implementation must "unbind" the logical variables bound en
route t o a failed unification.

The procedure t h a t does the work of Satisfy is:

Kieburta Functions + Logic February 25,1987

declare satisfy procedure (Gs, w);
case G s in

nil : return;
II (Q.Qs) : let P(A) = Q in

resolvep (A, w);
satisfy (Qs, w);

end;

5. Abstract interpretations
Compilation of F+L can be assisted by several abstract interpretations of a pro-

gram.

Type inference is an abstract intepretation computing the (polymorphic) type signa-
ture of each expression. I t is straightforward t o extend the interpretation t o predicate
symbols, computing the type signature of the relation defined by each predicate. A
predicate P is badly typed if the most general types inferred from the clauses defining
P fail t o have a least upper bound in the type system.

Mode analysis tries t o determine for each occurrence of a logic variable in the literal
terms of a Horn clause whether the variable will definitely be bound t o a canonical
value when the literal is t o be satisfied (input mode), will definitely not be bound but
may acquire a value if the literal is satisfied (output mode), o r might fall under either of
these cases (indefinite mode). Mode analysis has been proposed as a n aid in compiling
control for logic programs (Nai851.

When applied t o the implementation scheme we have outlined, knowledge t h a t the
ith argument of the head of a clause has a definite input mode would mean t h a t in the
case analysis of this term a s a pattern, the test for a Ubv in the ith position of the goal
proposition could be omitted. Conversely, if the ith argument has a definite output
mode, then a matching proposition must not have a canonical term in the correspond-
ing position and the test for a CT tag can be omitted. When the mode of a n argument
is indefinite, no such optimization is applicable.

V-strictness is the property t h a t the argument of a function must be a canonical term
value, not a n unbound logical variable. The property is defined by analysis of a set of
defining equations.

Definition 1: We say of a n equation

t h a t E is V-strict at the ith place, l < i < n , if either pi is not a simple variable, or
pi = z and z is str ict in e .

Definition 2: A functor j defined by a set of equations E = {El, . . . ,Em) is V-strict
in the ith position if 3 j , l < j < m , such tha t Ej is V-strict a t the i th place.

Definition 3: We say t h a t a variable z is V-strict in an expression according t o the
syntactic cases given in Table 3: Notice in particular t h a t an occurrence of a variable s
in a n arbitrary context is not a V-strict occurrence. In a n arbitrary context, one not
requiring t h a t z be evaluated, a logical variable will do as well.

When a variable occurs as an argument of an algebraic operator or as the discrim-
ination expression of a case or a conditional expression, i t s value is required t o reduce
the expression. I t is a n error if an unbound logical variable is encountered in such a

Kieburtc Functions + Logic February 25, 1987

position at the time the expression is t o be evaluated. Accordingly, a compiler must
either verify t h a t all such occurrences of variables have previously been bound at the
time t h a t a n expression is evaluated, or must insert a runtime check of the t a g on the
d a t a representation, t o confirm t h a t i t is not Ubv. T h e use made of V-strictness is t o
help a compiler t o avoid inserting these runtime tests whenever possible.

Accordingly, if an equation j pl ... xi ... pn = e is V-strict in the ith place because
the variable q is V-strict in e , we should like the compiled code t o check the t a g of xi
at most once in reducing an application of j . Using the information t h a t j is V-strict
in the ith position, the compiler can insert the code t o check the UBV t a g of the ith
argument expression of an application f el - . - en only if t h a t argument cannot be
confirmed to have a value at the point of the function call. This is directly analogous

Table
z is V-strict in:
z+e
e +z
(also for -,*,/, &, I,
=,'=,<,<=,>,>=)
- 2

- 2

i f z t h e n e l else e2

i f e t h e n e l e l s e e p

case z i n . - .
case e i n

P1 : e l

Pn : en
end

c (e)
e1,e2
e1.e2
el:e2
Xp.e p # z

e l e9
z is V-strict in:
j el...ei_] z ei+l...e,
l e t P (e l , ..., em) i n e

I

3: V-etrictness in an expreaeion
if z is V-strict in

e o r e l o r e 2

e or any of ei, 1 L i S n

e , where C is a free constructor
e l or e2
e l or e2
el or e2
e
e l or e9
if:
j is V-strict in the ith position
z is V-strict in e and i t is not the case that :
3 i , l s i s m and ei = z and
the ith argument of P has definite output mode,

or z is V-strict in any of the ei, or
3 i, l < i < m and ei = z and
the itT;argument of P has definite input mode

Kieburtc Functions + Logic February 26, 1987

t o the use made of strictness analysis t o permit call-by-value argument passing in a
lazy functional language.

Acknowledgements
Conversations over a period of time with Boris Agapiev, Gary Lindstrom, Jose

Meseguer, Harry Porter, Uday Reddy, Bar t Schaefer and Cliff Walinsky have helped the
author t o crystallize the ideas presented in this paper.

References
[AdF86] Adams, D. D. and Faget, J., "Logic programming viewed functionally,"

Proceedings of the 1986 Graph Reduction Workshop, San ta Fe, New Mexico,
1986.

[Aug85] Augustsson, L., "Compiling pattern matching," in Functional Programming
Languages and Computer Architecture, vol. 201, J. Jouannaud (ed.), Springer-
Verlag, 1985, pp. 368-381.

[DFP86] Darlington, J., Field, A. J . and Pull, H., ''The unification of functional and logic
languages," in Logic Programming: Functions, Relations and Equations, D.
DeGroot and G . Lindstrom (ed.), Prentice-Hall, 1986, pp. 37-70.

[Fay791 Fay, M., First-order unification in an equational theory, Proc. 4th Workshop on
Automated Deduction, 1979. pp. 161-167

[OBJ85] Futatsugi, K., Goguen, J., Jouannaud, J. and Meseguer, J., "Principles of
OBJ2," Proc. 12th A C M Symp. on Principles of Programming Languages, New
Orleans, LA., Jan. 1985, pp. 52-66.

[GoM86] Goguen, J . A. and Meseguer, J., "EQLOG: equality, types, and generic modules
for logic programming," in Logic Programming: Functions, Relations and
Equations, D. DeGroot and G. Lindstrom (ed.), Prentice-Hall, 1986, pp. 295-
363.

(Hue861 Huet, G., Formal Structures for Computation and Deduction, INRIA,
Rocquencourt, 1986.

[Hu180] Hullot, J., "Canonical forms and unification," in Proc. 5th Conf. on Automated
Deduction, vol. LNCS 87, W. Bibel and R. Kowalski (ed.), Springer-Verlag,
1980, pp. 318-334.

[Joh83] Johnsson, T., The G-machine -- an abstract architecture for graph-reduction,
Dept. of Computer Sciences, Chalmers Univ. of Technology, Gothenburg, 1983.

[Joh86] Johnsson, T., Attribute grammars and functional programming, Dept. of
Computer Sciences, Chalmers Technical University, Gothenburg, 1986.

[Lin85] Lindstrom, G., "Functional programming and the logical variable," Proc.
Twelfth A C M Sympos. on Principles of Programming Languages, New Orleans,
1985, pp. 266-280.

[Lin86] Lindstrom, G., "Implementing logical variables via graph reduction,"
Proceedings of the 1986 Graph Reduction Workshop, San ta Fe, New Mexico,
1986.

[Mi1781 Milner, R., "A theory of type polymorphism in programming," J. Computer and
System Sciences, vol. 17(1978), pp. 348-375.

Kieburta Functions + Logic February 26, 1987

[Nai85] Naish, L., "Automating control for logic programs," J. Logic Programming, vol.
2, 3 (1985), pp. 167-183.

[Red861 Reddy, U. S., "On the relationship between functional and logic programming,"
in Logic Programming: Functions, Relations and Equations, D. DeGroot and G.
Lindstrom (ed.), Prentice-Hall, 1986, pp. 3-36.

[Smo86] Smolka, G., *'FRESH: a higher order language with unification and multiple
results," in Logic Programming: Functions, Relations and Equations, D.
DeGroot and G. Lindstrom (ed.), Prentice-Hall, 1986, pp. 469-523.

[SuY86] Subrahmanyam, P. A. and You, J., "FUNLOG: a computational model
integrating logic programming and functional programming," in Logic
Programming: Functions, Relations and Equations, D. DeGroot and G.
Lindstrom (ed.), Prentice-Hall, 1986, pp. 157-198.

[Wad861 Wadler, P., "Fixing a space leak with a garbage collector," Proceedings of the
1986 Graph Reduction Workshop, San ta Fe, New Mexico, 1986.

