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Abstract 

A concise description of the distribution of attribute values is essential in database query 
optimization to  estimate the selectivity of database operations and the sizes of intermediate 
results of a query. Most current methods used to estimate result sizes depend on assumptions 
that  are rarely justified in real databases, namely the assumptions of uniform distribution of 
each attribute and statistical independence between attributes. Moments and density functions 
are used in statistics to  describe the distribution of a population. Compared to  histograms 
which are used in some database systems to describe value distributions, moments and density 
functions offer the advantages that  they require less storage space and that  they can be 
updated much more efficiently. Statistical dependencies between attributes can be described 
using co-moments and multi-dimensional density functions, allowing for accurate estimation of 
complex predicates and combinations of selection and join predicates. 

1. Introduction 

Database query optimization is the task of finding the optimal query execution plan for a 

given query. A large number of strategies to  be used in query optimization have been reported 

in the database literature. For a recent survey, see [Jarke1984a]. Most of these proposals and 

implementations, however, do not adequately address the problem of estimating the sizes of 

intermediate results. To understand the significance of the problem, consider the following rela- 

tional query. 

Find all employees with a salary between $20,000 and $30,000 and the name of their 
departments. 

To evaluate this query, the database system must perform a selection on the employee relation, 

and join the result with the department relation. Assume that each employee record includes 



the id of the employee's department, and that the department file is indexed on id's'. This 

index can be used very effectively to  perform the join operation [Blasgenl977a]. Using the index, 

only those records and pages from the department file which contain relevant department 

records must be read from disk. However, if many departments have employees in this salary 

range, probably all pages of the department file must be read. Since the department records are 

requested in random order (actually in the order in which the employee file is scanned) each 

page may be needed several times. Depending on the buffer size and replacement strategy, each 

page may be read from disk several times, clearly a very undesirable situation. 

In order to  decide on the optimal processing strategy in a situation like the one described 

in this example, the database system needs to  anticipate as correctly as possible how many 

records from each file will actually be needed from each file to evaluate a query. This fre- 

quently requires estimates of intermediate result sizes, in the example the result of the selection. 

We propose to investigate the use of statistical moments and density functions as a basis for 

more reliable and more accurate estimations. 

The problem of estimating intermediate result sizes is not restricted to relational data- 

bases. In fact, the problem arises in all database systems that  support complex queries on sets 

of objects. In more intelligent database systems, queries will require more operations to  evalu- 

ate, and optimization need and opportunity will be greater. Since the reliability of estimates 

decreases with the number of processing steps, improved estimation procedures are very impor- 

tant .  

In the next section, estimation methods used or proposed previously are described. In Sec- 

tion 3, we introduce moments and density functions as they are used in statistics to  describe 

data distributions. Section 4 outlines how density functions can be used to estimate the number 

We assume in this example that  each relation is stored in its own file, and that  a disk 
page belongs t o  one file only. We use the words relation and tuple when we refer to  the concep- 
tual level, and the words file and record for the physical level. 



of records from one file satisfying a complex condition. In Section 5, estimation procedures for 

joins are presented. Section 6 describes the use of density functions to estimate the result size of 

projections and aggregate functions. Section 7 shows some preliminary results using graphs to  

compare a density function with an  approximation density function calculated using random 

samples and moments. In Section 8, we show how moments can be collected and maintained 

very efficiently in database environments. Section 9 contains a summary and our conclusions. 

2. Previous Work 

When considering the large amount of research tha t  has been done on database query 

optimization, i t  is surprising how relatively few research reports have dealt with estimating the 

size of intermediate results. 

In the original INGRES effort [Stonebrakerl976a], the difficulty t o  anticipate results sizes 

led to  the development of the query processing algorithm tha t  interleaves query optimization 

and execution [Wong1976a]. Each processing step produced a temporary relation, the size of 

which was exactly known in the next optimization step. Besides the fact tha t  this approach has 

clear disadvantages when a query runs many times in virtually the same environment (e.g. a 

banking teller transaction), this algorithm can miss the optimal query execution strategy if the 

result of a processing step is significantly larger than expected. 

In System R, information from existing indices was used as far a s  possible t o  estimate the 

result size of a single relation query, namely cardinality, key cardinality (number of distinct 

values), minimum attribute value, and maximum attribute value [Selingerl979a]. If no suitable 

index existed, a set of "magic" constants was used to  estimate the selectivity of a predicate, i.e. 

the fraction of qualifying tuples. For predicates of the form attribute = constant, the selectivity 

1 
was set t o  ; if the key cardinality was unknown, 10%. For a predicate of the 

key cardinality 

constant - minimum 
form attribute < constant, the selectivity was set t o  ; if minimum and 

maximum - minimum 

maximum attribute value are unknown, 33%. This formula is based on the assumption tha t  the 



attribute values are uniformly distributed. For predicate involving the Boolean operators AND 

and OR, i t  was assumed that  attributes are independently distributed, e.g. the selectivity of the 

conjunction of two predicates is set to  be the product of the individual selectivities. 

These two assumptions, uniform distribution for each attribute and independent distribu- 

tion of each pair of attributes, are frequently not met in real databases. Consider, for example, 

a relation of employees which includes attributes for salaries and tax withholding. The salaries 

are probably not uniformly distributed from $0 (for a volunteer) to  $100,000 (for the CEO), and 

the salary and the tax withholding are certainly not independent. If a query predicate includes 

restrictions on these two attributes, i.e. salary > $50,000 and tax < $1,000, the formulas used in 

System R are bound to  give incorrect estimates2 

Uniqueness of keys can be used in determining the worst case (largest) selectivity of select, 

project, and join operators. This technique has been used both in System R [Selingerl979a] and 

in INGRES [Epsteinl979a]. Furthermore, functional dependencies can also be incorporate in the 

estimation procedure. 

To improve the accuracy of estimates for selections, histograms were implemented in the 

commercial version of INGRES [Kooi1982a]. Within each interval of the histogram, a uniform 

distribution of values is assumed. If a histogram is sufficiently detailed, this assumption does 

not have a significant impact. There are two problems with histograms. First, they do not 

work well if the distribution is very uneven. Consider the distribution of salaries and estima- 

tions using a histogram with 10 intervals. There are probably many more employees with 

salaries in the range of $25,000 to  $30,000 than in the range $95,000 to $100,000. The estimated 

selectivity for the predicate salary > $97,500 is very accurate, but the estimate for salary > 

$27,500 and salary < 92,500 is subject to  significant error. Inverted histograms have been 

We would like to  investigate the influence of incorrect estimates on the optimality of 
query execution plans. However, we view the "stability" of access plans as a different research 
topic [Graefel987a]. 



suggested to  deal with this difficulty [Piatetsky-Shapirol984al. Instead of using counts for inter- 

vals of equal width, the limits of intervals with equal counts are used3. The major problem with 

inverted histograms is how to  find and to  update them efficiently because this requires sorting 

the data  values. The second problem with histograms is tha t  they do not address the indepen- 

dence assumption. To our knowledge, work in progress by Muralikrishna a t  the University of 

Wisconsin - Madison is the first attempt to  use multi-dimensional histograms. 

Other research efforts were directed to  estimating the number of disk blocks that must be 

accessed to  retrieve all relevant records for a query. If the distribution of records over disk 

blocks is unrelated to  attributes in the query predicate, blocks are accessed virtually a t  random, 

and Yao's formula vao1979al is an appropriate way to estimate block accesses. If the attri- 

butes in the query predicate are correlated with the clustering attribute (i.e. records are 

assigned to  disk blocks according to  some attribute value), the estimation becomes fairly com- 

plex [Zandenl986a]. 

Statistical concepts were used by Christodoulakis [Christodoulakisl983a] to  estimate the 

number of records satisfying a condition. He assumed that the data values in each attribute 

followed one of three parameterized uni-modal distributions, and maintained a covariance 

matrix for each relation, used to  determine the correlation between pairs of attributes. Our 

work differs from his in several respects. First, we do not assume that  the data follow a 

predefined distribution. Our approach allows us to approximate any data distribution. Second, 

the accuracy of estimations in our approach depends on the effort spent: The more moments are 

gathered, the more accurate will the estimation be. Third, we will use our techniques to esti- 

mate the result sizes of join, project, and aggregate functions, too. Fourth, we will be able to 

estimate the attribute distributions in result relations, which is particularly useful for intermedi- 

ate results. 

In statistics, these limits are called quantiles. The best known special case of quantiles is 
the median, which is the 50% quantile. 



Yang pang1985a] derived reliable formulas to  estimate the cardinality of a join result. 

The expected size is the product of the input cardinalities divided by the cardinality of the join 

domain; to  calculate the exact result cardinality, a correction term must be added. The correc- 

tion term is calculated from the number of occurrences (frequency counts) of each value in each 

of the join columns. It is the product of the two standard deviations of the frequency counts 

and the correlation coefficient between them. The correction term can easily be much larger 

than the term for the expected size, hence it is important to  calculate or estimate it accurately. 

Unfortunately, maintaining the frequency counts is very expensive for a large database. Yang 

suggests to  combine partitioning, approximation, and sampling methods for periodic updates of 

the statistical information, but gives no report on practical experiences with these methods. A 

possibly more important drawback of the estimation procedures proposed by Yang is their ina- 

bility to  deal with databases and queries involving multiple operators and correlated attributes. 

For example, if a relation contains the (heavily correlated) attributes salary and taz withholding, 

and a query requires a selection according to salaries and a join according to  taz withholding, 

Yang's methods do not help because it  is not possible to  capture this correlation in the statistics 

used for estimating the join size. Nevertheless, we intend to  use as much of Yang's work as pos- 

sible by appropriately adapting and extending the formulas provided. 

3. Statistical Momenta 

A moment is a sum of the data values in a distribution raised to  a certain power. For 

th  
example, for the sequence zl, z2, ..., zN, the k moment is 

The first moment is simply the sum of the values. The second moment is the sum of the squares. 

The zero-th moment can be defined as the number of values in the sequence. The first and 

second moment can be used to  calculate the variance of a population, because 



In fact, if one were to  write a program to find the mean and the variance of a long vector, one 

would intuitively choose to  use the first and second moments. 

th 
Co-moments describe the distribution of more than one variable. The k , l  moment of the 

sequences zi and yi is defined as 

N 

m,, = c,*Y,! 
i=l 

Co-moments can be used to  calculate the covariance, correlation, and the regression constants. 

Co-moments of more than two variables are defined analogously. 

Another method used in statistics to describe distributions are distribution and density 

functions. For each value in the data domain (e.g. salaries) the distribution function expresses 

what portion of the data are equal to or less than the given value. The value of the distribu- 

tion function of arguments less than the minimum is 0,  of arguments equal to  or greater than 

the maximum, it  is 1. The density function is the derivative of the distribution function, thus 

expressing how likely a certain value is to  occur. Probably the best known density function is 

the bell-shaped curve of the normal distribution. 

For multi-dimensional distributions, distribution functions and density functions can be 

defined to  map a pair of values (triple, quadruple, etc., depending on the number of dimensions) 

to the fraction of data pairs (triples, etc.) with all values less than or equal than the given ones. 

If the form of the distribution is known, e.g. uniform, normal, exponential, etc., the exact 

distribution can easily be determined from suitable number of moments (typically two). If the 

form of the distribution is not known, the distribution can nevertheless be approximated by 



assuming tha t  the density function is of a particular form. It  is important tha t  this assumption 

is not restrictive, i.e. tha t  the form assumed is able t o  model any density function. We suggest 

using polynomials which allow to  model density functions with the desired accuracy by choosing 

the degrees of the polynomials sufficiently high. Furthermore, polynomials offer the advantage 

tha t  i t  is very easy to find the distribution function from the density function, and vice versa. 

The coefficients of the density function can be calculated from the moments. Incidentally, 

the number of coefficients tha t  can be calculated from a set of moments is exactly the number 

of moments available. For example, if we intend t o  describe the density function with a polyno- 

mial of degree 3, we need t o  know the moments m,, ma, m,, and the cardinality (mo). 

Polynomials of degree 3 or 5 will probably be sufficient t o  model many density functions in 

real databases with appropriate accuracy. In the section on implementation plans, we argue 

tha t  collecting and maintaining moments can be done very efficiently, such tha t  3 or 5 moments 

for each attribute are not a t  all unrealistic. 

Calculating polynomial coefficients from moments involves solving a (small) system of 

linear equations. Assume tha t  we know the moments ml, m2, ,..., mM, the cardinality mo, and 

the lower bound L and the upper bound U of a distribution. If we assume tha t  the density 

function is of the form 

M 

j ( 2 )  = C a j 2 j  

i-0 

i.e. a polynomial of degree M, we can determine the coefficients aj using a set of equations. For 

each moment mi, i=O ,..., M ,  we know 

This is a system of linear M+l equations with M+l variables a j ,  j=O, ..., M .  The complexity of 

solving a system of linear equations is o(?) for N equations; however, if the minimum L and 

maximum U do not change, the system can be stored in a triangularized form which allows to  



determine the coefficients in o($) (see, for example [Cheneyl980a] ). 

4. Estimating Selection Result Sises 

If the density function and all its parameters are known, it  is easy to  estimate the number 

of values in a given interval. In order to  determine the number of tuples with an attribute 

between the lower limit L and the upper limit U, simply use the distribution function F or the 

integral of the density function f .  

U 

J f (2) dz = F(U)-F(L) 

L 

The result of this formula and the following formulas must be scaled using the cardinality of the 

relation to  find the result cardinality. In this paper, we omit this multiplication to  keep the for- 

mulas clearer. If the distribution function and the density function are polynomials, the integral 

can be calculated particularly efficiently. 

If the selection is an equality constraint on an non-unique attribute, the best guess under 

the uniformity assumption is that  all values are distributed over all distinct keys, expressed in 

the formula 

key cardinality 

The number of distinct keys is usually determined and maintained within an index. If we can 

assume that  the values in the domain are equally spaced, the density function contains more 

information about the distribution of values, thus we suggest modifying the last formula to  

I A ~ ,  the cardinality of the domain, is equal to the key cardinality used in existing query optimiz- 

ers. a. is the constant from the query, thus f (ao) is the number of attribute values equal to  ao. 

max and min express the range of the data values, e.g. salaries in the range from $0 to  $100,000. 

The correction factor (maz-min) is required because it  is this range over which the integral of 

the density function is 1. 



To estimate the result size of a selection with two attributes, e.g. salary > $50,000 and tax 

< $1,000, the twedimensional density function must be calculated from the moments and co- 

moments (which can be done in the same manner as for single attribute distributions), and a 

double integral must be solved. For example, to find the number of tuples with L,<x<U, and 

L,< y < U,, the value for 

Uz 

J J ~ ( x , Y )  dy dx = F(u,,u,) - F(u,,L,) - F(L,,u,) + F(L,,L,) 

=I Ly 

must be found. As for one-attribute selections, this is particularly simple if the density function 

is a polynomial. Notice that  these formulas can be expected to  give very accurate estimates 

whether or not the attributes z and y are correlated. 

If more than two attributes are involved in a selection predicate, the expressions become 

larger, but not more complex. Nevertheless, this procedure is more expensive to  perform than 

procedures based on the assumption of statistical independence between attributes. For- 

tunately, the attributes and attribute combinations for which moments and density functions 

give significantly more accurate estimates can be determined automatically using the moments. 

As mentioned before, moments can be used to  calculate the correlation between attributes. If 

the correlations between a set of attributes is known, it can be decided which attributes can be 

considered independent. It  will be very interesting to  see to  which extent this can be done 

efficiently in a database system. 

The density function can also be used to  estimate the number of disk blocks that  contain 

relevant tuples for a given query. Conceptually, we calculate the sum of the probabilities for 

the records in each block. We are confident that it  will be relatively easy to  design a closed 

form expression which eliminates the need for a explicit summation. 

6. Estimating Join Result Sizes 

Estimating the result size for join operations is considered substantially harder than for 

selection operators. The reason is that  data about two relations are required. An exact 



formula to  estimate the result size was given by Yang [Yang1985a]. The dependency on fre- 

quency counts, however, makes this formula somewhat impractical, and no implementation 

experiences were reported. We believe that using moments, the formulas can be made to  work 

for a dynamically changing, large database. Essentially, we plan to  adapt the formulas to  use 

continuous instead of discret distributions, as we did for selections. 

The result size of an  equi-join is the sum of the products of the frequency counts from the 

two relations for each value in the join domain. Let us assume the join domain is A with values 

ak, k=1,2,  ...A A I ,  and the frequency counts for these values are rk and sk when joining relation R 

and S. Notice tha t  rk and sk are not the values of the join attributes in R and S; these values 

are represented by a's. Each value ak in the join domain produces a number of tuples in the 

join result, namely the product of the two corresponding frequency counts rk and sk. The cardi- 

nality of the join result is the sum of these products, i.e. 

Instead of using frequency counts, we suggest to use continuous density functions derived 

from the moments. For density functions f R  and fs, the result of the join result is 

.f f ~ ( ' )  f.da) da 
A 

If both of these density functions are polynomials, this integral can be solved very efficiently by 

combining the two polynomials of a into one. 

Yang suggests applying the estimation procedure for the result size of a multi-attribute 

equi-join (i.e. a join with several equality clauses in the join predicate) by conceptualizing the 

join predicate as a single attribute join on the cross product of all join domains. Using co- 

moments and multi-dimensional density functions, this is very straightforward. 

When one of the input relations of a join operator is the result of a select operator, 

estimating the result size is considered particularly difficult. Nevertheless, this case arises fre- 

quently in real queries. There are two cases that need to  be differentiated. If the select 



operator predicate limits the values of the join attribute, result size estimation is estimated by 

integration over the join domain limited to  the range satisfying the selection predicate. 

If the selection is performed on different attribute than the join attribute, co-moments 

between the domains (within one relation) and the multi-dimensional density function are 

required. The one-dimensional density function of the join domain can be derived and then be 

used to  estimate the size of the join result. If all density functions are polynomials with known 

coefficients, deriving a density function from another of more dimensions is relatively easy and 

can be done symbolically. For the following equations, assume that the selection predicate is 

LSxSU and that  the join predicate is y=z on domain A, with attributes x and y from one 

input relation and z from the other. The density function of the selection result is 

f y  d t c r    election(^) = J fa,y(',v) d' 
L 

The join result size can be calculated using the formula 

U 

J J f+,g(zla) dz fz(a) da 
A L  

If the join predicate is not an equality but an inequality (theta join) or if both equality 

and inequality clauses appear in the join predicate, density functions can also be used to esti- 

mate the result size. 

Similar to  selection results, it is possible to  anticipate the density function of attributes in 

join results. We intend to  explore this issue intensively, because it  will be essential for reliable 

estimations in complex queries with deeply nested trees of operators. 

6. Results Sizes of Projections and Aggregate Functions 

The projection operator removes attributes from all its input tuples, leaving the attributes 

given in the p r o j e c t i o n  l ist .  Since relations are defined not to  contain duplicate tuples, it  is 

necessary to  find and remove duplicates, except if the projection list contains a key, thus ensur- 

ing uniqueness. 



Aggregates are functions, e.g. sum, count, or maximum, of the values of one attribute, e.g. 

salaries. Two forms of aggregates are distinguished in database systems, scalar aggregates and 

aggregate functions. Scalar aggregates result in a single value. This value can be determined 

separately from the main query and inserted as a constant into the modified query. 

Aggregate functions classify the input tuples by a list of attributes. Following QUEL, we 

call this list the by-list. A frequently used example is the "sum of salaries by department". 

With respect to  result cardinalities, aggregate functions can be considered a special form of pr* 

jection. Instead of removing duplicates with equal values in the attributes of the projection list, 

aggregate functions combine (aggregate over) tuples with the same set of values in the attri- 

butes of the by-list. 

In some respect, the problem of estimating the result size for projections is a dual of the 

problem of estimating the result size for a selection with an equality constraint. Basically, if we 

know the input size of a project operation and the number of equal values for each value, we 

can easily calculate the number of distinct values. Thus, we can use the principles outlined 

above for equality selections for projections and aggregate functions. The advantage of our 

method using density functions over current methods is tha t  the result size can be estimated 

fairly accurately even if the operation follows another operator, e.g. a selection or a join, and 

we can estimate the distribution statistics fo the result. 

7 .  Preliminary Results 

In this section, we present some very preliminary results. In order to  assess the practical- 

ity of the techniques, we developed a program that  reproduces a given density function using 

random samples and moments. The density function to  be reproduced is coded as a subroutine 

which can be changed without changes to  the other parts of the program. The program 

operates in six steps. First, the integral of the original density is estimated numerically and 

normalized to  be 1. Second, random numbers are chosen from a uniform distribution and 

mapped to  reflect the density function to  be reproduced. To be more precise, for the density 



function f we map yo to  zo such tha t  

=o 

Yo = J f (z) dz. 
0 

Third, the moments are gathered by adding powers of the mapped random numbers. Fourth, 

density functions in the form of polynomials are calculated by solving a system of linear equa- 

tions, as described above. Fifth, the original density function and the calculated polynomial are 

evaluated for equidistant points over the range from minimum to maximum value4, and linear 

regression coefficients and correlation coefficient P of the two sequences are calculated. Finally, 

the original density function and the calculated polynomial are plotted using these two 

sequences. 

In the following graphs, we used a density function that we picked naively to  reflect the 

salary distribution in an organization. Using 150 sample values (from 150 employees, so to 

speak), we calculated the moments. Using M+1 moments (M moments and the cardinality), we 

approximated the density function with a polynomial of degree M .  The density functions for M 

= 3, 4, and 5 are shown. The polygon is the density function to  be reproduced, while the 

smooth curve is the approximating polynomial. The x-axis ranges from 0 to  1. The y-axis is 

scaled such tha t  the integral of the original density functions is 1. The horizontal line indicates 

the x-axis, i.e. y=O. 

In this preliminary program, the minimum is always 0 and the maximum is 1. Generaliz- 
ing this range requires only a linear transformation which would not change the other calcula- 
tions. Thus, this restriction is not significant. We evaluated the original and calculated density 
function a t  as many points as necessary to allow plotting seemingly smooth graphs, typically 
150 points. The regression and correlation coefficients are affected only marginally by the 
chosen number of points. 



Several observations can be made on these graphs. First, the approximations become 

increasingly more accurate as the number of moments and the degree of the polynomial 



increase. This is apparent both visually and in the correlation coefficient r ,  printed in the 

legend of each graph. Second, the approximating density function takes values less than 0, i.e. 

the graph crosses the x-axis. This is an unavoidable result of Gibb's phenomenon (see, for exam- 

ple, [Hammingl977a, Oppenheim1983a] ). Approximating a non-smooth curve with smooth func- 

tions always bears the risk of "overswings". We intent to  explore the existing work on sharpen- 

ing digital filters (see, for example, [Hamming1977a] ) t o  determine how to  reduce this problem. 

Third, the difference between the original and the approximating density function is largest 

close to  the minimum and the maximum, i.e. the left and right end of the curves. We hope to  

eliminate most of this undesirable effect by using window functions (see, for example, 

[Hammingl977a, Oppenheiml983al ). 

8. Finding and Updating Moments 

There are essentially two ways to  maintain the statistics used in query optimization, i.e. 

the moments of the attributes in a database. First, one can collect them periodically, and 

assume that  they will not change significantly in the mean time. In order to  assess the 

justification of this approach, the notion of significant change needs to  be explored5. Second, 

the moments can be updated incrementally each time a tuple is modified, inserted, or deleted in 

the database. Moments are very well suited to  incremental update. We will suggest some 

implementation mechanisms for each of these two methods in turn. 

8.1. Periodic Update 

Gathering the moments for the relations and attributes in a relational database requires 

scanning all files. We imagine that  this can be done very fast using techniques like read-ahead. 

The processing load for each tuple are very low. For each attribute and each moment collected, 

one addition and one multiplication is required. We expect that, using a mainframe computer, 

We hope to  include this issue in our research into the stability of access plans, mentioned 
in an earlier footnote. 



this can be done a t  disk speed. 

Randomly drawn samples have been reported in piatetsky-Shapirol984al for approximat- 

ing inverted histograms. This technique is promises advantages only for very large files since it  

requires random access to  both records and blocks. We will investigate whether randomly 

drawn samples are an  appropriate method to  estimate the moments. The preliminary results 

reported in Section 7 indicate that very small samples, in this case 150 values, give a reasonably 

close approximation of the underlying distribution. 

8.2. Incremental Update 

Most database systems update the statistics used in query optimization periodically. Even 

if the statistics are not exact in the meantime, they are sufficiently accurate considering the fact 

that  the database query optimizer is based on untested assumptions and heuristics. This is a 

valid argument; we believe, however, the strongest argument is that  maintaining correct statis- 

tics with each update inflicts too much overhead for database transactions. Using moments as 

the primary statistics, however, this argument may become invalid. In fact, we believe it  will 

even be possible to  maintain transaction consistent statistics which can easily merged with the 

statistics in the database catalogs when the transaction commits. 

Consider how the moments change when a tuple is inserted, deleted, or modified in a data- 

base. Since moments are sums of attribute values raised to  a power, they must be increased 

when a tuple is inserted, decreased when a tuple is deleted, and decreased according to  the old 

amount and increased according to  the new amount when a tuple is modified. In order to  main- 

tain transaction consistent moments, a transaction uses the moments from the database cata- 

logs as a starting point and keeps track of the cumulated changes to  the moments. Thus, 

within a transaction, queries can be optimized using exact statistics and density functions. If 

the transaction aborts, nothing needs to be done concerning the moments in the database cata- 

logs. If the transaction commits, the cumulated changes (increases, decreases) initiated by the 

transaction can be applied to  the database catalogs. Notice tha t  the transaction cannot simply 



overwrite the moments in the catalogs because another transaction may have updated the cata- 

logs in the meantime. The limitation to  updates only by increases and decreases allows to  

exploit high performance locking techniques, e.g. using the Escrow method [O'Nei11986a] 

modified to  take advantage of the fact that  illegal updates (overflow, underflow) are impossible. 

We are not in the position yet to  anticipate whether or not transaction consistent statis- 

tics are worth the effort. We feel, however, that moments can be updated as efficiently as the 

catalog entries for relation cardinalities, thus justifying a new look a t  the promise of transac- 

tion consistent statistics. 

9. Summary and Conclusions 

In this paper, we suggest to use statistical moments and density functions to  estimate 

selectivities and result sizes of relational operations. The problem is of both theoretical and 

practical importance for database query optimization. Previous methods are based on assump- 

tions that  many real databases do not justify, namely the uniformity assumption and the 

independence assumption. Moments and density functions can be considered as a way to  aban- 

don both assumptions, thus allowing for more accurate estimates and better query optimization. 

The estimation procedures using moments and density functions are more complex than those 

currently used in database systems, but moments allow to  determine a priori whether the effort 

is justified. It  is important to  note that moments can be calculated and maintained very 

efficiently even for very large databases. 

The problem of estimating sizes of intermediate results has not received very much atten- 

tion in database research, even though it is of substantial practical importance. We regard 

moments and density functions as a promising new approach to  the problem. 
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