
ABSTRACT OBJECT IN AN OBJECT-ORIENTED
DATA MODEL

Jianhua Zhu and David Maier

Oregon Graduate Center
Department of Computer Science

and Engineering
19600 N.W. von Neumann Drive

Beaverton, OR 97006-1999 USA

Technical Report No. CS/E 87-015

Abstract Object In An Object-Oriented Data Modelt

Jianhua Zhu and David Maier
Department of Computer Science and Engineering

Oregon Graduate Center
Beaverton, OR 97006

Abstract

This paper introduces abstract objec t as an extension
to an object-oriented data model. An abstract
object is essentially a template for regular database
objects. It can be used for various kinds of matching
in database queries and for the structural portion of
type definitions. In a sense, abstract objects are
similar to nonground terms in some logic systems,
but with the ability to put structural constraints on
the binding of a variable. We present abstract
objects in the context of the TEDM object-oriented
data model. We show how to represent database
commands using abstract objects and investigate the
semantics of pattern-matching using abstract
objects. We then cover implementation techniques,
uses for abstract objects other than pattern match-
ing and ideas for extensions to the model.

1. Introduction

As the desire to extend database technology to wider applica-
tion domains (notably engineering design environments) increases,
it becomes apparent that traditional database systems are no
longer sufficient [MP84]. Consequently, more data models are
being invented every day, addressing the deficiencies of the con-
ventional models. Intended for use in engineering design and simi-
lar environments, many of this new breed of data models share
one important characteristic, the capability of constructing com-
plex data objects that accommodate hierarchical structures,
shared subparts or even cyclic data, a major departure from

t Work supported by NSF grant IST-83-51730, cosponsored by Tektronix
Foundation, Intel, Mentor Graphics, DEC, Servio Logic Corp., Xerox and
Beaverton Chamber of Commerce. The first author is also supported by a Gra-
duate Research Fellowship from Apple Computer Corp.

portability: the semantics of a programming system is ported along
with a program.

The next section presents a brief overview of the TEDM data
model. In Section 3, abstract objects are introduced and are
integrated into TEDM, and examples of their use are also pro-
vided. Section 4 investigates the formal meanings of abstract
objects. Section 5 discusses implementation issues. Section 6
explores other uses for abstract objects and ideas for extensions to
the model. Conclusion and summary are given in Section 7.

2. TEDM Overview

This section provides a brief overview of TEDM, an object-
oriented database model. Databases under TEDM are collections
of objects, the basic building blocks provided by the model.
Objects in TEDM are either simple or complex. A simple object is
a nondecomposable atomic value, such as a string or a number . A
complex object has internal state, which is made up of a collection
of fields. Fields are given labels and therefore their order in a
complex object is immaterial. Field values in turn are either sim-
ple objects or complex objects. In this way, arbitrary nested data
objects can be constructed.

A second basic notion in TEDM is that of object identi ty .
Objects possess object identi f iers (OBID's) internally. The OBID
of an object is unique with respect to the entire database, and it

RS:RectSelect(rect + R:Rectangle
(origin -+ O:Point(x + #0,

y -+ Y:Number #I),
corner --+ C:Point(x + X:Number #4,

Y + #3))7
cursor -+ U:Point(x + X, y + Y))

Fig.1 A TEDM Object Expression

is made up of ten subobjects - one Rectangle object, three Point
objects and six Number objects, where RectSelect, Rectangle,
Point and Number are type names. (Also notice the substructure
sharing.) The RectSelect object is depicted pictorially in Figure 2
along with a structured diagram of the objects involved.

Some comments on the notation - numbers are prefixed by a
sharp sign (#), symbols preceding the right arrow (-*) are field
labels, symbols preceding the colon are object tags, symbols follow-
ing the colon are type names. Our convention will be to have
fields labels in lower case and object tags and type names capital-
ized. Sharing of substructure is indicated by using the same tag.
The idea of substructure sharing is better illustrated in Figure 3,

RS:RectSelect(rect --, R:Rectangle
(origin --+ O:Point(x -* #0,

Y -* #I),
corner -* C:Point(x -* #4,

Y -* #3)),
cursor -* C)

rect

curaor

Fig.3 Another RectSelect Object

set of objects that belong to this type.

The types of the database form a type hierarchy used for
organizing application data. This type hierarchy can be charac-
terized as follows. The structural description is prescrip tive: it
gives the minimal structure for any object that is a member of the
corresponding typeset. An object in a type may possess fields
beyond those required by the intention. Membership in a typeset
is not automatic upon an object fitting the structural description
for the type. Rather, objects are explicitly added to or removed
from types. Furthermore, an object may belong to multiple types.
The subtype relation between types means the subset relation
between typesets. The subtype relation is declarational rather
than structural, meaning that a type is not treated as a subtype of
another type unless such a subtype relationship has been explicitly
declared or this relationship can be deduced by the transitivity of
other declarations. However, this subset interpretation of the sub-
type relationship imposes constraints between the structural
descriptions of a supertype and a subtype. A subtype must pos-
sess all fields of its immediate supertype, the type with respect to
which the subtype declaration is made. A subtype may have more
than one immediate supertype. Predefined types come with the
system for simple values: for example String and Number. A
comprehensive type ALL, which does not have any structural res-
trictions, is also provided as the root of the type hierarchy. The
typical procedure for developing application databases is to extend
this type hierarchy downwards, adding subtypes and adding
objects to these types.

Point = (x + Number, y + Number)
Rectangle = (origin -+ Point, corner + Point)
RectSelect = (rect -+ Rectangle, cursor + Point)

Fig.4 Type Definitions

side describes virtual fields for objects that are assumed present
for other queries. In Figure 5, there is a "leftside" field, Line
object and Point object for each matching binding on the right.
(The "*" stands for an arbitrary new object of the proper type.)
For a command (<=), for each binding of the right side, the
matching objects are modified to conform to the term in the head.
In Figure 5, the "x" and "y" fields of the cursor point are
modified. Some shorthand we use is to omit object variables when
they aren't repeated (":PointH) and omitting the type name for a
variable in the head of a rule or command that appears on the
right of the rule or command.

More detailed description of this data model is given in
[Ma85]. Its formal logic is presented in [Ma86], where 0-Logic is
developed to provide formal semantics for the data model.
Roughly, 0- Terms correspond TEDM pattern terms described
here, and 0-Formulas are built up from 0-Terms using usual logi-
cal connectives and quantifiers. Under that formalism, the models
for 0-Formulas turn out exactly t o be those TEDM objects that
make the 0-Formulas true. A main memory prototype of TEDM
using MProlog [Te85], which includes most of the features
described here, has been carried out and its description can be
found in [Zh86].

3. Adding Abstract Objects to TEDM

Given databases with collections of objects of the form
described in the previous section, we naturally would want to
retrieve information from them and make changes to them, with
minimal human effort. Thus, we need a powerful query language.
There have been various proposals for query languages on data-
bases that support complex objects, such as Zaniolo's extension t o
the relational algebra [Za85], Kuper and Vardi's logic data
model[KV84], Bancilhon and Khoshafian's object calculus [BK86]
and Beeri's object logic[Be87], t o just list a few.

The approach taken by TEDM is inspired by the computation
mechanism used in logic programming systems, namely unification.
The data retrieved from TEDM databases are presented in the
workspace to the user as a set of answer substitutions, which are
similar t o pairs of variables and their bindings in programming
languages. However, here the variables are bound to object

semantically. Instances of the former are a lexical means of
defining concrete data objects. Instances of the latter specify pat-
terns for matching against the data objects.

Traditionally, data objects are stored in the permanent data-
bases, while queries are processed interactively during a work ses-
sion, or preprocessed into DB calls when embedded in a program.
As such, queries are separate from and are not described by the
underlying data models. View definitions are usually supported by
database systems as add-on features of the database languages
and are processed outside the scope of the data model. From a
practical point of view, a disadvantage of the traditional approach
is that it is difficult t o build systems that support a generalized (in
the sense of more than some kind of command recall mechanism)
query reuse scheme, nor is it easy to define a query procedure in
one session and use it in another, or to combine queries.

TEDM tackles the problems by allowing query entities to be
stored in the permanent databases as well. The approach is
different from that taken by Stonebraker et al. [SAHR84] to
extend INGRES to include QUEL commands as attribute values.
That approach stores the textual form of a query in a field (and
possibly caches a compiled form of a query). By contrast, we will
have structured database objects that represent queries and com-
mands. A key component of query objects will be a new flavor of
objects to represent pattern terms. Such objects will be called
abstract objects, as contrasted to the concrete objects introduced
previously. Abstract objects will have physical representations in
the database, just as concrete objects, but are given different
interpretations by the database system. Having abstract objects
in the database would be much like having the capability of stor-
ing a logic variable whose scope is multiple clauses in a logic data-
base. In TOE'S, we use a question mark (?) in place of a colon to
indicate an abstract object of a given type.

As an example, Figure 7 presents a TOE for a stored abstract
object and a diagram of its structural representation. Abstract
objects are depicted there using double boxes. Such a stored
abstract object can be used as a template in an operation. When
so used, it will successfully match concrete objects of type
RectSelect that have the specified internal structures, giving as
result of the matching a tuple of abstract-concrete object pairs.

of type Command using TOE, as shown in Figure 8 and in Figure
9 respectively. We point out that it is possible for concrete
objects to reference abstract objects, and vice versa. A Rule or
Command object has three fields, for the head, the body and the
bindings of variables to parts of the head or body. The values of
the head and body fields are abstract objects. (The body could
actually contain multiple abstract objects for pattern terms.
TEDM allows multiple-occurrence fields.) The bindings field occurs
once for each variable. Its value is an OVar object, which gives
the name of the variable, the abstract object in the body it gets
its binding from through matching, and the abstract object in the

:Rule(rulehead --* ReObj?Rectangle
(leftside -+ :Line(pl -+ PoObj?,

p2 + :Point(x + Xcrd?,
y + Ycrd?))),

rulebody -+ DBRoot(rects -+

(ReObj?Rectangle
(origin + PoObj?Point(x + Xcrd?Number),
corner + :Point(y + Ycrd?Number)))),

bindings + :OVar(name -+ 'ReObj',
matches + Reobj?Rectangle,
makes - Reobj?Rectangle)

& :OVar(name - 'PoObj',
matches + PoObj?Point,
makes -+ PoObj?Point)

& :OVar(name --* 'Xcrd',
matches -+ Xcrd?Number,
makes -+ Xcrd?Number)

& :OVar(name -+ 'Ycrd',
matches + Ycrd?Number,
makes -+ Ycrd?Number))

Fig.8 Rule expressed as TOE

RS?RectSelect(rect --* R?Rectangle
(origin --* OR?Point(x - X!, y - Y!),
corner + CO?Point),

cursor + CU?Point(x + X!, y + Y!))

rect

curs

Y

Fig.10 Indicating Identity in TCL

but 0 2 as a template does not match 01. For purposes of top-
down evaluation of rules, we are looking a t a unification opera-
tion, under which, for example, 01 above would match with

PS?Point(x --* #4, y --* M?Number)

Since we have abstract objects in the database, we are faced
with the interesting problem of how t o specify pattern matching
against abstract objects and how t o make use of this kind of
matching. We will discuss the formal semantics of abstract-
concrete matching in later sections. Here we discuss how to
specify it in a command. We could introduce "meta-abstract"
objects that serve as templates for abstract objects, but we would
then need "meta-meta-abstract" objects as templates for those,
and so on, ad naseum. Instead we include an "absMatches" field,
holding an abstract object 01 in OVar objects to indicate that the
variable should be bound to an abstract object 0 2 that matches

the universe. Our definitions will impose further structure on this
universe.

Definition 2 (see [Ma861 for a similar definition): TSU, the TEDM
structured universe, is a three-tuple (U, g, t), where U = D U W is
the collections of entities, g: F --+ 2' is the label-interpreting
function, and t: W -+ is the type-assignment function.

In this definition, D is the set of atomic entities (numbers and
strings in our examples), and W is the set of compound entities.
We further decompose W as E U X, where E is the set of compound
concrete entities and X is the set of abstract entities. Recall F is
the set of field labels.

By saying a binary relation is (not) defined a t x, we mean
there is (no) y such that the tuple (x, y) is in the relation. The
function g takes a label and produces a relation. To prevent

Let D = N U S,
w = E u x = {el, e,, ...) u {x,, x,, ...I,
U = D U W ,
F = {rect, cursor, origin, corner, x, y),
T = {Number, String, Rect Select , Rectangle, Line, Point),
s = {(rect, ax1, x,), (e,, e,))), (cursor, {(xl, x,), (e,, eB))),

(origin, { (e , e,))), (corner, {(x,, el), (e,, e5))),

(x, {(el, #4), (e4, #O), (e,, #4), (e,, #4))), (Y, {(el, #3),

(e , #I), (e,, #3), (e,, #3)))),
t = {(i, Number)) U {(s, String)) U {(el, Point), (xl, RectSelect),

(x2, Rectangle), (x3, Point), (el, RectSelect), (e3, Rectangle),
(e,, Point), (e5, Point), (e6, Point)),

for all i E N and s E S,
then (u, g, t) is a TSU

Fig.11 An Example TSU

oe = (e, {Y I Y E u and (e, Y) E %I).
The entity e is said to be the roo t ent i ty of the object, and all
other entities are said to be subentities of the object. We write an
object as "root entity: set of subentities."

Thus an object includes both a root entity that provides the
identity of the object and a number of subentities that are proper-
ties or subcomponents of the object. Atomic objects have atomic
root entities and no subentities. We will often confuse the root
identities with the objects themselves. Two examples of TEDM
object (see Figure 11) are given in Figure 12.

Definition 5: Given an e E U, the inc ident set of e is defined as

ie = {I I 1 E F and g(1) is defined a t e};

the reference set of e is defined as

re = {y 1 y E U and (e, y) E Ri }.
e

Namely, the incident set of an entity consists of all labels
that the entity uses to reference other entities, and the reference
set consists of all entities referenced. For example, ix = {rect,
cursor) and rx = {xz, x d (see Figure 11). This definitio; allows us
to discuss th; most closely related properties of objects while
ignoring the remote ones.

Definition 6: Given an e E U, we say that oe is an abstract object
if e E X; otherwise it is a concrete object.

For example, of the two objects we gave previously in Figure
12, o is a concrete object and ox is an abstract object. Collec-

es
tively, we will use 0 t o denote all objects, C to denote all concrete
objects and A t o denote all abstract objects.

4.2. Object Isomorphism

The concept of object isomorphism is the theoretical basis for
various kinds of matching. The idea is that two objects match if
one can be mapped into another according to certain property-
preserving criteria.

3). if (el, dl) E g(l), for some 1 E F, then (c2, d2) E g(l)

In other words, isomorphic mappings preserve the root, the
type hierarchy and the labels. Notice we allow atomic entities to
map to abstract entities and vice versa, but disallow this mapping
between atomic entities and concrete entities. We say that an
object ol is embedded in an object o2 if ol is isomorphic t o some
initial segment of 02. For example (see Figure 13 and Figure 12),
il is isomorphic t o i2 under an obvious isomorphism

a = {(x,, e3), (el, e5), (#3' #3), (#4, #4)h

and therefore o is embedded in o .
X2 e8

It can easily be shown that the system of initial segments and
isomorphisms form an algebraic structure that possesses some nice
properties, such as identities and compositions; but we do not go
into details here.

Definition 9: Given two isomorphisms a and P, we define the
combination isomorphism of a and ,L3 as a U P, provided a U P is
also a mapping; otherwise their combination is undefined.

The concept of combination isomorphism can be extended to
the case where more than two isomorphisms are involved in an
obvious way. The combination isomorphism always exists for a
collection of isomorphisms whose domains are pairwise disjoint.

4.3. Object Matching

Of all possible isomorphic mappings, we are mostly interested
in those that go from abstract objects to initial segments of
objects. Namely, we are interested in the situation where abstract
objects can be embedded into objects.

Definition 10: Given an abstract object ol = el:El embedded in
an object o2 = e2:E2 under a, we say that ol matches with o2 if the
image of ol under a contains no abstract objects and

v d 1 E E l dl E D U E => &(dl) = dl.

rel(o2, origin, 04)
rel(o2, corner, 05)
rel(o3, $in, 'Point')
rel(o3, x, 4)
rel(o3, Y, 3)
rel(o4, $in, 'Point')
rel(o4, x, 0)
rel(o4, Y, 1)
rel(o5, $in 'Point')
rel(o5, x, 4)
rel(o5, Y, 3)

Note that "$in" is a predefined field label. The values for "$in"
fields are object identifiers for proper type defining objects. (But
we will use type names in examples to illustrate ideas.)

Interactive user queries are translated into Datalog (i.e. Pro-
log without functors) queries and are then executed. For example,
the pattern term

RS:RectSelect(rect -+ R:Rectangle, cursor --+ P:Point)

would be translated into the following query:

?- rel(RS, $in, 'RectSelect'),
rel(RS, rect, R),
rel(R, $in, 'Rectangle'),
rel(RS, cursor, P),
rel(P, $in, 'Point').

The object handler is being implemented in MProlog and is
being interfaced to a secondary storage facility (namely the
storage manager). The object handler is made up a number of
smaller modules. The central module is an execution module that
controls the data flow between the object handler and the storage
manager and carries out appropriate operations, as dictated by
the current execution state, on the workspace objects (either per-
manent data or temporary data). Under this execution module,
there are other modules that coordinate communications between
the object handler and the storage manager. On top of the execu-
tion module, there will be processing-modules for TEDM query
expressions. And a t the highest level there is an input module
that parses interactive user command, and directs them to
processing-modules for further translation.

type cacculus has been devised for describing these requirements.
We will take the approach in which abstract objects play a major
role for devising the meanings of type definition expressions. In
what follows, we assume the existing types are already represented
as abstract objects, and show how new types can be defined and
represented as abstract objects. This kind of reasoning is accept-
able since we can always bottom out a t system predefined types.

6.1.1. Cartesian Product Types

In this form of type definition, a new type is defined by expli-
citly giving its structures, and an abstract object is created to
specify the structures. That abstract object is a part of a type-
defining object, which gives the name and position in the type
hierarchy, as well as the minimum structure on its instances.
What we really have here is another language (type definition
language or TDL) for describing type-defining objects. For exam-
ple, the following expression evaluates to a type object represent-
ing a type named Rectangle,

Rectangle = (origin -+ Point,
corner -+ Point)

The resulting type-defining object can be described in TOL as

:TypeDef(typeName -+ 'Rectangle',
supertype 4 'All',
structure R?Rect angle(origin --* Pl?Point,

corner --+ P2?Point))

6.1.2. Equivalent Types

The simplest way to define a new type is by saying it is struc-
turally equivalent to an existing type. For example, to define a
new type, Box, such that it has the same structural constraints as
the type Rectangle, we use "Box = Rectangle". The effect of such
a definition is t o set the "structure" field of the type-defining
object for Box to be a copy of the "structure" field of the type-
defining object for Rectangle. Thus the result of this type expres-
sion is

:TypeDef(typeName + 'Box',
supertype --* 'All',
structure -+ B?Box(origin -+ Pl?Point,

The result of this type definition is again an abstract object:

:TypeDef(typeName --+ 'RectSelect',
supertype -+ 'Rectangle',
structure -

RS?RectSelect(origin - Pl?Point,
corner --+ P2?Point,
cursor --+ PS?Point))

6.1.5. Multiple Inheritance

In a type definition, more than one type can be specified as
supertypes of the type being defined, and the new type will inherit
the union of the structures of each individual supertype. (We
assume no name clash can occur.) For example, the following
definition defines a type called DesignDoc, which presumably
models documenting digital system design project,

DesignDoc = ArchitectDoc, FunctionDoc,
LogicDoc, CircuitDoc

(designDocNo --+ Number)

That is, The DesignDoc type has structures of those of Archi-
tectDoc, of FunctionDoc, of LogicDesign and of CircuitDoc, plus
an additional field "designDocNo". The resulting "structure" field
in the type-defining object is, schematically, the following:

DD?DesignDoc(<fields-from-ArchitectDoc>,
<fields-from-FunctionDoc>,
<fields-from-LogicDoc>,
<fields-from-CircuitDoc>,
designDocNo --t N?Number,

6.1.6. General Type Calculus

The type definition constructs outlined above can be com-
posed in a very flexible way, yet still maintaining clean semantics.
For instance, a type for modeling mailing addresses can be defined
as follows:

MailAddress = (stNumber - Number,
stName --+ String,
cityName - String,
state --+ (stateName + String,

postalcode - String),

A serial composition of commands, C1, C2, ... , Cn takes the

form of C1; C,; ... ; Cn. Each command in this composition is exe-

cuted in sequence. If any of the individual commands fails in exe-
cution (due to pattern matching failure), the execution of the com-
position fails.

A parallel composition of commands takes the form of C1 1 1
C, 11 ... 11 Cn. Command in this composition is executed one by
one until a successful execution is obtained. The result of the first
command that is executed without failure is taken to be the result
of the parallel composition. If none of commands participating in
a parallel composition succeeds, the execution of the composition
fails.

6.3. Computational Objects

Computational objects are an effective means for dealing with
infinite types and infinite objects. Some examples are:

AddType = (addend1 + Nl:Number,
addend2 + N2:Number,)

=> add[Nl, N2]

InfSequence = (start --, N:Number)
=> cons[N, InfSequence[succ [N]]]

Some explanations are needed. First, we use the reduction symbol
=> to indicate a computational type. Expressions following =>
specify reduction rules for computational types. Second, some
reduction symbols, such as add, succ and cons, are predefined.
Third, member objects of a computational type are those derivable
via the reduction rules of the type.

The G-machine architecture [Jot331 for graph reduction from
functional programming research area seem to be a good candi-
date for evaluating computational objects. The way in which the
graph reduction approach represents computations closely resem-
bles how object structures are represented, namely using directed
graphs. For example, the application graph for expression InfSe-
quence[l] can be described as the following TEDM structure

:Apply(function + 'InfSequence'),
argument -+ #1)

5. As an intermediate step towards a completely "objectified"
language, a simple interface between a programming language and
the database system allows construction and evaluation of com-
mand objects, without major modification t o the programming
language itself. Adding new query functionality-range selection,
equality vs. identity comparisons, aggregates-involves creating
new flavors of abstract objects, but not changes t o the program-
ming language parser. Ultimately, however, we want to do away
with any "surface" language, and have entire programs
represented as objects, such as in the Garden system [Re86].

6. With commands as objects, we can consider interpretations of
those objects other than just their execution value. Abstract
interpretations can be defined for them to give valuations in
domains such as execution time or result size. As Atkinson et al.
point out, the compilation or optimization of such an object is just
a particular view on the object [AMP87].

There are also a number of extensions and refinements to
explore:

1. Is it possible t o develop an abstract object notion based on pro-
tocol rather than structure? Such an object might be viewed as a
computation graph t o be evaluated via graph reduction tech-
niques, with an added reduction rule for database matching. The
result of a reduction sequence would be nondeterministic, because
an abstract object can match the database in multiple ways.

2. For a command object, what are strategies for evaluating por-
tions of it on different processors? For example, the structural
access could be done on a central storage server, and the computa-
tional part on a local workstation.

3. We don't think abstract objects are quite equivalent t o logical
variables. We think objects with logical variables would be useful
for expressing and constraining partially defined objects and for
representing alternative configurations or versions of an object.
Perhaps the ability t o store a name from a binding environment in
place of a value would give equivalent power [AM85].

Principles of Database Systems, 1984.
[MP84] Data Model Requirements for Engineering Applications, D.

Maier. and D. Price, IEEE 1st International Workshop on
Expert Database Systems, 1984.

[Ma851 The TEDM Data Model, D. Maier. Working Paper, Oregon
Graduate Center, 1985.

[Ma861 A Logic for Objects. D. Maier. Proceedings of the
Workshop on Deductive Databases and Logic Program-
ming, 1986.

[Ma871 Why Database Languages Are A Bad Idea?. D. Maier.
Workshop on Database Programming Languages, Roscoff,
France, September 1987.

[MSOP86] Development of an Object-Oriented DBMS. D. Maier, J .
Stein, A. Otis and A. Purdy. OOPSLA-86 Conference
Proceedings, 1986.

[Oh871 Mapping an Engineering Data Model to a Distributed
Storage System. H. Ohkawa. Ph.D. Research Proficiency
Paper, Oregon Graduate Center, 1987.

[Re861 A n Object-Oriented Framework: for Graphical Programming.
S.P. Reiss. Department of Computer Science, Brown
University, 1986.

[RS85] The MR Diagram - A Model for Conceptual Database
Design. R. Ramakrishnan and A. Silberschatz. Proceed-
ings of VLDB, 1985.

[SAHR84] QUEL as a Data Type. M. Stonebraker, E. Anderson, E.
Hanson and B. Rubenstein. Proceedings of SIGMOD,
1984.

[Te85] 4400P31 Prolog Programmer's Manual, Tektronix Incor-
poration, 1985.

[Za85] The Representation and Deductive Retrieval of Complex
Objects. C. Zaniolo. Proceedings of VLDB, 1985.

[Zh86] Prototype Implementation and Storage Design for A n
Engineering Data Model, J . Zhu. Ph.D. Research
Proficiency Paper, Oregon Graduate Center, 1986.

[Zh87] The Notion of Abstract Object in an Engineering Data
Model, J . Zhu. Ph.D. Thesis Proposal, Oregon Graduate
Center, 1987.

8. References

[AM851 Types, Bindings and Parameters in a Persistent Environ-
ment. M.P. Atkinson and R. Morrison. Proceedings of
Data Types and Persistence Workshop, Appin, 1985.

[AMP871 Persistent Information Architectures. M.P. Atkinson, R.
Morrison and G.D. Pratten. Persistent Programming
Research Report 36, University of Glasgow/University of
St. Andrews, 1987.

[AN851 LOGIN: A Logic Programming Language With Built-In
Inheritance, H. Ait-Kaci and R. Nasr. MCC Technical
Report, AI-068-85, 1985.

[AEM86] PROTEUS: Objectifying the DBMS User Interface, T.L.
Anderson, E.F. Ecklund, Jr and D. Maier. Proceedings of
the International Workshop on Object-Oriented Database
Systems, 1986.

[BanK85] A Model of CAD Transaction, F . Bancilhon and W. Kim.
Proceedings of VLDB, 1985.

[BatK85] Modeling Concepts for VLSI CAD Objects, D. Batory and
W. Kim. ACM Transactions on Database Systems, Sep-
tember 1985.

[BBDMR84] CADICAM Database Management. M.L. Brodie, B.
Blaustein, U. Dayal, F. Manola and A. Rosenthal. Data-
base Engineering, June 1984.

[Be871 On Combining Object Orientation and Logic Programming.
C. Beeri. XP8.5i Workshop, Oregon Graduate Center,
1987.

[BK86] A Calculus for Complex Objects. F. Bancilhon and F.S.
Khoshafian. Proceedings of ACM Symposium on Princi-
ples of Database Systems, 1986.

[EEET87] DVSS: A Distributed Version Storage Server for CAD
Applications. D. J . Ecklund, E.F. Ecklund, Jr. B.O. Eifrig
and F.M. Tonge. Proceedings of VLDB, 1987.

[Jo83] The G-machine: an Abstract Machine for Graph Reduction.
T . Johnsson. Proceedings of the Declarative Program-
ming Workshop, 1983.

[Ka83] Managing the Chip Design Database. R.H. Katz. Com-
puter, December 1983.

[KV84] A New Approach to Database Logic. G.M. Kuper and M.Y.
Vardi. Proceedings of the 3rd ACM Symposium on

where Apply is a predefined computational type.

Type objects for computational types are represented as a
sequence of G-machine instructions obtained through compiling
computational types that, when executed, would carry out desired
reduction. The following design offers one possible solution:

Operator = { ~ u s h , pushfun, pushint, pushbool,
pushnil, update, ...)

Instruction = (operator 4 Operator,
operand --t All)

A more powerful TEDM command execution engine is needed.
In particular, a reduction engine is necessary to evaluate computa-
tional objects, which could be a G-machine. Command execution
strategy should also be modified accordingly, as outlined in [Ma87].
Instead of a matching phase followed by an action phase, we need
a reduction phase that comes before the action phase. The task
of the reduction phase is to pick up all pending computations, and
conceivably create temporary structures to hold the intermediate
results.

7. Concluding Remarks

We have presented abstract object as an extension to an
object-oriented database model, and discussed their uses, seman-
tics and implementation. We list some advantages that accrue
from using abstract objects as the building blocks of database
commands:

1. Commands can be stored in the database, making them easy to
catalog and accessible from multiple applications. Moreover, we
now have the possibility that two commands could share the same
abstract object as a subpart.

2. Queries can have arbitrary literals, not just those with lexical
conventions for representation. We can write a query that looks
for a Rectangle containing a certain Point, without having to
describe the Point by its state.

3. Expressing cyclic query structures is possible.

4. Commands can be viewed and edited with whatever mechanism
exists for manipulating regular database objects.

zipcode + Number)

which results in the following "structure" field in its type-defining
object:

MA?MailAddress(stNumber + Nl?Number,
stName + Sl?String,
cityName + S2?String,
state + Il?InternalTypeX

(stateName + S3?String,
postalcode + S4?String),

zipcode + N2?Number)

Notice an internal type InternalTypeX has been created to help
describe the MailAddress type object.

6.2. Compound Commands

We described simple commands in TCL previously. We show
in this subsection that simple commands can be composed, and we
present TCL extensions to describe compound commands.

A compound command is a user defined TEDM command pro-
cedure that manipulates database objects based on somewhat
higher level semantics. Compound commands are composed of a
number of simple commands. Command composition can be done
in two ways - serial composition and parallel composition.
Besides being a mechanism for grouping individual commands to
perform meaningful operation, compound command also provides
the opportunity of sharing variable bindings across individual com-
mands. For example, one could come up with a compound com-
mand that consistently carries out necessary changes to a Person
object to hire the person:

HireEmployee[N:PersonName, D:Department, S:Salary] =

{
LocalVar [P:Person];
P:Person(department + D, salary + S) <=

persons + P:Person(personName + N);
emps + P <=

1
where LocalVar is a system provided command that introduces
local variables.

corner + P2?Point))

It should be noted that two equivalent types are guaranteed
to have the same structures only a t the time of definition. After
the definition, any one of them can change freely without affecting
the other.

6.1.3. Maximum Subtypes

Another simple way of defining a new type is to declare it as
a subtype of an existing type. For example, "Square < Box"
defines a new type Square that is to have the same structure
requirements of type Box and is t o be treated as a subtype of Box
to start with. Types defined this way are maximum subtypes of
corresponding supertypes in the sense that if any of the structures
is dropped from a new type, the subtyping discipline of TEDM is
violated. Such type definitions create type-defining objects in the
same way as equivalent type definitions, with the created abstract
objects having one additional meta structure that takes the super-
type objects as values, capturing the subtyping information.
Therefore, the resulting type object is

:TypeDef(typeName + 'Square',
supertype + 'Box',
structure + B?Box(origin + Pl?Point,

corner --+ P2?Point))

If Square is also an existing type, the effect of the definition
"Square < Box" is to make Box as its supertype, provided typing
system constraint is not violated.

6.1.4. General Subtypes

In general, a new type can be defined as having the structure
requirements of an existing type plus certain additional require-
ments. Types defined this way are subtypes of corresponding
supertypes. An example of where this kind of definition is useful
would be an alternative RectSelect type that has three Point com-
ponents, modeling the origin point and corner point of a rectangle,
and a cursor point selecting regions inside the rectangle. The
RectSelect type can be defined as follows:

RectSelect = Rectangle(cursor + Point)

An critical performance issue is efficient pattern matching
against large database that resides on secondary storage. Our
current design incorporates many storage structuring techniques
such as clustering and duplicating, that should reduce the number
of disk accesses needed for processing queries. In order to reduce
the need for in-memory transformations, we use fragments, which
are main memory chunks shared by the object handler and the
storage manager. Fragments provide storage space for initial seg-
ments of objects. All initial segments in a fragment have the same
format, which is dynamically defined. In order to stretch the
bandwidth of communication between the two layers, we use bullc-
load as much as possible. In the bulk-load mode, the storage
manager is given some loading criteria and a format, and it
searches the database and loads appropriate triples to form frag-
ments using the format provided. Since the format for each bulk-
load is fixed and is known to the object handler, access to indivi-
dual fields can be compiled to use a starting address and an offset
directly, eliminating the overhead of matching against the field
labels. In the case of multiple occurrence fields, a pointer is
planted in place of the field value, ieading to a separate region
where the multiple occurrence values are located. Other relational
query processing techniques, such as building optimized query
plans, can also be applied to bulk-load operation. This prefiltering
processing by the storage manager avoids much of the unnecessary
traffic to the object handler, and should lead to a fairly efficient
implementation.

6. Type, Command and Computation Objects

We proposed earlier using abstract objects to store commands
in databases - the results are databases with data objects and
commands manipulating these data objects. This way we can
build self-contained, application-specific databases. In this sec-
tion, we show by examples how the rest of the data model proper
can be captured nicely using abstract objects. We will also look
into possibilities of extending the concepts to introduce computa-
tions into the data model.

6.1. Type Definitions

Typing in TEDM is such a mechanism that puts minimum
requirements on structures of objects. A flexible yet expressive

That is, for two objects to match, the isomorphism has to be
able to make their atomic data values and concrete objects
correspond. Consequently, as a precondition, ones data value set
has to be a subset of the other's data value set. Therefore, the
term "pattern matching" we use in the syntactic domain to
describe the query facility of the database language corresponds to
a special kind of isomorphism in the semantic domain. In Figure
12, o matches with o .

x2 e8

Definition 11: Given object ol matches with object o2 under a,
then the answer substitution of the matching is defined as the max-
imal subset of a:

P = {(el, e2) E a I e, E X}.

For example (see Figure 12 and Figure 13), the answer substi-
tution for the matching of ox with o is p = {(x2, e3)). In general

es
we are interested in the set of all answer substitutions.

5. Implement at ion

The plan is to implement the TEDM data model on top of a
distributed object server DVSS [EEET87], which provides con-
currency, recovery and distributing on variable-size byte objects.
Architecturally, there are two functional blocks that implement
the TEDM database system, an object handler and a storage
manager, each implementing a mapping between layers of abstrac-
tion. The storage manager defines the mapping from the TEDM
storage model (explained below) to the DVSS object model. More
detailed discussion concerning this mapping can be found in
[Oh87].

The object handler compiles TEDM objects into their internal
representation using TEDM storage model, which can be described
as rel(OBJECT-ID, FIELD-NAME, FIELD-VALUE)*, namely list
of triples of the given format. For example, the object given in
Figure 1 is translated into the following triple list:

rel(o1, $in, 'RectSelect')
rel(o1, rect, 02)
rel(o1, cursor, 03)
rel(o2, $in, 'Rectangle')

Definition 7: The set of initial segments of an object 0, = e: {el,
el, ...), Ie, is defined by:

I). e: 0 E Ie;
2). e: E E Ie and ~ X E E (x, y) E It,, then e: (E U {Y}) E I,
3). nothing else is in I,.

Not every subset of an object is an initial segment of the
object, (even though it is a necessary condition), since reachability
from the root through entities is also needed. Also observe that
any object is an initial segment of itself. Informally, initial seg-
ments are connected subcomponents that include the object root.
Thus we also use the term "the root of an initial segment." We
will use I to denote the collection of all initial segments, namely,

I = U,,, Ie.

Three examples of initial segment (see Figure 12) are given in Fig-
ure 13.

Definition 8: Given il, i2 E I, with il = el:El and i2 = e2:E2, we

say that i, is isomorphic to i2 if there is a 1-1 onto mapping a: il
-+ i2, such that a(el) = e2 and if el E i, gets mapped to dl E i2
and c2 E il gets mapped to d2 E i2 by a, then the following condi-
tions must be true:

1). c t(cl);
2). if cl E D, then c2 E D U 4 and vice versa;

il = ox2 is an initial segment of o , and
X2

i2 = e3: {e5, #3, #4) is an initial segment of o .
i3 = e,: 0 is an initial segment of o .

e,

Fig.13 Three Initial Segments

atomic entities from having substructures, we impose the restric-
tion that the relations it produces not defined a t any atomic
entity. Namely,

'trx E D v E F 'try E u ((x, Y) 4 g(1))-

Figure 11 provides an example of a TEDM universe. Notice N
represents atomic integer values and S represents atomic string
values and they are predefined.

Definition 3: %, the reference relation relative to F F, is

defined as UICF g(1). $, the reachable relation relative to F, is the
reflexive transitive closure of RF. We also say that y is F-
reachable from x if (x, y) E $, and use reachable t o mean F-

reachable.

In other words, the reference relation specifies that one entity
is referenced by the other, via a sequence of fields with labels from
F. This reference relation is obtained from the union of certain
relations produced by g by taking a closure. Normally, the sub-
script can be omitted when the set F is understood. For the
example given in Figure 11, assuming F is F, R is

Definition 4: Given an e E U, A TEDM object, oe, is defined as a
pair (e, the maximal set of entities that are reachable from e);
namely,

Oe,
= e3: {e4, e5, #O, #I, #3, #4)

Ox2
= x2: {e,, #3, #4).

Fig.12 Two Objects

01. In a TCL pattern term, we use "?" to indicate abstract
matching. For example, for the pattern term

ptTemplates -+ P?Point(x -+ M?Number,
y - N:Number)

P will bind t o abstract Point object in the ptTemplates set whose
x coordinate is an abstract Number object and whose y coordinate
is a concrete Number object. Such a matching object, expressed
as TOE, might be

One further enhancement to TCL queries we want to support
is to retrieve an abstract object 0 2 by matching, then use it
immediately as a template itself, for matching other objects. The
TCL syntax for such a pattern might be

ptTemplate -+ P?Point(x --* M?Number,
y --* N:Number),

points -+ PT:P

In the second pattern term, the binding for P from the first term
becomes the template for binding for P T in the second term. We
have yet to fix the format of a command object t o specify this
matching. Possibilities are letting the "matches" field in an OVar
object reference another Ovar, or adding a n "indirectMatches"
field. We are also looking a t ways to specify a query that selects
an object that has a certain type of object as a subobject, at an
unspecified level of nesting. Such a capability would be useful, for
example, for indexing all commands that included a Point abstract
object somewhere in a Pattern term.

4. Object Semantics

Having described TEDM concrete and abstract objects, we
are in a position t o investigate their semantics more formally, and
we will do this from more or less an algebraic viewpoint, using the
notion of isomorphism to describe the meanings of various kinds of
matching.

4.1. Basic Definitions

Object expressions denote entities residing in permanent
storage media. Thus, we take everything in permanent storage as

head to which we want make modifications. If an object variable
occurs multiple places in the body, it does not represent identity
among abstract objects. Rather, each occurrence gives rise to
another pattern the variable must match, which are captured as
multiple occurrences of the "matches" field. In inspecting Figure
8 and Figure 9, note that the named sets in pattern terms are
really just fields in a special DBRoot object. We assume any
database has only one concrete DBRoot object.

If it is desired that a repeated object variable in a command
body represent just one abstract object, then we use a special "!"
notation in TCL. Figure 10 shows such an example, where only
relevant portion of a "cmdbody" field is shown along with its
structural representation.

Note that we are doing matching here in the strict sense, and
not unification. For example, the object 01 (In TOL)

P?Point(x + M?Number, y --* #0)
matches object 0 2

:Command(cmdhead + PoObj?Point(x -+ #2,

Y + #2)),
cmdbody + DBROOT(rectss --*

RSObj?RectSelect
(rect + ReObj?Rectangle

(corner --* :Point(x -+ #4,

Y --* #3))7
cursor -+ PoObj?Point)),

bindings + :OVar(name -+ 'PoObj',
matches --* PoObj?Point,
makes + PoObj?Point))

Fig.9 Command Expressed as TOE

RS?RectSelect(rect -+ R?Rectangle
(origin -+ OR?Point(x - X?, y - Y?),
corner + CO?Point),

cursor + CU?Point(x -+ XI?, y -+ #I))

Number TZJ
Fig.7 An Abstract Object

Actually, the use of abstract objects is much richer than
merely specifying pattern matching templates. We can now easily
represent database commands, rules and other language constructs
as TEDM objects and store them along with application data, as
was claimed earlier. We can view TEDM command language
(TCL) as a succinct alternative to TOE for expressing command
objects. (However TEDM command language is not as general as
TEDM object language, or TOL, the language in which TOE'S are
written.) In TOE, object tags merely indicate interconnectivity of
the object described. In TCL, we need to preserve the variables as
actual objects, in order to express the propogation of bindings
from matching concrete objects with the right side to making
modifications to those concrete objects as specified on the left.
For example, the rule and the update statement given using TCL
in Figure 5 can be represented as TEDM objects of type Rule and

identifiers instead. Using the identifiers obtained from answer sub-
stitutions, objects in the database can be viewed and modified and
then reinstated. In this context, object identifiers function much
as l-values in programming languages. Figure 6 contains a TEDM
query that asks for all RectSelect objects in the set "rects" whose
cursor point coincides with their origin, plus their corner points.
(If we wanted RectSelect objects with their cursor identical to
their origin, the second part of the term would be "cursor -+

OR".) The answers to this query will be returned as 6-tuples of
bindings of objects to the variables RS, OR, X, Y, CO and CU.

This example also illustrates several important differences
between TEDM query terms and first-order terms (FOT's) as seen
in, say, PROLOG. First, typing information is attached to the
query, which can be used to restrict the range of the search and
improve the processing efficiency. Second, fields are labeled, which
in turn eliminates the stiff requirements on arguments of FOT's
(namely, fixed arity and fixed position). Third, object variables
are more general than variables of FOT's, as they permit retrieval
of complex objects by partially specifying their internal structures,
whereas a variable in a FOT is unrestricted in the substructure of
what it matches.

Another point shown in this example is that syntactically
query terms are similar to TOE'S, except that query terms are
allowed to partially specify the structure of what they match
(whereas a TOE defines the entire states of an object.) Neverthe-
less, object expressions and query terms are quite different

rects -+ RS:RectSelect(rect -+ :Rectangle
(origin -+ OR:Point(x -+ X, y -+ Y),
corner -+ CO:Point),

cursor -+ CU:Point(x -+ X, y -+ Y))

Fig.6 A TEDM Query Expression

R(1eftside + * :Line
(p l + :P, p2 --+ * :Point(x + M, y + N)))

4-

rects --, R:Rectangle(origin P:Point(x --, M),
corner -+ :Point(y -+ N))

P(x -* #2, Y -+ #2))
<=

rects -+ RS:RectSelect
(rect -+ :Rectangle

(corner + :Point(x -+ #4, y -+ #3)),
cursor + P:Point)

Fig.5 TEDM Rule and Update Statements

Other features of this data model include deductive elements
for virtual data derivation, a rule-like non-relational data
language, and the capability of creating arbitrarily complex struc-
tures in a single data language statement. In Figure 5, we present
an example of a rule statement and an example of an update
statement. The rule defines a virtual field "leftside" for rectangles
stored as origin and corner points. The update command moves
the cursor point of RectSelect objects with a corner of (4, 3) t o (2,
2), in particular, it moves the cursor of the RectSelect object given
in Figure 1 to its center, by modifying the coordinates of the exist-
ing cursor point. A few words of explanation. The right side of a
rule or command consists of one or more terms. A term in TEDM
is syntactically similar to a TOE, except object tags are construed
as object variables. These variables range over the objects in the
database for purposes of matching. The term must be "anchored"
by a named set of objects. Here, the "rects +" prefix on the
right side supposes a set named "rects" of objects against which
the rest of the term is matched. The meaning of the whole rule or
command is that for every assignment of objects to object vari-
ables, the left side must hold. In the case of a rule (-), the left

where the cursor and the corner of a RectSelect object happen to
have the same Point object as their value.

We provide a formal definition to describe TEDM object
expressions. The existence of several denumerable sets, F, S, N, H
and T is assumed: where F is a set of symbols for field labels, S is
the set of string values, N is the set of natural numbers (for the
moment we only consider strings and natural numbers as atomic
values), H is the set of object tags, and T is the set of symbols for
types. We also define a partial order on T based on a
subtype/supertype relationship.

Definition 1: TOE, the collection of well formed TEDM object
expressions(TOE's), is defined by the following rules:

1). S:String d E TOE for d E S and S E H;
2). N:Number d E TOE for d E N and N E H;
3). given el, ..., en E TOE, fl, ..., f E F, T E T and H E H, n

then H:T(fl -+ e,, ..., fn + en) E TOE;

4). nothing else is in TOE.

The first two items in the definition describe simple objects,
and the third describes complex objects. We point out that TOE's
resemble Ait-Kaci's @-terms [AN85], but the two differ in seman-
tics. TOE's represent single, ground objects, while 9-terms denote
types. There are some other consistency conditions on TOE's that
we do not formalize here. The type conformity condition requires
that there be no conflicts between types denoted by type symbols
and objects tagged by object tags. The tag repetition condition
disallows mismatches between object labels and object tags, e.g.,
had we used R instead of C to describe the value of the cursor
point in Figure 3. Certain object tags and type symbols can be
omitted when writing object expressions. For example, one need
not include type symbols String or Number in an expression (as in
the previous example), as these atomic values are self-describing
for types.

Types in TEDM have intentional and extensional aspects.
The intentional aspect is a structural description, i.e., a list of
fields and their respective types. Examples of such descriptions
are shown in Figure 4. The extensional ingredient is typeset, the

will not change during the lifetime of the object. When an object
dies, its OBID also dies and will not be reused again. The OBID
of an object and the state of the object are orthogonal - while
the state may change as the database evolves, the OBID always
stays the same. With this notion of object identity, each object is
distinguishable and therefore the system can discriminate any two
objects without depending on their states. Also, two or more fields
can have the same object as their value.

Figure 1 shows a textual form (object expression) that
represents a RectSelect object, which models a rectangle that has
an associated cursor point. (This particular example has the cur-
sor in the upper-right corner.) Structurally, this RectSelect object

rect

cursor

Point Number

#O I

Fig.2 A RectSelect Object

relational database theory [BBDMR84, BanK85, BatK85, Ka83,
MSOP86, RS85]. A data model of this kind is variously termed an
object-oriented data model (OODM), a non-first normal form data
model (NF~DM), an engineering data model (EDM), or a semantic
data model (SDM).

Maier et al. [Ma85, AEM861 proposed an object-oriented data
model - the Tektronix Engineering Data Model (TEDM). Among
other features, TEDM supports object identities, complex objects, a
type hierarchy and a rule-like command language. We provide an
overview of this data model shortly.

In this paper, we introduce abstract objects as an attempt a t
providing a unified framework for the database language and a
means for making the query language entities persistent. (By
query language, we really mean the complete database language.)
Abstract objects are complex data structures with a declarative
semantics, but which also support operational interpretations,
much like literals in logic languages. Strategically, we adopt the
idea from logic databases that an application database is some
kind of closure of application data plus meaningful queries on that
data. We go one step further, storing query entities as abstract
objects, which have object identities and subcomponents. These
abstract objects are very structural in nature, but they are quite
rich in operational interpretations. As objects, they can be
created, stored, manipulated and viewed just as normal data
objects. As operators, they can be used as matchers and makers
for other objects, specifying operations such as creating objects,
retrieving objects and modifying subcomponents of existing
objects.

We expect the next generation of database systems would be
constructed based on a layered architecture - a data language
processor sits on top of an intelligent storage server that has its
own internal execution model. In that respect, what we propose
here may be more of an intermediate construct that is suitable for
communication between the storage server and the semantic pro-
cessor. With this architectural consideration, the advantage of
having abstract objects as proposed here is obvious. Using these
abstract objects as building blocks, we can construct database
program objects. Ultimately, the semantics of program objects
should be describable as yet other objects, giving the ultimate in

