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ABSTRACT 

Message-passing multiprocessors hold the promise of low cost per node and a large upper bound on 

the number of nodes, and logic languages provide inherent parallelism to  exploit these multiprocessors. 

PARLOG is a very attractive language in this regard, because it  is designed for use in parallel systems 

programming. This paper presents an execution model and implementation strategy for PARLOG, 

based on the work of Crammond but extending the AND/OR-tree model to  a distributed processor 

network. Difficulties in adapting the execution model to a distributed system are discussed, some minor 

problems with the Crammond implementation are addressed, and examples of compiled programs and of 

execution are presented. The paper concludes with a brief discussion of the application of the model 

and execution strategy to  a transputer PARLOG system. 

This research was supported in part by National Science Foundation Grant No.  ECS-8400758 at the Oregon Graduate 
Center, where the second author is an adjunct professor. 



1. Introduction 

There has been a great deal of recent interest in message-passing multiprocessors, and there have 

even been some commercial introductions (e.g., the Intel hypercube and the N-cube hypercube). The 

primary attractions of an architecture based on message passing over one based on shared memory are 

that  a multiprocessor can be built a t  a lower cost per processing node and that  the practical upper 

bound on the number of processing nodes is much larger. However, the programming of such networks is 

still a t  a primitive level. In order to  apply the parallelism of the network to a problem, the programmer 

must first divide the given problem into a number of parallel communicating processes, and then must 

map these processes onto the network of processors. The use of logic programming languages holds out 

the promise of moving parallel programming to  a much higher level; these languages have inherent 

parallelism that  can be detected by the system and dynamically spread across the processing network, 

with reliance on load balancing to  keep all the processors reasonably active [PaB87]. 

PARLOG, designed for easy exploitation of parallelism and also for systems programming, is a 

strong candidate for this application. Guarded clauses are used in PARLOG to achieve the committed- 

choice non-deterministic solution of logic queries [ClG85,ClG86]. The guards allow each alternate 

clause of a predicate to  be tried in parallel; only a clause whose guard succeeds will commit to  further 

execution of the body of its clause. If more than one guard succeeds, then the system will non- 

deterministically choose only one clause to continue and will kill the rest. 

PARLOG also exploits stream AND-parallelism by executing the goals of a clause body as parallel 

processes. Stream communication is accomplished via the sharing of the logical variables ( a l a  

producer-consumer relations in CSP). This is signalled to the compiler by supplying mode declarations 

with each clause, declaring each argument either input or output. If a goal attempts to  unify a term 

with an unbound input argument, that goal suspends execution until some other goal provides a binding 

for the variable. Output arguments must come into the goal unbound, so that  the goal can bind these if 

a clause commits. 



A further advantage of PARLOG is its use of a specialized form of unification based on term 

matching and tests for syntactic identity [Gre85]. This is simpler, more efficient, and easier to  

implement in a parallel environment than full unification. This has the side effect of eliminating 

"multiple mode" programs, e.g., predicates that can be used both to  construct and break down data 

structures, but such programs can nearly always be replaced by a few more specialized predicates. 

The model presented here starts with Crammond's work [CrM84, Cra86] on executing PARLOG 

(and other committed-choice non-deterministic languages) on shared-memory multiprocessors, which in 

turn is based on the AND/OR-tree model of execution [CoK81,Con83]. To eliminate reliance on shared 

memory, the concept of ownership of variables has been added. Bindings are distributed throughout the 

network, and the setting and questioning of bindings is done via messages; the routing of such messages 

is related to  the structure of the PARLOG program that  is executing. Also, information about 

PARLOG processes must be maintained in a distributed fashion in the network. For this reason, a 

grandparent pointer has been added to the information recorded for each process; this aids in the 

promotion of child processes. Finally, some miscellaneous problems in adapting Crammond's model to  a 

message-passing architecture are dealt with. 

2. Execution Model 

As has been noted, the execution model given here is based on one proposed by Crammond 

[CrM84,Cra86]. The essential difference is that  this model assumes no global state; all transfers of 

information are made explicit. Crammond's model is therefore a subset of this one, suitable for a shared 

memory multiprocessor; this model is intended to be suitable for either a shared or distributed memory 

system. 

The concept of ownership of variables is an important addition. With no global state, each 

process must become responsible for any variables that  it  originates, i.e., that  are local to  that  process 

and its descendants. A process is said to  own its local variables, and other processes will supply and/or 

request bindings for these variables by communicating with the owner via messages, as described below. 

The owner also maintains a suspension list for each unbound variable, listing processes that  have 



requested a binding. 

Types of Processes 

As in Crammond's model, there are two process types, goal and clauee. It is important to  

note that  these are logical classifications; no record of the type of a particular process is kept a t  

run time. The compiler must generate for each predicate one subprogram that  acts as the goal 

process and one or more subprograms to  act as clause processes. The predicate is invoked by 

calling the goal subprogram, which contains instructions to  call the appropriate clause 

subprograms and wait for their results. 

Goal (OR process) 

Goal processes are responsible for creation of new processes to  solve each of the alternative 

clauses matching the goal, and may be promoted to  replace earlier goals of which they are 

known to  be the only remaining subgoals. 

Clause (AND process) 

Clause processes are created by goal processes, one for each alternative clause matching the 

goal. They are responsible for creation of new goal processes for subgoals in the right hand 

side of the clause. 

Process States 

The process states correspond to  those of Crammond's model, with the addition of a state for 

processes which have terminated. 

Runnable, Executing (RE) 

Processes in this state are (obviously) those which are currently executing. 

Runnable, Queued (RQ) 

Processes in this state are ready but waiting; this is the initial state of all processes. 



Suspended on Variable (SV) 

Processes in this state are waiting for an input variable to  be instantiated. 

Suspended on Children (SC) 

Goal processes waiting for a clause to commit and clause processes waiting for subgoals to 

finish will be in this state. 

Dead (D) 

The process has terminated, either as a result of an instruction or as a result of a message, 

but its process control block has not yet been deallocated. Processes which have terminated 

but are waiting for all of their children to  terminate will be in this state. 

Process Control Messages 

Process control messages are those that  can cause the recipient process to  change state or to 

send process control messages to  other processes, as well as provoking other actions. All processes 

must respond to  process control messages in the same ways a t  a11 times, because there is no 

differentiation of process types a t  run time and because the messages are asynchronously received. 

The messages described here are essentially identical to  Crammond's process signals, with the 

addition of the COMMIT message. 

DONE (goal process succeeded / clause process failed) 

Sent from child to  parent, this message causes the parent to  remove this child from its list of 

children. If the parent's state is SC and this is the last child, the parent's state changes to 

RQ. 

QUIT (goal process failed / clause process succeeded) 

Sent from child to  parent, this message causes the parent to  send KILL to  all its other 

children, send DONE to its parent, and change state to  D. 

KILL 

Sent from parent to  child, this message causes the child to  send KILL to  all its children and 



change state to  D. 

COMMIT 

Sent from child to  parent, this message causes the parent to  send KILL to  all its other 

children (but not to  the child from which the COMMIT was received). The parent ignores 

all subsequent COMMIT messages. 

Information Messages 

Information messages are those that transfer information from one process to  another, or 

tha t  request tha t  information be transferred. These messages do not directly cause the recipient 

process to  change state, although the information carried by a BIND message may awaken a 

suspended process. These have been added to  Crammond's model to  handle interprocess 

communication in a distributed memory environment. 

NEED(V) 

This message is sent by a process that  requires the binding of variable V to  the process that 

owns V. Possible responses of the receiver: 

(1) V is unbound - add the sender to  the suspension list for V. 

(2) V is bound - forward the binding to  the sender. 

BIND(V, T) 

This message signals that  a term T is to  be bound to  the variable V, and is sent in two 

cases: 

(1) From a process that  has found a binding T for variable V, to  the owner of V. The 

owner will ignore the BIND if V is already bound, and will delay the BIND if no 

COMMIT has yet been received. 

(2) From the owner of V to  a process that  has sent a NEED(V) message. When an owner 

receives BIND(V, T), it  immediately forwards the BIND to  all processes on V's 

suspension list. 



Process Execution 

Goal Processes 

The primary function of goal processes is the creation of clause processes, although some 

preliminary testing of arguments can be done a t  the goal level. A clause process is created 

for each clause of the goal, and the process then enters state SC. Possible outcomes are: 

(a) All children send DONE (failure) - the process sends QUIT to  its parent and 

terminates. 

(b) Any child sends COMMIT - the process sends KILL to  its other children and resumes 

waiting. If the last child sends DONE, the process sends QUIT to  its parent; otherwise 

(when the committed child sends QUIT), the process sends DONE to its parent. In 

either case, the process terminates. 

(c) Any child sends QUIT - the process sends KILL to  any remaining children, sends 

DONE to  its parent, and terminates. 

Clause Processes 

Four stages of clause process evaluation are outlined by Crammond [Cra86]: head unification, 

solving of guard goals, committing, and solving of body goals. In PARLOG, predicates are 

generally compiled to  a standard form [Gre85], so that  head unification and guard solution 

can be done in parallel. However, exploiting parallelism in this manner may require the 

creation of processes whose only purpose is to  perform the unification; it may be more 

efficient to perform some head unifications sequentially in the clause process, before creating 

new processes to  complete the head unifications and solve the guard. For this reason, and 

for reasons of clarity, head unification will be considered a separate stage in this model, as it  

is in Crammond's. However, the use of the COMMIT message and the parent's response to it 

make committing trivial, so it  is considered part of the solution of the guard. Execution of 

clause processes thus involves three stages. 



(1) Unification 

An attempt is made to unify arguments in the goal with arguments in the clause head. 

Possible outcomes are: 

(a) Unification fails - the process sends DONE and terminates. 

(b) Unification suspends - the process is switched to  state SV, an appropriate NEED 

message is sent, and the process resumes here when awakened. 

(c) Unification succeeds - the process continues immediately. 

(2) Solving the Guard 

The process spawns goal processes to  solve the guard, then enters state SC. Possible 

outcomes are: 

(a) QUIT is received from any child - the process sends KILL to its other children, 

sends DONE to its parent, and changes state to  D. 

(b) DONE is received from every child - the process sends COMMIT to  its parent 

and continues. 

(3) Solving the Body 

In order to  hold down the number of active processes and to  shorten the process trees, 

goals are reduced whenever possible to the system of body goals in the committed 

clause. As in Crammond's model [CrM84,Cra86] this is accomplished by promoting the 

body goals so that  they become the children of this process's grandparent and the 

siblings of the parent goal (see Figure 1). A process which is created in this manner is 

called a promoted process. There are two possible cases when the clause body is solved: 

(a) The body has no sequential conjunction - the process spawns promoted goal 

processes to  solve the body, sends QUIT to  its parent, and terminates. 

(b) The body has a sequential conjunction - the process spawns the first sequential 

part without promoting, then enters state SC. When DONE has been received 



from all goals in the first part, this case analysis is repeated for the rest of the 

body. Complex combinations of parallel and sequential conjunctions, such as 

must be resolved by the compiler, as will be explained later. 

3. Complications of Distributed Execution 

In addition to  the basic changes that  must be made to  the execution model, there are two more 

serious complications that  arise if it  is to  be used with a fully distributed system. The first, process 

promotion, applies to  any committed-choice non-deterministic language; the second involves 

communication of large structures, and is complicated by PARLOG's implementation of stream 

communications. 

3.1. Promoted Processes 

Promoted processes are a special problem for the use of variable ownership. The most significant 

problem arises when the parent must create new variables, which will then be passed to  more than one 

promoted child process. The spawner will be terminating, so it  cannot continue to  own the new 

variables. This problem can be easily solved by turning over ownership of these variables to the last 

promoted process spawned; this will be called inheritance of variables (see Figure 2). A consequence of 

this is that  the last promoted process must remain in existence until all of its siblings (and their 

descendants) have succeeded. However, because the promoted processes are goal processes, if any of the 

siblings fails the inheriting process can be terminated without further delay. 

The mechanics of promoting a process also cause some trouble in a distributed system. Every 

clause process must either know the identity of its grandparent or be able to  query its parent for this 

information, so that  the promoted processes can be told about their new parent and so the grandparent 

can be notified of the existence of new children. The costs of maintaining more information about each 

process and transferring more information when a process is spawned must be compared to  the cost of 

the communications necessary to  establish the new parent-child relationship. If both of these costs are 



(Ala) A1 <- G1 , G2 : B1 , B2. 
(Alb) A1 <- G3 , G4 : B3 , B4. 

Figure 1 - Process trees for the query "A1 , A2" a t  stages (a) solution of guards, before a clause for A1 
has committed; (b) committing of clause Ala;  (c) promotion of body goals B1 and B2; and (d) after ter- 
mination of Al .  



Figure 2 - Inheritance of variables in the sort-d relation. (This relation is from [ClG84].) The last pro- 
moted sort-d goal (5) inherits the variable list of its parent clause (2); the parent clause can then ter- 
minate. Variables whose bindings are known have been replaced by their bindings in the variable list 
(VL) to  show the relationship of the processes. 

I 
create and wait 

v 

very high, it  will be necessary to consider whether the benefits of process promotion (fewer active 

(2) 

processes, shorter process trees) are worth the extra expense involved. 

sort-d([3~11,4,2]],sort,[l) 

n = ~3.i,r,~~,3,~i.r,2~,x4,x5,~3~7~,x7 

It is important to  note that promotion can be done with only slight additional expense in the case 

of tail-recursive processes, even if it is not implemented in general. The tail call must be the last new 

(3) partition(3,[1,4,2],X4,X5) 

L 

process created, and can simply replace its parent by assuming its parent's identity, with the parent's 

variables inherited as described. This change of parent is invisible to  any previously created children, 

I 

promote 

and the only difference in the tail call process is that it  must differentiate between messages from its 

(4) sort-d(X4,sort,[3$7]) 

(5) 
sort-d(X5,X7,[I) 

= [3,1,4,2l,3,[1,4,2I,X4,X5,[3~7l,X7 



own children and messages from its siblings. The latter is necessary because this limited form of 

promotion introduces a case where a single process must play the roles of both clause (the original 

parent) and goal (the tail call) processes. 

3.2. Large Structures and Stream Communication 

In any distributed-memory system, it  may become necessary that  access to  a large data structure 

be provided to  a process executing on another node of the network. This is especially true in PARLOG, 

where processes are spawned to  examine structures such as potentially infinite lists in parallel with their 

generation. Whether for reasons of efficiency, because of limited message sizes, or because the entire 

structure has not yet been generated, it may not be possible to  transmit an  entire structure in a single 

message. Two possible solutions to  this communication problem are remote references and channels. 

3.2.1. Remote References 

Remote references provide a compact means for transferring information about data stored on one 

node to  a process running on another node. One form of remote reference, the logical variable, has 

already been addressed; information about the binding of the variable is maintained by an owner 

process, and other processes must communicate with the owner to  obtain or modify this information. 

This scheme can be extended to terms in general, using the same NEED and BIND messages for 

communication. Of course, remote references provide no savings in the case of small ground terms such 

as atoms and numeric values, so in practice it  is only necessary to use remote references for structures. 

Furthermore, the svspended on variable process state can be generalized to suspended on reference. 

The only information needed in a remote reference is the type of the term (e .g . ,  variable, list, etc.) 

and its remote address. The remote address includes the node on which the data is stored and an 

address (which need not be the actual physical address) of the term on that node. The type of the 

remote term is needed for efficiency; many decisions can be made based only on the type of a term 

without needing its actual value. For example, an attempt to unify an integer with a remotely 

referenced list can be completed (failed) without transmitting the components of the remote list. 



Remote references, including logical variables, introduce the need to  keep an accurate record of 

which terms must be retained in memory because their value may be required by another process, and 

which terms may be discarded and their storage re-used. Watson [Wat86] has proposed remote reference 

rights as a means to  handle reference counting on a distributed system; a variation of this scheme is well 

suited to the distributed PARLOG model, and is best explained by an example.t 

Let process A be the owner of a term a. When a reference to  a is to  be given to  some process B, 

the reference count for a is incremented by a predefined amount. This amount is sent to  B along with 

the reference to  a, and represents the number of remote references to a that  B has the right to hold 

and/or pass on. 

Only A can increment the reference count for a; if B wishes to  pass along a remote reference for a 

to  a third process C, B must reduce its own rights by the number of rights given to  C. B can give away 

all of its rights, but is thereafter not allowed to  make any request for the value of a. When B releases 

its remote references to a (e.g., when B terminates), it  sends a message to  A with the current rights 

value, and A decrements a's reference count by that  amount. Rights are not released when passed along 

to  another process. 

If B wants to  give away more rights than it  currently holds, it creates an indirect remote reference, 

and then gives away rights to  the indirect reference. However, an indirect remote reference may not be 

created if B currently holds no rights for a. Indirect references eliminate any need to  send a message to 

A t o  obtain additional rights, and prevent the possibility of such messages "crossing in the mail" with 

decrement messages, i.e., there is no chance that A will mistakenly think that a's reference count has 

gone to  zero. 

In the PARLOG model, remote references can be employed in two cases: 

(1) When processes are spawned, structure-valued arguments may be passed as remote references or 

may have remote references as components. 

t Example adapted from Foster IFos87]. 



(2) When a BIND message is sent, some components of structure-valued bindings may be remote 

references. Note that  it  is never sensible to  send a remote reference as the only value of a BIND 

message, since the fact that  a BIND is being sent indicates that  more detail about the binding is 

needed. 

Use of remote references in these cases will reduce the size of process creation messages and delay 

transmission of structures until some process is actually ready to  examine the contents. This may in 

turn reduce the number of messages, since communication will be more direct between the owner of the 

term and the process tha t  will examine it. Indirect references could increase the number of messages, 

but this can be held to  a minimum by adjusting the number of remote rights allocated. 

Remote references are also released in two ways: 

(1) When a BIND is sent in response to  a NEED, the remote references held by the "needy" process 

are released, because tha t  process now has a copy of the referenced term. 

(2) When a process terminates, all remote reference rights it  holds are released. This does not occur if 

the process is spawning promoted children; instead, the last promoted child inherits the parent's 

remote rights and indirect remote references, as well as the parent's variables. 

Releasing remote references requires a few changes in the model. NEED messages can carry the current 

reference rights for the term they request, which are then deducted from the count for tha t  term when 

the BIND is sent in reply. A new message, DECREMENT, is needed to handle rights released on 

termination; before a process completes, its list of terms must be searched and DECREMENT messages 

sent for any remote references it  holds. 

For the remainder of this paper, it  is assumed that  the remote reference rights technique is used to  

reference count logical variables, regardless of whether remote references are used in the general case. 

3.2.2. Streams and Channels 

One of the most important features of PARLOG is its use of stream communication between 

processes executing in parallel. Whenever a producer and a consumer goal share a common variable 



t which is eventually bound to  an incrementally generated structure, a stream is created between the 

producer and the consumer (see Figure 3). Each time the producer recursively spawns a new process to 

generate another element of the structure, and each time the consumer recursively spawns a new process 

to  consume that  element, the stream is extended to  these new processes. 

In fact, multiple consumers may be created for each new element, so the streams can branch 

arbitrarily; and the elements themselves may be variables whose bindings will be incrementally 

generated by some descendant of the consumer, requiring that new streams be established in the 

opposite direction. In a shared memory environment this is not a serious problem, for the streams can 

be logical "channels", with the bindings actually stored in memory and all access done by pointer 

traversal. In a distributed environment, however, the problem is a considerable one. There are two 

possible solutions: channels can actually be created, and extended as necessary; or true streaming can 

be abandoned, in which case all communications take place strictly a t  the level of NEED and BIND 

messages. 

Figure 3 - Streaming in the solution of the sort-d relation. 

t In [CIG84], streams were restricted t o  list structures; this restriction has since been removed. Note that  streams are not 
created for variables bound t o  ground terms. 



If true channels are to  be established, variables can carry a tag labeling them as owned or 

channeled. If the binding of an owned variable is required, a NEED message must be sent to  the owner 

of that variable; but to  get the binding of a channeled variable it  is only necessary to  wait for another 

value to  appear on the appropriate channel. 

There are two types of channels, incoming and outgoing. A process can have a t  most one incoming 

channel per variable, except under the following conditions: 

(1) The variable is owned by the process that  has the multiple incoming channels; 

(2) The incoming channels are all from children of the process; and 

(3) Neither COMMIT nor QUIT has been received from any child. 

There may be any number of outgoing channels for each variable. A process is responsible for copying 

to each of its variables' outgoing channels any bindings that  it  computes or that  are received on the 

variables' incoming channels or in BIND messages. 

Channeled variables, therefore, have a channel list rather than a suspension list; as incremental 

bindings for each variable are received, they are copied to  all outgoing channels on that  variable's list. 

Any process that  spawns multiple processes to  some non-ground component of the binding of a 

channeled variable, such as the tail of a list, becomes the local owner of that  component, and is 

responsible for maintaining a local channel list for purposes of forwarding multiple copies of further 

bindings. Otherwise, channels are simply extended to new processes that will use the tail. 

There are thus three ways in which channels and channeled variables can be created: 

(1) If a process spawns multiple children to  use a non-ground component of a channeled variable, that 

component is considered a new channeled variable and channels for it  are established between the 

parent and the children. 

(2) If a BIND for an owned variable is received and carries a partially bound structure ( i . e . ,  a 

structure containing logical variables), a channel is established between the receiver and the 

sender, and the type of the variable is changed to  channeled in both the sender and the receiver. 



(3) If NEED messages are received for a variable known by the owner to  be channeled, or if an owned 

variable with a non-empty suspension list is changed to a channeled variable, channels are 

established between the owner and all processes that have requested bindings, and the type of the 

variable is changed to  channeled in the requesting processes. 

Owned variables that  are passed on to  child processes are also tagged as owned in the child, so no 

channels are established until bindings are requested or (partially) supplied. When a process terminates, 

the closing of its incoming channels must be communicated to the processes a t  the other ends so that no 

further bindings will be output on those channels. 

The decision of whether to create dynamic channels or to  use messages for all communications 

must be based on the capabilities of the underlying system and the relative costs of creating and 

extending channels us. sending one or more messages for every element in a list. Channel creation and 

extension may add considerable overhead to  the spawning of new processes and to  the implementation 

of NEED and BIND messages. However, if the cost of sending a message is high, that overhead is 

probably preferable to  the large number of messages that  must be passed in the absence of channels. 

4. Implementation Strategy 

As with the execution model, this implementation strategy is derived from that  of Crammond 

[Cra86]. The changes that have been made are primarily those necessary to  eliminate reliance on a 

global address space. It should also be noted that this strategy is directed solely a t  developing a 

PARLOG implementation; Crammond's strategy was intended to support a variety of committed-choice 

non-deterministic languages. 

4.1. Problems with Crammond's Implementation 

The primary difficulty with Crammond's model has already been mentioned, i . e . ,  its implicit 

reliance on shared (or, a t  least, globally addressable) memory. Although this allows many of the signals 

and state changes to  be done very efficiently, it is not applicable to  a fully distributed execution model. 

In addition, an attempt is made to  address some other minor problems with Crammond's 



implementation. 

4.1.1. Performing KILL 

Crammond advocates a n  indirect implementation of the KILL message, wherein the status and 

commit flags of a process are examined by its children or grandchildren under specific circumstances. 

The descendants then terminate if they discover the process t o  be dead or t o  be committed to  a different 

goal. This is not only impossible in a distributed implementation, since no process can directly examine 

the control block of another, but i t  also has a serious drawback in tha t  some infinitely recursive 

processes t ha t  should have been terminated could become "runaways." 

In the indirect implementation, processes check their parents' status whenever they intend to 

commit, and check their grandparents' status whenever they intend to  spawn a promoted child. This 

covers most cases where a process should be terminated, but does not always handle termination of 

siblings when a goal process has failed. For example, consider the following set of clauses: 

p < - q , r .  
q < - q & s .  
etc .  

In the clause q, the recursive call is made in the first part of a sequential conjunction; these 

recurrent subgoals are therefore not  promoted. If goal r fails during the evaluation of p,  q should be 

terminated, but until the (possibly infinite) recurrence completes, q will never receive the indirect KILL. 

For this reason, i t  may be necessary to  consider use of a direct KILL even in implementations where i t  is 

not required. 

4.1.2. Sequential Conjunctions 

Crammond's model has difficulty with the sequential conjunction operator of PARLOG when 

parentheses are used to  group sequential conjunctions. This is easily shown by a simple example. In the 

PARLOG clause 



P <- (q & r) 1 (s 8.5 t).  

the sequential evaluation of goals q and r should run in parallel with the sequential evaluation of goals s 

and t. Goal r should not have to wait for s, nor should t have to  wait for q. However, the best that the 

model's two-step execution of clauses with sequential conjunctions can do is to run q and s in parallel, 

wait for both to  finish, and then run r and t in parallel. This occurs because a grouping like "(q & r)" is 

really a single subgoal, but it  is not possible to  directly generate goal and clause processes for this 

construction. 

The best solution to this problem is to require the compiler to  eliminate such groupings by 

generating new predicates. For example, the clause above would be compiled into a set of clauses: 

p <- seql , seq2. 
seql <- q & r. 
seq2 <- s & t. 

It is then possible to generate goal and clause processes for the new predicates. The only complication 

of this scheme is tha t  the compiler must make an analysis of the input and output arguments to  the 

replaced subgoals, and generate a consistent set in the new goals. This should not prove to be 

particularly difficult, given the mode declarations of PARLOG. 

4.2. Modified Strategy 

The following discussion presents a modified implementation strategy suitable for the distributed 

execution model. In this discussion, it  is assumed for simplicity that all communication takes place via 

messages, i.e., that channels are not established, and that  remote references are used to  implement 

shared logical variables. The variations necessary to employ channels should be fairly obvious. 

In order to  easily describe the exchange of messages, the convention of giving each process a postal 

address has been adopted. Each processor can be considered a "post office," to  which all messages are 

routed that  are intended for delivery to  one of the processes executing on that  node; the specific process 

is selected once the message reaches its processor. All references to  some process by another process are 



via this postal address, even if both processes reside on the same processor. Of course, some 

optimization of the delivery could be done in the latter case. 

Process States 

As noted in the discussion of remote references, the Suspended on Variable state is replaced 

by Suspended on Reference (SR). Processes suspend when it becomes necessary to  resolve a remote 

reference, in the same way that they suspend when waiting for an unbound variable to  become 

bound. A process will become suspended at most once for each remote reference, because the 

reference will be replaced by the actual term when it is received. 

Process Creation Messages 

These messages are used to  create new processes in the distributed system. They are listed 

here rather than in the execution model because they are specific to  this implementation of process 

spawning. 

CREATE 

This is the only message that  does not have another process as recipient. It is sent when a 

process is to  be spawned, and carries all the information necessary for the creation of the 

new process. The CREATE message moves through the network until a processor decides to 

accept it, a t  which time the new process is created on that  processor. 

READY 

This message is sent immediately by a newly created process to  its parent process. If the 

receiver is dead (state D), or has previously received a COMMIT from some other process, a 

KILL is sent to  the sender of the READY message; otherwise, the sender of the READY is 

added to  the receiver's list of children. 

Process Control Block 



To support the fully distributed execution model, a number of changes have been made to  

the process control block as outlined by Crammond. These changes involve all fields whose use 

implies access to  the control record of one process by another process. The most significant 

changes are the additions of the Grandparent Pointer and of explicit Variable List and Argument 

List fields. The Reference Count field has been replaced by a Reference List field to  record active 

child processes. 

Parent Pointer (PP) 

The postal address of the parent of this process. When a new process is started, a READY 

message is sent to  this address. 

Grandparent Pointer (GP) 

The postal address of the grandparent of this process, included to  reduce the number of 

messages that  must be sent when spawning a promoted process. This field is not needed by 

goal processes, and is left undefined when a promoted goal process is spawned. 

Code Pointer (CP, or Instruction Pointer, IF') 

If the state of this process is RE, this is a pointer to  the instruction being executed. 

Return Pointer (RP) 

A pointer to  the instruction a t  which this process will resume when awakened from 

suspension. (This pointer can be overlaid with CP; it  is separated here for clarity.) 

Reference List (RL) 

A list of the postal addresses of all the children of this process. As long as this list is 

nonempty, this process control block cannot be deallocated. 

Status Word (SW) 

This field records the current state of the process, and has five possible values corresponding 

to the states RE, RQ, SR, SC, and D. Crammond's model has a simple "dead-or-alive" 

status flag, which is written by child processes to  signal QUIT and read by child processes as 

an indirect implementation of KILL. 



Commit Flag (CF) 

This flag is set when the first COMMIT is received from any child; it  is not used by clause 

processes. Once this flag is set, this process will ignore subsequent COMMIT messages and 

will respond to  READY messages by sending KILL messages back. 

Variable List (VL) 

A list of the variables owned by this process. Each variable may have an associated 

suspension list, recording the postal addresses of processes that  have requested a binding for 

the variable. 

Argument List (AL) 

This is a list of the argument terms on which this process was invoked. 

Every process maintains its own process control block, making updates as instructions are 

executed and messages are received. No process can directly modify the control block of another 

process. Instructions are interrupted only by QUIT and KILL messages, which cause termination 

of the process, or by a suspension inherent to the instruction; hence no locking mechanism is 

required. 

Instruction Set 

Some significant changes have been made to  Crammond's instruction set, with the goal of 

making the instructions directly executable. The instructions have also been modified to  make 

them more suitable for use in a PARLOG system. The primary changes are the elimination of the 

setup-args instruction in favor of spawn instructions with variable arguments, the replacement of 

the two unification instructions with three more specific unifications, and the addition of 

instructions for list and structure manipulation. Also assumed, but not listed, are basic arithmetic 

operations. 

The cases in which a process could become suspended on a nonvariable term are too 

numerous to list here, but the possibility of such a suspension should be kept in mind. Suspension 



on variable terms is detailed because this applies regardless of the use of remote references. 

spawn(P, 4, 4, --.l An) 

Used in goal processes to  create new clause processes, and in clause processes to  create goal 

processes that  will not be promoted (e.g., within guards). IP is the instruction pointer where 

the new process should begin, and Al through An are the arguments to  the new process, if 

any. A CREATE message is broadcast, with the spawner's address given as the new 

process's Parent Pointer and the spawner's PP as the new process's Grandparent Pointer. 

spawnl(IP1 All 4' ... 1 An) 

Spawn last. This is equivalent to  spawn followed by waitc, i.e., the spawner enters state SC. 

The process resumes a t  the next instruction when awakened. 

spawnp(P, 4 1  %, ..., An) 

Spawn promoted. Used in clause processes to  create new goal processes. This instruction is 

equivalent to spawn, except that the spawner's Grandparent Pointer is given as  the Parent 

Pointer of the new process, and the G P  of the new process is undefined. The promotion is 

completed when the new process sends READY to  the spawner's grandparent. 

spawnpl(IP1 All 4, e e . 1  An) 

Spawn last promoted. Instead of broadcasting a CREATE message, the spawner is 

t transformed into the new process, in a manner similar to  UNIX's ezecve. QUIT is sent to 

the spawner's parent, the process's Grandparent Pointer is copied to  its Parent Pointer, and 

the new process begins execution by sending READY to  its new parent. Any variables owned 

by the parent are inherited by the new process, and the new process keeps the same postal 

address as the parent. 

waitc 

Puts the process into state SC if any children exist. The process resumes a t  the next 

instruction when awakened. 



waitv(V) 

If no binding for V is known, puts the process into state SR, and sends NEED(V) to  the 

owner of V. The process resumes a t  the next instruction when awakened (by a BIND(V, T) 

message). The process continues immediately if a binding for V is known. 

done 

Terminates the process and sends DONE to  its parent. 

quit 

Terminates the process and sends QUIT to its parent. 

lunify(T,, T2) 

Leftward unification; can only bind variables in TI. If success would require a binding in T2, 

the process is put into state SR and NEED is sent to  the owner of the variable that  would 

need to  be bound. The process resumes a t  this instruction when awakened. If variables in 

T, are bound, BIND messages are sent to  the owners of those variables. 

tunify(T,, T2) 

Test unify; cannot bind any terms in either argument. If success would require a binding, 

the process is put into state SR and NEED is sent to  the owner of the variable that would 

need to  be bound. The process resumes a t  this instruction when awakened (by a BIND 

message for the variable). 

assign(V) T) 

Assignment unification; binds the term T to  the variable V and sends BIND(V, T) to  the 

owner of V. The build and access instructions can also be used as special cases of assign. 

build(V, functor, TI, T2, ..., Tn) 

Constructs a new term and binds it  to the variable V. The value of functor is a special code 

if the term to  be constructed is a list or pair, otherwise it  is the name of the structure to  be 

t UNIX is a trademark of Bell Labs. 



built. T, through Tn are the component terms of the new term. 

access(V, T, N) 

The Nth component of the term T is assigned to  the variable V. If T is a list or a pair, N 

can be no greater than 2. The 0th component of a term is its functor. 

switch(T, Vi, Ci, Sit Li) 

Executes Vi if T is an unbound variable, Ci if T is a constant, Si if T is a structure, or Li if T 

is a list. 

switchv(T, Vi, Ni) 

A less general form of switch, added because many tests in PARLOG depend only on 

whether or not a term is a variable. Executes Vi if T is a variable, Ni in all other cases. 

commit 

Used in clause processes t o  signal success of all guard subgoals. Sends COMMIT to  the 

parent of this process. 

If any of the unification instructions fails, including assign, build, and access, the result is the 

same as if the process had executed a done instruction. For this reason, all unifications must take 

place in clause processes. 

4.3. Examples 

The following three examples correspond to those given by Crammond, for comparison with his 

implementation. It  is assumed that  the compile-time preunification optimization suggested by 

Crammond has been employed in generating the instructions for each predicate, i.e., tha t  any test for a 

non-variable argument which must occur for all clauses has been moved to the goal process, instead of 

being repeated in every clause process. This technique answers one of the objections to  Crammond's 

implementation tha t  was raised by Gregory [Gre85], i.e., tha t  the sequential unification of arguments 

could lead to  unexpected behavior depending on which input arguments were bound and which were 

unbound. The unification here is still sequential, but by applying this test t o  the input arguments in the 



goal process, consistent behavior is guaranteed: a predicate will always ensure that ,  before it  succeeds 

or fails, input arguments whose structures are required are bound. 

In all examples, goal arguments are referred to  by An, where n is an index into the process's 

Argument List, and owned (local) variables are referred to  by Xn, where n is an index into the process's 

Variable List. The first example is a simple append relation: 

mode append(?, ?, *). 

append([al bl, c, [a1 dl) <- append(b, c, dl. 
append([, x, x). 

The code for the goal process is then 

append:waitv(Al) 
switch(Al,~,spawnl(app2J1J2J3),quit,spawnl(app1,Al,A2J3)) 
quit 

where the underscore in the switch indicates a no-op for a case which cannot occur. Note that if the 

selected clause process succeeds, it will send QUIT to  the goal process, which will then immediately 

terminate with DONE (success, for a goal); only if the clause fails will the quit (failure) instruction be 

executed. 

The code for the two clause processes is 

appl  : build(X3 ,list ,XI $2) 
lunify (X3 ,Al) 
commit 
build(A3,list 3 1 3 4 )  
spawnpl(append,X2,A2~4) 

app2: tunify(Al,[) 
commit 
assign(A3 ,A2) 
quit 

Note the use of build as a special case of assignment in a p p l .  

The on-tree relation, originally from Gregory [Gre85], demonstrates two important points. First, 

this predicate uses sequential clause selection, which requires special treatment in the goal process. 

Second, it  has "bodiless" clauses, doing all their work in the guard; but input variables cannot be bound 



until the guard has succeeded, so the clause processes also require special compilation. 

mode on_tree(?, ^, ?). 

on-tree(key, value, Tree(left, Node(key, value), right)) ; 
on-tree(key, value, Tree(left, Node(key, value), right)) <- 

on-tree(key, value, left) : . 
on-tree(key, value, Tree(left, Node(key, value), right)) <- 

on-tree(key, value, right) : . 

The compilation of this relation is (in part): 

on-tree: waitv(A3) 
switch(A3,~,quit,spawnl(onl ,Al,A2,A3),quit) 
spawn(on2,Al,A2,A3) 
spawnI(on3Al ,A2,A3) 
quit 

onl: build(Xl,Node,X2,X3) 
build(X4,Tree,X5,Xl,X6) 
lunify (X4,AJ) 
lunify (X2,Al) 
commit 
assign(A2J3) 
quit 

on2: access(Xl,A3,0) 
tunify(X1,Tree) 
access(X2,A3,1) 
switch(X2,spawnl(o~tree,Al~3,X2),done,spawnl(on~tree~l$3~2),done) 
commit 
assign(A2$3) 
quit 

The code for on3 is identical to  on2 except for the index in the second access instruction. Note the use 

of spawn1 in the switch in the on-tree goal process to handle the sequential selection of the second and 

third clause processes only after the first has failed. If the first should succeed, the execution of the goal 

would be terminated with success immediately after the switch. 

The unification in on1 of the third argument and a structure of the form Tree(-,Node(-,-),-) could 

be carried out in two ways. The way shown uses two build instructions to  assemble a structure of the 

appropriate form, and a single lunify to make the test. Alternately, as demonstrated in part in on2, 

access could have been used to decompose the argument structure, and each functor then tested with 

tunify against a constant term. The advantages of the code used in on1 are in the instructions that 

follow the unification, where judicious choice of variables in the builds allows the remaining unification 



and the final assignment to be done without further structure accesses. If only the unification were to  

be done, the alternative code has two advantages: first, it  aborts without doing unnecessary work if the 

outer functor is not Tree, and second, three accesses and two atomic tests are presumably faster than 

two constructions and a structure unification. 

In both on1 and on&, note that  local variables have been used in place of the second argument 

until after the commit, a t  which time assignment to  the second argument is done. Also, in on&, the test 

that the second element of the Tree is actually a Node has been omitted. 

As a final example, this partial compilation of a sorting relation demonstrates the handling of a 

sequential conjunction within a clause. This relation is the same as the sort-d relation seen earlier, 

except for the sequential conjunction after the partition call. 

mode sort(?, ^, 1) 

sort([, list, list). 
sort([hdltail], sorted, rem) <- 

partition(hd, tail, listl, list2) & 
( sort(list1, sorted, [hdlreml]) , 

sort(list2, reml, rem) ). 

The compilation of the second clause is of interest: 

sort2:build(Xl,list 3 2 7 3 )  
lunify(X1 ,Al) 
commit 
spawnl(partition,X2,X3,X4,X5) 
build(X6,list ,X2 7 7 )  
spawnp(sort 74 ,A236)  
spawnpl(sort ,X5,X7,A3) 
quit 

The use of spawn1 in creating the partition process allows the first part of the sequential conjunction to  

complete before the recursive sort processes are spawned. 

5. Conclusion, Current and Future Research 

This paper has presented a model of execution for PARLOG suitable for use on a message-passing 

multiprocessor with no shared memory. Crammond's model for shared-memory multiprocessors has been 



enhanced by adding the concept of variable ownership, the grandparent pointer to  help the promotion 

of processes, and the distribution of process information. 

Currently, this model is being used to  develop a PARLOG implementation targeted for a network 

of INMOS transputers [INM86]. The transputer consists of a single chip containing a 32-bit 

microprocessor, a memory interface, and four asynchronous serial channels (links) that  can send 

messages a t  20 Mbits per second. These point-to-point links allow transputers to be connected together 

to form large networks a t  low cost. 

PARLOG is particularly attractive for implementation on a transputer network because 

interprocess communication in PARLOG is similar to that in Occamt (the base language of the 

transputer), which is based on the CSP model of communicating sequential processes [Hoa78,Hoa85]. 

However, PARLOG is a t  a higher level than occam in that occam handles only a static number of 

processes [Pou86], whereas PARLOG handles a dynamic number. For this reason, it  has been decided 

tha t  for the first version of the system, all communication among PARLOG processes will be via 

messages, rather than attempting to  simulate dynamic channels. 

The instruction set interpreter and message facilities are to  be written in c,' with parts of the 

message interface in occam. Each transputer will have two transputer processes running in alternation: 

the post office, which handles messages, and the interpreter, which executes the instructions of the 

PARLOG processes running on this transputer. The interpreter and the post office share lists of 

runnable, suspended, and terminated PARLOG processes on the transputer. The interpreter is 

responsible for moving PARLOG processes from the active to  suspended lists, and the post office is to  

return them to  the active list when the message that "awakens" them is processed. 

Future work needs to  focus on problems of spreading and balancing the load among the processors 

in the system as well as the effect of network topology on the efficiency of the PARLOG system. Work 

on these for traditional OR-parallel Prolog [PaB87] may also have application for this PARLOG model. 

t occam is a trademark of the INMOS Group of Companies. 

$ The entire system can be converted t o  C when a full compiler becomes available; the current compiler provides access to  
parallel communications (ALT) only through occam. 



Also remaining is the implementation of the PARLOG set and subset primitives for OR-parallel 

and OR-sequential execution. However, as noted by Clark [ClG85], these can be duplicated by AND- 

parallel relations if a few additional primitives are available. 

References 

[ClG84] Clark, K. and Gregory, S., "PARLOG: Parallel Programming in Logic," Research Report DOC 

84/4, Department of Computing, Imperial College of Science and Technology, London, April 

1984. 

[ClG85] Clark, K. and Gregory, S., "Notes on the Implementation of PARLOG," The Journal of Logic 

Programming, 1985, pp. 17-42. 

[ClG86] Clark, K. and Gregory, S., "PARLOG: Parallel Programing in Logic," ACM Transactions on 

Programming Languages and Systems, vol. 8, 1 (January 1986), pp. 1-49. 

[CoK81] Conery, J. S. and Kibler, D. F., "Parallel Interpretation of Logic Programs," Proceedings of the 

ACM Conference on Functional Programming Languages and Computer Architecture, October, 

1981, pp. 163-170. 

[Con831 Conery, J.  S., "The AND/OR Process Model for Parallel Interpretation of Logic Programs," 

Ph.D. Thesis (Technical Report 204), University of California, Irvine, June 1983. 

[CrM84] Crammond, J. A. and Miller, C. D. F., "An Architecture for Parallel Logic Languages," 

Procedings of the Second International Logic Programming Conference, Uppsala, Sweden, July 

1984, pp. 183-194. 

[Crag61 Crammond, J., "An Execution Model for Committed-Choice Non-Deterministic Languages," 

Proceedings of the Third Symposium on Logic Programming, Salt Lake City, September 1986, 

pp. 148-158. 

[Fos87] Foster, M., "Parallel Graph Reduction Runtime Process Organization," PGR research group 

internal document, Oregon Graduate Center, Beaverton, Oregon, February 19, 1987. 



[Gre85] Gregory, S., "Design, Application and Implementation of a Parallel Logic Programming 

Language," Ph.D. Thesis, Department of Computing, Imperial College of Science and 

Technology, London, September 1985. 

[Hoa78] Hoare, C. A. R., "Communicating Sequential Processes," Communications of the ACM, vol. 21, 

8 (1978), pp. 666-677. 

[Hoa85] Hoare, C. A. R., Communicating Sequential Processes, Prentice-Hall International, 1985. 

[INM86] INMOS, Transputer Reference Manual, INMOS Ltd., Bristol, UK, October 1986. 

[PaB87] Pase, D. and Borgwardt, P., "Load Balancing Heuristics and Network Topologies for 

Distributed Evaluation of Prolog," Technical Report CS/E 87-005, Oregon Graduate Center, 

Beaverton, Oregon, April 1987. 

[Pou86] Pountain, D., A Tutorial Introduction to Occam Programming, INMOS Ltd., Bristol, UK, March, 

1986. 

[Wat86] Watson, I., "Reference Counting for Distributed Virtual Memory," talk at  Graph Reduction 

Workshop, Santa Fe, NM, September 29 - October 1, 1986. Proceedings to  be published in 1987 

by Springer-Verlag. 




