
Selectivity Estimation Using
Moments and Density Functions

Goetz Graeje

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999

Technical Report No. C S D 87-012
November 1987

Selectivity Estimation
using Moments and Density Functions

Goetz Graefe
Oregon Graduate Center

Abstract

A concise description of the distribution of attribute values is essential in database query
optimization to estimate the selectivity of database operations and the sizes of intermediate
results of a query. Most current methods used to estimate result sizes depend on assumptions
that are rarely justified in real databases, namely the assumptions of uniform distribution of
each attribute and statistical independence between attributes. Moments and density functions
are used in statistics to describe the distribution of a population. Compared to histograms
which are used in some database systems to describe value distributions, moments and density
functions offer the advantages that they require less storage space and that they can be
updated much more efficiently. Statistical dependencies between attributes can be described
using co-moments and multi-dimensional density functions, allowing for accurate estimation of
complex predicates and combinations of selection and join predicates.

1. Introduction

Database query optimization is the task of finding the optimal query execution plan for a

given query. A large number of strategies to be used in query optimization have been reported

in the database literature. For a recent survey, see [Jarke1984a]. Most of these proposals and

implementations, however, do not adequately address the problem of estimating the sizes of

intermediate results. To understand the significance of the problem, consider the following rela-

tional query.

Find all employees with a salary between $20,000 and $30,000 and the name of their
departments.

To evaluate this query, the database system must perform a selection on the employee relation,

and join the result with the department relation. Assume that each employee record includes

the id of the employee's department, and that the department file is indexed on id's'. This

index can be used very effectively to perform the join operation [Blasgenl977a]. Using the index,

only those records and pages from the department file which contain relevant department

records must be read from disk. However, if many departments have employees in this salary

range, probably all pages of the department file must be read. Since the department records are

requested in random order (actually in the order in which the employee file is scanned) each

page may be needed several times. Depending on the buffer size and replacement strategy, each

page may be read from disk several times, clearly a very undesirable situation.

In order to decide on the optimal processing strategy in a situation like the one described

in this example, the database system needs to anticipate as correctly as possible how many

records from each file will actually be needed from each file to evaluate a query. This fre-

quently requires estimates of intermediate result sizes, in the example the result of the selection.

We propose to investigate the use of statistical moments and density functions as a basis for

more reliable and more accurate estimations.

The problem of estimating intermediate result sizes is not restricted to relational data-

bases. In fact, the problem arises in all database systems that support complex queries on sets

of objects. In more intelligent database systems, queries will require more operations to evalu-

ate, and optimization need and opportunity will be greater. Since the reliability of estimates

decreases with the number of processing steps, improved estimation procedures are very impor-

tant .

In the next section, estimation methods used or proposed previously are described. In Sec-

tion 3, we introduce moments and density functions as they are used in statistics to describe

data distributions. Section 4 outlines how density functions can be used to estimate the number

We assume in this example that each relation is stored in its own file, and that a disk
page belongs t o one file only. We use the words relation and tuple when we refer to the concep-
tual level, and the words file and record for the physical level.

of records from one file satisfying a complex condition. In Section 5, estimation procedures for

joins are presented. Section 6 describes the use of density functions to estimate the result size of

projections and aggregate functions. Section 7 shows some preliminary results using graphs to

compare a density function with an approximation density function calculated using random

samples and moments. In Section 8, we show how moments can be collected and maintained

very efficiently in database environments. Section 9 contains a summary and our conclusions.

2. Previous Work

When considering the large amount of research tha t has been done on database query

optimization, i t is surprising how relatively few research reports have dealt with estimating the

size of intermediate results.

In the original INGRES effort [Stonebrakerl976a], the difficulty t o anticipate results sizes

led to the development of the query processing algorithm tha t interleaves query optimization

and execution [Wong1976a]. Each processing step produced a temporary relation, the size of

which was exactly known in the next optimization step. Besides the fact tha t this approach has

clear disadvantages when a query runs many times in virtually the same environment (e.g. a

banking teller transaction), this algorithm can miss the optimal query execution strategy if the

result of a processing step is significantly larger than expected.

In System R, information from existing indices was used as far a s possible t o estimate the

result size of a single relation query, namely cardinality, key cardinality (number of distinct

values), minimum attribute value, and maximum attribute value [Selingerl979a]. If no suitable

index existed, a set of "magic" constants was used to estimate the selectivity of a predicate, i.e.

the fraction of qualifying tuples. For predicates of the form attribute = constant, the selectivity

1
was set t o ; if the key cardinality was unknown, 10%. For a predicate of the

key cardinality

constant - minimum
form attribute < constant, the selectivity was set t o ; if minimum and

maximum - minimum

maximum attribute value are unknown, 33%. This formula is based on the assumption tha t the

attribute values are uniformly distributed. For predicate involving the Boolean operators AND

and OR, i t was assumed that attributes are independently distributed, e.g. the selectivity of the

conjunction of two predicates is set to be the product of the individual selectivities.

These two assumptions, uniform distribution for each attribute and independent distribu-

tion of each pair of attributes, are frequently not met in real databases. Consider, for example,

a relation of employees which includes attributes for salaries and tax withholding. The salaries

are probably not uniformly distributed from $0 (for a volunteer) to $100,000 (for the CEO), and

the salary and the tax withholding are certainly not independent. If a query predicate includes

restrictions on these two attributes, i.e. salary > $50,000 and tax < $1,000, the formulas used in

System R are bound to give incorrect estimates2

Uniqueness of keys can be used in determining the worst case (largest) selectivity of select,

project, and join operators. This technique has been used both in System R [Selingerl979a] and

in INGRES [Epsteinl979a]. Furthermore, functional dependencies can also be incorporate in the

estimation procedure.

To improve the accuracy of estimates for selections, histograms were implemented in the

commercial version of INGRES [Kooi1982a]. Within each interval of the histogram, a uniform

distribution of values is assumed. If a histogram is sufficiently detailed, this assumption does

not have a significant impact. There are two problems with histograms. First, they do not

work well if the distribution is very uneven. Consider the distribution of salaries and estima-

tions using a histogram with 10 intervals. There are probably many more employees with

salaries in the range of $25,000 to $30,000 than in the range $95,000 to $100,000. The estimated

selectivity for the predicate salary > $97,500 is very accurate, but the estimate for salary >

$27,500 and salary < 92,500 is subject to significant error. Inverted histograms have been

We would like to investigate the influence of incorrect estimates on the optimality of
query execution plans. However, we view the "stability" of access plans as a different research
topic [Graefel987a].

suggested to deal with this difficulty [Piatetsky-Shapirol984al. Instead of using counts for inter-

vals of equal width, the limits of intervals with equal counts are used3. The major problem with

inverted histograms is how to find and to update them efficiently because this requires sorting

the data values. The second problem with histograms is tha t they do not address the indepen-

dence assumption. To our knowledge, work in progress by Muralikrishna a t the University of

Wisconsin - Madison is the first attempt to use multi-dimensional histograms.

Other research efforts were directed to estimating the number of disk blocks that must be

accessed to retrieve all relevant records for a query. If the distribution of records over disk

blocks is unrelated to attributes in the query predicate, blocks are accessed virtually a t random,

and Yao's formula vao1979al is an appropriate way to estimate block accesses. If the attri-

butes in the query predicate are correlated with the clustering attribute (i.e. records are

assigned to disk blocks according to some attribute value), the estimation becomes fairly com-

plex [Zandenl986a].

Statistical concepts were used by Christodoulakis [Christodoulakisl983a] to estimate the

number of records satisfying a condition. He assumed that the data values in each attribute

followed one of three parameterized uni-modal distributions, and maintained a covariance

matrix for each relation, used to determine the correlation between pairs of attributes. Our

work differs from his in several respects. First, we do not assume that the data follow a

predefined distribution. Our approach allows us to approximate any data distribution. Second,

the accuracy of estimations in our approach depends on the effort spent: The more moments are

gathered, the more accurate will the estimation be. Third, we will use our techniques to esti-

mate the result sizes of join, project, and aggregate functions, too. Fourth, we will be able to

estimate the attribute distributions in result relations, which is particularly useful for intermedi-

ate results.

In statistics, these limits are called quantiles. The best known special case of quantiles is
the median, which is the 50% quantile.

Yang pang1985a] derived reliable formulas to estimate the cardinality of a join result.

The expected size is the product of the input cardinalities divided by the cardinality of the join

domain; to calculate the exact result cardinality, a correction term must be added. The correc-

tion term is calculated from the number of occurrences (frequency counts) of each value in each

of the join columns. It is the product of the two standard deviations of the frequency counts

and the correlation coefficient between them. The correction term can easily be much larger

than the term for the expected size, hence it is important to calculate or estimate it accurately.

Unfortunately, maintaining the frequency counts is very expensive for a large database. Yang

suggests to combine partitioning, approximation, and sampling methods for periodic updates of

the statistical information, but gives no report on practical experiences with these methods. A

possibly more important drawback of the estimation procedures proposed by Yang is their ina-

bility to deal with databases and queries involving multiple operators and correlated attributes.

For example, if a relation contains the (heavily correlated) attributes salary and taz withholding,

and a query requires a selection according to salaries and a join according to taz withholding,

Yang's methods do not help because it is not possible to capture this correlation in the statistics

used for estimating the join size. Nevertheless, we intend to use as much of Yang's work as pos-

sible by appropriately adapting and extending the formulas provided.

3. Statistical Momenta

A moment is a sum of the data values in a distribution raised to a certain power. For

th
example, for the sequence zl, z2, ..., zN, the k moment is

The first moment is simply the sum of the values. The second moment is the sum of the squares.

The zero-th moment can be defined as the number of values in the sequence. The first and

second moment can be used to calculate the variance of a population, because

In fact, if one were to write a program to find the mean and the variance of a long vector, one

would intuitively choose to use the first and second moments.

th
Co-moments describe the distribution of more than one variable. The k , l moment of the

sequences zi and yi is defined as

N

m,, = c,*Y,!
i=l

Co-moments can be used to calculate the covariance, correlation, and the regression constants.

Co-moments of more than two variables are defined analogously.

Another method used in statistics to describe distributions are distribution and density

functions. For each value in the data domain (e.g. salaries) the distribution function expresses

what portion of the data are equal to or less than the given value. The value of the distribu-

tion function of arguments less than the minimum is 0, of arguments equal to or greater than

the maximum, it is 1. The density function is the derivative of the distribution function, thus

expressing how likely a certain value is to occur. Probably the best known density function is

the bell-shaped curve of the normal distribution.

For multi-dimensional distributions, distribution functions and density functions can be

defined to map a pair of values (triple, quadruple, etc., depending on the number of dimensions)

to the fraction of data pairs (triples, etc.) with all values less than or equal than the given ones.

If the form of the distribution is known, e.g. uniform, normal, exponential, etc., the exact

distribution can easily be determined from suitable number of moments (typically two). If the

form of the distribution is not known, the distribution can nevertheless be approximated by

assuming tha t the density function is of a particular form. It is important tha t this assumption

is not restrictive, i.e. tha t the form assumed is able t o model any density function. We suggest

using polynomials which allow to model density functions with the desired accuracy by choosing

the degrees of the polynomials sufficiently high. Furthermore, polynomials offer the advantage

tha t i t is very easy to find the distribution function from the density function, and vice versa.

The coefficients of the density function can be calculated from the moments. Incidentally,

the number of coefficients tha t can be calculated from a set of moments is exactly the number

of moments available. For example, if we intend t o describe the density function with a polyno-

mial of degree 3, we need t o know the moments m,, ma, m,, and the cardinality (mo).

Polynomials of degree 3 or 5 will probably be sufficient t o model many density functions in

real databases with appropriate accuracy. In the section on implementation plans, we argue

tha t collecting and maintaining moments can be done very efficiently, such tha t 3 or 5 moments

for each attribute are not a t all unrealistic.

Calculating polynomial coefficients from moments involves solving a (small) system of

linear equations. Assume tha t we know the moments ml, m2, ,..., mM, the cardinality mo, and

the lower bound L and the upper bound U of a distribution. If we assume tha t the density

function is of the form

M

j (2) = C a j 2 j

i-0

i.e. a polynomial of degree M, we can determine the coefficients aj using a set of equations. For

each moment mi, i=O ,..., M , we know

This is a system of linear M+l equations with M+l variables a j , j=O, ..., M . The complexity of

solving a system of linear equations is o(?) for N equations; however, if the minimum L and

maximum U do not change, the system can be stored in a triangularized form which allows to

determine the coefficients in o($) (see, for example [Cheneyl980a]).

4. Estimating Selection Result Sises

If the density function and all its parameters are known, it is easy to estimate the number

of values in a given interval. In order to determine the number of tuples with an attribute

between the lower limit L and the upper limit U, simply use the distribution function F or the

integral of the density function f .

U

J f (2) dz = F(U)-F(L)

L

The result of this formula and the following formulas must be scaled using the cardinality of the

relation to find the result cardinality. In this paper, we omit this multiplication to keep the for-

mulas clearer. If the distribution function and the density function are polynomials, the integral

can be calculated particularly efficiently.

If the selection is an equality constraint on an non-unique attribute, the best guess under

the uniformity assumption is that all values are distributed over all distinct keys, expressed in

the formula

key cardinality

The number of distinct keys is usually determined and maintained within an index. If we can

assume that the values in the domain are equally spaced, the density function contains more

information about the distribution of values, thus we suggest modifying the last formula to

I A ~ , the cardinality of the domain, is equal to the key cardinality used in existing query optimiz-

ers. a. is the constant from the query, thus f (ao) is the number of attribute values equal to ao.

max and min express the range of the data values, e.g. salaries in the range from $0 to $100,000.

The correction factor (maz-min) is required because it is this range over which the integral of

the density function is 1.

To estimate the result size of a selection with two attributes, e.g. salary > $50,000 and tax

< $1,000, the twedimensional density function must be calculated from the moments and co-

moments (which can be done in the same manner as for single attribute distributions), and a

double integral must be solved. For example, to find the number of tuples with L,<x<U, and

L,< y < U,, the value for

Uz

J J ~ (x , Y) dy dx = F(u,,u,) - F(u,,L,) - F(L,,u,) + F(L,,L,)

=I Ly

must be found. As for one-attribute selections, this is particularly simple if the density function

is a polynomial. Notice that these formulas can be expected to give very accurate estimates

whether or not the attributes z and y are correlated.

If more than two attributes are involved in a selection predicate, the expressions become

larger, but not more complex. Nevertheless, this procedure is more expensive to perform than

procedures based on the assumption of statistical independence between attributes. For-

tunately, the attributes and attribute combinations for which moments and density functions

give significantly more accurate estimates can be determined automatically using the moments.

As mentioned before, moments can be used to calculate the correlation between attributes. If

the correlations between a set of attributes is known, it can be decided which attributes can be

considered independent. It will be very interesting to see to which extent this can be done

efficiently in a database system.

The density function can also be used to estimate the number of disk blocks that contain

relevant tuples for a given query. Conceptually, we calculate the sum of the probabilities for

the records in each block. We are confident that it will be relatively easy to design a closed

form expression which eliminates the need for a explicit summation.

6. Estimating Join Result Sizes

Estimating the result size for join operations is considered substantially harder than for

selection operators. The reason is that data about two relations are required. An exact

formula to estimate the result size was given by Yang [Yang1985a]. The dependency on fre-

quency counts, however, makes this formula somewhat impractical, and no implementation

experiences were reported. We believe that using moments, the formulas can be made to work

for a dynamically changing, large database. Essentially, we plan to adapt the formulas to use

continuous instead of discret distributions, as we did for selections.

The result size of an equi-join is the sum of the products of the frequency counts from the

two relations for each value in the join domain. Let us assume the join domain is A with values

ak, k=1,2, ...A A I , and the frequency counts for these values are rk and sk when joining relation R

and S. Notice tha t rk and sk are not the values of the join attributes in R and S; these values

are represented by a's. Each value ak in the join domain produces a number of tuples in the

join result, namely the product of the two corresponding frequency counts rk and sk. The cardi-

nality of the join result is the sum of these products, i.e.

Instead of using frequency counts, we suggest to use continuous density functions derived

from the moments. For density functions f R and fs, the result of the join result is

.f f ~ (') f.da) da
A

If both of these density functions are polynomials, this integral can be solved very efficiently by

combining the two polynomials of a into one.

Yang suggests applying the estimation procedure for the result size of a multi-attribute

equi-join (i.e. a join with several equality clauses in the join predicate) by conceptualizing the

join predicate as a single attribute join on the cross product of all join domains. Using co-

moments and multi-dimensional density functions, this is very straightforward.

When one of the input relations of a join operator is the result of a select operator,

estimating the result size is considered particularly difficult. Nevertheless, this case arises fre-

quently in real queries. There are two cases that need to be differentiated. If the select

operator predicate limits the values of the join attribute, result size estimation is estimated by

integration over the join domain limited to the range satisfying the selection predicate.

If the selection is performed on different attribute than the join attribute, co-moments

between the domains (within one relation) and the multi-dimensional density function are

required. The one-dimensional density function of the join domain can be derived and then be

used to estimate the size of the join result. If all density functions are polynomials with known

coefficients, deriving a density function from another of more dimensions is relatively easy and

can be done symbolically. For the following equations, assume that the selection predicate is

LSxSU and that the join predicate is y=z on domain A, with attributes x and y from one

input relation and z from the other. The density function of the selection result is

f y d t c r election(^) = J fa,y(',v) d'
L

The join result size can be calculated using the formula

U

J J f+,g(zla) dz fz(a) da
A L

If the join predicate is not an equality but an inequality (theta join) or if both equality

and inequality clauses appear in the join predicate, density functions can also be used to esti-

mate the result size.

Similar to selection results, it is possible to anticipate the density function of attributes in

join results. We intend to explore this issue intensively, because it will be essential for reliable

estimations in complex queries with deeply nested trees of operators.

6. Results Sizes of Projections and Aggregate Functions

The projection operator removes attributes from all its input tuples, leaving the attributes

given in the p r o j e c t i o n l ist . Since relations are defined not to contain duplicate tuples, it is

necessary to find and remove duplicates, except if the projection list contains a key, thus ensur-

ing uniqueness.

Aggregates are functions, e.g. sum, count, or maximum, of the values of one attribute, e.g.

salaries. Two forms of aggregates are distinguished in database systems, scalar aggregates and

aggregate functions. Scalar aggregates result in a single value. This value can be determined

separately from the main query and inserted as a constant into the modified query.

Aggregate functions classify the input tuples by a list of attributes. Following QUEL, we

call this list the by-list. A frequently used example is the "sum of salaries by department".

With respect to result cardinalities, aggregate functions can be considered a special form of pr*

jection. Instead of removing duplicates with equal values in the attributes of the projection list,

aggregate functions combine (aggregate over) tuples with the same set of values in the attri-

butes of the by-list.

In some respect, the problem of estimating the result size for projections is a dual of the

problem of estimating the result size for a selection with an equality constraint. Basically, if we

know the input size of a project operation and the number of equal values for each value, we

can easily calculate the number of distinct values. Thus, we can use the principles outlined

above for equality selections for projections and aggregate functions. The advantage of our

method using density functions over current methods is tha t the result size can be estimated

fairly accurately even if the operation follows another operator, e.g. a selection or a join, and

we can estimate the distribution statistics fo the result.

7 . Preliminary Results

In this section, we present some very preliminary results. In order to assess the practical-

ity of the techniques, we developed a program that reproduces a given density function using

random samples and moments. The density function to be reproduced is coded as a subroutine

which can be changed without changes to the other parts of the program. The program

operates in six steps. First, the integral of the original density is estimated numerically and

normalized to be 1. Second, random numbers are chosen from a uniform distribution and

mapped to reflect the density function to be reproduced. To be more precise, for the density

function f we map yo to zo such tha t

=o

Yo = J f (z) dz.
0

Third, the moments are gathered by adding powers of the mapped random numbers. Fourth,

density functions in the form of polynomials are calculated by solving a system of linear equa-

tions, as described above. Fifth, the original density function and the calculated polynomial are

evaluated for equidistant points over the range from minimum to maximum value4, and linear

regression coefficients and correlation coefficient P of the two sequences are calculated. Finally,

the original density function and the calculated polynomial are plotted using these two

sequences.

In the following graphs, we used a density function that we picked naively to reflect the

salary distribution in an organization. Using 150 sample values (from 150 employees, so to

speak), we calculated the moments. Using M+1 moments (M moments and the cardinality), we

approximated the density function with a polynomial of degree M . The density functions for M

= 3, 4, and 5 are shown. The polygon is the density function to be reproduced, while the

smooth curve is the approximating polynomial. The x-axis ranges from 0 to 1. The y-axis is

scaled such tha t the integral of the original density functions is 1. The horizontal line indicates

the x-axis, i.e. y=O.

In this preliminary program, the minimum is always 0 and the maximum is 1. Generaliz-
ing this range requires only a linear transformation which would not change the other calcula-
tions. Thus, this restriction is not significant. We evaluated the original and calculated density
function a t as many points as necessary to allow plotting seemingly smooth graphs, typically
150 points. The regression and correlation coefficients are affected only marginally by the
chosen number of points.

Several observations can be made on these graphs. First, the approximations become

increasingly more accurate as the number of moments and the degree of the polynomial

increase. This is apparent both visually and in the correlation coefficient r , printed in the

legend of each graph. Second, the approximating density function takes values less than 0, i.e.

the graph crosses the x-axis. This is an unavoidable result of Gibb's phenomenon (see, for exam-

ple, [Hammingl977a, Oppenheim1983a]). Approximating a non-smooth curve with smooth func-

tions always bears the risk of "overswings". We intent to explore the existing work on sharpen-

ing digital filters (see, for example, [Hamming1977a]) t o determine how to reduce this problem.

Third, the difference between the original and the approximating density function is largest

close to the minimum and the maximum, i.e. the left and right end of the curves. We hope to

eliminate most of this undesirable effect by using window functions (see, for example,

[Hammingl977a, Oppenheiml983al).

8. Finding and Updating Moments

There are essentially two ways to maintain the statistics used in query optimization, i.e.

the moments of the attributes in a database. First, one can collect them periodically, and

assume that they will not change significantly in the mean time. In order to assess the

justification of this approach, the notion of significant change needs to be explored5. Second,

the moments can be updated incrementally each time a tuple is modified, inserted, or deleted in

the database. Moments are very well suited to incremental update. We will suggest some

implementation mechanisms for each of these two methods in turn.

8.1. Periodic Update

Gathering the moments for the relations and attributes in a relational database requires

scanning all files. We imagine that this can be done very fast using techniques like read-ahead.

The processing load for each tuple are very low. For each attribute and each moment collected,

one addition and one multiplication is required. We expect that, using a mainframe computer,

We hope to include this issue in our research into the stability of access plans, mentioned
in an earlier footnote.

this can be done a t disk speed.

Randomly drawn samples have been reported in piatetsky-Shapirol984al for approximat-

ing inverted histograms. This technique is promises advantages only for very large files since it

requires random access to both records and blocks. We will investigate whether randomly

drawn samples are an appropriate method to estimate the moments. The preliminary results

reported in Section 7 indicate that very small samples, in this case 150 values, give a reasonably

close approximation of the underlying distribution.

8.2. Incremental Update

Most database systems update the statistics used in query optimization periodically. Even

if the statistics are not exact in the meantime, they are sufficiently accurate considering the fact

that the database query optimizer is based on untested assumptions and heuristics. This is a

valid argument; we believe, however, the strongest argument is that maintaining correct statis-

tics with each update inflicts too much overhead for database transactions. Using moments as

the primary statistics, however, this argument may become invalid. In fact, we believe it will

even be possible to maintain transaction consistent statistics which can easily merged with the

statistics in the database catalogs when the transaction commits.

Consider how the moments change when a tuple is inserted, deleted, or modified in a data-

base. Since moments are sums of attribute values raised to a power, they must be increased

when a tuple is inserted, decreased when a tuple is deleted, and decreased according to the old

amount and increased according to the new amount when a tuple is modified. In order to main-

tain transaction consistent moments, a transaction uses the moments from the database cata-

logs as a starting point and keeps track of the cumulated changes to the moments. Thus,

within a transaction, queries can be optimized using exact statistics and density functions. If

the transaction aborts, nothing needs to be done concerning the moments in the database cata-

logs. If the transaction commits, the cumulated changes (increases, decreases) initiated by the

transaction can be applied to the database catalogs. Notice tha t the transaction cannot simply

overwrite the moments in the catalogs because another transaction may have updated the cata-

logs in the meantime. The limitation to updates only by increases and decreases allows to

exploit high performance locking techniques, e.g. using the Escrow method [O'Nei11986a]

modified to take advantage of the fact that illegal updates (overflow, underflow) are impossible.

We are not in the position yet to anticipate whether or not transaction consistent statis-

tics are worth the effort. We feel, however, that moments can be updated as efficiently as the

catalog entries for relation cardinalities, thus justifying a new look a t the promise of transac-

tion consistent statistics.

9. Summary and Conclusions

In this paper, we suggest to use statistical moments and density functions to estimate

selectivities and result sizes of relational operations. The problem is of both theoretical and

practical importance for database query optimization. Previous methods are based on assump-

tions that many real databases do not justify, namely the uniformity assumption and the

independence assumption. Moments and density functions can be considered as a way to aban-

don both assumptions, thus allowing for more accurate estimates and better query optimization.

The estimation procedures using moments and density functions are more complex than those

currently used in database systems, but moments allow to determine a priori whether the effort

is justified. It is important to note that moments can be calculated and maintained very

efficiently even for very large databases.

The problem of estimating sizes of intermediate results has not received very much atten-

tion in database research, even though it is of substantial practical importance. We regard

moments and density functions as a promising new approach to the problem.

References

Blasgenl977a.
M. Blasgen and K. Eswaran, "Storage and Access in Relational Databases," IBM Systems
Journal 16(4)(1977).

Cheneyl980a.
W. Cheney and D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole, Mon-
terey, CA. (1980).

Christodoulakisl983a.
S. Christodoulakis, "Estimating Record Selectivities," Information Systems 8(2) pp. 105-115
(1983).

Epsteinl979a.
R. Epstein, "Techniques for Processing of Aggregates in Relational Database Systems,"
UCB/ERL Menaorandum, (M79/8)University of California, (February 1979).

Graefel987a.
G. Graefe, "The Stability of Query Evaluation Plans and Dynamic Query Evaluation
Plans," NSF Research Proposal, Oregon Graduate Center, (1987).

Hammingl977a.
R.W. Hamming, Digital Filters, Prentice-Hall, Englewood Cliffs, NJ. (1977).

Jarke1984a.
M. Jarke and J. Koch, "Query Optimization in Database Systems," ACM Computing Sur-
veys 16(2) pp. 111-152 (June 1984).

Kooi1982a.
R.P. Kooi and D. Frankforth, "Query Optimization in Ingres," Database Engineering
6(3) pp. 2-5 IEEE, (1982).

O'Nei11986a.
P.E. O'Neil, "The Escrow Transaction Method," ACM Transactions on Database Systems
l l (4) pp. 405-430 (December 1986).

Oppenheiml983a.
A.V. Oppenheim, A.S. Willsky, and I.T. Young, Signals and Systems, Prentice-Hall, Engle-
wood Cliffs, NJ. (1983).

Piatetsky-Shapirol984a.
G. Piatetsky-Shapiro and C. Connell, "Accurate Estimation of the Number of Tuples
Satisfying a Condition," Proceedings of the ACM SIGMOD Conference, pp. 256-276 (June
1984).

Selingerl979a.
P. Griffiths Selinger, M.M. Astrahan, D.D. Chamberlin, R.A. Lorie, and T.G. Price, "Access
Path Selection in a Relational Database Management System," Proceedings of the ACM
SIGMOD Conference, pp. 23-34 (May- June 1979).

Stonebrakerl976a.
M. Stonebraker, E. Wong, P. Kreps, and G.D. Held, "The Design and Implementation of
INGRES," ACM Transactions on Database Systems l(3) pp. 189-222 (September 1976).

Wong1976a.
E. Wong and K. Youssefi, "Decomposition - A Strategy for Query Processing," ACM Tran-
sactions on Database Systems l(3) pp. 223-241 (September 1976).

Yang1985a.
D. Yang, L'Expections Associated with Compound Selection and Join Operations," Com-
puter Science Technical Report, (RM-85-02)University of Virginia, (July 1985).

Yao1979a.
S.B. Yao, "Optimization of Query Evaluation Algorithms," ACM Transactions on Database
Systems 4(2) pp. 133-155 (June 1979).

Zandenl986a.
B.T Vander Zanden, H.M. Taylor, and D. Bitton, "Estimating Block Accesses When

Attributes Are Correlated," Proceeding of the Conference on Very Large Databases, pp.
119-127 (August 1986).

