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Abstract 

This paper introduces abstract  objec t  as an extension 
to  an object-oriented data model. An abstract 
object is essentially a template for regular database 
objects. It can be used for various kinds of matching 
in database queries and for the structural portion of 
type definitions. In a sense, abstract objects are 
similar to  nonground terms in some logic systems, 
but with the ability to  put structural constraints on 
the binding of a variable. We present abstract 
objects in the context of the TEDM object-oriented 
data model. We show how to represent database 
commands using abstract objects and investigate the 
semantics of pattern-matching using abstract 
objects. We then cover implementation techniques, 
uses for abstract objects other than pattern match- 
ing and ideas for extensions to  the model. 

1. Introduction 

As the desire to  extend database technology to wider applica- 
tion domains (notably engineering design environments) increases, 
it becomes apparent that traditional database systems are no 
longer sufficient [MP84]. Consequently, more data models are 
being invented every day, addressing the deficiencies of the con- 
ventional models. Intended for use in engineering design and simi- 
lar environments, many of this new breed of data models share 
one important characteristic, the capability of constructing com- 
plex data  objects that accommodate hierarchical structures, 
shared subparts or even cyclic data, a major departure from 
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portability: the semantics of a programming system is ported along 
with a program. 

The next section presents a brief overview of the TEDM data 
model. In Section 3, abstract objects are introduced and are 
integrated into TEDM, and examples of their use are also pro- 
vided. Section 4 investigates the formal meanings of abstract 
objects. Section 5 discusses implementation issues. Section 6 
explores other uses for abstract objects and ideas for extensions to  
the model. Conclusion and summary are given in Section 7. 

2. TEDM Overview 

This section provides a brief overview of TEDM, an object- 
oriented database model. Databases under TEDM are collections 
of objects, the basic building blocks provided by the model. 
Objects in TEDM are either simple or complex.  A simple object is 
a nondecomposable atomic value, such as a string or a number .  A 
complex object has internal state,  which is made up of a collection 
of fields. Fields are given labels and therefore their order in a 
complex object is immaterial. Field values in turn are either sim- 
ple objects or complex objects. In this way, arbitrary nested data 
objects can be constructed. 

A second basic notion in TEDM is that of object  identi ty .  
Objects possess object  identi f iers (OBID's) internally. The OBID 
of an object is unique with respect to  the entire database, and it 

RS:RectSelect(rect + R:Rectangle 
(origin -+ O:Point(x + #0, 

y -+ Y:Number #I), 
corner --+ C:Point(x + X:Number #4, 

Y + #3))7 
cursor -+ U:Point(x + X, y + Y)) 

Fig.1 A TEDM Object Expression 



is made up of ten subobjects - one Rectangle object, three Point 
objects and six Number objects, where RectSelect, Rectangle, 
Point and Number are type names. (Also notice the substructure 
sharing.) The RectSelect object is depicted pictorially in Figure 2 
along with a structured diagram of the objects involved. 

Some comments on the notation - numbers are prefixed by a 
sharp sign (#), symbols preceding the right arrow (-*) are field 
labels, symbols preceding the colon are object tags, symbols follow- 
ing the colon are type names. Our convention will be to  have 
fields labels in lower case and object tags and type names capital- 
ized. Sharing of substructure is indicated by using the same tag. 
The idea of substructure sharing is better illustrated in Figure 3, 

RS:RectSelect(rect --, R:Rectangle 
(origin --+ O:Point(x -* #0, 

Y -* #I), 
corner -* C:Point(x -* #4, 

Y -* #3)), 
cursor -* C )  

rect 

curaor 

Fig.3 Another RectSelect Object 



set of objects that belong to this type. 

The types of the database form a type hierarchy used for 
organizing application data. This type hierarchy can be charac- 
terized as follows. The structural description is prescrip tive: it 
gives the minimal structure for any object that is a member of the 
corresponding typeset. An object in a type may possess fields 
beyond those required by the intention. Membership in a typeset 
is not automatic upon an object fitting the structural description 
for the type. Rather, objects are explicitly added to  or removed 
from types. Furthermore, an object may belong to multiple types. 
The subtype relation between types means the subset relation 
between typesets. The subtype relation is declarational rather 
than structural, meaning that a type is not treated as a subtype of 
another type unless such a subtype relationship has been explicitly 
declared or this relationship can be deduced by the transitivity of 
other declarations. However, this subset interpretation of the sub- 
type relationship imposes constraints between the structural 
descriptions of a supertype and a subtype. A subtype must pos- 
sess all fields of its immediate supertype, the type with respect to  
which the subtype declaration is made. A subtype may have more 
than one immediate supertype. Predefined types come with the 
system for simple values: for example String and Number. A 
comprehensive type ALL, which does not have any structural res- 
trictions, is also provided as the root of the type hierarchy. The 
typical procedure for developing application databases is to  extend 
this type hierarchy downwards, adding subtypes and adding 
objects to  these types. 

Point = (x + Number, y + Number) 
Rectangle = (origin -+ Point, corner + Point) 
RectSelect = (rect -+ Rectangle, cursor + Point) 

Fig.4 Type Definitions 



side describes virtual fields for objects that  are assumed present 
for other queries. In Figure 5, there is a "leftside" field, Line 
object and Point object for each matching binding on the right. 
(The "*" stands for an arbitrary new object of the proper type.) 
For a command (<=), for each binding of the right side, the 
matching objects are modified to  conform to  the term in the head. 
In Figure 5, the "x" and "y" fields of the cursor point are 
modified. Some shorthand we use is to  omit object variables when 
they aren't repeated (":PointH) and omitting the type name for a 
variable in the head of a rule or command that  appears on the 
right of the rule or command. 

More detailed description of this data model is given in 
[Ma85]. Its formal logic is presented in [Ma86], where 0-Logic is 
developed to  provide formal semantics for the data model. 
Roughly, 0- Terms correspond TEDM pattern terms described 
here, and 0-Formulas are built up from 0-Terms using usual logi- 
cal connectives and quantifiers. Under that  formalism, the models 
for 0-Formulas turn out exactly t o  be those TEDM objects that  
make the 0-Formulas true. A main memory prototype of TEDM 
using MProlog [Te85], which includes most of the features 
described here, has been carried out and its description can be 
found in [Zh86]. 

3. Adding Abstract Objects to TEDM 

Given databases with collections of objects of the form 
described in the previous section, we naturally would want to  
retrieve information from them and make changes to  them, with 
minimal human effort. Thus, we need a powerful query language. 
There have been various proposals for query languages on data- 
bases that  support complex objects, such as Zaniolo's extension t o  
the relational algebra [Za85], Kuper and Vardi's logic data 
model[KV84], Bancilhon and Khoshafian's object calculus [BK86] 
and Beeri's object logic[Be87], t o  just list a few. 

The approach taken by TEDM is inspired by the computation 
mechanism used in logic programming systems, namely unification. 
The data retrieved from TEDM databases are presented in the 
workspace to  the user as a set of answer substitutions, which are 
similar t o  pairs of variables and their bindings in programming 
languages. However, here the variables are bound to  object 



semantically. Instances of the former are a lexical means of 
defining concrete data objects. Instances of the latter specify pat- 
terns for matching against the data objects. 

Traditionally, data objects are stored in the permanent data- 
bases, while queries are processed interactively during a work ses- 
sion, or preprocessed into DB calls when embedded in a program. 
As such, queries are separate from and are not described by the 
underlying data  models. View definitions are usually supported by 
database systems as add-on features of the database languages 
and are processed outside the scope of the data model. From a 
practical point of view, a disadvantage of the traditional approach 
is that  it is difficult t o  build systems that support a generalized (in 
the sense of more than some kind of command recall mechanism) 
query reuse scheme, nor is it easy to  define a query procedure in 
one session and use it in another, or to  combine queries. 

TEDM tackles the problems by allowing query entities to  be 
stored in the permanent databases as well. The approach is 
different from that taken by Stonebraker et al. [SAHR84] to  
extend INGRES to include QUEL commands as attribute values. 
That approach stores the textual form of a query in a field (and 
possibly caches a compiled form of a query). By contrast, we will 
have structured database objects that represent queries and com- 
mands. A key component of query objects will be a new flavor of 
objects to  represent pattern terms. Such objects will be called 
abstract objects, as contrasted to  the concrete objects introduced 
previously. Abstract objects will have physical representations in 
the database, just as concrete objects, but are given different 
interpretations by the database system. Having abstract objects 
in the database would be much like having the capability of stor- 
ing a logic variable whose scope is multiple clauses in a logic data- 
base. In TOE'S, we use a question mark (?) in place of a colon to  
indicate an  abstract object of a given type. 

As an example, Figure 7 presents a TOE for a stored abstract 
object and a diagram of its structural representation. Abstract 
objects are depicted there using double boxes. Such a stored 
abstract object can be used as a template in an operation. When 
so used, it will successfully match concrete objects of type 
RectSelect that  have the specified internal structures, giving as 
result of the matching a tuple of abstract-concrete object pairs. 



of type Command using TOE, as shown in Figure 8 and in Figure 
9 respectively. We point out that it is possible for concrete 
objects to  reference abstract objects, and vice versa. A Rule or 
Command object has three fields, for the head, the body and the 
bindings of variables to  parts of the head or body. The values of 
the head and body fields are abstract objects. (The body could 
actually contain multiple abstract objects for pattern terms. 
TEDM allows multiple-occurrence fields.) The bindings field occurs 
once for each variable. Its value is an OVar object, which gives 
the name of the variable, the abstract object in the body it gets 
its binding from through matching, and the abstract object in the 

:Rule(rulehead --* ReObj?Rectangle 
(leftside -+ :Line(pl -+ PoObj?, 

p2 + :Point(x + Xcrd?, 
y + Ycrd?))), 

rulebody -+ DBRoot(rects -+ 

(ReObj?Rectangle 
(origin + PoObj?Point(x + Xcrd?Number), 
corner + :Point(y + Ycrd?Number)))), 

bindings + :OVar(name -+ 'ReObj', 
matches + Reobj?Rectangle, 
makes - Reobj?Rectangle) 

& :OVar(name - 'PoObj', 
matches + PoObj?Point, 
makes -+ PoObj?Point) 

& :OVar(name --* 'Xcrd', 
matches -+ Xcrd?Number, 
makes -+ Xcrd?Number) 

& :OVar(name -+ 'Ycrd', 
matches + Ycrd?Number, 
makes -+ Ycrd?Number)) 

Fig.8 Rule expressed as TOE 



RS?RectSelect(rect --* R?Rectangle 
(origin --* OR?Point(x - X!, y - Y!), 
corner + CO?Point), 

cursor + CU?Point(x + X!, y + Y!)) 

rect 

curs 

Y 

Fig.10 Indicating Identity in TCL 

but 0 2  as a template does not match 01. For purposes of top- 
down evaluation of rules, we are looking a t  a unification opera- 
tion, under which, for example, 01 above would match with 

PS?Point(x --* #4, y --* M?Number) 

Since we have abstract objects in the database, we are faced 
with the interesting problem of how t o  specify pattern matching 
against abstract objects and how t o  make use of this kind of 
matching. We will discuss the formal semantics of abstract- 
concrete matching in later sections. Here we discuss how to  
specify it in a command. We could introduce "meta-abstract" 
objects that  serve as templates for abstract objects, but we would 
then need "meta-meta-abstract" objects as templates for those, 
and so on, ad  naseum. Instead we include an "absMatches" field, 
holding an abstract object 01 in OVar objects to  indicate that  the 
variable should be bound to  an  abstract object 0 2  that  matches 



the universe. Our definitions will impose further structure on this 
universe. 

Definition 2 (see [Ma861 for a similar definition): TSU, the TEDM 
structured universe, is a three-tuple (U, g, t), where U = D U W is 
the collections of entities, g: F --+ 2' is the label-interpreting 
function, and t: W -+ is the type-assignment function. 

In this definition, D is the set of atomic entities (numbers and 
strings in our examples), and W is the set of compound entities. 
We further decompose W as E U X, where E is the set of compound 
concrete entities and X is the set of abstract entities. Recall F is 
the set of field labels. 

By saying a binary relation is (not) defined a t  x, we mean 
there is (no) y such that the tuple (x, y) is in the relation. The 
function g takes a label and produces a relation. To prevent 

Let D = N U S, 
w = E u x = {el, e,, ...) u {x,, x,, ...I, 
U = D U W ,  
F = {rect, cursor, origin, corner, x, y), 
T = {Number, String, Rect Select , Rectangle, Line, Point), 
s = {(rect, ax1, x,), (e,, e,))), (cursor, {(xl, x,), (e,, eB))), 

(origin, { (e ,  e,))), (corner, {(x,, el), (e,, e5))), 

(x, {(el, #4), (e4, #O), (e,, #4), (e,, #4))), (Y, {(el, #3), 

( e ,  #I), (e,, #3), (e,, #3)))), 
t = {(i, Number)) U {(s, String)) U {(el, Point), (xl, RectSelect), 

(x2, Rectangle), (x3, Point), (el, RectSelect), (e3, Rectangle), 
(e,, Point), (e5, Point), (e6, Point)), 

for all i E N and s E S, 
then (u, g, t) is a TSU 

Fig.11 An Example TSU 



oe = (e, {Y I Y E u and (e, Y) E %I). 
The entity e is said to  be the roo t  ent i ty  of the object, and all 
other entities are said to  be subentities of the object. We write an 
object as "root entity: set of subentities." 

Thus an object includes both a root entity that  provides the 
identity of the object and a number of subentities that  are proper- 
ties or subcomponents of the object. Atomic objects have atomic 
root entities and no subentities. We will often confuse the root 
identities with the objects themselves. Two examples of TEDM 
object (see Figure 11) are given in Figure 12. 

Definition 5: Given an e E U, the inc ident  set of e is defined as 

ie = {I I 1 E F and g(1) is defined a t  e}; 

the reference set of e is defined as 

re = {y 1 y E U and (e, y) E Ri }. 
e 

Namely, the incident set of an entity consists of all labels 
that the entity uses to  reference other entities, and the reference 
set consists of all entities referenced. For example, ix = {rect, 
cursor) and rx = {xz, x d  (see Figure 11). This definitio; allows us 
to  discuss th; most closely related properties of objects while 
ignoring the remote ones. 

Definition 6: Given an e E U, we say that  oe is an abstract object 
if e E X; otherwise it is a concrete object. 

For example, of the two objects we gave previously in Figure 
12, o is a concrete object and ox is an abstract object. Collec- 

es 
tively, we will use 0 t o  denote all objects, C to  denote all concrete 
objects and A t o  denote all abstract objects. 

4.2. Object Isomorphism 

The concept of object isomorphism is the theoretical basis for 
various kinds of matching. The idea is that two objects match if 
one can be mapped into another according to  certain property- 
preserving criteria. 



3). if (el, dl) E g(l), for some 1 E F, then (c2, d2) E g(l) 

In other words, isomorphic mappings preserve the root, the 
type hierarchy and the labels. Notice we allow atomic entities to  
map to  abstract entities and vice versa, but disallow this mapping 
between atomic entities and concrete entities. We say that  an 
object ol is embedded in an object o2 if ol is isomorphic t o  some 
initial segment of 02. For example (see Figure 13 and Figure 12), 
il is isomorphic t o  i2 under an obvious isomorphism 

a = {(x,, e3), (el, e5), (#3' #3), (#4, #4)h 

and therefore o is embedded in o . 
X2 e8 

It can easily be shown that  the system of initial segments and 
isomorphisms form an algebraic structure that  possesses some nice 
properties, such as identities and compositions; but we do not go 
into details here. 

Definition 9: Given two isomorphisms a and P, we define the 
combination isomorphism of a and ,L3 as a U P, provided a U P is 
also a mapping; otherwise their combination is undefined. 

The concept of combination isomorphism can be extended to  
the case where more than two isomorphisms are involved in an 
obvious way. The combination isomorphism always exists for a 
collection of isomorphisms whose domains are pairwise disjoint. 

4.3. Object Matching 

Of all possible isomorphic mappings, we are mostly interested 
in those that  go from abstract objects to  initial segments of 
objects. Namely, we are interested in the situation where abstract 
objects can be embedded into objects. 

Definition 10: Given an  abstract object ol = el:El embedded in 
an object o2 = e2:E2 under a, we say that  ol matches with o2 if the 
image of ol under a contains no abstract objects and 

v d 1  E E l  dl E D U E => &(dl) = dl. 



rel(o2, origin, 04) 
rel(o2, corner, 05) 
rel(o3, $in, 'Point') 
rel(o3, x, 4) 
rel(o3, Y, 3) 
rel(o4, $in, 'Point') 
rel(o4, x, 0) 
rel(o4, Y, 1) 
rel(o5, $in 'Point') 
rel(o5, x, 4) 
rel(o5, Y, 3) 

Note that  "$in" is a predefined field label. The values for "$in" 
fields are object identifiers for proper type defining objects. (But 
we will use type names in examples to  illustrate ideas.) 

Interactive user queries are translated into Datalog (i.e. Pro- 
log without functors) queries and are then executed. For example, 
the pattern term 

RS:RectSelect(rect -+ R:Rectangle, cursor --+ P:Point) 

would be translated into the following query: 

?- rel(RS, $in, 'RectSelect'), 
rel(RS, rect, R), 
rel(R, $in, 'Rectangle'), 
rel(RS, cursor, P), 
rel(P, $in, 'Point'). 

The object handler is being implemented in MProlog and is 
being interfaced to  a secondary storage facility (namely the 
storage manager). The object handler is made up a number of 
smaller modules. The central module is an execution module that 
controls the data flow between the object handler and the storage 
manager and carries out appropriate operations, as dictated by 
the current execution state, on the workspace objects (either per- 
manent data or temporary data). Under this execution module, 
there are other modules that coordinate communications between 
the object handler and the storage manager. On top of the execu- 
tion module, there will be processing-modules for TEDM query 
expressions. And a t  the highest level there is an input module 
that  parses interactive user command, and directs them to 
processing-modules for further translation. 



type cacculus has been devised for describing these requirements. 
We will take the approach in which abstract objects play a major 
role for devising the meanings of type definition expressions. In 
what follows, we assume the existing types are already represented 
as abstract objects, and show how new types can be defined and 
represented as abstract objects. This kind of reasoning is accept- 
able since we can always bottom out a t  system predefined types. 

6.1.1. Cartesian Product Types 

In this form of type definition, a new type is defined by expli- 
citly giving its structures, and an abstract object is created to  
specify the structures. That abstract object is a part of a type- 
defining object, which gives the name and position in the type 
hierarchy, as well as the minimum structure on its instances. 
What we really have here is another language (type definition 
language or TDL) for describing type-defining objects. For exam- 
ple, the following expression evaluates to  a type object represent- 
ing a type named Rectangle, 

Rectangle = (origin -+ Point, 
corner -+ Point) 

The resulting type-defining object can be described in TOL as 

:TypeDef(typeName -+ 'Rectangle', 
supertype 4 'All', 
structure R?Rect angle(origin --* Pl?Point, 

corner --+ P2?Point)) 

6.1.2. Equivalent Types 

The simplest way to define a new type is by saying it is struc- 
turally equivalent to  an existing type. For example, to  define a 
new type, Box, such that  it has the same structural constraints as 
the type Rectangle, we use "Box = Rectangle". The effect of such 
a definition is t o  set the "structure" field of the type-defining 
object for Box to  be a copy of the "structure" field of the type- 
defining object for Rectangle. Thus the result of this type expres- 
sion is 

:TypeDef(typeName + 'Box', 
supertype --* 'All', 
structure -+ B?Box(origin -+ Pl?Point, 



The result of this type definition is again an abstract object: 

:TypeDef(typeName --+ 'RectSelect', 
supertype -+ 'Rectangle', 
structure - 

RS?RectSelect(origin - Pl?Point, 
corner --+ P2?Point, 
cursor --+ PS?Point)) 

6.1.5. Multiple Inheritance 

In a type definition, more than one type can be specified as 
supertypes of the type being defined, and the new type will inherit 
the union of the structures of each individual supertype. (We 
assume no name clash can occur.) For example, the following 
definition defines a type called DesignDoc, which presumably 
models documenting digital system design project, 

DesignDoc = ArchitectDoc, FunctionDoc, 
LogicDoc, CircuitDoc 

(designDocNo --+ Number) 

That is, The DesignDoc type has structures of those of Archi- 
tectDoc, of FunctionDoc, of LogicDesign and of CircuitDoc, plus 
an additional field "designDocNo". The resulting "structure" field 
in the type-defining object is, schematically, the following: 

DD?DesignDoc(<fields-from-ArchitectDoc>, 
<fields-from-FunctionDoc>, 
<fields-from-LogicDoc>, 
<fields-from-CircuitDoc>, 
designDocNo --t N?Number, 

6.1.6. General Type Calculus 

The type definition constructs outlined above can be com- 
posed in a very flexible way, yet still maintaining clean semantics. 
For instance, a type for modeling mailing addresses can be defined 
as follows: 

MailAddress = (stNumber - Number, 
stName --+ String, 
cityName - String, 
state --+ (stateName + String, 

postalcode - String), 



A serial composition of commands, C1, C2, ... , Cn takes the 

form of C1; C,; ... ; Cn. Each command in this composition is exe- 

cuted in sequence. If any of the individual commands fails in exe- 
cution (due to  pattern matching failure), the execution of the com- 
position fails. 

A parallel composition of commands takes the form of C1 1 1  
C, 11 ... 11 Cn. Command in this composition is executed one by 
one until a successful execution is obtained. The result of the first 
command that is executed without failure is taken to  be the result 
of the parallel composition. If none of commands participating in 
a parallel composition succeeds, the execution of the composition 
fails. 

6.3. Computational Objects 

Computational objects are an effective means for dealing with 
infinite types and infinite objects. Some examples are: 

AddType = (addend1 + Nl:Number, 
addend2 + N2:Number,) 

=> add[Nl, N2] 

InfSequence = (start --, N:Number) 
=> cons[N, InfSequence[succ [N]]] 

Some explanations are needed. First, we use the reduction symbol 
=> to  indicate a computational type. Expressions following => 
specify reduction rules for computational types. Second, some 
reduction symbols, such as add, succ and cons, are predefined. 
Third, member objects of a computational type are those derivable 
via the reduction rules of the type. 

The G-machine architecture [Jot331 for graph reduction from 
functional programming research area seem to  be a good candi- 
date for evaluating computational objects. The way in which the 
graph reduction approach represents computations closely resem- 
bles how object structures are represented, namely using directed 
graphs. For example, the application graph for expression InfSe- 
quence[l] can be described as the following TEDM structure 

:Apply(function + 'InfSequence'), 
argument -+ #1) 



5. As an  intermediate step towards a completely "objectified" 
language, a simple interface between a programming language and 
the database system allows construction and evaluation of com- 
mand objects, without major modification t o  the programming 
language itself. Adding new query functionality-range selection, 
equality vs. identity comparisons, aggregates-involves creating 
new flavors of abstract objects, but not changes t o  the program- 
ming language parser. Ultimately, however, we want to  do away 
with any "surface" language, and have entire programs 
represented as objects, such as in the Garden system [Re86]. 

6. With commands as objects, we can consider interpretations of 
those objects other than just their execution value. Abstract 
interpretations can be defined for them to  give valuations in 
domains such as execution time or result size. As Atkinson et al. 
point out, the compilation or optimization of such an object is just 
a particular view on the object [AMP87]. 

There are also a number of extensions and refinements to  
explore: 

1. Is it possible t o  develop an  abstract object notion based on pro- 
tocol rather than structure? Such an  object might be viewed as a 
computation graph t o  be evaluated via graph reduction tech- 
niques, with an  added reduction rule for database matching. The 
result of a reduction sequence would be nondeterministic, because 
an  abstract object can match the database in multiple ways. 

2. For a command object, what are strategies for evaluating por- 
tions of it on different processors? For example, the structural 
access could be done on a central storage server, and the computa- 
tional part on a local workstation. 

3. We don't think abstract objects are quite equivalent t o  logical 
variables. We think objects with logical variables would be useful 
for expressing and constraining partially defined objects and for 
representing alternative configurations or versions of an  object. 
Perhaps the ability t o  store a name from a binding environment in 
place of a value would give equivalent power [AM85]. 
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where Apply is a predefined computational type. 

Type objects for computational types are represented as a 
sequence of G-machine instructions obtained through compiling 
computational types that, when executed, would carry out desired 
reduction. The following design offers one possible solution: 

Operator = { ~ u s h ,  pushfun, pushint, pushbool, 
pushnil, update, ...) 

Instruction = (operator 4 Operator, 
operand --t All) 

A more powerful TEDM command execution engine is needed. 
In particular, a reduction engine is necessary to  evaluate computa- 
tional objects, which could be a G-machine. Command execution 
strategy should also be modified accordingly, as outlined in [Ma87]. 
Instead of a matching phase followed by an action phase, we need 
a reduction phase that comes before the action phase. The task 
of the reduction phase is to  pick up all pending computations, and 
conceivably create temporary structures to  hold the intermediate 
results. 

7. Concluding Remarks 

We have presented abstract object as an extension to  an 
object-oriented database model, and discussed their uses, seman- 
tics and implementation. We list some advantages that  accrue 
from using abstract objects as the building blocks of database 
commands: 

1. Commands can be stored in the database, making them easy to  
catalog and accessible from multiple applications. Moreover, we 
now have the possibility that  two commands could share the same 
abstract object as a subpart. 

2. Queries can have arbitrary literals, not just those with lexical 
conventions for representation. We can write a query that  looks 
for a Rectangle containing a certain Point, without having to  
describe the Point by its state. 

3. Expressing cyclic query structures is possible. 

4. Commands can be viewed and edited with whatever mechanism 
exists for manipulating regular database objects. 



zipcode + Number) 

which results in the following "structure" field in its type-defining 
object: 

MA?MailAddress(stNumber + Nl?Number, 
stName + Sl?String, 
cityName + S2?String, 
state + Il?InternalTypeX 

(stateName + S3?String, 
postalcode + S4?String), 

zipcode + N2?Number) 

Notice an internal type InternalTypeX has been created to  help 
describe the MailAddress type object. 

6.2. Compound Commands 

We described simple commands in TCL previously. We show 
in this subsection that  simple commands can be composed, and we 
present TCL extensions to  describe compound commands. 

A compound command is a user defined TEDM command pro- 
cedure that manipulates database objects based on somewhat 
higher level semantics. Compound commands are composed of a 
number of simple commands. Command composition can be done 
in two ways - serial composition and parallel composition. 
Besides being a mechanism for grouping individual commands to  
perform meaningful operation, compound command also provides 
the opportunity of sharing variable bindings across individual com- 
mands. For example, one could come up with a compound com- 
mand that  consistently carries out necessary changes to  a Person 
object to  hire the person: 

HireEmployee[N:PersonName, D:Department, S:Salary] = 

{ 
LocalVar [P:Person]; 
P:Person(department + D, salary + S) <= 

persons + P:Person(personName + N); 
emps + P <= 

1 
where LocalVar is a system provided command that  introduces 
local variables. 



corner + P2?Point)) 

It should be noted that two equivalent types are guaranteed 
to  have the same structures only a t  the time of definition. After 
the definition, any one of them can change freely without affecting 
the other. 

6.1.3. Maximum Subtypes 

Another simple way of defining a new type is to  declare it as 
a subtype of an existing type. For example, "Square < Box" 
defines a new type Square that  is to  have the same structure 
requirements of type Box and is t o  be treated as a subtype of Box 
to  start with. Types defined this way are maximum subtypes of 
corresponding supertypes in the sense that if any of the structures 
is dropped from a new type, the subtyping discipline of TEDM is 
violated. Such type definitions create type-defining objects in the 
same way as equivalent type definitions, with the created abstract 
objects having one additional meta structure that  takes the super- 
type objects as values, capturing the subtyping information. 
Therefore, the resulting type object is 

:TypeDef(typeName + 'Square', 
supertype + 'Box', 
structure + B?Box(origin + Pl?Point, 

corner --+ P2?Point)) 

If Square is also an existing type, the effect of the definition 
"Square < Box" is to  make Box as its supertype, provided typing 
system constraint is not violated. 

6.1.4. General Subtypes 

In general, a new type can be defined as having the structure 
requirements of an existing type plus certain additional require- 
ments. Types defined this way are subtypes of corresponding 
supertypes. An example of where this kind of definition is useful 
would be an alternative RectSelect type that  has three Point com- 
ponents, modeling the origin point and corner point of a rectangle, 
and a cursor point selecting regions inside the rectangle. The 
RectSelect type can be defined as follows: 

RectSelect = Rectangle(cursor + Point) 



An critical performance issue is efficient pattern matching 
against large database that resides on secondary storage. Our 
current design incorporates many storage structuring techniques 
such as clustering and duplicating, that should reduce the number 
of disk accesses needed for processing queries. In order to  reduce 
the need for in-memory transformations, we use fragments, which 
are main memory chunks shared by the object handler and the 
storage manager. Fragments provide storage space for initial seg- 
ments of objects. All initial segments in a fragment have the same 
format, which is dynamically defined. In order to  stretch the 
bandwidth of communication between the two layers, we use bullc- 
load as much as possible. In the bulk-load mode, the storage 
manager is given some loading criteria and a format, and it 
searches the database and loads appropriate triples to  form frag- 
ments using the format provided. Since the format for each bulk- 
load is fixed and is known to the object handler, access to  indivi- 
dual fields can be compiled to  use a starting address and an offset 
directly, eliminating the overhead of matching against the field 
labels. In the case of multiple occurrence fields, a pointer is 
planted in place of the field value, ieading to  a separate region 
where the multiple occurrence values are located. Other relational 
query processing techniques, such as building optimized query 
plans, can also be applied to  bulk-load operation. This prefiltering 
processing by the storage manager avoids much of the unnecessary 
traffic to  the object handler, and should lead to  a fairly efficient 
implementation. 

6. Type, Command and Computation Objects 

We proposed earlier using abstract objects to  store commands 
in databases - the results are databases with data objects and 
commands manipulating these data objects. This way we can 
build self-contained, application-specific databases. In this sec- 
tion, we show by examples how the rest of the data model proper 
can be captured nicely using abstract objects. We will also look 
into possibilities of extending the concepts to  introduce computa- 
tions into the data model. 

6.1. Type Definitions 

Typing in TEDM is such a mechanism that puts minimum 
requirements on structures of objects. A flexible yet expressive 



That is, for two objects to match, the isomorphism has to  be 
able to  make their atomic data values and concrete objects 
correspond. Consequently, as a precondition, ones data value set 
has to be a subset of the other's data value set. Therefore, the 
term "pattern matching" we use in the syntactic domain to  
describe the query facility of the database language corresponds to  
a special kind of isomorphism in the semantic domain. In Figure 
12, o matches with o . 

x2 e8 

Definition 11: Given object ol matches with object o2 under a, 
then the answer substitution of the matching is defined as the max- 
imal subset of a: 

P = {(el, e2) E a I e, E X}. 

For example (see Figure 12 and Figure 13), the answer substi- 
tution for the matching of ox with o is p = {(x2, e3)). In general 

es 
we are interested in the set of all answer substitutions. 

5.  Implement at ion 

The plan is to  implement the TEDM data model on top of a 
distributed object server DVSS [EEET87], which provides con- 
currency, recovery and distributing on variable-size byte objects. 
Architecturally, there are two functional blocks that  implement 
the TEDM database system, an object handler and a storage 
manager, each implementing a mapping between layers of abstrac- 
tion. The storage manager defines the mapping from the TEDM 
storage model (explained below) to  the DVSS object model. More 
detailed discussion concerning this mapping can be found in 
[Oh87]. 

The object handler compiles TEDM objects into their internal 
representation using TEDM storage model, which can be described 
as rel(OBJECT-ID, FIELD-NAME, FIELD-VALUE)*, namely list 
of triples of the given format. For example, the object given in 
Figure 1 is translated into the following triple list: 

rel(o1, $in, 'RectSelect') 
rel(o1, rect, 02) 
rel(o1, cursor, 03) 
rel(o2, $in, 'Rectangle') 



Definition 7: The set of initial segments of an object 0, = e: {el, 
el, ... ), Ie, is defined by: 

I). e: 0 E Ie; 
2). e: E E Ie and ~ X E E  (x, y) E It,, then e: (E U {Y}) E I, 
3). nothing else is in I,. 

Not every subset of an object is an initial segment of the 
object, (even though it is a necessary condition), since reachability 
from the root through entities is also needed. Also observe that 
any object is an initial segment of itself. Informally, initial seg- 
ments are connected subcomponents that include the object root. 
Thus we also use the term "the root of an initial segment." We 
will use I to  denote the collection of all initial segments, namely, 

I = U,,, Ie. 

Three examples of initial segment (see Figure 12) are given in Fig- 
ure 13. 

Definition 8: Given il, i2 E I, with il = el:El and i2 = e2:E2, we 

say that  i, is isomorphic to  i2 if there is a 1-1 onto mapping a: il 
-+ i2, such that  a(el) = e2 and if el E i, gets mapped to dl E i2 
and c2 E il gets mapped to d2 E i2 by a, then the following condi- 
tions must be true: 

1). c t(cl);  
2). if cl E D, then c2 E D U 4 and vice versa; 

il = ox2 is an initial segment of o , and 
X2 

i2 = e3: {e5, #3, #4) is an initial segment of o . 
i3 = e,: 0 is an initial segment of o . 

e, 

Fig.13 Three Initial Segments 



atomic entities from having substructures, we impose the restric- 
tion that  the relations it produces not defined a t  any atomic 
entity. Namely, 

'trx E D v E F 'try E u ((x, Y) 4 g(1))- 

Figure 11 provides an example of a TEDM universe. Notice N 
represents atomic integer values and S represents atomic string 
values and they are predefined. 

Definition 3: %, the reference relation relative to  F F, is 

defined as UICF g(1). $, the reachable relation relative to  F, is the 
reflexive transitive closure of RF. We also say that  y is F- 
reachable from x if (x, y) E $, and use reachable t o  mean F- 

reachable. 

In other words, the reference relation specifies that  one entity 
is referenced by the other, via a sequence of fields with labels from 
F. This reference relation is obtained from the union of certain 
relations produced by g by taking a closure. Normally, the sub- 
script can be omitted when the set F is understood. For the 
example given in Figure 11, assuming F is F, R is 

Definition 4: Given an e E U, A TEDM object, oe, is defined as a 
pair (e, the maximal set of entities that  are reachable from e); 
namely, 

Oe, 
= e3: {e4, e5, #O, #I, #3, #4) 

Ox2 
= x2: {e,, #3, #4). 

Fig.12 Two Objects 



01. In a TCL pattern term, we use "?" to  indicate abstract 
matching. For example, for the pattern term 

ptTemplates -+ P?Point(x -+ M?Number, 
y - N:Number) 

P will bind t o  abstract Point object in the ptTemplates set whose 
x coordinate is an  abstract Number object and whose y coordinate 
is a concrete Number object. Such a matching object, expressed 
as TOE, might be 

One further enhancement to  TCL queries we want to  support 
is to  retrieve an  abstract object 0 2  by matching, then use it 
immediately as a template itself, for matching other objects. The 
TCL syntax for such a pattern might be 

ptTemplate -+ P?Point(x --* M?Number, 
y --* N:Number), 

points -+ PT:P 

In the second pattern term, the binding for P from the first term 
becomes the template for binding for P T  in the second term. We 
have yet to  fix the format of a command object t o  specify this 
matching. Possibilities are letting the "matches" field in an OVar 
object reference another Ovar, or adding a n  "indirectMatches" 
field. We are also looking a t  ways to  specify a query that  selects 
an  object that  has a certain type of object as a subobject, at an  
unspecified level of nesting. Such a capability would be useful, for 
example, for indexing all commands that  included a Point abstract 
object somewhere in a Pattern term. 

4. Object Semantics 

Having described TEDM concrete and abstract objects, we 
are in a position t o  investigate their semantics more formally, and 
we will do this from more or less an algebraic viewpoint, using the 
notion of isomorphism to  describe the meanings of various kinds of 
matching. 

4.1. Basic Definitions 

Object expressions denote entities residing in permanent 
storage media. Thus, we take everything in permanent storage as 



head to  which we want make modifications. If an object variable 
occurs multiple places in the body, it does not represent identity 
among abstract objects. Rather, each occurrence gives rise to  
another pattern the variable must match, which are captured as 
multiple occurrences of the "matches" field. In inspecting Figure 
8 and Figure 9, note that the named sets in pattern terms are 
really just fields in a special DBRoot object. We assume any 
database has only one concrete DBRoot object. 

If it is desired that a repeated object variable in a command 
body represent just one abstract object, then we use a special "!" 
notation in TCL. Figure 10 shows such an example, where only 
relevant portion of a "cmdbody" field is shown along with its 
structural representation. 

Note that we are doing matching here in the strict sense, and 
not unification. For example, the object 01 (In TOL) 

P?Point(x + M?Number, y --* #0) 
matches object 0 2  

:Command(cmdhead + PoObj?Point(x -+ #2, 

Y + #2)), 
cmdbody + DBROOT(rectss --* 

RSObj?RectSelect 
(rect + ReObj?Rectangle 

(corner --* :Point(x -+ #4, 

Y --* #3))7 
cursor -+ PoObj?Point)), 

bindings + :OVar(name -+ 'PoObj', 
matches --* PoObj?Point, 
makes + PoObj?Point)) 

Fig.9 Command Expressed as TOE 



RS?RectSelect(rect -+ R?Rectangle 
(origin -+ OR?Point(x - X?, y - Y?), 
corner + CO?Point), 

cursor + CU?Point(x -+ XI?, y -+ #I)) 

Number TZJ 
Fig.7 An Abstract Object 

Actually, the use of abstract objects is much richer than 
merely specifying pattern matching templates. We can now easily 
represent database commands, rules and other language constructs 
as TEDM objects and store them along with application data, as 
was claimed earlier. We can view TEDM command language 
(TCL) as a succinct alternative to  TOE for expressing command 
objects. (However TEDM command language is not as general as 
TEDM object language, or TOL, the language in which TOE'S are 
written.) In TOE, object tags merely indicate interconnectivity of 
the object described. In TCL, we need to  preserve the variables as 
actual objects, in order to express the propogation of bindings 
from matching concrete objects with the right side to  making 
modifications to those concrete objects as specified on the left. 
For example, the rule and the update statement given using TCL 
in Figure 5 can be represented as TEDM objects of type Rule and 



identifiers instead. Using the identifiers obtained from answer sub- 
stitutions, objects in the database can be viewed and modified and 
then reinstated. In this context, object identifiers function much 
as l-values in programming languages. Figure 6 contains a TEDM 
query that asks for all RectSelect objects in the set "rects" whose 
cursor point coincides with their origin, plus their corner points. 
(If we wanted RectSelect objects with their cursor identical to  
their origin, the second part of the term would be "cursor -+ 

OR".) The answers to  this query will be returned as 6-tuples of 
bindings of objects to  the variables RS, OR, X, Y, CO and CU. 

This example also illustrates several important differences 
between TEDM query terms and first-order terms (FOT's) as seen 
in, say, PROLOG. First, typing information is attached to  the 
query, which can be used to  restrict the range of the search and 
improve the processing efficiency. Second, fields are labeled, which 
in turn eliminates the stiff requirements on arguments of FOT's 
(namely, fixed arity and fixed position). Third, object variables 
are more general than variables of FOT's, as they permit retrieval 
of complex objects by partially specifying their internal structures, 
whereas a variable in a FOT is unrestricted in the substructure of 
what it matches. 

Another point shown in this example is that syntactically 
query terms are similar to  TOE'S, except that query terms are 
allowed to partially specify the structure of what they match 
(whereas a TOE defines the entire states of an object.) Neverthe- 
less, object expressions and query terms are quite different 

rects -+ RS:RectSelect(rect -+ :Rectangle 
(origin -+ OR:Point(x -+ X, y -+ Y), 
corner -+ CO:Point), 

cursor -+ CU:Point(x -+ X, y -+ Y)) 

Fig.6 A TEDM Query Expression 



R(1eftside + * :Line 
(p l  + :P, p2 --+ * :Point( x + M, y + N))) 

4- 

rects --, R:Rectangle(origin P:Point(x --, M), 
corner -+ :Point(y -+ N)) 

P(x -* #2, Y -+ #2)) 
<= 

rects -+ RS:RectSelect 
(rect -+ :Rectangle 

(corner + :Point(x -+ #4, y -+ #3)), 
cursor + P:Point) 

Fig.5 TEDM Rule and Update Statements 

Other features of this data model include deductive elements 
for virtual data derivation, a rule-like non-relational data  
language, and the capability of creating arbitrarily complex struc- 
tures in a single data language statement. In Figure 5, we present 
an  example of a rule statement and an example of an update 
statement. The rule defines a virtual field "leftside" for rectangles 
stored as origin and corner points. The update command moves 
the cursor point of RectSelect objects with a corner of (4, 3) t o  (2, 
2), in particular, it moves the cursor of the RectSelect object given 
in Figure 1 to its center, by modifying the coordinates of the exist- 
ing cursor point. A few words of explanation. The right side of a 
rule or command consists of one or more terms. A term in TEDM 
is syntactically similar to  a TOE, except object tags are construed 
as object variables. These variables range over the objects in the 
database for purposes of matching. The term must be "anchored" 
by a named set of objects. Here, the "rects +" prefix on the 
right side supposes a set named "rects" of objects against which 
the rest of the term is matched. The meaning of the whole rule or 
command is that for every assignment of objects to  object vari- 
ables, the left side must hold. In the case of a rule (-), the left 



where the cursor and the corner of a RectSelect object happen to  
have the same Point object as their value. 

We provide a formal definition to  describe TEDM object 
expressions. The existence of several denumerable sets, F, S, N, H 
and T is assumed: where F is a set of symbols for field labels, S is 
the set of string values, N is the set of natural numbers (for the 
moment we only consider strings and natural numbers as atomic 
values), H is the set of object tags, and T is the set of symbols for 
types. We also define a partial order on T based on a 
subtype/supertype relationship. 

Definition 1: TOE, the collection of well formed TEDM object 
expressions(TOE's), is defined by the following rules: 

1). S:String d E TOE for d E S and S E H; 
2). N:Number d E TOE for d E N and N E H; 
3). given el, ..., en E TOE, fl,  ..., f E F, T E T and H E H, n 

then H:T(fl -+ e,, ..., fn + en) E TOE; 

4). nothing else is in TOE. 

The first two items in the definition describe simple objects, 
and the third describes complex objects. We point out that TOE's 
resemble Ait-Kaci's @-terms [AN85], but the two differ in seman- 
tics. TOE's represent single, ground objects, while 9-terms denote 
types. There are some other consistency conditions on TOE's that 
we do not formalize here. The type conformity condition requires 
that  there be no conflicts between types denoted by type symbols 
and objects tagged by object tags. The tag repetition condition 
disallows mismatches between object labels and object tags, e.g., 
had we used R instead of C to describe the value of the cursor 
point in Figure 3. Certain object tags and type symbols can be 
omitted when writing object expressions. For example, one need 
not include type symbols String or Number in an expression (as in 
the previous example), as these atomic values are self-describing 
for types. 

Types in TEDM have intentional and extensional aspects. 
The intentional aspect is a structural description, i.e., a list of 
fields and their respective types. Examples of such descriptions 
are shown in Figure 4. The extensional ingredient is typeset, the 



will not change during the lifetime of the object. When an object 
dies, its OBID also dies and will not be reused again. The OBID 
of an object and the state of the object are orthogonal - while 
the state may change as the database evolves, the OBID always 
stays the same. With this notion of object identity, each object is 
distinguishable and therefore the system can discriminate any two 
objects without depending on their states. Also, two or more fields 
can have the same object as their value. 

Figure 1 shows a textual form (object expression) that  
represents a RectSelect object, which models a rectangle that  has 
an associated cursor point. (This particular example has the cur- 
sor in the upper-right corner.) Structurally, this RectSelect object 

rect 

cursor 

Point Number 

#O I 

Fig.2 A RectSelect Object 



relational database theory [BBDMR84, BanK85, BatK85, Ka83, 
MSOP86, RS85]. A data model of this kind is variously termed an 
object-oriented data model (OODM), a non-first normal form data 
model (NF~DM), an engineering data model (EDM), or a semantic 
data model (SDM). 

Maier et al. [Ma85, AEM861 proposed an object-oriented data 
model - the Tektronix Engineering Data Model (TEDM). Among 
other features, TEDM supports object identities, complex objects, a 
type hierarchy and a rule-like command language. We provide an 
overview of this data model shortly. 

In this paper, we introduce abstract objects as an attempt a t  
providing a unified framework for the database language and a 
means for making the query language entities persistent. (By 
query language, we really mean the complete database language.) 
Abstract objects are complex data structures with a declarative 
semantics, but which also support operational interpretations, 
much like literals in logic languages. Strategically, we adopt the 
idea from logic databases that an application database is some 
kind of closure of application data plus meaningful queries on that 
data. We go one step further, storing query entities as abstract 
objects, which have object identities and subcomponents. These 
abstract objects are very structural in nature, but they are quite 
rich in operational interpretations. As objects, they can be 
created, stored, manipulated and viewed just as normal data 
objects. As operators, they can be used as matchers and makers 
for other objects, specifying operations such as creating objects, 
retrieving objects and modifying subcomponents of existing 
objects. 

We expect the next generation of database systems would be 
constructed based on a layered architecture - a data  language 
processor sits on top of an intelligent storage server that  has its 
own internal execution model. In that respect, what we propose 
here may be more of an intermediate construct that is suitable for 
communication between the storage server and the semantic pro- 
cessor. With this architectural consideration, the advantage of 
having abstract objects as proposed here is obvious. Using these 
abstract objects as building blocks, we can construct database 
program objects. Ultimately, the semantics of program objects 
should be describable as yet other objects, giving the ultimate in 




