
Making Database Systems Fast Enough
for CAD Applications

David Maier

Technical Report No. CS/E 87-016

December 15,1987

Making Database Systems Fast Enough
for CAD Applications

David Maier

Technical Report CS/E-87-016
15 December 1987

Computer Science and Engineering
Oregon Graduate Center

19600 S.W. von Neumann Drive
Beaverton, Oregon 97006-1999

Submitted to O b j e c t - O r i e n t e d Concepts , App l i ca t ions a n d Databases, W . Kim and F. Lochovsky,
Eds.

Making Database Systems Fast Enough for CAD Applications

David Maier

Oregon Graduate Center
Dept. of Computer Science & Engineering

19600 NW von Neumann Dr.
Beaverton, OR 97006

Why are database systems a n infrequent component of CAD systems? Lack of modeling power

and performance. Record-based models aren't up to handling complex design structures for

VLSI or mechanical CAD. It's hard t o design an ALU in your check register. The encoding

involved greatly complicates application programs, and leaves too much room for misinterpreta-

tion of data. For flexibility, most CAD systems perform their own da ta management on top of

the OS file system. Of course, a file system has no understanding of the structure of the data

items in a design, and so is powerless t o help with integrity or specialized storage mappings.

Also, the da ta management features in a file system are minimal.

Those CAD systems tha t are built atop relational databases use them almost exclusively

for selection, sometimes for projection, but perform or precompute joins in the program memory

of the design tools. Such tools read the approriate chunk of the database a t s tar t up, and build

internal record and pointer structures from i t in virtual memory. Thus, a design session star ts

by copying one part of the disk into another. At the end of the session, the internal structures

are converted back to tuples and written to the database. This start-up overhead gives a

batch-processing flavor t o doing design. Consider a VLSI designer who discovers a glitch in a

layout while using a design rule checker. He or she must load the design into the layout editor,

make the change, dump the design back into the database, then reload the design into the

checker. The whole process can take up to one-half hour, simply to reroute a wire. Further-

more, the virtual memory knows little about the structure of the design objects, and can't be

expected to give good paging performance.

Such CAD syetems are using a DBMS as an index package t o support associative access.

These systems forgo the other data management features of the DBMS, such a s recovery, associ-

ative access, integrity checking and buffer management, during a design session. The ubiquitous

reason is "Performance! Commercial database systems aren't fast enough to support simula-

tors and interactive design tools."

A crop of object-oriented database systems is emerging that greatly surpasses conventional

record-based systems in modeling power [Atwood 1985, Banerjee, e t al. 1987, Dittrich, et al.

1986, Katz and Chang 1987, Landis 1986, Maier, e t al. 1986, Wegner and Zdonik 19861. These

systems overcome the da t a model objections t o using DBMSs for design support-but will they

prove fast enough? The following sections give my opinion on what conventional database sys-

tems are too slow a t , why they are slow at it, and why OODBs could deliver the required per-

formance. My remarks are directed at relational DBMSs, but most carry over t o hierarchical

and network models. I conclude with some areas for more research.

What's Too Slow?

Certainly conventional relational systems are no slouches at associative retrieval. Their

indexing routines are among the most sophisticated and highly tuned of any class of software

systems. kssociative access to disk isn't the bottleneck-as I pointed out, when CAD tools do

use a DBMS, it's for selection. No, conventional databases are too slow at fetching and storing

individual fields. A typical design task is unlike most da ta processing transactions. The latter

either involve getting a few tuples from a relation and updating them, or selecting large groups

of tuples from one or more relations and performing similar operations on the lot of them: tak-

ing a join t o generate a report, updating a field in each t o post interest. The design task also

starts with a selection-to pull out the pieces of a design of interest-but then continues with

many dissimilar fetch and store operations: move this strut a little t o the right, propagate this

signal to all inputs connected to the output of tha t NAND-gate. The access paths on the

selected da ta follow the connectivity of the real-world entities, not the logical structures of the

database.

The ideal is a database system in which field access is as fast for database items as for

value in program memory. Field access in program memory can take as few as one or two

machine instructions, if the proper addressing modes exist. While t ha t speed may be unobtain-

able for database items, I believe coming within a a factor of 10 is possible, rather than the fac-

tors of 1000 o r 10,000 seen now.

Why It's Too Slow

CAD tools use record structures from the application programming language t o get the

speed they need on fetching and storing single values. Why are those operations too slow in a

relational database? I consider -me of the reasons below. Not all these reasons are inherent in

the relational model; some have t o do with architectural trade-offs made in current commercial

systems, which are biased towards a da t a processing application mix.

(1) Each fetch or store incurs the cost of a procedure call from the application program t o the

database. That overhead is insignificant on a da t a processing transaction tha t accesses a

field in every tuple in a relation, but is a burden when accessing a single tuple. A pr*

cedure call can't compete with simple offset addressing for accessing a field of a record in

program memory. This overhead is largely a language limitation. Relational interfaces

mostly don't allow packaging a sequence of DML commands in a single call t o the data-

base, much less providing more sophisticated control structures.

(2) Connections between entities in a relational system are logical, through keys. At least one

address translation is required t o get from a key value to the location of a tuple. In pr*

gram memory, records can point t o other records directly.

(3) Normalization and other encoding of complex design structures pads the levels of indirec-

tion between an entity and a subcomponent even further. Reassembling the peices of an

entity in the database requires taking a join, but i t is an odd type of join, a s i t involves

one or a few tuples from many different relations. Invoking the same machinery t o com-

pute such as join as is used for large relations takes us far away from memory access

speeds. Certain useful da t a structures, such as arrays, just don't have any efficient tncod-

ing in record-based models. Implicit ordering information ends up being represented by

explicit position numbers. Long text or byte string values are a other examples of struc-

tures tha t are hard t o represent in record-based systems.

(4) The common strategies for transactions and recovery tha t work well in commercial sys-

tems are locking and logging. Both put a lot of overhead on transactions tha t do indivi-

dual updates to tuples. Neither has been validated as the optimal approach in an

environment with long transactions and da ta fields tha t may change many times before

commit. An update-in-place strategy with a write-ahead log makes a lot of sense if a

modified field is being changed once during a transaction. Most of the disk accesses

involved with the update are moved ahead of the commit point, leaving little 1/0 for com-

mit time. Few disk I/Os a t commit time means high transaction throughput. Some logi-

cal logging schemes can even commit multiple transactions with one disk write. The

appropriateness of such a strategy is not so clear if the field is updated many times. (Con-

sider pushing VLSI cells around looking for a more compact layout.) In such a case, we are

trading several disk accesses during the transaction body to remove one after the commit

point. However, slower response time during the transaction in exchange for faster com-

mits doesn't make much sense in a design environment. A designer would gladly accept a

few second pause when saving a design for fast editing abilities.

(5) Answers are copied. The result of a relational query is a new relation, whose tuples must

be composed of copies of other tuples or parts of tuples.

Many of these problems are exacerbated in the distributed workstation environments common

with design projects. Commercial database systems mainly run on a single processor. Such a

system would occupy one node in a local network, and be accessed through messages over the

network. Crossing the application-database boundry many times becomes even more prohibi-

tive, because i t involves a remote procedure call, and another layer of copying, if the database

doesn't include network communication features. Nor is i t likely tha t the architectures of such

systems could be adapted easily t o a local network system, a s logging and locking both access a

centralized resource during transaction execution, or at least require distributed agreement.

Why Can an Object-Oriented DBMS Do i t Faster?

In this discussion, I a m treating object-oriented databases with behavior, t ha t is, ones tha t

can associate methods or operations with classes of objects. Here are reasons an object-oriented

database could be made faster at fetching and storing fields than a relational system. The

numbers correspond to items in the last section.

(1) Having a n execution model means one message sent from the application program can do

multiple field accesses in the database, at the cost of one procedure call. Design opera-

tions aren't really single fetches and stores, but typically involve following a path t o

another entity or filling in a new object in a class. A relational DML can't express arbi-

trary patterns of field access in a single operations, while OODB languages can.

(2) Objects can refer t o subcomponents by identity, not s tate (key values). Thus, one level of

mapping can be removed. However, even one level of mapping, from object identifier t o

main memory address, puts us more than a factor of ten from straight memory-structure

speeds. There are techniques to reduce the cost of this mapping. Global object identifiers

can be swizzled t o local memory addresses when an object resides in main memory a s in

POMS [Cockshott, e t al. 19841 or LOOM [Kaehler and Krasner 19831. POMS delays the

translation until the first use of a field. Thus, the first use incurs the mapping cost, but

subsequent uses are at program structure speeds. Direct translation has some drawbacks,

as i t is difficult to move objects back out t o disk on a one-by-one basis to make room for

other objects. Moving a n object back to disk requires finding all references t o i t using the

local memory address. LOOM avoids this problem by having local references go through

a n in-memory object table (using the reference as a n index into the table) and allowing

lcajobjects tha t are in-memory "stubs" for objects whose state is only on disk. An alter-

native to external-to-internal reference replacement is maintaining a cache of main

memory addresses for object identifiers. This mechanism requires a few more operations

than replacement for object accesses subsequent t o the first, but allows easier movement of

objects back t o disk, as the memory and disk formats of an object are identical.

(3) Complex design entities can be represented more directly in an OODB, with less encoding,

meaning fewer levels of indirection to access one conceptual entity. In particular, many

OODBs support array types directly. Some include large indexed objects with the ability

to insert items in the middle, in time proportional t o the size of the inserted section,

rather than to the portion of the object past the insertion [Carey, et al. 19861.

(4) Long design transactions require tha t database users not be oblivious t o each other or

t ha t the database support multiple versions of objects. These conditions, along with

object identity, make optimistic concurrency control with shadowing for recovery look

promising. If each application gets a "personal" copy of the database operate on, there is

no need to log changes or lock items centrally during the body of a transaction. (Of

course, a transaction must keep track of objects tha t i t touched for use by the commit

protocol, but i t can do tha t locally.) Also, fewer disk I/Os are required while the transac-

tion runs (a t the expense of more I/Os at commit). In particular, an object can be

updated many times without writing t o disk or making a log entry each time. Object

storage schemes tha t use an object table are especially amenable t o shadowing (Maier, e t

al. 19861.

(5) Answers to queries can often be constructed by collecting references to objects in the data-

base, rather than by copying the objects.

1 believe all these advantages can combine to let OODBs handle individual object accesses fast

enough t o keep design da t a under database control while being manipulated by tools. Actually,

I expect they can give better performance than the current method of reading in a file or some

relations and building structures in program memory. First, they avoid batch load. A designer

doesn't have t o wait until a tool loads in an entire design t o begin work. Also, if the database

system, rather than virtual memory, handles buffering, i t should be able t o achieve better hit

ratios, as i t knows more of the semantics of the data.

Many of the OODBs being developed also seem well suited to mapping onto a

workstation/server architecture. Most behavioral OODBs are internally structured into a

storage layer and an execution layer. The storage layer handles da ta management functions,

and the execution layer provides a workspace for evaluating methods or operations. There is

one instance of the storage layer, but an instance of the execution layer for each application

session. It seems reasonable t o move the execution layer up to the workstation, leaving the

storage layer on a central storage server pubenstein, et al. 19871. For such a split t o work out,

the communication between the two layers has to be minimized. Shadowing and optimistic con-

currency control help because there are not constant calls t o the storage server during a tran-

saction, as with logging and locking. For da ta fetching and storing, after some initial conversa-

tion, a n execution layer can read and write pages directly across the network to move objects

between workspace and disk. This arrangement is preferable t o having the storage layer do the

mapping between pages and objects, since the latter makes the storage layer a bottleneck for

concurrent transactions. Even functions tha t must be centralized in the storage server, such a s

allocating free pages and new object identifiers, can be batched to cut down on communication

overhead. An application session can be be given pages and identifiers in large chunks, only

returning to the storage server when the chunk is exhausted. One question tha t remains for a

local network architecture is how associative access support should work. If set queries are prcl.

cessed on the storage server, then an execution layer must push all its changed state down in

order t o have such a query evaluated in the middle of a transaction. Perhaps i t can just push

down the identifiers of modified objects, and the storage layer can request the s tate of only

those i t needs to process the query.

Research Questions

There are still numerous problems to be eolved in learning how to optimize OODB perfor-

mance for design applicatons. I discuss a few here.

(1) What new tradeofls exist in a n architecture with one more level in the memory hierarchy

(disk to central server over a network t o local workstation memory t o processor cache)?

What is the major bottleneck? Disk bandwidth? Server CPU? Network communication?

Does i t make sense to have execution capabilities in both the workstation and the storage

server, or is the expense of maintaining state consistency too much? T o what uses can

disks on the local workstation be put? Recovery and checkpointing? Scheme or method

cache?

(2) Different design tools have different access patterns. Thus, any single clustering scheme

for objects into pages is unlikely to suit all of them. A design goes through phases: initial

creation, design rule checking, correction, extraction, simulation. Should the objects in a

design be reclustered in each of these phases? If so, how? Batch reclustering? Adaptive

reclustering based on currently active access paths? The latter course has the disadvan-

tage of making the design da ta well clustered for the last thing yoti did, not the current

task.

(3) Most 00 languages manufacture the storage layout of instances from the class definition.

In a language with encapsulation, there exists the freedom for tuning the internal

representation. Even if the basic building blocks for classes are sets, arrays and records,

there are multiple ways t o lay out combinations of them on secondary storage. An array

of records might be contiguous records in order, or i t could be a list of oflsets t o the

records. We need t o look at mechanisms for specifying representations easily. We also

may want t o support different representations on disk and in memory. For example,

depending on the tool or method in use, we may want t o load just a particular fragment

of the s tate of a n object.

(4) Optimiration and access planning techniques need t o be extended for the types of opera-

tions tha t show up in design applications, such as single-object manipulation and traver-

-1s of logical object structure, for example, connectivity checking or fault propagation in

electrical CAD. Aleo, updates are common during early part8 of the design cycle, and we

must figure how t o optimize them as well.

(5) The flexibility of dynamic binding of messages t o methods is useful during system develop-

ment. It means the decision of the exact typing of the instance variables for a class can

be delayed. Such flexibility is desirable in modeling a domain for the first time. Later,

when the types of variables become apparent, we want to declare them, in order t o do

more static binding and get better performance. However, we want t o be able t o return t o

the dynamic binding case if the system is undergoing modification. The general problem is

keeping track of binding environments, when they change, and what has been bound rela-

tive t o a certain s tate of an environment. The goal is t o figure out when an environment

is changing slowly enough tha t binding relative t o i t is worthwhile. The range of variabil-

ity runs from slowly changing, such as the connection of class names t o class definitions,

and of types t o instance variables, t o more quickly changing, such as the association of

messages to methods, values t o instance variables and objects identifiers t o memory loca-

tions. But even in the most rapidly changing environments, binding may pay off. An

object may reside only briefly in main memory, but i t could still be worthwhile t o map

references to its identifier t o references to its memory location, if the object is expected to

be accessed several times before leaving memory.

(6) It seems too early to settle on a single semantics of versions and configurations. Still, we

can start to identify features t ha t should be present in the database kernel t o support a

range of version semantics. Some such features might be cheap copies of large objects,

support for compound identifiers and resolution of such identifiers, and template objects,

to be used for representing the common structure across multiple configurations p a i e r

(7) There is a tension between encapsulation and maintaining auxiliary access paths. Data-

bases conventionally index on structure, but t o respect encapsulation, an OODB should

index on the results of an operation. That is, the operation is applied to all elements of a

set, and the results of the applications are organized into an index. The problem is know-

ing, for an arbitrary operation, that i t returns the same value when applied twice in a row

and which other operations on an object can cause the result of the indexed operation to

change. The current choices are to violate encapsulation, and index on structure, or trust

the implementor of a class to ensure that certain operations behave properly for indexing.

The latter choice runs counter to what is provided in relational systems, where index

maintenance is guaranteed, no matter how a relation is defined.

Acknowledgements

My thanks to Arne Berre, Rod Butters, Craig Brandis, Goetz Graefe and Jacob Stein for

letting me try some of these ideas out on them. They can take credit for the good ones and

disown the losers.

The paper is an expansion of a position paper that appeared in the 1986 Workshop on

Objectoriented Database Systems waier 19861.

References

TM. Atwood, "An objecboriented DBMS for design support applications," Proceedings IEEE

COMPINT 85, 1985.

J. Banerjee, H.-T. Chou, J. F. Garza, W. Kim, D. Woelk, N. Ballou, H.-J. Kim, "Data model

issues for objecboriented applications," ACM TOOIS 5:1, January 1987.

M.J. Carey, D.J. DeWitt, D. Frank, G. Graefe, J.E. Richardson, E.J. Shekita, M. Muralikrishna,

"The architecture of the EXODUS extensible DBMS: a preliminary report," Univ. of Wisconsin

TI3 644, May 1986.

W.P. Cockshott, MI'. Atkinson, K.J. Chisholm, P. J. Bailey, R. M o r r k n , "Persistent object

management system," Software--Practice and Experience, 14, pp49-71, 1984.

K. R. Dittrich, W. Gotthard, P. C. Lockemann, "DAMOKLES-A database system for mftware

engineering environments," Proc. IFIP Workshop on Advanced Programming Environments,

Trondheim, June 1986, Lecture Notes in Computer Science, Springer-Verlag.

R. H. Katz, E. Chang, "Managing change in a computer-aided design database," VLDB XlTI,

September 1987.

T. Kaehler, G. Krasner, "LOOM--large objectoriented memory for Smalltalk-80 systems, in

Smalltalk-80: Bits of History, Words of Advice, G. Krasner, ed., Addison-Wesley 1983.

G. S. Landis, "Design eveolution and history in an objectoriented CAD/CAM database," 31st

IEEE COMPCON, March 1986.

D. Maier, "Why database languages are a bad idea," Workshop on Database Programming

Languages, h c o f l , France, September 1987.

D. Maier, "Why objectoriented database systems can succeed where others have failed,"

Proceedings of the International Conference on Object-Oriented Databases, September 1986.

Maier, D., J. Stein, A. Otis, A. Purdy, " Development of an ObjectOriented DBMS", ACM,

Proceedings of the Conference on Objectoriented Programming Systems, Languages and Appli-

cations, Portland, OR, September, 1986.

W. B. Rubenstein, M. S. Kubicar, R. G. G. Cattell, "Benchmarking simple database operations,"

Proceedings ACM-SIGMOD International Conference on Management of D-ata, May 1987.

Wegner, P. and S. Zdonik, "Language and Methodology for Object-Oriented Database Environ-

ments", Proceedings of the Nineteenth Annual International Conference on System Sciences,

Honolulu, Hawaii, January, 1986.

