
Constructive Semantics for Negation

Clzrord Walinsky

Technical Report No. CS/E 87-009

September, 1987

CONSTRUCTIVE SEMANTICS FOR NEGATION

Cliflord Walinsky

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 87-009
September, 1987

Technical Report CS/E 87-009 September 1987

Constructive Semantics for Negation

Clifford Walinskyt

Department of Computer Science & Engineering
Oregon Graduate Center

Beaverton, OR 97006-1999
(503)69@ 1121

Abstract This paper examines implementation of negation in logic programs, distinct
from the usual negation as failure. This implementation has three components: (i) 3-
valued logic, (ii) unskolemized generalized definite clauses, and (iii).a generalized SLD-
resolution procedure. The resulting declarative and procedural semantics have con-
structive qualities. When generalized definite clauses are used to implement iff-
programs, analogous t o those produced by the Clark completion procedure, the deduc-
tive mechanism is sound and weakly complete.

t Supported by United States Air Force Office of Scientific Research grant no. AFOSR-87-0064.

Constructive Semantics for Negation

1. Introduction
Definite Horn clause programs possess desirable constructive qualities. The

declarative semantics of such programs are based on the least fixedpoint of a monotone
operator (often referred t o a s T p) [EK76]. The procedural semantics, utilizing SLD-
resolution [EK76], dictate t h a t upon successful execution of a query Q , a n answer sub-
stitution a will be returned, so t h a t Q a is a valid consequence of the program.

When negation is introduced, the constructive characteristics are often lost, par-
ticularly for negation a s failure, the most prevalent implementation of negation. Under
this implementation, the declarative semantics of negated queries are derived from a
subset of the greatest fixedpoint of Tp [AE82]. Also, this semantic operator, Tp, is no
longer monotone. Using SLD-resolution, augmented with negation a s failure, a query
-rQ may fail even if 1Q a is a valid consequence of the program, for some substitution
a.

The approach explored in this paper retains the constructive aspects of definite
clause programs without negation. This approach utilizes generalized definite clause
(gdc) programs. These programs permit explicit s ta tement of negative facts. The nega-
tive facts a re utilized t o derive answer substitutions. For example, a predicate p with
domain (0 , . . . ,5) may be true only for value 0. The program must then indicate
t h a t for values 1 through 5 predicate p is not true. The negative information is
included within the program in the same form a s the positive information. The pro-
gram could appear a s follows:

Example 1

"P (5)
A deductive procedure for gdc programs, described in Section 5, can then deduce t h a t p
is true for value 0, and also t h a t p is false for values 1, . . . ,5 . Furthermore, t he
query t o find all values X for which p is false, "p (X) , succeeds with answer substitu-
tions [i l ~] , where 1 5 i 5 5.

In gdc programs i t is possible t o under-define predicates, resulting in incomplete
definitions, and t o create conflicting definitions, resulting in inconsistency. These prob-
lems arise from non-coordination between negative and positive definitions of a predi-
cate. A certain class of programs provides the necessary coordination. Each program
in this class is associated with a n i$-program. Iff-programs are similar t o programs pro-
duced by the Clark completion procedure [C78]. For a n iff-program, an associated gdc
program can be generated and used t o define the declarative and procedural semantics
of the original iff-program. The utility of generating gdc programs from iff-programs is
mentioned in [JLM86].

I t is not intended to entirely supplant negation a s failure. Programs performing
database applications typically contain a few predicates defined by many unconditional
assertions. The number of clauses necessary t o define the negation of such predicates is
usually much larger than the number of clauses actually provided. Negation a s failure

Constructive Semantics for Negation

can play a useful role here, if implemented soundly. Negation a s failure can be expli-
citly invoked with a fail operator from within gdc programs. Thus a definition such a s

. fail q(X1, . . . , Xn) defines "q by failure. Gabbay -q (x l , . . ,x,) . -
and Sergot proposed a similar idea in relation to their proposal for implementing nega-
tion [GS86]. In this way, constructive negation can be used in conjunction with other
forms of negation, such a s negation a s failure.

Section 2 of this paper will present basic notation. Section 3 presents the declara-
tive semantics of gdc programs. Section 4 describes iff-programs, and shows how t o gen-
era te gdc programs from them. Section 5 describes the deductive mechanism for gdc
programs associated with iff-programs. Finally, Section 6 discusses related work and
future directions.

2. Syntax and Basic Concepts

2.1. Formulas, Clauses and Programs

In this section we describe the syntactic structure of definite clause programs with
constructive extensions, referred t o here as generalized definite clause (gdc) programs.
Atoms are of the form p(t l , . . . , t ,) , where p is a predicate symbol, and the ti a re
finite terms. An n-tuple of terms is written a s T. A negative a tom is of the form A . A
literal is either a n a tom or a negative atom.

A formula is either a literal, or has the structure described below, where F and G
are themselves formulas:

Conjunction: F A G

Disjunction: F V G

Implication: F 4 G

Existential quantification: 3 F

Universal quantification: Vx F

Throughout, F and G will be used t o denote formulas. T o eliminate the possibility of
conflicts between names of bound variables, assume t h a t names used for quantified vari-
ables are not duplicated in any other formula.

A clause is of the form L :- F , where L , the head of the clause, is a literal, and F,
the body of the clause, is a formula. A gdc program is a finite set of clauses. Every
clause must be closed each variable occurring in the body of a clause must be bound by
a quantifier, or must occur in the head of the clause. All clauses of the form ~(7 ') :- F
or P(?) :- F define predicate p . No program can include clauses defining the dis-
tinguished predicate true.

2.2. Substitutions

The s tandard notation for substitutions, [tl/xl, . . . , t,/x,], indicates t h a t every
occurrence of a variable xi is t o be replaced by term ti. For this notation t o correspond
t o a substitution, all xi must be distinct variables, and all variables occurring within
the ti must be disjoint from {xl, . . . ,x,). Usually, a, T and q denote substitutions.

Constructive Semantics for Negation

Composition of substitutions is defined by: t (a or) = (t T)U . The distinguished sub-
stitution L is the identity for composition.

Based on composition of substitutions, a part ial order can be defined: a C r if there
is a substitution p such t h a t p O a = T. For example, [f (X) / Y] E [f (a) / Y , b / ~] .
When a c T, a is more general than T. A part ial operation U on substitutions is defined
a s follows: a U r is the most general substitution q such t h a t ocq and T E ~ . The sub-
stitution returned by the U operation is not always uniquely defined. But, every pair of
substitutions returned by the U operation will be of the form [t l / x l , . . . , t,/x,] and
[t l l / x l , . . . , t n l / x n] , and there will be a renaming p such t h a t t i p = tit. So we consider
the result of the U operation to be unique modulo renaming. When there is a substitu-
tion q = O U T , a and T unijy. The following illustrate the U operation:

Example 2

[a/x] and [b/X] do not unify

3. Declarative Semantics

3.1. Three-Valued Logic

The declarative semantics of gdc programs relies on 3-valued logic [F85]. The
truth values of this logic are t, f , and u. Intuitively, these values are ascribed the mean-
ings "true", "false" and "undefined", respectively. There is a part ial ordering on the
t ru th values: u 2 x , and x 5 x , for all t ru th values x .

The t ru th values are combined with Boolean operators t o form Boolean expres-
sions. A Boolean expression e 1 is a 2-valued instance of a Boolean expression e if every
occurrence of u in e is replaced by either t or f. The valuation of a Zvalued instance is
obtained by using the classical definitions of the Boolean operators. The valuation of
any Boolean expression e is the greatest lower bound, with respect t o the 5 ordering on
t ru th values, of the values of all Bvalued instances of e .

For example, u At has Zvalued instances t t and f A t, with values t and f,
respectively. The greatest lower bound is u. The full t ru th table for implication fol-
lows:

x t u f
t u u

f t t t

3.2. Interpretations and Models

For first-order logic programs, a domain of discourse is usually fixed for each pro-
gram. The Herbrand Base of a program P is the set of all ground terms constructed
from function symbols and constants occurring in program P. The Herbrand Universe

Constructive Semantics for Negation

of a program P is the set of ground atoms p(T) constructed from predicates p occurring
in program P and from terms of the Herbrand Base of P. HB(P) and HU(P) denote
the Herbrand Base and Herbrand Universe, respectively, of a program P.

A (Herbrand) interpretation of a program P is a total mapping from H U (P) into
the t ru th values. Every interpretation must contain the map true I+ t. The minimal
interpretation of a program P maps A I+ u for all atoms A €HU(P)-{true). An
interpretation I of a program P is total if I [A] # u for all A €HU(P) .

Every interpretation can be extended t o map over ground formulas and ground
clauses, a s follows:

t if I(F [t 1x1) = t for some t E HB(P)

f if I (F [t 1x1) =f for all t E HB(P)

u otherwise

t if I(F [t 1x1) = t for all t E HB(P)

f if I(F [t 1x1) =f for some t E HB(P)

u otherwise

All variables occurring free in formulas and clauses are universally quantified. So,
if a is a non-ground formula or clause with free variables xl, . . . ,x,, then
I["] = IIVxl . . x,(a)]. Finally, a program is interpreted a s the conjunction of i ts
clauses:

I[{',, . . . ,cn)l =I[',Il\. . A'[',]
Set notation is used to denote interpretations. If interpretation I is denoted by

the set {L . . . , L,), then, for all atoms A E HU(P):

t if A = Li for some 1 5 i 5 n

f if A = L i for some l s i < n

u otherwise.

C o n s t r u c t i v e S e m a n t i c s f o r N e g a t i o n

While every interpretation has a set denotation, i t is easy t o construct sets t h a t
correspond t o no interpretation. One such set is {p, "p, t r u e) . With this notation,
the minimal interpretation is just { t r u e) .

As an example of an interpretation, let I = {"p, "q, t r u e) . Then I[p] = I[q] = f,
and I[r] = u . The following equalities hold for this interpretation:

I [p:-"q/\r] = I ["ql\r] + I [p]

The set notation for interpretations can be further extended t o set operators:

L €I iff I [L] = t

I C J iff, for all ground literals L €I, L E J.

When S is a collection of interpretations, L Ens iff L €I for all I ES.

As a consequence of the t ru th tables for the Boolean operators, the following
monotone properties for interpretations hold:

M o n o t o n e I n t e r p r e t a t i o n s :

(i) For all formulas F, and interpretations I and J, I[F] 5 J[F] when I J .

(ii) For all interpretations I, formulas F, and substitutions a and 7, I [F o] <I[F 7] if
acr.

These monotone results contrast sharply with 2-valued interpretations of logic pro-
grams with negated atoms in the bodies of clauses. Interpretations for such programs
exhibit non-monotone behavior.

For a n interpretation M and program P , M is a model of P iff M[P] # f. This
corresponds t o the weak models of Lassez and Maher [LM85]. Note t h a t the minimal
interpretation {true) is a model for every program. M is a total model for program P if
M is a model of P and M is total.

3.3. S e m a n t i c Operator

Tp is an operator used t o describe a class of models of a program P; it is similar
t o the semantic operator described by van Emden and Kowalski [EK76]. In this case,
Tp is a partial mapping between interpretations. Tp(I) is undefined when A :- F and
A :- G are ground instances of clauses in P, and I[F] = I [G] = t. Otherwise, Tp(I) is
defined, and for all ground literals L , L E Tp(I) whenever L :- F is a ground instance of
a clause in P, and I[F] = t . A fixedpoint of Tp is an interpretation I such t h a t
Tp(I) = I.

L e m m a : (Fixedpoints are models) Every fixedpoint of Tp is a model of program P . ~

.f Proofs of all original results stated in this paper are provided in [W87]

- 6 -

Constructive Semantics for Negation

Hence, the collection of fixedpoints of Tp forms a sub-class of the colIection of models
for program P . Each model M in this class is supported [ABW85], in t h a t if M [L] = t,
where L is a ground literal, there must be a ground instance L :- F of a clause and
M [F] = t.

Lemma (Fixedpoint Intersection) Let FXP be the collection of all fixedpoints of Tp.
Then nFXP EFXP.

This lemma parallels the model intersection property [EK76]. Since W X P defines a
unique interpretation (which must be a model, by the above lemma), let Ifp denote this
unique least fixedpoint.

While l fp provides a non-effective characterization of the least fixedpoint, an
effective characterization relies on iterations of Tp. Compute powers of Tp as follows:

0 Tp = { t r u e)

T;+' = T~[T;] for all successor ordinals n.

X 0 Tp = U Tp for all limit ordinals A.

a<X
X X X

The least ordinal X for which Tp[Tp] = Tp is the closure ordinal; let i fp = Tp for this A,
be the i terated fixedpoint. Because Tp is a partial mapping, i t is possible t h a t i fp will
not be defined for a particular program. However, if i jp is defined, i t will be a fixed-
point of Tp, hence a model of program P.

Lemma: If i fp is defined, i fp = Ifp.

This lemma is demonstrated by showing tha t i f p C M , for all fixedpoints M EFXP.

According t o results of Fitting [F85], Tp is monotone and the poset of interpreta-
tions, ordered by set inclusion, is a complete semi-lattice. Hence, when lfp exists, i fp
also exists. Due t o the identity of the iterated and least fixedpoints, we can associate
the closure ordinal of the iterated fixedpoint with the least fixedpoint.

There are two interesting cases for the least fixedpoint of Tp. The following pro-
gram has undefined least fixedpoint:

Example 3

p : - t r u e .
"p : - t r u e .

If a program contains no universal quantifiers, and the least fixedpoint is defined, it is
guaranteed t h a t the closure ordinal will be finite. This follows because all terms of the
Herbrand Base must be finite. When universal quantifiers are present, however, the clo-
sure ordinal may be larger than w. Consider the program below:

Example 4

n a t (0) : - t r u e .
n a t (s (N)) : - n a t (N) .

r :- b'X n a t (X) .

In this example, w iterations are needed t o demonstrate t h a t n a t (X) is true for all X.

Constructive Semantics for Negation

Hence, w+l iterations are needed t o produce a fixedpoint containing r.

The following lemma draws a connection between fixedpoints of Tp and 2-valued
models for program P.

Lemma (Ifp C Tota l Models) For all total models M of a program P, IfpG M.
Consequently, when the least fixedpoint is undefined, P has no to ta l models, and is
inconsistent. The converse is not necessarily true. Consider the program below:

Example 5

p : - "p.
"p :- p .

This program has no to ta l models. However, the least fixedpoint is defined, and is the
minimal interpretation {true).

4. Iff-Programs
With the ability t o place negated atoms in the heads of clauses, and universal

quantifiers within formulas, i t is now possible t o present s ta tements of logical
equivalence within programs. Logical equivalence provides a tight coordination
between positive and negative definitions of a predicate.

Define a n if-clause to be of the form A -:- F, where A is a n atom, and F is a for-
mula. An i$-program is a set of iff-clauses, satisfying an additional syntactic require-
ment. If A -:- F is a clause in iff-program P, there can be no other clause B-:- G in P
such t h a t (variants of) A and B unify. I t is intended t h a t each iff-clause A -:-F com-
pletely defines a tom A . So the presence of another iff-clause, with a possibly conflicting
definition for A , is prevented. I t is quite easy t o construct a decision procedure t o
determine if this property is observed for all clauses of a n iff-program.

4.1. Syntactic Negation

Associated with each iff-program is a t least one gdc program, constructed using
syntactic negation. Let N E G be a binary predicate over formulas. N E G (F , FNEG) will
hold when formula FNEG is the syntactic negation of formula F. Usually, Fm denotes
the fact t h a t N E G (F , FNEG) is true. T o a t t a in equivalence between semantic and syn-
tactic negation, the NEG predicate is defined a s follows:

For any a tom A , NEG(A , A) and NEG(A, A) are both true.

For more complex formulas, the following statements for the N E G predicate are true:

Constructive Semantics for Negation

The following commuting diagram relates syntactic and semantic interpretations
of the NEG predicate:

NEG
F .-> FNEG

Essentially, this diagram s ta tes t h a t NEG is honaomorphic: -rI[F] = IIFNEG].

4.2. Generating GDC Programs from Iff-Programs

The NEG predicate can be used t o construct a gdc program PGDC associated with
a n iff-program PIFF. PGDG is the smallest set of generalized definite clauses such t h a t
A :- F and A :- FNEG are contained in PGDC whenever A -:- F is a n iff-clause within PIFF.

T o illustrate this construction, consider the following iff-program:

Example 6

eq(a,a) -:- true.
eq(b,b) -:- true.
eq(a,b) -:- "true.
eq(b,a) -:- "true.

subsequence (ni 1, M) - : - true.
subsequence (X.L, nil) - : - "true.
subsequence (X.L, Y .M) - : -

[eq (X, Y) /\ subsequence (L, M)]
V subsequence (X . L, M) .

This program defines a predicate subsequence (L , M) , which is intended t o be true
when list L is a subsequence of list M. An empty list is represented by the term nil.
A nonempty list is represented by the term h. t (adopting the conventional infix notation
for the function symbol .) where h , the head of the list, is a n element from the domain
{a,b), and t , the tai l of the list, is also a term representing a list. Notice t h a t this
program contains no quantifiers, so the closure ordinal of the least fixedpoint is finite.
The construction above produces the following gdc program:

Constructive Semantics for Negation

Example 7

(eql) eq(a,a) :- true.

(eq2) eq (b, b) : - true.
(eq3) eq(a,b) :- "true.

(eq4) eq(b,a) : - "true.

(l eq l) "eq (a, a) : - "true.
("eq2) "eq (b, b) : - "true.
("eq3) "eq(a, b) : - true.
("eq4) "eq (b, a) : - true.

(ssl) subsequence (nil, M) : - true.
(ss2) subsequence (X.L, nil) : - "true.
(ss3) subsequence (X . L, Y . M) : -

[eq (X, Y) /\ subsequence (L, M)]
V subsequence (X . L, M) .

(-ssl) "subsequence (ni 1, M) : - "true.
(-ss2) "subsequence (X . L, nil) : - true.
("ss3) "subsequence (X . L, Y . M) : -

["eq (X, Y) V "subsequence (L, M) 1
/\ "subsequence (X. L, M) .

With the Boolean equivalence operator x r y defined t o be (x -+ y) A(--rx -+ y y) , i t
is clear t h a t the declarative meaning of a n iff-program PIFF is identical t o the declara-
tive meaning of i ts associated gdc program PGDC. In fact any model of PIFF is a model
for PGDC.

The following lemma ensures t h a t declarative semantics of all iff-programs are
always defined.

Lemma (Fixedpoints of Iff-Programs Exist): If P is a gdc program associated with some
iff-program, then Ijp exists.

5. Procedural Semantics of Iff-Programs

The previous section has demonstrated construction of gdc programs from iff-
programs. This section specifies the deductive mechanism necessary t o execute such gdc
programs. Generalized definite clause programs associated with a certain class of iff-
programs render the execution procedure weakly complete and sound.

5.1. The SLDG Procedure
The procedure for executing a query on a program is called SLDG (SLD for Gen-

eralized definite clause programs). I t is derived from the SLD-resolution procedure.
The procedure takes three input arguments: a program, a formula (or query), and a sub-
stitution. If the first argument is program P, it is usually omitted. Upon successful
execution, the procedure yields a substitution. Like the original SLD procedure, SLDG
is non-deterministic: for any combination of inputs, SLDG yields any one of a set of
possible substitutions.

Constructive Semantics for Negation

5.1.1. Execution of non-V Formulas

The rules governing behavior of the SLDG procedure are simple extensions of the
SLD-resolution rules. The following rules, based on the structure of the query formula,
describe the substitutions t h a t can be returned from successful execution. The case of
the universal quantifier is deferred t o Section 5.1.2, due t o i ts complexity.

(SLDG true)
SLDG(true, a) yields a.

(SLDG literal)
When L is a literal, SLDG(L , a) yields SLDG(F1, p') ~p w, where L1:- F' is a vari-
a n t of a clause in P such t h a t all variables in the variant occur nowhere else, and
p "a and p' are the most general substitutions such t h a t L'p' = L (p 00).

(SLDG A)
SLDG(F G, a) yields SLDG(F, a) USLDG(G, a) .

(SLDG V)
SLDG(F V G , a) yields SLDG(F, a) or SLDG(G, a).

(SLD G 3,)
SLDG(4: F , a) yields SLDG(F, a).

Notation used in these rules is somewhat abbreviated. When SLDG(F,a) yields an
expression e containing a subexpression SLDG(F1,r), it is implied t h a t further execu-
tion, through recursive invocation of the SLDG procedure, will yield a substitution q,
which is combined, using the substitution operators, with the other substitutions in e .

Execution of the SLDG procedure assumes a fair computation rule [LM84] for
selecting clauses for use by the (SLDG literal) rule, and for selecting sub-queries. This
constitutes the search space of the procedure.

The SLDG procedure can fail t o yield any substitutions. SLDG finitely fails if exe-
cution yields no substitutions, and the entire search space is finite. Also, SLDG can fail
with a n infinite search space; then SLDG does not terminate.

The above rules can be used directly t o symbolically execute a query. The list of
rules utilized t o achieve successful termination is a refitation. Consider Example 7.
The following steps lead t o successful (symbolic) execution of the SLDG procedure for
query "subsequence (U , E .nil) with the identity substitution:

Constructive Semantics for Negation

S L D G (" s u b s e q u e n c e (U, E . n i l) , L)

Rule (SLDG literal), in merging with clause (-ss3), yields:
SLDG(["eq (X, Y) V " s u b s e q u e n c e (L, M)]

A " s u b s e q u e n c e (X . L , M) , nil/^])
[x. L/U, Y/E]

Let a = nil/^], and T = [x.L/u, Y/E].
Rule (SLDG /\) yields:

(SLDG(" s u b s e q u e n c e (X . L, M) , a),
U SLDG(" eq (X, Y) V " s u b s e q u e n c e (L , M) , a))
T

Rule (SLDG literal), in merging with clause (-ss2), yields:
(S L D G (t r u e , o)
U SLDG("eq (X, Y) V " s u b s e q u e n c e (L, M) , a))
" T

Rule (SLDG true) yields:
(a U SLDG("eq (X, Y) V " s u b s e q u e n c e (L , M) , a))

T

Rule (SLDG V) yields:
(a U S L D G (" s u b s e q u e n c e (L, M) , a)) T

Rule (SLDG literal), merging with a variant of clause (-ss2), yields:
[o U (S L D G (t r u e , L) [x' .L ' /L] o a)] T

Rule (SLDG true) yields:
[a u (L [x' .L ' /L] O a)] 7

This last substitution reduces to:
[x' .L ' /L , n i l / M , Y/E, X.X' .L1/U]

T h a t is, execution of the SLDG procedure has demonstrated the theorem:

Any list with more than one element is not a subsequence of a list with only one ele-
ment.

Such universal statements demonstrate a heuristic usable in obtaining interesting, and
possibly shorter, refutations:

As much as possible, avoid instantiating variables to ground terms.

This heuristic is a t variance with the commonly-used strategy t o instantiate a s many
variables a s possible, employed t o obtain sound behavior of negation as failure in MU-
Prolog [N85a], for example.

5.1.2. Execution of V Formulas
W

With universal quantifiers in programs, Tp may no longer be a fixedpoint, a s
demonstrated by Example 4. The progression t o higher ordinals for the fixedpoint of
Tp leads t o incompleteness of the SLDG procedure. In many cases, however, SLDG

Constructive Semantics for Negation

can generate the ac tual valuation of a formula by Ifp. The correct valuation is made
possible by execution of bounded universally quantified formulas, of the form
Vx(F + G).

The algorithm used by the SLDG procedure for implementing the universal
quantifier is presented first. This algorithm uses a difference operator on substitutions:
a-x = [t l y I t / y E a and y # X I .
(SLDG V)

T o compute the substitution returned by SLDG(Vx(F + G),a) , perform the fol-
lowing steps:

(1) Let { T ~ , . . . , 7,) = T be the full set of substitutions t h a t SLDG(F,u) can yield.
If, for some T;, there is no ground term t with ri 2 [t / x] ~ a , then halt with a
completeness-error.

(2) Now construct a maximal unifying subset of T:
Select any T. E T.
Construct T a s follows:

Let s") initially be {T;).
For each T~ E T do:

if rj-x unifies with ri-x then add rj t o S .
. .
(i) S must be a finite nonempty set.

(3) Since di) is a set of unifying substitution there must be a substitution t h a t is
comm , t o all substitutions 3, is s"). Let 4' be the most general substitution such
t h a t J ' 2 ~ j - x 1 for a11 i j E S .

(4) For each 5 E S ' ~) , let SLDG(G L) yield q j . If there is a substitution r) = " q j l

i
then SLDG(Vx(F -r G) , u) yields r) 0 J i) .

T o illustrate symbolic execution of a query with a universal quantifier, consider
the program of Example 8 below, with the query VX [p (X, Y) +q (X, Z) 1 , and the
identity substitution:

Example 8

p (a , O) :- t r u e .
p (b , O) :- t r u e .
p (a , l) :- t r u e .

q (a , m) :- t r u e .
q (b , m) : - t r u e .
q (a , n) :- t r u e .

The following steps are taken by the SLDG procedure:

(1) Let T = { [a /X , O/Y] , [b /X , O/Y] , [a / X , l / Y I) .

(2) Let s") = { [a / X , O/YI , [b/x. O/YI).
(3) Then J 1) = [o/Y].

Constructive Semantics for Negation

(4) S L D G (q (~ , ~) [a / ~ , O / ~] , L) yields ql = [m/Z], and S L D G (q (~ , ~) [b / ~ , O / ~] , L) yields q2

= [m/z]. So q, Uq2 = [rn/z] . And finally, SLDG(VX [p (X, Y) +q (X, Z)] , L)
yields [o/Y, m/z].

Note t h a t for ql = [n/z], ql does not unify with q2, resulting in finite failure. The
reader can verify t h a t other possible substitutions returned for this query are
[I/Y, m/z] and [I/Y, n/z].

The (SLDG V) rule introduces the possibility of a completeness-error. Similar t o
this error, the control-error is introduced in the MU-Prolog system [N85a] t o indicate
t h a t a negated query cannot be grounded from execution of other queries. By contrast ,
the SLDG procedure signals completeness-error only when a universally quantified vari-
able is not grounded following execution of the query in which i t occurs. The localized
nature of completeness-errors may permit easier detection and prevention than meas-
ures designed t o eliminate control-errors.

5.2. Completeness and Soundness of SLDG

Weak-completeness and soundness results can be shown for a certain class of iff-
programs. Such iff-programs are self-covering, and generate gdc programs with
bounded universal quantifiers.

5.2.1. Self-coverage and Well-Formed Programs
The final s tep of the Clark completion procedure requires addition of assertions of

the form -1p(3?), for all predicates p t h a t are not defined in the program. The same
concept for iff-programs can be used t o achieve soundness and completeness of the
deductive procedure.

Let P be a n iff-program. P is self-covering if there is a ground instance A -:- F of
a n iff-clause in P, for every a tom A in the Herbrand Universe of program P. Example
6 is not self-covering, since the eq predicate has no definitions for arguments t h a t are
lists, and the s u b s e q u e n c e predicate has no definitions for arguments t h a t are not
lists. An enhancement, involving type-checking [M84], would admit programs t h a t are
not entirely self-covering, but self-covering within given type domains. Within certain
type domains, Example 6 is self-covering.

Suppose P is a gdc program associated with a n iff-program. I t is possible t h a t P
contains universally quantified formulas t h a t are not bounded; hence, they cannot be
evaluated by the SLDG procedure. For example, because NEG(3Xp (X) , VXNp (X))
holds, the iff-clause q - : - 3 p (X) will generate a clause "q : - VX"p (X) in the
associated gdc program. This clause is not acceptable for interpretation by the SLDG
procedure, since the universal quantifier is not bounded. A gdc program P is well-
formed if each universally quantified formula in P is bounded. As the example above
demonstrated, it is quite easy t o construct iff-programs t h a t have no associated well-
formed gdc programs. However, i t is possible t o decide if a n iff-program can generate a
well-formed gdc program.

5.2.2. Completeness and Soundness Results
As demonstrated by Example 4, programs with universal quantifiers can possess

infinite closure ordinals. This necessarily weakens any completeness result. Because
each iteration of the semantic operator T p is associated with a logical inference,

C o n s t r u c t i v e S e m a n t i c s f o r N e g a t i o n

requiring use of the (SLDG literal) rule, we can expect only weak-completeness: If
lfpIFa] # u , i t may be t h a t SLDG(F,a) does not terminate.

Theorem (Weak-Completeness SLDG) Let Fa be a ground formula, and P be a well-
formed gdc program associated with some self-covering iff-program. If SLDG(F, a) ter-
minates without a completeness-error, then Ifp[F a] # u , and the following hold:

(i) If &[Fa] = t , SLDG(F, a) is successful.

(ii) If lfp[F a] = f, SLDG(F, a) fails.

Note, a s a consequence of this theorem, if Ifp[Fa] = u , then SLDG(F,a) is non-
terminating. This is not the case if P is associated with a n iff-program t h a t is not self-
covering. Proof of this theorem also relies on the capability of SLDG t o signal
completeness-error when universally quantified variables are not grounded.

The soundness result, below, relies on this weak-completeness result. This version
of the soundness theorem must be augmented with an additional step, describing condi-
tions in the event of finite failure.

Theorem: (Soundness of SLDG') Let P be a well-formed gdc program associated with a
self-covering iff-program. Then the following hold:

(i) If SLDG(F,a) yields some substitution T, then Ifp[F T] = t .

(ii) If SLDG(F, a) finitely fails, then lfp[F a] = f.

From the soundness theorem, a surprising observation emerges. The SLDG pro-
cedure may achieve a finite refutation, even though the closure ordinal is transfinite. In
particular, consider the following iff-program, which determines when two sequences
have a nonempty common subsequence:

E x a m p l e 9

empty (nil) - : - true.
empty(X.L) -:- "true.

common~subsequence (L, M) - : -
3 ["empty (X) /\ subsequence (X, L) /\

subsequence (X, M) 1 .
The associated gdc program includes the clause:

"common~subsequence (L, M) : -
VX [("empty (X) /\ subsequence (X, L)) -+

"subsequence (X, M) 1 .
Consider evaluation of a n a tom "common~subsequence (a. nil, b .nil). T o reach
a fixedpoint of T p , a t least w iterations are required t o obtain all valuations of
"empty (X) A subsequence (X , a. ni 1) , for all sequences X. However, only the
substitution [a .nil/X] gives a valuation of t t o this formula. All other sequences pro-
duce valuations of f. Weak completeness ensures t h a t these other sequences will lead t o
failure, which may be finite. Hence, the refutation can be achieved in a finite number of
steps.

Constructive Semantics for Negation

6. Summary

6.1. Related Work

Much work has been done t o characterize negation a s failure. Shephardson
[S84,S85] provides a n extensive survey. Two approaches t o a declarative semantics, the
Closed World Assumption [R78] and the Clark program completion, are often a t vari-
ance. However, Clark has demonstrated the soundness of negation a s failure with
respect t o the completion of a program. Under sufficiently rigid conditions, these two
approaches are identical. The class of models specified by the Clark completion is
equivalent t o the class specified by negation a s failure only for "canonical" programs
[JLM86]. Detection of such programs is undecidable, however. T o overcome problems
of non-monotone Tp, stratification schemes have been advanced [ABW85]. These
schemes result in a least fixedpoint declarative semantics.

Fit t ing [F85] and Kunen [K86] present a &valued logic for definite clause programs
in which the semantic operator Tp is monotone even for programs with negative
literals. Using negation a s failure, this permits completeness of the deduction mechan-
ism for more programs than could achieved under 2-valued logic. Incompleteness still
remains, however. As with the current presentation, this incompleteness is manifested
in programs using either implicit or explicit universal quantification. This is not
surprising, since introduction of negation permits description of complements of recur-
sively enumerable sets, which may not be recursively enumerable.

Another proposal for deducing a negative query i Q , without resorting t o failure,
relies on a search up the proof tree for a n ancestor query Q [PG86]. In addition, the
original program must be expanded t o include each contrapositive form of a n original
clause. For example, given the original clause p : - i q , r , the additional contraposi-
tive clauses are q : - -p, r and yr : - -p, i q . Actual impact on performance of
the new inference procedure and the additional clauses has yet t o be revealed.

Another proposal would include with a program P a set of queries N which must
not succeed [GS86]. The program is inconsistent if there is some query Q EN deducible
from P. A negative query iQ is deducible if P u{Q) is inconsistent with N. While
this computation rule is inexpensive t o implement when queries do not contain
quantified variables, the presence of quantified variables greatly increases the cost.

Universal quantification has not received a s much attention a s negation in logic
programs. A universally quantified query V x F can always be deduced by solving the
equivalent query ~ (3 x -IF) [LT84]. Under negation a s failure, however, answer substitu-
tions are discarded, so the mechanism is non-constructive.

6.2. Current Status & Future Work

The current implementation is written in C-Prolog [P85]. This has required both
introduction of the negation operator , and a bounded universal quantifier. The nega-
tion operator is simply declared as a prefix operator, using Prolog's operator declara-
tion facility. Hence, every clause of the form A :- F is actually a redefinition of a predi-
ca te named , with one argument, A . A query B then unifies with A if B unifies with A .
This conforms with the (SLDG literal) rule.

The implementation of the universal quantifier is similar t o t h a t of the all-
solutions predicates found in many Prolog implementations. I t shares many of the

Constructive Semantics for Negation

deficiencies mentioned by Naish [N85b] for all-solutions predicates. In particular, s;fl
permutations of the se t T must be generated, in order t o generate complete sets of S .
This eliminates the possibility of lazy evaluation for T, hence T must be finite. How-
ever, when the precondition of the bounded universal quantifier has no free variables,
permutations are not needed, and lazy evaluation can be performed. Other possibilities
may enhance the execution of the universal quantifier.

The following additional facilities also exist:

(1) Generation of gdc programs from iff-programs.

(2) Determination t h a t an iff-program has non-conflicting definitions.

(3) Determination t h a t a n iff-program is self-covering, within a given set of type con-
straints .

The implementation requires facilities for information-hiding. This would allow
the programmer's perception t o remain a t the level of iff-programs, ra ther than delve
into the details of the associated gdc programs. This deficiency is manifested in the fol-
lowing ways: First, the programmer must have detailed knowledge of the implementa-
tion of the NEG predicate in order t o ensure t h a t gdc programs generated from iff-
programs can execute efficiently. Also, debugging is performed on the underlying gdc
program, ra ther than on the iff-program. These issues seem similar t o those presented
by compilers. While i t is possible t o view a compiled program a s assembly language
statements, greater coherence is achieved by creating tools, such a s symbolic debuggers,
t h a t hide the ac tual implementation language.

Constructive Semantics for Negation

References

[ABW85] Apt , Blair & Walker, "Towards a Theory of Declarative Knowledge," Techni-
cal Report, IBM Corp., Yorktown Heights, 1985.

[AE82] Apt & van Emden, "Contributions t o the Theory of Logic Programming,"
JACM, 29(3), pp. 841-862, 1982.

[C78] Clark, "Negation a s Failure", in Logic and Data Bases, Gallaire & Minker (eds.),
Plenum Press, New York, pp. 293-322, 1978.

[EK76] van Emden & Kowalski, "The Semantics of Predicate Logic a s a Programming
Language," JACM, 23(4), pp. 733-742, 1976.

[F85] Fitting, "A Kripke-Kleene Semantics for Logic Programs," J. of Logic Program-
ming, 4(1985), pp. 295-312.

[GS86] Gabbay & Sergot, "Negation a s Inconsistency. I," J . of Logic Programming, 3(1),
pp. 1-35, 1986.

[JLM86] Jaffar, Lassez & Maher, "Some Issues and Trends in the Semantics of Logic
Programming," 1986 International Conference on Logic Programming Conference, in
Springer-Verlag Lecture Notes on Computer Science, vol. 225, pp. 223-241, 1986.

[K86] Kunen, "Negation in Logic Programming," submitted for publication t o J. of
Logic Programming, 1986.

[LM84] Lassez & Maher, "Closures and Fairness in the Semantics of Programming
Logic," Theoretical Computer Science, 29(1984), pp. 167-184, 1984.

[LM85] Lassez & Maher, "Optimal Fixedpoints of Logic Programs," Theoretical Com-
puter Science, 39(1985), pp. 15-25, 1985.

[LT84] Lloyd & Topor, "Making Prolog More Expressive," J. of Logic Programming,
1(2), pp. 225-240, 1984.

[M84] Mishra, "Towards a Theory of Types in Prolog," Proc. IEEE Symposium on Logic
Programming, pp. 289-298, 1984.

[N85a] Naish, "Automating Control for Logic Programs," J. of Logic Programming,
2(1985), pp. 167-183.

[N85b] Naish, "All Solutions Predicates in Prolog," Proc. IEEE Symposium on Logic
Programming, pp. 73-77, 1985.

[P85] Pereira, e t al., C-Prolog User's Manual, edCAAD, Dept. of Architecture, Univer-
sity of Edinburgh, 1985.

Constructive Semantics for Negation

[PG86] Poole & Goebel, "Gracefully Adding Negation and Disjunction t o Prolog," 1986
International Conference on Logic Programming, in Springer-Verlag Lecture Notes
on Computer Science, vol. 225, 1986.

[R78] Reiter, "On Closed World Databases," in Logic and Data Bases, Gallaire &
Minker (eds.), Plenum Press, New York, pp. 55-76, 1978.

[S84] Shepherdson, "Negation as Failure," J. of Logic Programming, 1(1984), pp. 51-79.

[St351 Shepherdson, "Negation a s Failure. 11," J. of Logic Programming, 3(1985), pp. 185-
202.

[W87] Walinsky, "Constructive Semantics for Negation," CS/E TR-87/009, Oregon
Graduate Center, 1987.

