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Abstract- Monitoring parallel program execution can be 
simplified if the programs being monitored have very structured 
inter-process interactions. This paper describes a prototype 
software tool for monitoring and analyzing execution of parallel 
programs which were written using the Large-Grain Data  Flow 
model. The ultimate goal of the project is t o  build software 
tools which would aid in real-time debugging and optimization 
by allowing relatively non-intrusive multi-level monitoring of 
parallel system execution and performance. 

1. Introduction 

Following the execution of a program can be very helpful in debugging and in analyzing 
performance. Tracing a t  the subroutine call level has proven t o  be a suitable level of 
granularity for debugging, since subroutines are typically created t o  perform "large-grain" 
tasks which are meaningful t o  the software designer. 

Parallel programs add another dimension of complexity t o  the debugging and performance 
monitoring tasks. While sequential programs typically invoke subroutines only in a con- 
trolled hierarchical manner, the processes of a parallel program can execute indepen- 
dently, yielding many more possible combinations of executing procedures. Some of these 
combinations will represent program errors (e.g., when a process incorrectly expects a 
message or event). While the combination of currently active procedures may not tell the 
whole story of the correctness or incorrectness of a n  execution history, it can serve either 
as a first s tep of debugging or as a high level view of a n  execution, from which the user 
can descend t o  more detailed views of interesting processes. 

' This work was supported under Los Alamos National Laboratory contract 9-234-P3915-1 Modification 2. 
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In debugging parallel programs, it can be important t o  see not only when a process per- 
forms a certain task, but how tha t  task is related t o  events in other processes. In unres- 
tricted forms of parallel processing, this causality can be very difficult t o  track. Debug- 
ging is hindered by the lack of structured interactions within parallel event histories. We 
found it useful t o  develop our ideas about parallel program monitoring within the restric- 
tions of a more disciplined model of parallel processing, Large-Grain Data  Flow (LGDF), 
which is described briefly in the next section. The primary benefit of this approach lies in 
greatly reducing the number of "interestingM parallel interactions t o  be monitored. 
Although our work was specifically aimed at monitoring parallel programs written in 
LGDF form, similar issues would have t o  be dealt with in any (less restricted) model of 
parallel processing. 

2. Overview of LGDF 

Large-Grain Data  Flow is a model of parallel computation t ha t  combines sequential pro- 
gramming with dataflow-like program activation. LGDF applications are constructed 
using networks of program modules connected by datapaths. Parallel execution is con- 
trolled indirectly via the production and consumption of data.  With the aid of the LGDF 
Toolset, LGDF programs are automatically transformed for efficient implementation on a 
particular parallel machine. 

2.1. LGDF Networks and Datapaths 

A Large-Grain Data  Flow network consists of a set of nodes (represented graphically by 
circles or "bubbles") connected by datapaths (represented graphically by directed arcs). 
Nodes are tagged for referencing purposes with "p#'s", datapaths are tagged with "d#'sW. 
Datapaths can also be dot-shared so t ha t  one datapath  can be a n  input t o  or an  output 
from more than  one node. See figure 1. 

Figure 1. Example of LGDF graph 

A node can represent either an  LGDF program or a n  LGDF network, in which case it is 
called a subnetwork node. The meaning of a network containing a subnetwork node is 



the same as if the lower level network were substituted graphically for the higher level 
node. 

A datapath  is the only mechanism for communicating da t a  values from one LGDF process 
t o  another. It consists of a da ta  area and a s ta te  which can be either empty or full. 
Readlwrite access t o  datapaths is controlled by the empty/full state. The empty/full 
s ta te  is changed explicitly by the programs t ha t  the datapath  is connected to, and 
signifies (to other processes connected t o  the datapath)  whether there is valid da ta  t o  be 
read on a n  input datapath  (full) and whether a n  output  datapath  is ready t o  accept new 
da ta  (empty). 

2.2. L G D F  P r o c e s s  Ac t i va t i on  

An LGDF program's eligibility for activation depends only upon the s ta te  of its associated 
input and output  datapaths,  according t o  following rule: 

Execu t i on  Rule-A program may s tar t  a n  execution cycle if and only if all 
of its input datapaths are in the jull s ta te  and all of its output datapaths are 
in the empty state. 

Once a process wakes up, it may read the data  associated with any of its input datapaths 
and modify the da t a  associated with any of its output datapaths.  When a program has 
finished accessing an  input datapath ,  it can change the s ta te  of the path  t o  empty by 
using the LGDF clear- command. (In LGDF programs, the command refers to a specific 
datapath  by its unique tag,  e.g. clear-(d06)). The usual reason a n  LGDF program clears 
a n  input datapath  is t o  allow a n  upstream process t o  wake up and write the next set of 
da t a  values onto the datapath.  Likewise, when a program has finished writing values 
onto an  output  datapath,  it can change the s ta te  of the path  t o  full by using the LGDF 
set- command. An LGDF process, then, is limited in the amount of work i t  can do in a 
single execution cycle. When it is finished with t ha t  work, it puts itself t o  sleep using the 
suspend- command, and it will remain suspended until after its datapaths again satisfy 
the LGDF Execution Rule. At  the time a process suspends, it checked for conformance 
with the following rule: 

D a t a  F l o w  P r o g r e s s  Rule-Upon suspension of a n  execution cycle, a pro- 
gram must have cleared a t  least one input or set a t  least one output  data- 
path. Otherwise, it is terminated. 

A process t ha t  is in the terminated s ta te  can never re-awaken, regardless of the 
empty/full s ta te  of its datapaths.  

2.3. I m p l e m e n t a t i o n  of L G D F  

LGDF programs are implemented with aid of set of macro-based tools. The connectivity 
of a network is defined in a wirelist file. The clear, set, and suspend commands are imple- 
mented as macro calls in the program source text associated with LGDF programs 
(nodes). 



For more information on the Large-Grain Data  Flow model, see [I]. 

3. Design for the Prototype Monitoring Tool 

The purpose of this research project was t o  design a graphics monitor t o  aid in the debug- 
ging and analysis of Large-Grain Data  Flow (LGDF) programs. Our goal was t o  prototype 
a parallel program animation system tha t  would give LGDF programmers "intuition" 
about how a n  LGDF computation was progressing. As a secondary goal, we wanted the 
tool t o  aid in controlled, very high-level debugging of large parallel application codes. 

Our approach was t o  enhance the LGDF macros so t ha t  they would optionally generate 
sufficient trace da t a  t o  monitor the interactions and initiations of the processes running in 
a parallel environment. This trace data  was designed t o  be used by a LGDF network 
monitor program (running on a n  IBM PC) t o  display parallel process initiations and 
interesting da t a  flow events in a graphic form. 

An  LGDF application is represented graphically on the monitor screen by its associated 
Large Grain Data  Flow graph. Process bubbles change color with execution state (run- 
ning, sleeping, and terminated) while datapaths change color t o  reflect the s ta te  of the 
associated empty/full flag. In this way, all process interactions and initiations are clearly 
illustrated, and all possible future interactions are apparent from the structure of the 
graph. 

The relative time between events is also important information which would normally be 
lost unless the monitor could keep up with the real-time production of the trace stream. 
To  allow the monitor t o  run a t  any speed without losing this information, we included a 
timestamp on each trace record and a "speedometerM on the monitor screen t o  show the 
speed of the trace display relative t o  the speed the program would have been running 
without monitoring. A user can either set the speedometer t o  some fixed value so t ha t  the 
relative speed of display is made t o  accurately reflect t ha t  of a n  actual execution, or can 
let the speedometer float t o  allow screen updates t o  occur as quickly as possible. 

The "wirelist" file contains all the semantic information about the interconnection struc- 
ture of a n  LGDF network for a given application, but does not contain how such a net- 
work should be presented in graphic form. While the monitor could deduce this from the 
information already in the wirelist, we decided t o  add the network presentation format t o  
the wirelist, expecting t ha t  the user would someday deal with the wirelist only in its 
graphic form by using a special wirelist editor. In this arrangement, it seemed most 
proper t o  keep all information on the placement of nodes and datapaths  explicitly t o  give 
the user maximum control. This does not preclude the possibility t ha t  the user could 
request the wirelist editor t o  automatically place graph elements. 

Our design for the monitoring system was intended t o  be as interactive as possible. For 
example, the user can dynamically expand any subnetwork bubble into its components or 
can collapse a subnetwork back into a single subnetwork bubble while the trace is 



progressing, thereby enabling hierarchical views of the display. 

3.1. Display Actions 

The display of the network on the graphics screen can be affected by trace records read 
from the trace stream or by user input from the keyboard or mouse. 

3.1.1. Trace Actions 

Each record within the trace stream contains a record of one LGDF command execution 
(clear, set,  or  suspend) or the beginning or end of a process execution cycle. In each case, 
the tag  of the entity (node or datapath)  being described is included, as  well a s  the execu- 
tion time and wall clock time from its associated processor. 

When the monitor reads a trace record, the display will be affected only if the entity 
described by the trace record is present in the currently displayed view of the network. 
Even then, if the speedometer has been set t o  a fixed value, screen updates may be 
delayed, or collected and applied in batches, t o  ensure t ha t  the display speed matches the 
speedometer. Whether or not the displayed view of the network is updated, the color and 
s ta te  of all entities will be updated internally with each trace record. 

3.1.2. User Actions 

User interactions from the keyboard or mouse can be used t o  change the view of the net- 
work currently on the display or t o  control the speed a t  which the display is updated. 
Whenever the network view is changed, the monitor's internal representation of the net- 
work is used t o  accurately represent the s ta te  of previously unseen parts of the network. 

The user can perform the following trace actions: 

Expand or Collapse a Subnetwork 
Provides a more detailed view of some specific part of network. 

Restrict or  Unrestrict the Display 
To  narrow view t o  some subset of network. In addition t o  focussing attention, this 
also speeds up monitor by alleviating uninteresting screen updates. 

Stop trace temporarily or Continue 
Allows time t o  analyze some particular s ta te  of the display. 

Perform single visible trace step 

Control trace speed 

Abort trace 

Set/Clear Breakpoint on a process or datapath  
Stops trace whenever some interesting dataflow event occurs. 

Clear all Breakpoints 



3.2. Performance metrics and meters 

We included some experimental performance metrics in the form of meters t o  expand the 
functionality of the monitor t o  include performance analysis. These would aid in detect- 
ing bottlenecks caused by fast processes waiting for slow ones, and could also help the 
user decide how processors should be allocated t o  processes (load balancing). 

We have already mentioned the speedometer, which is used t o  measure the speed of 
display relative t o  speed of original program execution. Rather than  attempting t o  deter- 
mine an  instantaneous speed, we felt t h a t  it would be more useful if it had more stability, 
so we measured the speed over the last S trace records, giving a n  'average relative speed' 
over a short or long period depending on the value of 6. The formula then is 

A 'timestamp 

where Attimestomp is the difference in the timestamps of the last record and the record 6 
records ago, while Atdisplav is the difference in the wall clock time when the affects of 
those records were displayed on the monitor. The choice of 6 is left to be specified a t  
run-time by the user or decided by experimentation. Note t ha t  this measure loses validity 
when the trace is stopped temporarily, so it is recalculated each time the trace is res- 
tarted. 

The amount of parallelism achieved within the a "process set" could be represented by the 
equation 

AT-I 

where P represents the process set, Ep represents the amount of time process p was exe- 
cuting, I is the amount of time tha t  all processes in P were idle, and A T  is the length of 
the interval all of the other factors were measured over. Although our initial design 
defines the process set t o  be all of the processes currently on the monitor screen, it would 
be desirable t o  let the user pick the processes t o  be included. 

If all processes in the process set are on separate processors, this is a measure of speedup, 
since it is ratio of the time tha t  the process would have taken on one processor t o  the 
time it took on the many processors. If the processes in the process set are all on a single 
processor, this is a measure of contention among processes for CPU time. To  get a 

processes 
speedup measure when >1, perhaps a similar metric could be devised using 

processors 
CPU time measures. 



3.3. Hos t /h4oni to r  I n t e r a c t i o n  

In our initial design, the monitor was intended t o  run while the host program was run- 
ning, requiring bidirectional da ta  transfer between the monitor and host systems. Parallel 
host t o  monitor da ta  would include the trace stream and any normal program output, 
while monitor to parallel host data  would consist of flow control and interactive program 
input. 

This design was abandoned for the prototype because of complications arising from the 
need for flow control. In order for the speedometer t o  remain accurate, the actual speed 
of execution of the host program could not be affected by the speed of the display, mean- 
ing t ha t  a large output buffer had t o  be maintained for the trace between the host pro- 
gram and the display system. Although there are probably ways t o  handle this on some 
operating systems (e.g. in Unix, by having the trace go t o  a file on the host system and 
then having a separate process such as "tailtt spool the file t o  the monitor), this is very 
system dependent and offers little advantage over simply creating a trace file which is 
moved over t o  the monitor after the trace is complete. 

4. Expe r i ence  w i t h  P r o t o t y p e  

Our prototype monitor was implemented on a n  IBM PC/XT with an  Enhanced Graphics 
Adaptor (EGA). This configuration was chosen because it was already available a t  our 
customer site, Los Alamos National Laboratory. Our graphics library was a version of the 
Graphics Kernel System (GIG),  which we chose because it offered the hope of easy porta- 
bility of our tools t o  other implementation environments. 

The resulting demonstration software was relatively slow. This was primarily because we 
used a much higher-level graphics package than  was required, and were thereby paying 
the cost of slower screen updates to buy functionality t ha t  we were not using. The moni- 
tor  could be regarded as performing real-time animation, which GKS does not seem t o  be 
designed for. Some of the lack of speed could also be attributed t o  the hardware we were 
using, which had a relatively slow cycle time and no floating point hardware. 

A more useful configuration for implementation of a system such as this would be t o  have 
a more powerful system (perhaps the parallel host) performing the computation with a 
graphics terminal performing the monitoring. A smart terminal would best preserve the 
bandwidth between the terminal and main system thereby maximizing display speed. If a 
personal computer/workstation configuration is desired, lower-level graphics should be 
considered, and perhaps a computer with more of a graphics orientation, such as a Com- 
modore Amiga, Apple Macintosh, or Tektronix or Sun graphics workstation. 

5. F u t u r e  Di rec t ions  - A Multi- level  Debugger /Tes tbed  

Although resources for the prototype project ran out before we were able t o  implement 
some portions of the design, this project allowed us t o  explore several in the realm of real 
time monitoring of parallel programs. Perhaps the most intriguing of these areas became 



apparent while considering the kinds of interaction the user could have with the program 
while it was running. 

In most parallel programming environments, the relative timing of the separate processes 
can affect the results of the program, yielding the nondeterministic behavior which these 
programs have become infamous for. Adding tracing t o  such programs can affect these 
relative timings, thereby affecting the results of the program. To  minimize this problem, 
it is important t ha t  tracing be as unobtrusive as possible. 

An interesting technique tha t  might be used with such a program would be t o  trace only 
enough of the execution so t ha t  it could be executed with the same relative timings at a 
later time. This reconstructed execution could then be monitored in any more detailed 
way desired, a s  long as the important relative timings in the reconstruction occur in the 
same way they did during the actual execution. Although the trace itself would contain 
very little information, the trace together with the original program and original input 
da ta  could yield a wealth of information. 

I t  may not even be necessary for the reconstruction t o  take place on the same hardware 
t ha t  originally ran  the program. A program tha t  was originally run on a parallel proces- 
sor could be recreated under a multiprocessing operating system such as  Unix, as long as 
the compiler and machine arithmetic were functionally identical. The tool performing the 
reconstruction could, in fact,  allow the user t o  call a standard interactive debugger (such 
as dbx on Unix) t o  allow the user t o  set breakpoints and/or monitor values during the 
execution. 

The LGDF programming model provides support for such a system. Since the execution 
of a typical LGDF application will have very few opportunities t o  exhibit non- 
deterministic behavior, and only those instances would need to be recorded in the trace 
stream, the impact of tracing on a n  actual execution would be much smaller than  in our 
prototype. During reconstruction of the execution, the user could watch using a high level 
monitor, such as the one we have outlined here, until the program enters a particularly 
important phase, a t  which time the user could query the da ta  available on da ta  paths 
directly from this high level or could opt t o  invoke a standard interactive debugger. 

In fact,  a n  LGDF program is so stable with respect t o  relative timing t ha t  it may be 
desirable in some cases t o  skip the tracing phase and simply run the monitored program 
in a testbed environment, where the user could dictate when processes should be held 
from executing. In addition, the user could manually deposit da ta  on a datapath or 
modify a variable within a program. The tool controlling these interactions could warn 
the user when the program could a c t  in a non-deterministic way (i.e., when there is a 
choice of processes t ha t  can start ,  all of which access a common da ta  path). 

6. Conclusion 

The monitor described in this paper has capitalized on the fact t ha t  the programs moni- 
tored are restricted in the  ways t ha t  their processes can interact. T o  design monitors for 



programs written with less restrictive models of parallelism, i t  may be useful t o  s tar t  here 
and carefully analyze the complexities added as successive levels of restrictions are lifted. 

For more information on this project, see [2]. 
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